

Edinburgh Research Explorer

Querying Graphs with Data

Citation for published version:
Libkin, L, Martens, W & Vrgoc, D 2016, 'Querying Graphs with Data', Journal of the ACM, vol. 63, no. 2, 14.
https://doi.org/10.1145/2850413

Digital Object Identifier (DOI):
10.1145/2850413

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the ACM

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 24. Apr. 2024

https://doi.org/10.1145/2850413
https://doi.org/10.1145/2850413
https://www.research.ed.ac.uk/en/publications/6420f8f6-14c9-4236-b7fc-161926affc01

A

Querying Graphs with Data

LEONID LIBKIN, University of Edinburgh

WIM MARTENS, Universität Bayreuth

DOMAGOJ VRGOČ, PUC Chile and Center for Semantic Web Research

Graph databases have received much attention as of late due to numerous applications in which data is
naturally viewed as a graph; these include social networks, RDF and the Semantic Web, biological databases,
and many others. There are many proposals for query languages for graph databases that mainly fall into
two categories. One views graphs as a particular kind of relational data and uses traditional relational
mechanisms for querying. The other concentrates on querying the topology of the graph. These approaches,
however, lack the ability to combine data and topology, which would allow queries asking how data changes
along paths and patterns enveloping it.

In this paper we present a comprehensive study of languages that enable such combination of data
and topology querying. These languages come in two flavors. The first follows the standard approach of
path queries, which specify how labels of edges change along a path, but now we extend them with ways of
specifying how both labels and data change. From the complexity point of view, the right type of formalisms
are subclasses of register automata. These, however, are not well suited for querying. To overcome this, we
develop several types of extended regular expressions to specify paths with data, and study their querying
power and complexity. The second approach adopts the popular XML language XPath and extends it from
XML documents to graphs. Depending on the exact set of allowed features, we have a family of languages,
and our study shows that it includes efficient and highly expressive formalisms for querying both the
structure of the data and the data itself.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design—Data Models; H.2.3
[Database management]: Languages—Query Languages; F.1.1 [Computation by Abstract Devices]:
Models of Computation—Automata; F.4.1 [Mathematical logic and formal languages]: Mathematical
logic

General Terms: Theory, Languages, Algorithms

Additional Key Words and Phrases: Graph databases, data values, navigational queries, XPath

ACM Reference Format:

Leonid Libkin, Wim Martens and Domagoj Vrgoč, 2013. Querying Graphs with Data. J. ACM V, N,
Article A (January YYYY), 52 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Managing and maintaining graph structured data is a topic that has gained significant
popularity in the last few years. Indeed, there are several vendors offering graph database
systems [Neo4j 2013; Dex 2013; Gremlin 2013] and a growing body of research literature on
the subject (for recent surveys, see [Angles and Gutierrez 2008; Barceló 2013; Wood 2012]).

This work was supported by the EPSRC grants G049165, J015377 and M025268, DFG grant MA 4938/2-1
and by Millennium Nucleus Center for Semantic Web Research Grant NC120004.
Author’s addresses: L. Libkin, LFCS, School of Informatics, University of Edinburgh; W. Martens, Univer-
sität Bayreuth; D. Vrgoč, Department of Computer Science, School of Engineering, PUC Chile.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 L. Libkin, W. Martens and D. Vrgoč

Movie

The Mill and The Cross

N is a Number

Paul Erdős

Documentary

Tomasz Luczak

Charlotte Rampling

Searching for Debra Winger

Sean Penn

Mystic River Kevin Bacon

Rosanna Arquette

Clint Eastwood

55

53
55

67

actor

type

act
or

actor typ
e

actor
act

or

type acto
r

typ
e actor

actor

director

director

age

ageage

age

Fig. 1. A movie database represented as a graph

The model is very popular due to its numerous uses in services whose data structure is
naturally represented by graphs: for instance, RDF triples are typically viewed as edges in
labeled graphs [Gutierrez et al. 2011; Losemann and Martens 2012; Pérez et al. 2009] and
so are connections between people in social networks [Fan 2012; Ronen and Shmueli 2009;
San Mart́ın and Gutierrez 2009]. Other application areas include biology, network traffic,
crime detection, and modeling object-oriented data.
In all of these applications, data is modeled by a graph, with nodes representing entities

in the database and edges representing various connections these entities can form. For
example, if we are describing a social network it is natural to represent users by nodes, with
edges symbolizing the connection between two users, such as friend, co-worker, relative,
and so on. Another example would be a movie database where each node stores information
about a specific movie, movie genre, or actor, while the edges of the graph tell us how
entities are connected. One such database is presented in Figure 1. Since nodes can form
different types of connections, it is common practice to assign labels to the edges connecting
them. Finally, nodes themselves contain the actual data, such as the information about the
movie title and duration, actor’s names and ages, etc. This data is modeled as the usual
relational data with attribute values coming from an infinite domain [Angles and Gutierrez
2008].
The most basic task for every data model, including graphs, is querying it. When designing

query languages an important concern is balancing expressivity and efficiency: a language
should be capable of describing a wide variety of relevant queries, while at the same time
having a low complexity of main computational tasks. To achieve this for graph data, two
separate approaches have been studied in the past: one focusing on the data stored in the
graph and the other focusing on its topology.
The first approach treats the graph model as a relational database and uses traditional

relational languages to extract the data. For example in the database above one could ask
for all movies of the same duration, or all actors of the same age. Such queries are expressed
in standard relational query languages, such as SQL on the practical side or relational
calculus on the theory side; the particular query above is an example of a conjunctive, or
select-project-join query [Abiteboul et al. 1995].
The second approach exploits the ability of graph databases to query intricate naviga-

tional patterns between objects, thus obtaining more information about the topology of the
stored data. For example, considering the database in Figure 1 one might want to find pairs
of actors connected by collaboration connections. This query would give us that Paul Erdős

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:3

and Charlotte Rampling are connected since they both co-starred with Tomasz Luczak. The
same can be said for Kevin Bacon and Paul Erdős, but the sequence of collaborations is
now longer. Taking into consideration that our databases can grow by inserting more data,
it is easy to see that no fixed number of collaborators can be set in advance to answer this
query, thus calling for languages that allow full transitive closure. These types of queries are
not handled well by traditional DBMSs, but are of special importance for graph database
querying: for instance, they underlie Facebook’s Graph Search [Facebook 2014].
This second approach typically uses regular path queries, or RPQs as a basic building

block. RPQs select nodes connected by a path described by a regular language over the
labeling alphabet [Cruz et al. 1987]. One can think of them as a generalization of transitive
closure by means of regular languages: indeed, in the most basic case, when the regular
language permits all words, such a query expresses transitive closure. Many navigational
languages for graph data are based on RPQs: those include languages with more complex
patterns, backward navigation, and relations over paths, see, e.g., [Abiteboul and Vianu
1999; Barceló et al. 2012; Barceló et al. 2012; Calvanese et al. 2000; 2009; Consens and
Mendelzon 1990].
Both of these approaches treat the data and the topological patterns enveloping it as two

separate entities. Thus, the querying mechanisms one deals with generally fall into one of
the following categories:

— queries about data, i.e., essentially relational queries (e.g., finding pairs of actors of the
same age), or

— queries about topology such as finding nodes connected by a path with a certain label (e.g.,
actors who are connected via collaboration links).

What both of these approaches are incapable of doing is combining data and topology. As an
example of a query that involves such a combination, one could for instance ask for people
who have a finite Bacon number (that is, there is a sequence of collaboration connections
linking them with Kevin Bacon). Note that here we have to test that the name attribute
of the final actor in the sequence is indeed Kevin Bacon and not some arbitrary value.
Another example one could imagine is a query that finds actors connected via professional
links restricted to actors of the same age. In this case, comparison of data values (having
the same age) is done for every node along the path. The main focus of this paper is to
investigate languages that are designed for combining topology and data.

Path Queries Combining Topology and Data. As a starting point we take the approach of
RPQs, where one uses regular expressions to describe the set of allowed paths in the graph
and then the query itself simply extracts all pairs of nodes connected by paths whose edge
labels form a word accepted by this regular expression. To extend this idea to a formalism
that also deals with data values encountered along paths, we observe that such paths can be
described by interchanging sequences of data values and edge labels. These objects are very
close to data words, which are well-studied in the XML context [Bojanczyk 2010; Bojanczyk
et al. 2011; Segoufin 2006; 2007]. A data word is a word in which every position is labeled
by both a letter from a finite alphabet (e.g., an edge label) and a data value (e.g., the actor
age, name, etc).
We can thus use multiple formalisms developed for data words (with a minor adjustment

for the extra value) to specify a set of permissible paths for our query. Such formalisms
abound in the literature and include first-order and monadic second-order logic with data
comparisons [Bojanczyk et al. 2009; Bojanczyk et al. 2011], LTL with freeze quantifiers
[Demri and Lazić 2009], XPath fragments [Bojanczyk 2010; Figueira 2009], and various
automata models such as pebble and register automata [Bouyer et al. 2001; Kaminski and
Francez 1994; Kaminski and Tan 2008; 2006; Neven et al. 2004].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 L. Libkin, W. Martens and D. Vrgoč

The question is then, which one to choose? To answer this, in Section 3.1 we look at
one of the fundamental problems of query language design, namely query evaluation. This
problem asks, given a tuple a, a database D, and a query q as input, if the tuple a is in
the answer to the query q over the database D. This problem is often referred to as the
combined complexity of query evaluation for a given language. Since queries are usually small
compared to the database, another important measure for efficiency of a language is the so
called data complexity of the query evaluation problem, which assumes the query q above to
be fixed, that is, not part of the input. We show that as long as the formalism is capable of
expressing what is perhaps the most primitive language with data value comparisons (two
data values are equal) and is closed under complementation, then data complexity is NP-
hard. Clearly one cannot tolerate such high data complexity, and this rules out most of the
formalisms except register automata. These are the most natural analogs of nondeterministic
finite automata (NFA) for data words.
We then study how register automata can be used to query paths in graphs (giving raise

to regular queries with memory, or RQMs) and present a query evaluation algorithm based
on checking non-emptiness of automata. This gives us an NL (nondeterministic logspace)
data complexity bound and PSpace-completeness for combined complexity. The bound for
data complexity is good and the bound for combined complexity is completely acceptable: it
is the same as for relational calculus. However, automata are not an ideal way of specifying
conditions in queries, which is why one typically uses regular expressions instead. While
some regular expression dialects have been considered for register automata [Kaminski and
Tan 2006], they are far from intuitive. For this reason, we define a class of expressions called
regular expressions with memory that are as expressive as register automata. The expressions
use variables that store data values to mimic registers, but are otherwise similar to ordinary
regular expressions. They are much easier to write than register automata are and they also
inherit the same complexity bounds:NL data complexity and PSpace combined complexity.
In an effort to lower the combined complexity, we define a class of regular queries with

data tests (RQDs) that restrict the use of memory and only allow for testing of equality
of data values in a strict stack-like manner. For this language we give a polynomial-time
algorithm for combined complexity.

Beyond Path Queries. All query languages considered up to this point only query paths.
We look beyond paths in the second part of the article. To see when queries that navigate
through a single path no longer suffice, consider again the database from Figure 1. One
might refine the notion of Bacon number in such a way that each collaboration witnessing
it has to go through a movie; a documentary will no longer suffice. Such a query lies outside
of reach of any language that navigates the graph using paths, since at each point of the
path one has to check if the actors co-starred in a movie. Therefore, in order to define such
queries one needs languages that allow for patterns that are no longer only paths, but allow
testing if points along a path have some additional property.
The well studied XML language XPath has this ability, but was designed to query trees

instead of graphs. Nevertheless, its goal seems very similar to the goal of many queries in
graph databases: it describes properties of paths and patterns, taking into account both
their purely navigational aspects as well as the data that is found in XML documents. The
popularity of XPath is largely due to several factors:

— it defines many properties of paths and patterns that are relevant for navigational queries;
— it achieves expressiveness that relates naturally to yardstick languages for databases (such

as first-order logic, its fragments, or extensions with some form of recursion); and
— it has good computational properties over XML, notably tractable combined complexity

for many fragments and even linear-time complexity for some of them.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:5

A natural question then is to see if the main ingredients that made XPath successful
in the context of XML can be applied on graphs. In Section 4 we will address this issue
and show that, when applied to graphs, XPath-like languages define an efficient and highly
expressive class of queries. So, from a theoretical perspective, XPath-like languages seem to
be very well-suited to query graphs. From a practical perspective this seems to be the case
too: many users are already familiar with XPath to query (XML) trees and, therefore, using
it to query graphs instead does not seem to present a steep learning curve.
To a limited extent, using XPath to query graphs was tried before. On the practical side,

XPath-like languages have been used to query graph data (e.g., [Cassidy 2003; Gremlin
2013]), without any analysis of their expressiveness and complexity, however. On the the-
oretical side, several papers investigated XPath-like languages from the modal perspective,
dropping the assumption that they are evaluated on trees [Alechina et al. 2003; Marx 2003],
but most notably in [Fletcher et al. 2011] the authors consider an algebra of binary rela-
tions which is the basis of our navigational language. It is important to note that none of
these approaches considered data values, thus making them suited only to ask queries about
topology of the graph and not about the interplay this topology has with the stored data.
We use several versions of XPath-like languages for graph databases, all of them collec-

tively named GXPath. Like XPath (or closely related logics such as PDL and CTL∗), all
versions of GXPath have node tests and path formulae, and as the basic navigational axes
they use letters from the alphabet labeling graph edges. On top of that, the language is
also equipped with three different kinds of data tests: the first testing if the data value in
some node equals a constant, the second being the “standard” XPath data test (the equali-
ties/inequalities studied in [Bojanczyk and Parys 2011]) and the third one checking if data
values at the beginning and the end of a pattern are equal or different.
We first study the complexity of various fragments of GXPath. As it turns out, all GXPath

fragments inherit nice properties from XPath on trees due to the “modal” nature of the
language: the combined complexity is always polynomial of low degree. The data complexity
is not worse than cubic when we disregard the data values and even linear for some expressive
fragments. With data comparisons added, data complexity becomes cubic again. We also
show that adding numerical formulas that specify length of a path connecting two nodes,
although making the language exponentially more succinct [Losemann and Martens 2012],
has no effect on the complexity of query evaluation.
Following this we analyze the expressive power of the language, using the usual database

yardstick of first-order logic as our reference point. Just like in the tree case [ten Cate and
Marx 2007], we isolate a fragment capturing first-order logic with three variables, but show
that some well known results that hold over trees [Marx 2005] are no longer valid on graphs.
Finally, we establish a full hierarchy of various GXPath fragments and variants and show
how they compare to traditional graph languages, as well as to languages introduced in
Section 3.

Conjunctive queries. To round off the study we also look at conjunctive queries that use
languages from Section 3 and Section 4 as their basic building blocks and show that for
these classes of queries query evaluation remains optimal. Namely, it is no harder than that
of single queries when dealing with conjunctive versions of RQMs and register automata,
while for RQDs and GXPath the complexity matches that of relational conjunctive queries
and CRPQs.

Remark 1.1. This paper combines and extends two conference papers [Libkin and Vrgoč
2012b; Libkin et al. 2013a]. Specifically, Section 3 comes from [Libkin and Vrgoč 2012b]
and parts of Section 4 from [Libkin et al. 2013a]. As most of the proofs were omitted in
conference versions we present full proofs here. In addition to that we also determine the
full hierarchy of GXPath fragments in Section 4.5, compare the languages in Section 4.4
and show how to use conjunctive queries based on GXPath in Section 5. Furthermore, all of

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 L. Libkin, W. Martens and D. Vrgoč

the languages presented here are equipped with the ability to use constants, a feature not
present in the preliminary conference versions.

Organization. We review basic definitions in Section 2. In Section 3 we study register
automata and related classes of expressions. In Section 4 we show how XPath can be adapted
to work over graphs and in Section 5 we define conjunctive queries using languages from
previous sections as their basic building blocks. We give some concluding remarks in Section
6.

2. PRELIMINARIES

We first describe graph databases. We assume a model in which edges are labeled by letters
from a finite alphabet Σ and nodes can contain data values from a countably infinite set
D (for instance, attributes of people in a social network). For simplicity of notation only,
we assume a single data value per node, as is often done in modeling XML with data trees
[Segoufin 2007]. This is not a restriction at all, since a node u with k > 1 attributes be
modeled by a node u with k outgoing edges, leading to k new nodes containing the data
values (again, in the same way as data trees model XML documents). For a discussion on
how this can be implemented for languages considered in this paper we refer the reader to
[Vrgoč 2014]. The same reference also illustrates how the approach when data values reside
in the edges, or in both nodes and edges, can be reduced to the approach taken here.

Definition 2.1 (Data graphs). A data graph (over Σ and D) is a triple G = 〈V,E, ρ〉,
where:

— V is a finite set of nodes;
—E ⊆ V × Σ× V is a set of labeled edges; and
— ρ : V → D is a function that assigns a data value to each node in V .

When we deal with purely navigational queries, i.e., those not taking data values into
account, we refer to data graphs as 〈V,E〉, omitting the function ρ. We write Ea for the set
of a-labeled edges, i.e., Ea = {(v, v′) | (v, a, v′) ∈ E}.
A path from node v1 to vn in a graph is a sequence

π = v1a1v2a2v3 . . . vn−1an−1vn (1)

such that each (vi, ai, vi+1), for i < n, is an edge in E. We use the notation λ(π) to denote
the word a1 . . . an−1 ∈ Σ∗ to which we refer as the label of path π.
Queries in this article will always select a binary relation of nodes in a data graph. That

is, for a data graph G and query Q we always have that Q(G) ⊆ V ×V . We will be interested
in the query evaluation problem which checks, for a query Q, a data graph G, and a pair
of nodes (v, v′), whether (v, v′) ∈ Q(G). Furthermore, we study the data- and combined
complexity of the query evaluation problem. For combined complexity, the input to the
problem is Q, G, and (v, v′). For data complexity, the query Q is fixed, so the input only
consists of G and (v, v′).

Navigation languages for graph databases. Before we explain the approach for querying
graphs that we take in this article, we provide an overview of existing approaches that
should clarify why our approach is natural. Most navigational formalisms for querying
graph databases are based on regular path queries, or RPQs [Cruz et al. 1987], and their
extensions. An RPQ is an expression of the form

x
L

−→ y,

where L is a regular language over Σ (typically represented by a regular expression or an
NFA). Given a Σ-labeled graph G = 〈V,E〉, the answer to an RPQ as above is the set of
pairs of nodes (v, v′) such that there is a path π from v to v′ with λ(π) ∈ L.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:7

Conjunctive RPQs, or CRPQs [Consens and Mendelzon 1990] are the closure of RPQs
under conjunction and existential quantification. Formally, they are expressions of the form

ϕ(x̄) = ∃ȳ
n
∧

i=1

(zi
Li−→ ui), (2)

where all variables zi, ui come from x̄, ȳ. The semantics naturally extends the semantics of
RPQs: ϕ(ā) is true in G iff there is a tuple b̄ of nodes such that, for every i ≤ n, every pair

vi, v
′
i interpreting zi and ui is in the answer to the RPQ zi

Li−→ ui. These have been further
extended, for instance, to 2CRPQs that allow navigation in both directions (i.e., the edges
can be traversed both forwards and backwards [Calvanese et al. 2000]), U2CRPQs that allow

unions, or to extended CRPQs, in which paths witnessing the RPQs zi
Li−→ ui can be named

and compared for relationships between them, defined as regular or even rational relations
[Barceló et al. 2012; Barceló et al. 2012].
To formalize navigation in RDF documents, [Pérez et al. 2010] defines the class of nested

regular expressions, or NRE, that extend ordinary regular expressions with the nesting
operator and inverses. Formally their syntax is defined as follows:

n := ε | a | a− | n · n | n∗ | n+ n | [n]

where a ranges over Σ.
When evaluated on a graph G, an NRE n defines a binary relation JnKG consisting of

pairs of nodes connected by a pattern specified by the NRE. More precisely, this relation
JnKG is defined inductively as follows:

JεKG = {(v, v) | v ∈ V }
JaKG = {(v, v′) | (v, a, v′) ∈ E}

Ja−KG = {(v, v′) | (v′, a, v) ∈ E}
Jn · n′KG = JnKG ◦ Jn′KG

Jn+ n′KG = JnKG ∪ Jn′KG

Jn∗KG = the reflexive transitive closure of JnKG

J[n]KG = {(v, v) | ∃v′ such that (v, v′) ∈ JnKG}.

Here, ◦ denotes the composition operator of binary relations. That is, for binary relations
R1 and R2, we define R1 ◦R2 = {(u, v) | ∃z such that (u, z) ∈ R1 and (z, v) ∈ R2}.

Path languages and graph languages. When we compare NREs to RPQs we can see that
they query graphs in a rather different manner. RPQs

(1) specify a set of allowed path labels through a language L and
(2) then their semantics is defined by the existence of paths in the graph whose label belongs

to L.

In particular, each answer of an RPQ is witnessed by the existence of a certain path in the
graph. This is not the case for NREs, which are defined through a recursive definition that
computes node pairs. These node pairs do not have to be connected by a (directed) path in
the graph.
In the remainder of the paper we will use the term path languages to refer to the former

kind (since their semantics is defined on paths that match a language) and graph languages
to refer to the latter kind (since their semantics tests graph properties that go beyond
paths). In other words, in the forthcoming sections we will be dealing with:

—Path languages – when the underlying idea is to describe the set of permissible path
labels and then the semantics calls for finding paths in the graph whose labels belong to
this set.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 L. Libkin, W. Martens and D. Vrgoč

1v1 1v3 3 v5

2

v2

1

v4

a

a

b

b

a

b

b

Fig. 2. Graph database with data values

—Graph languages – when queries are defined to operate directly on graphs and when
paths alone no longer suffice to capture the intended semantics.

One difference between path- and graph languages becomes apparent when considering
queries that can traverse edges bidirectionally. Whereas graph languages are not naviga-
tionally constrained by a path, path languages would travel back and forth along one path
in the graph. We note that NREs, our prime example of a graph language, could also be used
to define sets of words (i.e. their semantics could be adapted to paths instead of graphs),
where the nesting would only look ahead (or backwards) along a single path. This approach,
although interesting in its own right [Reutter 2013a], falls outside the scope of this work.

3. PATH LANGUAGES

In this section we will examine several languages that take the approach of defining a set
of permissible paths when describing the answer to a query. We will show how these can be
defined using standard language theoretic formalisms that take data value comparisons into
consideration and examine their query evaluation properties and relative expressive power.
In order to illustrate what a suitable formalism for describing both navigational and data

aspects of graphs might be, consider the data graph in Figure 2. A typical RPQ may ask for
pairs of nodes connected by a path from the regular language (ab)∗. In the graph in Fig. 2,
one possible answer is (v1, v3), another (v1, v5). To combine such a query with data values,
we may ask queries of the following kind:

— Find nodes connected by a path from (ab)∗ such that the data values at the beginning
and at the end of the path are the same. In this case, (v1, v3) is still in the answer but
(v1, v5) is not.

—We may extend data value comparisons to other nodes on the path, not only to the first
and the last node. For example, we may ask for nodes connected by paths along which
the data value remains the same, or on which all data values are different from the first
one. The pair (v1, v3) is in the answer to the first query (the path v1v4v3 witnesses it),
while the pair (v1, v5) is in the answer to the second, as witnessed by the path v1v2v5.

What kind of languages can we use in place of regular languages to specify paths with
data? To answer this, consider, for example, a path v1v2v5v3 in the graph. If we traverse it
by starting at v1, reading its data value, then reading the label of (v1, v2), then the data
value in v2, etc., we end up with the sequence 1a2b3a1, which we refer to as a data path.

Definition 3.1 (Data paths). Let π = v1a1v2 · · · vn−1an−1vn be a path from v1 to vn in a
data graph. The data path corresponding to π is

wπ = ρ(v1)a1ρ(v2)a2ρ(v3) . . . ρ(vn−1)an−1ρ(vn). (3)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:9

A data path is therefore a sequence of alternating data values and labels which starts and
ends with data values. The set of all data paths, i.e., such alternating sequences over Σ and
D, will be denoted by Σ[D]∗. For both paths and data paths, we use the notation λ(π) or
λ(wπ) to denote their label, i.e., the word a1 . . . an−1 ∈ Σ∗.
Data paths are very closely related to data words [Bojanczyk 2010; Bojanczyk et al. 2011;

Segoufin 2006; 2007], which have been actively studied in the XML context. A data word is
a word in which every position is labeled by a pair

(

a
d

)

where a comes from a finite alphabet
and d is a data value (e.g., a natural number). Data paths are essentially data words with

an extra data value. We can represent the data path 1a2b3a1 as a data word
(

#
1

)(

a
2

)(

b
3

)(

a
1

)

,
where # is a new alphabet symbol reserved for the extra data value. It is straightforward to
show that all of the expression classes and automata models that we consider in this section
can be defined to operate both over data words and data paths. For a formal treatise of this
see [Libkin and Vrgoč 2012b; 2012a; Vrgoč 2014].
We can thus simply use formalisms for data words (with a minor adjustment for the

extra value) to specify data paths. Such formalisms abound in the literature and include
first-order and monadic second-order logic with data comparisons [Bojanczyk et al. 2009;
Bojanczyk et al. 2011], LTL with freeze quantifiers [Demri and Lazić 2009], XPath fragments
[Bojanczyk 2010; Figueira 2009], and various automata models such as pebble and register
automata [Bouyer et al. 2001; Kaminski and Francez 1994; Kaminski and Tan 2008; 2006;
Neven et al. 2004].
In this section, we study data path queries. A data path query is an expression of the

form x
L
→ y, where L is a language of data paths.

3.1. Existing Languages for Paths

To specify data path queries, we need a way of defining languages of data paths. As il-
lustrated above, data paths are essentially data words with an extra data value attached.
Quite a few logics and automata models have been developed for data words over the past
few years, mainly in connection with the study of XML and especially XPath. We now give
a quick overview of them. A more extensive survey can be found in [Segoufin 2006].

FO(∼) and MSO(∼). These are first-order logic and monadic second-order logic ex-
tended with the binary predicate ∼ saying that data values in two positions are the
same. For example, ∃x∃y x 6= y ∧ a(x) ∧ a(y) ∧ x ∼ y says that there are two a-labeled
positions with the same data value. Two-variable fragments of FO(∼) and existential
MSO with the ∼ predicate have been shown to have decidable satisfiability problems
[Bojanczyk et al. 2009; Bojanczyk et al. 2011].

Pebble automata. These are basically finite state automata equipped with a finite
set of pebbles. To ensure regular behavior, pebbles are required to adhere to a stack
discipline. The automata are modeled in such a way that the last placed pebble acts
as the automaton head and we are allowed to drop and lift pebbles over the current
position. In addition to this we can also compare the current data value to the one that
already has a pebble placed over it. Algorithmic properties and connections with logics
have been extensively studied in [Neven et al. 2004].

LTL↓. This is the standard LTL expanded with a freeze operator “↓” that allows us to
store the current data value into a memory location and use it for future comparisons. The
satisfiability problem for the full logic is undecidable, but various decidable restrictions
are known [Demri and Lazić 2009; Demri et al. 2007].

Register automata. These are in essence finite state automata extended with a finite
set of registers allowing us to store data values. Although first studied only on words over
an infinite alphabet [Kaminski and Francez 1994; Neven et al. 2004; Sakamoto and Ikeda
2000], they are easily extended to handle data words, as illustrated in [Demri and Lazić

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 L. Libkin, W. Martens and D. Vrgoč

2009; Segoufin 2006]. They act as usual finite state automata in the sense that they move
from one position to another by reading the appropriate letter from the finite alphabet,
but are also allowed to compare the current data value with ones already stored in the
registers.

XPath fragments. XPath is the standard language for navigating in XML documents
and while it has been used to define data path languages in the past [Figueira 2010], we
will not consider it in this context. The main reason for this is the fact that XPath is
intrinsically a graph (originally tree) language, and, as we show in Section 4, even the
more general graph approach already yields very efficient query evaluation algorithms
(combined complexity is always PTime and for some fragments even linear).

In deciding which formalism to investigate more deeply we look at the data complexity
of evaluating data path queries and rule out those for which data complexity is intractable
(assuming P 6= NP). It turns out that most of the formalisms for data words/paths are
actually not suitable for graph querying. This is implied by the following result. Let Leq
be the language of data paths that contain two equal data values. We will denote its com-
plement, i.e., the language of all data paths containing pairwise different data values, by
Leq.

Theorem 3.2. The data complexity of evaluating Q = x
Leq

−→ y over data graphs is
NP-complete.

Proof. To see that the problem is in NP it suffices to observe that, given a data graph
G and two nodes (s, t), we can test if (s, t) ∈ Q(G) by guessing a path from s to t and
checking if all data values on the path are pairwise different.
The proof of the NP lower bound is by showing that with Leq, one can encode the 2-

disjoint-paths problem which is NP-complete [Fortune et al. 1980]. This problem is to check,
for a graph G and four nodes s1, t1, s2, t2 in G, whether there exist two paths in G, one from
s1 to t1 and the other from s2 to t2 that have no nodes in common. First, we argue that we
can assume that s1, t1, s2, and t2 are distinct. This is because we can always add two new
nodes for each repeated node and connect them with all the nodes the repeated node was
connected to, thus modifying our problem to have all source and target nodes different.
Assume that G = 〈V,E〉 is a digraph and s1, t1, s2, t2 are four distinct nodes in G. Recall

that our query is Q = x
Leq

−→ y. Since Q will disregard edge labels we can take Σ = {a}. We
will construct a data graph G′ and two nodes s, t ∈ G′ such that (s, t) ∈ Q(G′) if and only
if there are two disjoint paths in G from s1 to t1 and from s2 to t2.
Let V = {v1, . . . , vn}. The graph G′ will contain two disjoint isomorphic copies of G

(extended with data values and labels) connected by a single edge. We define the two
isomorphic copies G1 = 〈V1, E1, ρ1〉 and G2 = 〈V2, E2, ρ2〉 by:

— V1 = {v′1, . . . , v
′
n},

— V2 = {v′′1 , . . . , v
′′
n},

—E1 = {(v′i, a, v
′
j) : (vi, vj) ∈ E},

—E2 = {(v′′i , a, v
′′
j) : (vi, vj) ∈ E} and

— ρ1(v
′
i) = ρ2(v

′′
i) = i, for i = 1 . . . n,

and then let G′ = 〈V ′, E′, ρ′〉, where

— V ′ = V1 ∪ V2,
—E′ = E1 ∪E2 ∪ {(t′1, a, s

′′
2)} and

— ρ′ = ρ1 ∪ ρ2.

Note that ρ′ is well defined since V1 and V2 are disjoint. Finally, we define s = s′1 and t = t′′2 .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:11

We claim that (s, t) ∈ Q(G′) if and only if there are two disjoint paths in G from s1 to
t1 and from s2 to t2 in G. To see this assume first that (s, t) ∈ Q(G′). This means that we
have a path in G′ which starts at s′1 and ends at t′′2 . In particular, it must pass the edge
from t′1 to s′′2 , since this is the only edge connecting the two graphs. Also, since all data
values on this path are different, we know that no node can repeat, i.e., the path contains
no two copies of the same node in G. But then we simply split this path into two disjoint
paths in G since the structure of edges in G′ is the same as the one in G with the exception
of edge between t′1 and s′′2 .
Conversely, assume that we have two disjoint paths from s1 to t1 and from s2 to t2 in G.

Notice that we can assume these two paths to contain no loops, since loops can be removed
while keeping the paths disjoint. To obtain a data path from s to t in Leq, we simply follow
the corresponding path from s′1 to t′1 in G1 (and thus in G′), traverse the edge between t′1
and s′′2 and then follow the path in G2 (and thus in G′) from s′′2 to t′′2 corresponding to the
path from s2 to t2 in G. Since the two paths in G have no node in common and do not have
loops, all data values on the constructed data path from s to t in G′ are different.
This completes the proof.

Note that Leq expresses only a very simple property of data paths/words. It seems hard to
imagine a useful formalism for data paths that cannot check for the equality of data values.
The corollary below effectively rules out closure under complement for such formalisms if
they are to be used in graph querying.

Corollary 3.3. Assume that we have a formalism for data paths that can define Leq
and that is closed under complement. Then the data complexity of evaluating data path
queries is NP-hard.

This immediately rules out FO(∼) and its two-variable fragment, LTL with the freeze
quantifier, and pebble automata. The only hope we have among standard formalisms is
register automata, since they are not closed under complementation [Kaminski and Francez
1994]. In the following sections we show that we can achieve good query answering com-
plexity using register automata and some of their restrictions, while still retaining sufficient
expressive power.

Remark 3.4. It is important to note that we will come back to FO in Section 4, where
its semantics will be defined directly on graphs. As a consequence, in that context negation
will be limited to the active domain, and not to the set of all data words as here, so it will
no longer be possible to express that all data values along a path are different

3.2. Data path queries with register automata

From our list of candidate formalisms for path languages in Section 3.1, register automata
are the only standard formalism that does not immediately lead toNP-hard data complexity
for evaluating data path queries. In this section we define them and study query evaluation
for data path queries based on these automata. To this end we will slightly alter the definition
of register automata used in e.g. [Demri and Lazić 2009; Segoufin 2006] to work on data
paths rather than data words, without affecting their desirable properties.
Register automata move from one state to another by reading the appropriate letter from

the finite alphabet and comparing the currently read data value to the ones previously
stored into the registers. Our version of register automata will use slightly more involved
comparisons which will be boolean combinations of atomic =, 6= comparisons of data values.
To define such conditions formally, assume that, for each k > 0, we have variables x1, . . . , xk.
Then conditions in Ck are given by the grammar:

c := x=i | x6=i |z= |z 6= | c ∧ c | c ∨ c | ¬c, 1 ≤ i ≤ k,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 L. Libkin, W. Martens and D. Vrgoč

where z is a data value from D, also referred to as the constant. Let D⊥ = D ∪ {⊥}, where
⊥ is a special symbol signifying that the register is empty. The satisfaction of a condition
is defined with respect to a data value d ∈ D and a tuple τ = (d1, . . . , dk) ∈ Dk

⊥ as follows:

— d, τ |= x=i iff d = di;

— d, τ |= x6=i iff d 6= di;
— d, τ |= z= iff d = z;
— d, τ |= z 6= iff d 6= z;
— d, τ |= c1 ∧ c2 iff d, τ |= c1 and d, τ |= c2 (and likewise for c1 ∨ c2);
— d, τ |= ¬c iff d, τ 2 c.

In what follows, [k] is a shorthand for {1, . . . , k} and ε for a condition that is true for any
valuation and data value (e.g. c ∨ ¬c).

Definition 3.5 (Register data path automata). Let Σ be a finite alphabet, and k a natural
number. A k-register data path automaton over Σ and D is a tuple A = (Q, q0, F, τ0, δ),
where:

—Q = Qw∪Qd, where Qw and Qd are two finite disjoint sets of word states and data states;
— q0 ∈ Qd is the initial state;
— F ⊆ Qw is the set of final states;
— τ0 ∈ Dk

⊥ is the initial configuration of the registers;
— δ = (δw, δd) is a pair of transition relations:

— δw ⊆ Qw × Σ×Qd is the word transition relation;
— δd ⊆ Qd × Ck × 2[k] ×Qw is the data transition relation.

The intuition behind this definition is that since we alternate between data values and
word symbols in data paths, we also alternate between data states (which expect a data value
as the next symbol) and word states (which expect alphabet letters as the next symbol).
We start with a data value, so q0 is a data state, and end with a data value, so final states,
seen after reading that value, are word states.
In a word state the automaton behaves like the usual NFA (but moves to a data state

using its word transition function). In a data state, the automaton checks if the current data
value and the configuration of the registers satisfy a condition, and if they do, moves to a
word state and updates some of the registers with the read data value. Both functionalities
are illustrated in the following picture, where in the data transition the automaton checks
if the data value is different to the one stored in register seven and then moves to a word
state while storing the value into registers from the set I.

Word transition: Data transition:

q

word state

q′

data state

a
r

data state

r′

word state

x6=7 , I

Notice that we also could have modeled constants by storing them into the initial assign-
ment (possibly using more registers). We put them into conditions to have a uniform way
of handling them when we define regular queries with memory (RQMs) and regular queries
with data tests (RQDs) in the following sections. When the condition ε is used, or when
I = ∅ (that is, we do not store the data value into any register) we will omit them from the
transition in the diagrams above.
Now we formally define acceptance of a data path by a register automaton. Given a data

path w = d0a1d2a3 . . . an−1dn, where each di is a data value and each al is a letter, a
configuration of A on w is a tuple (j, q, τ), where j is the current position of the symbol in
w that A reads, q is the current state and τ ∈ Dk

⊥ is the current content of the registers.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:13

The initial configuration is (0, q0, τ0) and any configuration (j, q, τ) with q ∈ F is a final
configuration. The automaton can move from configuration C = (j, q, τ) to configuration
C′ = (j + 1, q′, τ ′) on w if one of the following holds:

— aj ∈ Σ, there is a transition (q, aj , q
′) ∈ δw, and τ

′ = τ ; or
— dj ∈ D and there is a transition (q, c, I, q′) ∈ δd such that dj , τ |= c and τ ′ coincides with
τ except that the ith component of τ ′ is set to dj whenever i ∈ I.

A data path w is accepted by A if A can move from the initial configuration to a final
configuration on w. The language of data paths accepted by A is denoted by L(A).

Example 3.6. The following automaton recognizes the language of all data paths that
have label a∗, do not contain the data value “3”, and for which the first data value differs
from all the others. It operates by testing if its first data value is different from 3, denoted
3 6= and storing it into its first register x1. It then moves to the state q1, where it loops (by
alternating between q2 and q1), while checking that the data value being read is different
from 3 and the one stored in x1. If this is satisfied it ends its computation in an accepting
state q1.

q0 q1 q2
36=, {x1}

a

x
6=
1
∧ 36=

3.2.1. Regular data path queries. Our first class of queries on graphs with data is based on
register data path automata.

Definition 3.7. A regular data path query (RDPQ) over Σ and D is an expression Q =

x
A
−→ y where A is a register data path automaton over Σ and D. Given a data graph G,

the result of the query Q(G) consists of pairs of nodes (v, v′) such that there is a data path
w from v to v′ that belongs to L(A).

Example 3.8. Coming back to the movie database from Figure 1, assume that, for each
edge labeled actor that connects a movie or a documentary with an actor, we also have an
edge going in the other direction labeled stars in. For example we will add one such edge
connecting Kevin Bacon with Mystic River, or Charlotte Rampling with The Mill and The
Cross.
We can then ask for all people who have a finite Bacon number using the query Q =

x
A
−→ y, specified by the following register automaton A:

q0 q1

q2 q3

q4 q5
∅

stars in

Kevin Bacon=

∅

∅

actor

The automaton works by traversing a sequence of stars in · actor edges, which connect
all pairs of actors who co-starred in a same film, but also makes sure that the last data
value equals Kevin Bacon. Note that in addition to the actor with a finite Bacon number,
this query also returns the node corresponding to Kevin Bacon.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 L. Libkin, W. Martens and D. Vrgoč

To evaluate RDPQs, we transform both a data graph G and a k-register data path
automaton A into NFAs over an extended alphabet and reduce query evaluation to NFA
nonemptiness. More precisely, to evaluate Q(G), we do the following:

(1) Let D be the set of all data values in G.
(2) Transform G = 〈V,E, ρ〉 into a graph G′ = 〈V ′, E′〉 over the alphabet Σ ∪D as follows:

— V ′ = {vs | v ∈ V } ∪ {vt | v ∈ V }
—E′ = {(vt, a, v′s) | (v, a, v

′) ∈ E} ∪ {(vs, ρ(v), vt) | v ∈ V }
Basically, we split each node v with a data value d into a source node vs and a target
node vt and add a d-labeled edge between them. After that we restore the edges from E
so that they go from target to source nodes. This is illustrated below.

vs vt v′s v′t

d

v

d′

v′

d a d′

a

⇓

(3) Transform the automaton A = (Q, q0, F, τ0, (δw, δd)) into an NFA AD = (Q′, q′0, F
′, δ′)

over the alphabet Σ ∪ D, whose intention is to accept precisely those data paths from
L(A) that have data values from D. We construct AD as follows:
—Q′ = Q ×Dk

0 , with D0 = D ∪ {⊥} ∪ {τ0(i) | i = 1 . . . k};
— q′0 = (q0, τ0);
— F ′ = F ×Dk

0 ;
— δ′ includes two types of transitions.

(a)Whenever we have a transition (q, a, q′) in δw, we add transitions ((q, τ), a, (q′, τ))
to δ′ for all τ ∈ Dk

0 .
(b)Whenever we have a transition (q, c, I, q′) in δd, we add transitions

((q, τ), d, (q′, τ ′)) if d, τ |= c and τ ′ is obtained from τ by putting d in positions
from the set I.

To see that AD accepts the data paths from L(A) that have data values from D, it
suffices to show that every accepting run of AD corresponds to an accepting run of A
and vice versa, in the case of paths whose data values come from D. But this follows
easily since AD has all possible configurations of registers at its disposal.

For two nodes v, v′ of G, we turn G′ into an NFA AG′,v,v′ by letting vs be its initial state
and v′t be its final state. Then we have the following.

Proposition 3.9. Let Q = x
A
−→ y be an RDPQ, and G a data graph whose data

values form a set D ⊆ D. Then

(v, v′) ∈ Q(G) ⇔ L(AG′,v,v′ ×AD) 6= ∅.

Proof. Recall that AD accepts exactly the data paths from L(A) that have data values
from D. To see that the statement of Proposition 3.9 holds assume first that (v, v′) ∈ Q(G).
Then there is a data path wπ = d0a0d1a1 . . . an−1dn from v to v′ such that wπ ∈ L(A).
Since this is a data path in G starting with v and ending with v′ it must also be a word in
the language of AG′,v,v′ . On the other hand, since it is in L(A), it must also be in L(AD),
since AD is simply the restriction of A to the alphabet in which data values come only from
the set D. Thus L(AG′,v,v′ ×AD) 6= ∅.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:15

Conversely, assume that L(AG′,v,v′ × AD) 6= ∅. Then there is a data path wπ =
d0a0d1a1 . . . an−1dn such that wπ ∈ L(AG′,v,v′) and wπ ∈ L(AD). But then by construction
wπ must be a data path in G from v to v′. Also wπ ∈ L(A), since L(AD) is simply a
restriction of the language of A to data paths whose data values come from D. This then
implies that (v, v′) ∈ Q(G).

Thus, query evaluation, like in the case of the usual RPQs, is reduced to automata
nonemptiness, although this time the automata are over larger alphabets. Since the con-
struction is polynomial in the size of G and exponential in the size of A (as k gets into the
exponent), we immediately get a PTime upper bound for data complexity and an ExpTime
upper bound for combined complexity. By performing on-the-fly nonemptiness checking for
the product, we can lower these bounds.

Theorem 3.10. The data complexity of RDPQs over data graphs is NL-complete and
the combined complexity of RDPQs over data graphs is PSpace-complete.

Proof. Concerning data complexity, the NL upper bound is obtained by guessing a
word in L(AG′,v,v′ × AD) symbol by symbol and simulating AG′,v,v′ × AD on the fly.
The NL lower bound is immediate from the reachability problem in graphs. For combined
complexity, the upper PSpace bound follows from essentially the same algorithm as for
the NL upper bound. However, simulating AG′,v,v′ ×AD on the fly now takes polynomial
space because AD is not constant anymore. The PSpace lower bound is immediate from
Proposition 3.13 and Theorem 3.18, which are proved for a more restricted language.

3.3. Queries based on regular expressions with memory

Regular data path queries based on register automata have acceptable complexity bounds:
data complexity is the same as for RPQs, and combined complexity, although exceeding
the bounds for conjunctive queries and RPQs, is the same as for relational calculus or for
RPQs extended with regular relations. Despite this, RDPQs as we defined them have no
chance to lead to a practical language as it is not likely that users will specify a register
automaton over data paths. Even for queries such as RPQs and their extensions, conditions
are normally specified via regular expressions.
Our goal now is to introduce regular expressions that can be used in place of register

automata in data path queries. Note that as long as they express languages accepted by
register automata, we shall achieve an NL bound on data complexity by Theorem 3.10.
The first class of queries studied in this section is based on an extension of regular

expressions with memory that lets us specify when data values are remembered and when
they are used. The basic idea is that we can write expressions like ↓x.a+[x=] saying: store
the current data value in x and check that after reading a word from a+ we see the same
data value (condition x= is true). This will define data paths of the form da . . . ad. Such
expressions are relatively easy to write and understand (typically easier than automata)
and the complexity of their query evaluation will not exceed that of register automata.

Definition 3.11 (Regular expressions with memory). Let Σ be a finite alphabet and
x1, . . . , xk a set of variables. Then regular expressions with memory (REM) are defined
by the grammar:

e := ε | a | e+ e | e · e | e+ | e[c] | ↓x.e (4)

where a ranges over alphabet letters, c over conditions in Ck, and x over tuples of variables
from x1, . . . , xk.

A regular expression with memory e is well-formed if it satisfies two conditions:

— Subexpressions e+, e[c], and ↓x.e are not allowed if e reduces to ε. Formally, e reduces to
ε if it is ε, or it is e1 + e2 or e1 · e2 or e+1 or e1[c] or ↓x.e1 where e1 and e2 reduce to ε.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 L. Libkin, W. Martens and D. Vrgoč

—No variable appears in a condition before it appears in ↓x.

From now on we assume that all REMs are well-formed. By REM(Σ[x1, . . . , xk]) we denote
the set of all well-formed REMs with alphabet Σ and variables {x1, . . . , xk}.

The extra condition of being well-formed is to rule out pathological cases like ε[c] for
checking conditions over empty subexpressions, or a[x=] for checking equality with a variable
that has not been defined.
The intuition behind the expressions is that they process a data path in the same way

that the register automaton would, by storing data values in variables, using these variables
for comparisons and moving through the word by reading a letter from the finite alphabet.
Note that when we bound a variable we do not specify the scope of this binding. This means
that the variable can be used at any point after it was bound up to the end of the expression
and is analogous to how register automata store and use data values.

Example 3.12. We give two examples of such expressions and languages they recognize,
before formally defining their semantics.

(1) The language Leq of data paths in which two data values are the same (see Section 3.1)
is given by the expression Σ∗ · ↓x.Σ+[x=] ·Σ∗, where Σ is the shorthand for a1+ . . .+ al,
whenever Σ = {a1, . . . , al} and Σ∗ is the shorthand for Σ+ + ε. It says: at some point,
bind x, and then check that after one or more edges, we have the same data value.

(2) The language where the finite alphabet part is a sequence of as, and where each data
value differs from the first one, while the second value also differs from 5, is given by
↓ x · a[5 6= ∧ x6=] · (a[x6=])∗. It starts by binding x to the first data value; then it proceeds
checking that the letter is a and condition 5 6= ∧ x6= is satisfied, which is expressed by
a[5 6=∧x6=]. After that it proceeds to the end by reading letters a and data values different
from the first, expressed by (a[x6=])∗.

Semantics of REMs. First, we define the concatenation of two data paths w =
d1a1 . . . an−1dn and w′ = dnan . . . am−1dm as w ·w′ = d1a1 . . . an−1dnan . . . am−1dm. Notice
that it is only defined if the last data value of w equals the first data value of w′. The
definition naturally extends to concatenation of several data paths. If w = w1 · · ·wl, we
shall refer to w1 · · ·wl as a splitting of a data path w (into w1, . . . , wl).
The semantics of REMs is defined by means of a relation (e, w, σ) ⊢ σ′, where e ∈

REM(Σ[x1, . . . , xk]) is a regular expression with memory, w is a data path, and both σ and
σ′ are k-tuples over D ∪ {⊥} (the symbol ⊥ means that a register has not been assigned
yet). The intuition is as follows: one can start with a memory configuration σ (i.e., values
of x1, . . . , xk) and parse w according to e in such a way that at the end the memory
configuration is σ′. The language of e is then defined as

L(e) = {w | (e, w,⊥) ⊢ σ for some σ},

where ⊥ is the tuple of k values ⊥.
The relation ⊢ is defined inductively on the structure of expressions. Recall that the

empty word corresponds to a data path with a single data value d (i.e., a single node in a
data graph). We use the notation σx=d for the valuation obtained from σ by setting all the
variables in x to d.

— (ε, w, σ) ⊢ σ′ iff w = d for some d ∈ D and σ′ = σ.
— (a, w, σ) ⊢ σ′ iff w = d1ad2 and σ′ = σ.
— (e1 · e2, w, σ) ⊢ σ′ iff there is a splitting w = w1 · w2 of w and a valuation σ′′ such that

(e1, w1, σ) ⊢ σ′′ and (e2, w2, σ
′′) ⊢ σ′.

— (e1 + e2, w, σ) ⊢ σ′ iff (e1, w, σ) ⊢ σ′ or (e2, w, σ) ⊢ σ′.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:17

—(e+, w, σ) ⊢ σ′ iff there are a splitting w = w1 · · ·wm of w and valuations σ =
σ0, σ1, . . . , σm = σ′ such that (e, wi, σi−1) ⊢ σi for all i ∈ [m].

— (↓x.e, w, σ) ⊢ σ′ iff (e, w, σx=d) ⊢ σ′, where d is the first data value of w.
— (e[c], w, σ) ⊢ σ′ iff (e, w, σ) ⊢ σ′ and σ′, d |= c, where d is the last data value of w.

Take note that in the last item we require that σ′, and not σ, satisfies c. The reason for
this is that our initial assignment might change before reaching the end of the expression
and we want this change to be reflected when we check that condition c holds.

Translation into automata. We now show that regular expressions with memory can be
efficiently translated into register automata.

Proposition 3.13. For each regular expression with memory e ∈ REM(Σ[x1, . . . , xk])
one can construct, in PTime, a k-register data path automaton Ae such that L(e) = L(Ae).

More precisely, the automaton Ae = (Q, q0, F,⊥, δ) (over data domain D ∪ {⊥}) has the
property that for any two valuations σ, σ′ and a data path w, we have (e, w, σ) ⊢ σ′ iff the
automaton (Q, q0, F, σ, δ) has an accepting run on w that ends with the register configuration
σ′.

The proof is not difficult but a bit technical. We refer the reader to the Online Appendix
for details.
A natural question to ask is do regular expressions with memory define the same class of

queries as register automata. As shown in [Libkin and Vrgoč 2012a] this is indeed the case
over data words. The proof for data paths is virtually identical to the one presented there.
We thus obtain:

Corollary 3.14. Register data path automata and regular expressions with memory
define the same class of data path languages.

Remark 3.15. It is important to note here that, although regular expressions with mem-
ory share many syntactic similarities with regular expressions with back-referencing [Aho
1990], they do differ significantly in expressive power and the intended domain. First of
all, regular expressions with back-referencing, just as ordinary regular expressions, were
designed to operate over finite alphabets and thus can talk only about edge labels in the
graph. Over a finite set of graphs, we could use a bounded alphabet to simulate the data val-
ues, thus allowing regular expressions with back-referencing to define data path languages,
however, they would still not be capable of capturing languages over an arbitrary class of
graphs. If regular expressions with back-referencing were extended to function over arbi-
trary alphabets (using a coding to distinguish between letters from a finite alphabet and
data values), they would still fall short of the power of REMs as they lack the ability to
test for data value inequality.

3.3.1. Queries based on regular expressions with memory. We now deal with the following class
of queries.

Definition 3.16. A regular query with memory is an expression Q = x
e

−→ y, where e
is a regular expression with memory. Given a data graph G, the result of the query Q(G)
consists of pairs of nodes (v, v′) such that there is a data path w from v to v′ that belongs
to L(e). The class of these queries is denoted by RQM .

Example 3.17. To illustrate some interesting queries expressed by RQMs we again turn
to the movie database from Figure 1. As in Example 3.8 we will assume that each actor
edge has a corresponding stars in edge going in the other direction.

—To express the query from Example 3.8 returning actors that have a finite Bacon number

we can use Q = x
e

−→ y, where e is given by (stars in · actor)+[Kevin Bacon=].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 L. Libkin, W. Martens and D. Vrgoč

—To find movies having at least two different actors staring in them we would use the RQM

Q = x
e

−→ y, where e is ↓ x. actor ↓ y. stars in [x=] · actor[y 6=]. Note that here, in addition
to the movie we also return one of the actors. The expression first stores the movie name
into the variable x and after that moves to one of the actors. Following this it stores the
actor’s name into y and moves back to the movie using a stars in edge and checking that
it arrived at the same movie by comparing the data value with the one stored into x.
Following that the expression simply traverses another actor edge, ensuring it reaches a
different actor by comparing the value in the node to y.

We now analyze the complexity of query evaluation for RQMs. Unsurprisingly, we can
show that data complexity matches that of register automata.

Theorem 3.18. The data complexity of RQMs over data graphs is NL-complete and
the combined complexity of RQMs over data graphs is PSpace-complete.

Proof. We first consider data complexity. The NL lower bound is immediate from
reachability in graphs. The NL upper bound immediately follows from Corollary 3.14 and
Theorem 3.10. Indeed, Corollary 3.14 states that each REM can be translated into some
(constant-size) register data path automaton, for which data complexity is in NL according
to Theorem 3.10.
We now turn to combined complexity. The PSpace upper bound follows from Theorem

3.10 and Proposition 3.13. Thus we only have to prove PSpace-hardness. For this we do a
reduction from the non-universality problem for regular automata. The idea is to simulate
on the fly reachability testing in the powerset automaton by using two sets of variables,
each of the size of the automaton, for coding the current and the next state.
Let A = (Q,Σ, δ, q1, F) be a finite state automaton, where Q = {q1, . . . , qn} and F =

{qi1 , . . . , qik}. We will construct a fixed graph G with 2 nodes, v1 and v2, and a regular
expression with memory e, of length O(n × |Σ|), such that (v1, v2) ∈ Q(G) if and only if

L(A) 6= Σ∗, where Q = x
e

−→ y.
The graph G is shown below:

1

v1

0

v2

a

a

a a

Since we are trying to demonstrate non-universality of the automaton A we simulate
reachability checking in the powerset automaton for A (that is, the automaton recognizing
the complement of the language of the automaton A, which is obtained using the powerset
construction). To do so we designate two distinct data values, t and f , and code each state of
the powerset automaton as an n-bit sequence of t/f values, where the ith bit of the sequence
is set to t if the state qi is included in our state of A. As we are checking reachability we
will need only to remember the current and the next state of A.
In what follows we will code those two states using variables s1, . . . , sn and w1, . . . , wn

and refer to them as the stable tape and the work tape. Our expression e will code data
paths that describe successful runs of A by demonstrating how one can move from one state
of this automaton to another (as witnessed by their codes in the stable and work tapes),
starting with the initial and ending in a final state. The graph G is designed so that it
allows us to update the variables as necessary since we can reach any of the two data values
in one step.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:19

We will define several expressions and explain their role. We will use two sets of variables,
s1 through sn and w1, . . . , wn to denote the stable and the work tape (i.e. current and next
state in the powerset automaton). All of these variables will only contain two values, t and
f , which are bound in the beginning and will correspond to 0 and 1 in the graph G.
The first expression we need is:

init := ↓ t.a[t 6=]↓f.a[t=]↓s1.a[f
=]↓s2. . . .a[f

=]↓sn.a.

This expression codes two different values as t and f and initializes the stable tape to
contain the encoding of the initial state (the one where only the initial state from A can
be reached). That is, a data path is in the language of this expression if and only if it
starts with two different data values, c and d, and continues with n data values that form
a sequence in cd∗.

end := a[f= ∧ s=i1] · a[f
= ∧ s=i2] · · ·a[f

= ∧ s=ik], where F = {qi1 , . . . , qik}.

This expression is used to check that we have reached a state not containing any final
state from the original automaton. That is, a data path is in L(end) if and only if it consists
of k data values, all equal to f and where the value stored in sij also equals f , for j = 1 . . . k.
Next we define expressions that will reflect updating of the work tape according to the

transition function of A. Assume that δ(qi, b) = {qj1 , . . . , qjl}. We define

uδ(qi,b) :=
(

a[t= ∧ s=i] · a[t
=]↓wj1a[t

=]↓wjl .a
)

+ a[f= ∧ s=i].

Also, if δ(qi, b) = ∅ we simply put uδ(qi,b) := ε.
This expression will be used to update the work tape by writing true to corresponding

variables if the state qi is tagged with t on the work tape (and thus contained in the current
state of A). If it is false we skip the update.
Since we have to define an update according to all transitions from all the states corre-

sponding to a chosen letter we get:

update :=
∨

b∈Σ

∧

qi∈Q

uδ(qi,b).

Here we use
∨

for + and
∧

for the concatenation of expressions. This simply states that
we non deterministically pick the next symbol of the word we are guessing and move to the
next state accordingly.
We still have to ensure that the tapes are copied at the beginning and end of each step,

so we define:

step := (a[f=]↓w1. . . .a[f
=]↓wn.a) · update · (a[w

=
1]↓s1. . . .a[w

=
n]↓sn.a).

This simply initializes the work tape at the beginning of each step, proceeds with the
update and copies the new state to the stable tape. Note the few odd a’s at the end of
the expressions. These will not affect what we want to achieve and are here for syntactical
reasons (to get a proper expression).
Finally we have

e := init · (step)∗ · end.

Here we use step∗ as abbreviation for step+ + ε.

We claim that for Q = x
e

−→ y, we have (v1, v2) ∈ Q(G) if and only if L(A) 6= Σ∗.
Assume first that L(A) 6= Σ∗. This means that there is a path from the initial to the

final state in the powerset automaton for A. That is, there is a word w from Σ∗ not in the
language of A. This path can in turn be described by pairs of assignments of values t/f
to the stable and the work tape, where each transition is witnessed by the corresponding
letter of the alphabet. But then the path from v1 to v2 in G that belongs to L(e) is the

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 L. Libkin, W. Martens and D. Vrgoč

one that first initializes the stable tape (i.e. the variables s1, . . . , sn) to the initial state of
the powerset automaton, then runs the updates of the tape according to w and finally ends
in a state where all variables corresponding to end states of A are tagged f . Note that we
can describe this path in G, since we start in v1, store 1 into t, and proceed to v2 and store
0 into the variable f . After that 1 is assigned to s1 in v1 and 0 to s2, . . . , sn by looping
through v2. After that, each transition is reflected by going through v1 and v2 as necessary,
to update tapes with t/f and finally going to v2 and looping there to check that all si’s
corresponding to end states are tagged with the value of f .
Conversely, each path from v1 to v2 in L(e) corresponds to a run of the powerset automa-

ton for A. That is, the part of the path corresponding to init sets the initial state. Then
the part of this path that corresponds to step∗ corresponds to updating our tapes in a way
that properly codes one step of the powerset automaton. Finally, end denotes that we have
reached a state where all end states of A have been tagged by f , thus, an accepting state
for A.

The question is whether we can reduce the PSpace combined complexity, ideally to
PTime, but at least to NP, to match the combined complexity of conjunctive queries. The
following corollary (to the proof of Theorem 3.18) shows that many restrictions will not
work.

Corollary 3.19. The combined complexity of evaluating RQM queries remains
PSpace-hard for expressions that use at most one + and 6= symbol, are specified over a
singleton alphabet Σ = {a}, and are evaluated over a fixed graph.

However, we can lower the complexity when we disallow subexpressions of the form e+,
as the following proposition shows.

Proposition 3.20. The combined complexity of RQM queries whose regular expres-
sions do not have subexpressions of the form e+ is NP-complete.

Proof. For e ∈ REM(Σ[x1, . . . , xk]), by Proj(e) we will denote the regular expression
obtained by removing symbols not in Σ from e. For instance, for e = ↓x.·a[x=] · b[x=], we
have Proj(e) = a · b.
First we show NP-membership. Since we do not use + we know that every data path in

the language of expression e uses at most |Proj(e)| letters and |Proj(e)| + 1 data values.
Assume now that we are given a data graph G, two nodes s, t ∈ G and an expression

with memory e. To see if (s, t) ∈ Q(G), for Q = x
e

−→ y, we use the following algorithm.
First compute the register automaton Ae for e. Note that this can be done in PTime.
Then nondeterministically guess a data path wπ in G from s to t that is of length at most
|Proj(e)|. Now also guess 2|λ(wπ)|+ 1 states of Ae and check that the path wπ is accepted
by Ae, as witnessed by this sequence of states, and thus is in L(e). It is straightforward to
see that this can be done in polynomial time and since our guesses are of polynomial (in
fact linear) size we get the desired result.
For hardness we do a reduction from k-CLIQUE. This problem asks, for a given unlabeled

undirected graph G and a number k, to determine if G has a clique of size at least k.
Suppose we are given an undirected graph G and a number k. We will construct a data

graph G′ with |G|+ 2 nodes, select two nodes s, t ∈ G′ and construct a regular expression
with memory ek of size O(k2) such that G contains a k-clique if and only if there is a data
path from s to t in G′ that satisfies ek.
Take Σ = {a, b} and make G directed by adding edges in both directions for every edge

in G. Label all the edges by a and add two more nodes s and t. Add an edge from s to
every other node except s, t and label them with b. Also add an edge from every node in G
to t and label them by b. To finish the construction just add a different data value to every
node. We call the resulting graph G′.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:21

To define ek we use an auxiliary expression δi defined as:

δi := a[x=1] · a[x
=
i] · a[x

=
2] · a[x

=
i] . . . a[x

=
i−1] · a[x

=
i].

This expression will simply allow us to test that the current node is connected to all
nodes previously selected in our potential clique.
Now we can define ek inductively as follows:

— e1 := b · ↓x1.a[x
6=
1],

— e2 := e1 · ↓x2.a[x
6=
1 ∧ x6=2],

— ei := ei−1 · ↓xi.δi · a[x
6=
1 ∧ . . . ∧ x6=i], for i = 3, . . . , k − 1 and

— ek := ek−1 · ↓xk.δk · b.

Next we show that there is a k-clique in G iff there is a data path from s to t in G′ that
satisfies ek.
Suppose first that there is a k-clique in G. Then we simply move from s to an arbitrary

point in that clique using the b labeled edge and traverse the clique back and forth until we
reach the k-th element of the clique. Note that starting from the third element, whenever
we select a different node in the clique we have to move back and forth between this node
and all previously selected ones to satisfy δi, but since we have a clique this is possible.
Finally, after selecting the last node and verifying that it is connected to all the others we
move to t using a b labeled edge.
Now suppose that there is a data path from s to t in G′ that satisfies ek. This means

that we will be able to select k different nodes n1, . . . , nk in G with data values stored in
x1, . . . , xk. Since all data values in the graph are different they also act as ids. Now take
any two ni, nj with i < j ≤ k. Then we know that ni and nj are connected in G because
after selecting nj we have to go through δj which contains a[x=i] · a[x

=
j] and since no two

data values in G are the same this means that we have an edge between ni and nj. This
completes the proof.

Although the restriction from Proposition 3.20 achieves better combined complexity, it
is too strong, as it effectively restricts one to languages of data paths whose projections on
Σ∗ are finite. All the examples we saw earlier use subexpressions of the form e+. It seems
that, if we want to achieve tractability, we need to look at a very different way of restricting
expressions. This is what we do in the next section.

3.4. Queries based on regular expressions with equality

We present a class of regular expressions for data paths that lets us lower the combined
complexity of queries to PTime. It permits testing for equality or inequality of data values
at the beginning or the end of a data (sub)path. For example, (Σ+)6= denotes the set of all
data paths having different first and last data values. The language Leq of data paths on
which two data values are the same is given by Σ∗ · (Σ+)= · Σ∗: it checks for the existence
of a nonempty subpath (with label in Σ+) such that the nodes at the beginning and at the
end of this subpath have the same data value, indicated by subscript =.
To allow for constants we will use simplified conditions. These are simply conjunctions

of expressions of the form z= and z 6=, where z ranges over D. Then a data value d satisfies
a simplified condition c, denoted d |= c, if τ, d |= c, where τ is an empty assignment. Note
that the valuation itself is irrelevant here.

Definition 3.21 (Expressions with equality). Let Σ be a finite alphabet. Then regular
expressions with equality (REE) are defined by the grammar:

e := ε | a | e+ e | e · e | e+ | e[c] | e= | e 6= (5)

where a ranges over alphabet letters and c is a simplified condition.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 L. Libkin, W. Martens and D. Vrgoč

The language L(e) of data paths denoted by a regular expression with equality e is defined
as follows.

— L(ε) = {d | d ∈ D}.
— L(a) = {dad′ | d, d′ ∈ D}.
— L(e · e′) = L(e) · L(e′).
— L(e+ e′) = L(e) ∪ L(e′).
— L(e+) = {w1 · · ·wk | k ≥ 1 and each wi ∈ L(e)}.
— L(e[c]) = {d1a1 . . . an−1dn ∈ L(e) | dn |= c}.
— L(e=) = {d1a1 . . . an−1dn ∈ L(e) | d1 = dn}.
— L(e 6=) = {d1a1 . . . an−1dn ∈ L(e) | d1 6= dn}.

Regular expressions with equality sacrifice the ability to store and compare data values
at arbitrary places in the expression and can instead only check for (in)equality at the
start and the end of chosen subexpressions. (Comparisons against constants, though, can
be made everywhere.) Looking at Example 3.12, the first language can be defined by regular
expressions with equality, but the second one cannot. We already saw how to do the language
Leq; the expression ↓x.(ab)+[x6=] is equivalent to (ab)+6=. A simpler version of the second

language would be ↓x.(a[x6=])+, describing the language of data paths in which all data
values are different from the first one. It requires checking a condition multiple times. We
now show that this goes beyond the power of expressions with equality, which are strictly
weaker than expressions with memory.

Proposition 3.22.

(1) For each regular expression with equality, there is an equivalent regular expression with
memory.

(2) For the regular expression with memory ↓x.(a[x6=])+ there is no equivalent regular ex-
pression with equality.

Proof. For the first item it is enough to observe that for expressions of the kind e=
and e 6=, where e is an ordinary regular expression, the expressions with memory ↓ x.e[x=]
and ↓ x.e[x6=] denote the same language of data paths. From this it is straightforward
to construct a translation of an arbitrary regular expression with equality e to a regular
expression with memory by doing the above-mentioned construction bottom-up, starting
from subexpressions of e and using a new variable for each subexpression of the form e′= or
e′6=.
To prove the second claim we introduce a new kind of automata, called weak register

automata, show that they capture regular expressions with equality and that they can not
express the language ↓ x.(a[x6=])+ of a-labeled data paths on which all data values are
different from the first one.
The main idea behind weak register automata is that they erase the data value that was

stored in the register once they make a comparison, thus rendering the register empty. We
denote this by putting a special symbol ⊥ from D in the register. Since they have a finite
number of registers, they can keep track of only finitely many positions in the future, so in
the case of our language, they can only check that a fixed finite number of data values is
different from the first one. We proceed with formal definitions.
The definition of weak k-register data path automaton is the same as in Definition 3.5.

The only explicit change we make is that we now assume that Ck contains a special symbol
ε, that will allow us to simply skip the data value, without doing any comparisons. (Notice

that previously we have been using a simple tautology such as x=1 ∨ x6=1 , or an additional
register to emulate this. Here, emulation is not possible because those registers would be

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:23

reset.) Thus we simply add τ, d |= ε, for every valuation τ and data value d, to the semantics
of Ck. We will also assume that the initial configuration is always empty.
The definition of configurations remains the same as before, but the way we move from

one configuration to another changes.
From a configuration c = (j, q, τ) we can move to a configuration c′ = (j +1, q′, τ ′) if one

of the following holds:

— the jth symbol is a letter a, there is a transition (q, a, q′) ∈ δw, and τ
′ = τ ; or

— the current symbol is a data value d and there is a transition (q, c, I, q′) ∈ δd such that
d, τ |= c and τ ′ coincides with τ except that
— the ith component of τ ′ is set to d whenever i ∈ I and
— every register that is not in I but mentioned in c is set to be empty (i.e. to contain ⊥).

The second item simply tells us that if we used a condition like c = x=3 ∧ x6=7 in our
transition, we would afterward erase data values that were stored in registers 3 and 7. Note
that we can immediately rewrite these registers with the current data value.
The notion of acceptance and an accepting run is the same as before.
We now show that weak register automata can not recognize the language L of all data

paths where the first data value is different from all other data values, i.e. the language
denoted by the expression ↓ x.(a[x6=])+.
Assume to the contrary, that there is some weak k-register data path automaton A

recognizing L. Since data path wπ = d1ad2a . . . dkadk+1adk+2, where the dis are pairwise
different and do not appear in any condition in A, belongs to L, there is an accepting run of
A on wπ . The idea behind the proof is that A can only check that the first k + 1 positions
have different data values from the first one.
First we note a few things. Since every data value in the path wπ is different, no =

comparisons can be used in conditions appearing in this run (otherwise the condition test
would fail and the automaton would not accept). This must also hold for constants appearing
in the conditions, since no dis appear in them.
Now note that since we have only k registers, and with every comparison we empty the

corresponding registers one of the following must occur:

—There is a position 1 < i < k+2 such that the condition used when processing data value
di is ε. In this case we simply replace di by d1 and get an accepting run on a word that
has the first data value repeated – a contradiction. Note that we could store di in that
transition, but since afterward we only test for inequality this will not alter the rest of the
computation.

—There is a data value such that, when the automaton reads it, it does not use any register
with the first data value, i.e. d1, stored. Note that this must happen, because at best we
can store the first data value in all the registers at the beginning of our run, but after that
each time we read a data value and compare it to the first we lose the first data value
in this register. But then again we can simply replace this data value with d1 and get an
accepting run (just as before, if this data value gets stored in this transition and then used
later it can only be used in a 6= comparison, which is also true for d1, so the run remains
accepting). Again we arrive at a contradiction.

This shows that no weak register automaton can recognize the language L.
To complete the proof of Proposition 3.22 we still have to show the following:

Lemma 3.23. For every regular expression with equality e there exists a weak k-register
automaton Ae, recognizing the same language of data paths, where k is the number of times
=, 6= symbols appear in e.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 L. Libkin, W. Martens and D. Vrgoč

The proof of the lemma is almost identical to the proof of Proposition 3.13. We can
view this as introducing a new variable for every =, 6= comparison in e and act as the
subexpression e′= reads ↓ x.e′[x=] and analogously for 6=. Note that in this case all variables
come with their scope, so we do not have to worry about transferring register configurations
from one side of the construction to another (for example when we do concatenation). The
underlying automata remain the same.

3.4.1. Queries based on Regular expressions with equality. We now deal with the following
queries.

Definition 3.24. A regular query with data tests is an expression Q = x
e

−→ y, where e
is a regular expression with equality. Given a data graph G, the result of the query Q(G)
consists of pairs of nodes (v, v′) such that there is a data path w from v to v′ that belongs
to L(e). The class of these queries is denoted by RQD.

Example 3.25. Coming back to the database from Figure 1, we can now ask the following
queries.

—The query asking for people with a finite Bacon number is again the same as in Example
3.17.

—The query that checks if there is a movie in the database with at least two different actors

is defined by Q = x
e

−→ y, with e := (stars in · actor)6=. Note that a nonempty answer
to this query merely signifies that such a movie exists. To actually retrieve the movie we
would need to use conjunctive queries with RQDs as atoms (Section 5.1).

Theorem 3.26. The data complexity of RQDs over data graphs is NL-complete and the
combined complexity of RQDs over data graphs is in PTime.

Proof. For data complexity, the proof is analogous to the one in Theorem 3.18. The
bound for combined complexity follows from Theorem 4.3 which is shown for a fragment of
the GXPath language which is strictly stronger.

4. GRAPH LANGUAGES

In this section we explore querying beyond paths and investigate graph languages. We start
from the idea of adapting the well known XML language XPath to the graph setting. XPath
has many desirable properties such as the ability to define patterns that can not be captured
by paths, close connections to first-order logic, and efficient evaluation algorithms. Here we
show how to extend the language to operate over graph databases while still retaining these
properties. Since XPath is already a well-established language in practice, we believe that
this adaptation has excellent potential to become a widely used formalism for querying
graph data.

4.1. The language GXPath and its many variants

We follow the standard way of defining XPath fragments [Bojanczyk and Parys 2011; Cal-
vanese et al. 2009; Figueira 2010; Gottlob et al. 2005; Marx 2005; ten Cate and Marx 2007]
and introduce some variants of graph XPath, or GXPath, to be interpreted over data graphs.
As usual, XPath formulae are divided into path formulae, producing sets of pairs of nodes,
and node tests, producing sets of nodes. Path formulae will be denoted by letters from the
beginning of the Greek alphabet (α, β, . . .) and node formulae by letters from the end of
the Greek alphabet (ϕ, ψ, . . .).
Since we deal with data values, we need to define data tests permitted in our formulas.

There will be three kinds of them.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:25

(1) Constant tests : For each data value c ∈ D, we have two tests c= and c 6=. The intended
meaning is to test whether the data value in the current node is equal to, or differs
from, a constant c. The fragment of GXPath that uses constant tests will be denoted by
GXPath(c).

(2) Equality/inequality tests : These are typical XPath (in)equality tests of the form 〈α = β〉
and 〈α 6= β〉, where α and β are path expressions. The intended meaning is to check
for the existence of two paths, one satisfying α and the other satisfying β, which end
with equal (resp., different) data values. The appropriate fragment will be denoted by
GXPath(eq).

(3) Subexpression tests : These are used to test if a path or a subpath starts and ends with
the same or different data value. The fragment in question is obtained by adding α= and
α6= to path expressions of our language. These tests will be needed to provide a logical
kernel for GXPath. The corresponding fragment is denoted GXPath(∼).

We also consider languages that combine the above features, which will be denoted by simply
listing the features. For example, GXPath(c, eq) uses constant- and equality/inequality tests.
Next we define expressions of GXPath. We look at several versions, inspired by Core

XPath and Regular XPath [Marx 2005]. They both have node and path expressions. Node
expressions in all fragments are given by the grammar:

ϕ, ψ := ⊤ | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉

where α is a path expression.
The path formulae of the two flavors of GXPath are given below. In both cases a ranges

over Σ. Path expressions of Regular graph XPath, denoted by GXPathreg, are given by:

α, β := ε | | a | a− | [ϕ] | α · β | α ∪ β | α | α∗

Path expressions of Core graph XPath denoted by GXPathcore are given by:

α, β := ε | | a | a− | a∗ | a−
∗

| [ϕ] | α · β | α ∪ β | α

We call this fragment “Core graph XPath”, since it is natural to view edge labels (and
their reverses) in data graphs as the single-step axes of the usual XPath on trees. For
instance, a and a− can correspond to “child” and “parent”, respectively. Thus, in the core
fragment, we only allow transitive closure over navigational single-step axes, as is done in
Core XPath on trees. Note that we did not explicitly define the counterpart of node label
tests in GXPath node expressions to avoid notational clutter, but all the results remain true
if we add them.
Finally, we consider another feature that was recently proposed in the context of naviga-

tional languages on graphs (such as in SPARQL 1.1 property paths [Harris and Seaborne
2013] and in Neo4J’s Cypher patterns [Neo4j 2013]), namely counters. The idea is to extend
all grammars defining path formulae with new path expressions

αn,m

for n,m ∈ N and n < m. Informally, this means that we have a path that consists of some
k chunks, each satisfying α, with n ≤ k ≤ m. When counting is present in the language, we
denote it by #GXPath, e.g., #GXPathcore.
Given these path and node formulae, we can combine GXPathcore and GXPathreg with dif-

ferent flavors of data tests or counting, starting with purely navigational fragments (neither
c, eq, nor ∼ tests are allowed) and up to fragments allowing any combination of such tests.
For example, #GXPathreg(c, eq) is defined by mutual recursion as follows:

α, β := ε | | a | a− | [ϕ] | α · β | α ∪ β | α | α∗ | αn,m

ϕ, ψ := ¬ϕ | ϕ ∧ ψ | 〈α〉 | c= | c 6= | 〈α = β〉 | 〈α 6= β〉

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 L. Libkin, W. Martens and D. Vrgoč

Path expressions (denoted α, β)

JεKG = {(v, v) | v ∈ V }

J KG = {(v, v′) | (v, a, v′) ∈ E for some a}

JaKG = {(v, v′) | (v, a, v′) ∈ E}

Ja−KG = {(v, v′) | (v′, a, v) ∈ E}

Jα∗KG = the reflexive transitive closure of JαKG

Jα · βKG = JαKG ◦ JβKG

Jα ∪ βKG = JαKG ∪ JβKG

JαKG = V × V − JαKG

J[ϕ]KG = {(v, v) | v ∈ JϕKG}

Jαn,mKG =
⋃m
k=n(JαKG)k

Jα=KG = {(v, v′) ∈ JαKG | ρ(v) = ρ(v′)}

Jα6=KG = {(v, v′) ∈ JαKG | ρ(v) 6= ρ(v′)}

Node tests (denoted ϕ, ψ)

J〈α〉KG = π1(JαKG) = {v | ∃v′ (v, v′) ∈ JαKG}

J⊤KG = V

J¬ϕKG = V − JϕKG

Jϕ ∧ ψKG = JϕKG ∩ JψKG

Jϕ ∨ ψKG = JϕKG ∪ JψKG

Jc=KG = {v ∈ V | ρ(v) = c}

Jc 6=KG = {v ∈ V | ρ(v) 6= c}

J〈α = β〉KG = {v ∈ V | ∃v′, v′′ (v, v′) ∈ JαKG, (v, v′′) ∈ JβKG, ρ(v′) = ρ(v′′)}

J〈α 6= β〉KG = {v ∈ V | ∃v′, v′′ (v, v′) ∈ JαKG, (v, v′′) ∈ JβKG, ρ(v′) 6= ρ(v′′)}

Fig. 3. Semantics of Graph XPath expressions with respect to G = 〈V, E, ρ〉

with c ranging over constants.
We define the semantics with respect to a data graph G = 〈V,E, ρ〉. The semantics JαKG

of a path expression α is a set of pairs of vertices and the semantics of a node test JϕKG is
a set of vertices. The definitions are given in Figure 3. In that definition we denote by Rk

the k-fold composition of a binary relation R, i.e., R ◦R ◦ . . .◦R, with R occurring k times.
Remark. Note that each path expression α can be transformed into a node test by means

of the 〈α〉 operator. In particular, we can test if a node has a b-successor by writing, for
instance, 〈b〉. To reduce the clutter when using such tests in path expressions, we shall often
omit the 〈〉 braces and write e.g. a[b] instead of a[〈b〉].

Basic expressiveness results. Some expressions are readily definable with those we have.
For instance, Boolean operations α ∩ β and α− β with the natural semantics are definable
using union and complement. Indeed, α−β is equivalent to α ∪ β, and α∩β is equivalent to

α ∪ β. So when necessary, we shall use intersection and set difference in path expressions.
Counting expressions αn,m are definable too: they abbreviate α · · ·α · (α ∪ ε) · · · (α ∪ ε),

where we have a concatenation of n times α and m−n times (α∪ε). Thus, adding counters
does not influence expressivity of any of the fragments, since we always allow concatenation
and union. However, counting expressions can be exponentially more succinct than their
smallest equivalent regular expressions (independent of whether n and m are represented in
binary or in unary) [Losemann and Martens 2012]. We will exhibit a query evaluation algo-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:27

rithm with polynomial-time complexity even for such expressions with counters represented
in binary.
As another observation on the expressiveness of the language, note that we can define

a test 〈α = c〉, with the semantics {v | ∃v′ (v, v′) ∈ JαKG and ρ(v′) = c}, by using the
expression 〈α[c=]〉.
Finally, node expressions can be defined in terms of path operators. For example ϕ ∧ ψ

is defined by the expression 〈[ϕ] · [ψ]〉, while ¬ϕ is defined by 〈[ϕ] ∩ ε〉.

Example 4.1. To illustrate some more involved queries we come back to our introductory
example of a movie database presented in Figure 1.

(1) To find people who do not have a finite Bacon number we use the query

e1 = ¬〈(actor− · actor)∗[Kevin Bacon=]〉.

(The query within the negation simply returns all people with a finite Bacon number.)
(2) We can also ask for people with a finite Bacon number such that collaboration is always

established by co-starring in movies and not documentaries:

e2 = 〈(actor−[type[Movie=]] · actor)∗[Kevin Bacon=]〉.

This expression works in a similar way as the one for finding the Bacon number, but
using the nesting capabilities of GXPath it also checks that the actors appear in a movie.

(3) One might also be interested to find out if there are actors who have a finite Bacon
number and the same age as Kevin Bacon. They can be retrieved using the following
query:

e3 = 〈age(age−(actor− · actor)∗[Kevin Bacon=]age)=〉.

(4) As a last example we might want to check if a movie or a documentary has at least two
actors starring in it. Such a query is defined by:

e4 = 〈actor 6= actor〉.

Here we simply check if there are two actor edges leading from the movie such that the
actors names are different.

Complement and positive fragments. In standard XPath dialects on trees, the binary com-
plementation operator is not included and one usually shows that languages are closed under
negation [Marx 2005]. This is no longer true for arbitrary graphs, due to the following.

Proposition 4.2. Path complementation α is not definable in GXPathreg without com-
plement on path expressions.

The proof is an immediate consequence of the following observation. Given a data graph
G, let V1, . . . , Vm be the sets of nodes of its (maximal) connected components (with respect
to the edge relation

⋃

a∈ΣEa). Here we compute the connected components with respect
to the undirected graph induced by the edge relation

⋃

a∈Σ Ea. Namely, we treat each Ea
as if it were undirected. Then a simple induction on the structure of the expressions of
GXPathreg without complement on path expressions shows that for each expression α, we
have JαKG ⊆

⋃

i≤m Vi×Vi. However, path complementation α clearly violates this property.
In what follows, we consider fragments of our languages that restrict complementation

and negation. There are two kinds of them, the first corresponding to the well-studied notion
of positive XPath [Benedikt et al. 2008].

—The positive fragments are obtained by removing ¬ϕ and α from the definitions of node
and path formulae. We use the superscript pos to denote them, i.e., we write GXPathposcore
and GXPathposreg .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 L. Libkin, W. Martens and D. Vrgoč

—The path-positive fragments are obtained by removing α from the definitions of path
formulae, but keeping ¬ϕ in the definitions of node formulae. We use the superscript
path-pos to denote them, i.e., we write GXPathpath-poscore and GXPathpath-posreg .

There are two main reasons why we consider these fragments that restrict complementation
and negation. First of all, these fragments are the most studied fragments of XPath, so
they allow us to better compare results on XPath with GXPath. Second, the path-positive
fragments are the largest fragments for which we can prove linear-time query evaluation.

4.2. Query evaluation

In this section we investigate the complexity of querying graph databases using variants of
GXPath. We consider two problems. One is Query Evaluation, which is essentially model
checking: we have a graph database, a query (i.e., a GXPath path expression), and a pair
of nodes, and we want to check if the pair of nodes is in the query result. That is, we deal
with the following decision problem.

Problem: Query Evaluation
Input: A graph G = (V,E), a GXPath path expression α, nodes v, v′ ∈ V .
Question: Is (v, v′) ∈ JαKG?

The second problem we consider is Query Computation, which actually computes the
result of a query and outputs it. Normally, when one deals with path expressions, one fixes
a so-called context node v and looks for all nodes v′ such that (v, v′) satisfies the expression
(see, e.g., [Pérez et al. 2010]). We deal with a slightly more general version here, where there
can be a set of context nodes instead of just a single one.

Problem: Query Computation
Input: A graph G = (V,E), a GXPath path expression α,

and a set of nodes S ⊆ V .
Output: All v′ ∈ V such that there exists a v ∈ S with (v, v′) ∈ JαKG.

Note that in both problems we deal with combined complexity, as the query is a part
of the input. Furthermore, notice that in Query Computation as we define it, does not
ask to compute which nodes in the output correspond to which nodes in the input. The
present definition of Query Computation, however, allows for a linear-time algorithm for
GXPathpath-posreg (Fact 4.4). This would no longer be true if we would require to compute the
(possibly quadratic-size) relation between input nodes and output nodes.
Unlike in the previous section, here we are not interested in describing complexity in

terms of complexity classes. This is because both problems are already tractable even for
the most expressive variant of the language. Instead we concentrate on establishing running
time for algorithms for query evaluation and computation problems. For this, we need to
explain how exactly we measure the size of the input. The size |G| of a data graph G is
defined as |V | + |E|, where |V | is its number of nodes and |E| its number of edges. We
denote the sizes of path expressions α and node expressions ϕ by |α|, resp., |ϕ| and define
them to be the number of symbols in α, resp., ϕ (equivalently, we could define them as
the sizes of parse trees of those expressions). The size of a counter is the number of bits
representing it, so |αn,m| = |α|+ logn+ logm.
The main result of this section is that the combined complexity remains in polynomial

time for all fragments we defined in Section 4.1. Not only that, but the exponents are low,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:29

ranging from linear to cubic. Notice that for navigational fragments, the low (and even

linear) complexity should not come as a surprise. Note that GXPathpath-posreg is essentially
Propositional Dynamic Logic (PDL), for which global model checking is known to have
linear-time complexity [Alechina and Immerman 2000; Cleaveland and Steffen 1993]. Also,
polynomial-time combined complexity results are known for pure navigational GXPathreg
from the PDL perspective as well [Lange 2006].
Our main contribution is thus to establish the low combined complexity bounds for frag-

ments that handle two new features we added on top of navigational languages: data value
comparisons and counters. The former increases expressiveness; the latter does not, but
it can make expressions exponentially more succinct. Thus, some work is needed to keep
combined complexity polynomial when counters are added.
We first present a general upper bound that shows that combined complexity of both

problems is polynomial for the most expressive language we have: regular graph XPath with
counting, constant tests, equality tests and subexpression tests. In the algorithm analysis,
we assume that we can test equality between data values in constant time. Moreover, we
assume that we have an ordering on the nodes of G. (Such an ordering can be obtained
by performing a single depth-first traversal through G and annotating each node with the
order in which it is visited. This costs linear time in |G|. A reverse index that points us to
a node, given its number, can be constructed at the same time.)

Theorem 4.3. Both Query Evaluation and Query Computation for
#GXPathreg(c, eq,∼) can be solved in polynomial time, specifically, O(|α| · |V |3).

Proof. Both problems can be solved in the required time by a dynamic programming
algorithm that processes the parse tree of α in bottom-up fashion and computes, for every
path subexpression β of α, the binary relation JβKG. Similarly, we compute, for every node
subexpression ϕ of α, the set JϕKG. Clearly, if each such relation can be computed within
time O(|V |3) (using previously computed relations), both problems can be solved within the
required time. We make one exception: we allow O(|V |3 logm) time for computing Jβn,mKG

from JβKG. This is not problematic, since the size of βn,m is O(|β|+ | logm|).
We discuss how to obtain the desired time bound. The algorithm is similar to an algorithm

used for evaluating regular expressions with counters on graphs (Theorem 3.4 in [Losemann
and Martens 2012]).
The base cases for path expressions, that is, computing JβKG where β is one of ε, , a,

or a−, are trivial. Similarly, the base cases for node expressions, that is, computing JϕKG

where ϕ is either ⊤, c=, or 6= are trivial as well.
For the induction step we need to consider path expressions of the form [ϕ], β1 ·β2, β1∪β2,

β, β∗, βn,m, β=, and β 6=. Also, we need to consider node expressions of the form ¬ϕ, ϕ∧ψ,
〈β〉, 〈β1 = β2〉, and 〈β1 6= β2〉.
In the case of path expressions, the cases [ϕ], β1 ∪ β2, β=, and β 6= are trivial because

JϕKG contains at most |V | elements and JβKG at most |V |2 pairs. For example, for β= we
can iterate through JβKG, testing each of its pairs (u, v) and putting a pair in Jβ=KG if and
only if ρ(u) = ρ(v). For β1 ∪ β2 we can first sort both relations Jβ1K

G and Jβ2K
G (costing

O(|V |2 log |V |) time) and then compute Jβ1∪β2KG while performing a single pass over Jβ1K
G

and Jβ2K
G. For β1 · β2 the relation Jβ1 · β2KG is the composition Jβ1K

G ◦ Jβ2K
G, which can

be obtained by computing the natural join of Jβ1K
G with Jβ2K

G.
Computing Jβ∗KG amounts to computing the reflexive-transitive closure of JβKG which can

be done in time |V |3 by Warshall’s algorithm. Computing Jβn,mK within time O(|V |3 logm)
can be done by fast squaring, as was done in Theorem 3.4 in [Losemann and Martens
2012]. Indeed, computing Jβ2KG, given JβKG, takes time O(|V |3). Computing JβnKG by fast
squaring means recursively computing the composition Jβn/2KG ◦ Jβn/2KG if n is even and
Jβ(n−1)/2KG ◦ Jβ(n−1)/2KG ◦ JβKG if n is odd. Notice that we only need to compute Jβn/2KG

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 L. Libkin, W. Martens and D. Vrgoč

once for computing Jβn/2KG◦Jβn/2KG (and likewise if n is odd). Using fast squaring, we need
O(log n) such operations to compute JβnKG. Extending this to Jβn,mKG is straightforward.
The case JβKG can be solved by first sorting the pairs from JβKG and then performing a
single pass over the sorted relation, which costs O(|V |2 log |V |) time.
In the case of node expressions the most interesting cases are 〈β1 = β2〉 and 〈β1 6= β2〉.

Computing J〈β1 = β2〉KG and J〈β1 6= β2〉KG from Jβ1K
G and Jβ2K

G in time O(|V |3) can
be done as follows. For 〈β1 = β2〉 we need to search if there exist (v, v1) ∈ Jβ1K

G and
(v, v2) ∈ Jβ2K

G such that ρ(v1) = ρ(v2). This can be tested in time O(|V |3) similarly to how
one performs a sort-merge join. First, sort relations β1 and β2 on the left attribute, which
costs time O(|V |2 log |V |). Then, for each of the |V | possible values v of the join attribute (in
increasing order), we can compute in time O(|V |) the sets Dv,1 = {ρ(v1) | (v, v1) ∈ Jβ1K

G}
and Dv,2 = {ρ(v2) | (v, v2) ∈ Jβ2K

G}. Since both Dv,1 and Dv,2 have at most |V | elements,
it can be tested in time O(|V |2) if they have a common data value. The result J〈β1 = β2〉KG

contains all v such that Dv,1 ∩ Dv,2 6= ∅ and can therefore be computed in time O(|V |3).
The case 〈β1 6= β2〉 is similar.

The algorithm for Theorem 4.3 uses cubic time in |V | because it computes the relations
JβKG for larger and larger subexpressions β of the given input expression. In particular, the
algorithm uses steps that are at least as difficult as multiplication of |V | × |V | matrices or
computing the reflexive-transitive closure of a graph with |V | nodes. However, if one can
avoid computing the relations JβKG for subexpressions β, the time bound can be improved,
as we will see next.
For the remainder of the section, we assume that there is an ordering on labels of edges

and that graphs are represented as adjacency lists such that we can obtain, for a given
node v, the outgoing edges or the incoming edges, sorted in increasing order of labels, in
constant time. (We note that the linear-time algorithm from [Alechina and Immerman 2000]
for PDL model checking also assumes that adjacency lists are sorted.) The following result
is immediate from PDL model checking techniques:

Fact 4.4. Both Query Evaluation and Query Computation for GXPathpath-posreg

can be solved in time O(|α| · |G|).

Proof sketch. Since global model checking for a PDL formula ϕ over a model M can
be done in time O(|ϕ| · |M|) [Alechina and Immerman 2000; Cleaveland and Steffen 1993],
it is immediate that Query Evaluation is in time O(|α| · |G|). From this, the same bound
for Query Computation can also be derived. Given a query α and a set S, we can mark
the nodes in S with a special predicate that occurs nowhere in α. We can then modify query
α and use the algorithm for global model checking for PDL to obtain the required output
of Query Computation.

It is straightforward to extend the algorithm of Fact 4.4 to constant tests (c-tests), since
these can be treated analogously as edge labels.

Corollary 4.5. Both Query Evaluation and Query Computation for
GXPath

path-pos
reg (c) can be solved in linear time, i.e., O(|α| · |G|).

4.3. Expressive power

When gauging the expressive power of query languages, the most common yardstick is that
of first-order logic (FO) [Abiteboul et al. 1995]. Indeed, first-order logic is well established
as the core of all relational database queries and it is often one of the query language design
goals to achieve some sort of completeness with respect to a fragment of FO. For example
one of the governing principles when refining the syntax of the XML query language XPath
[ten Cate and Marx 2007; Kay 2004] was to make it equivalent to FO over trees, as this

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:31

provides a well established base for adding new features, while keeping the language compact
and easy to understand.
To this end, we will study the expressive power of GXPath and its many dialects when

compared to first-order logic. We begin by showing that the core fragment GXPathcore with
no data value comparisons captures FO3, like its analogue (core XPath 2.0) does on trees.
The main difference here is that FO3 over trees equals full FO, while over graphs this is not
the case. After that, we also show that, for the regular fragment, an equivalent statement
holds for FO3 enriched with binary transitive closure. Following that, we move on to data
fragments and show that, although standard XPath-like data tests fall short of the full power
of FO with data value comparisons, the equivalence can be obtained by allowing tests of
the kind used in regular queries with data tests (RQDs).

4.3.1. Expressiveness of navigational languages. We provide a detailed analysis of expressive-
ness for navigational features of dialects of GXPath. To understand the expressive power of
navigational GXPath, we will do two types of comparisons:

—We compare them with FO, fragments and extensions. The core language will capture
FO3. This is similar to a capture result for trees [Marx 2005]; the main difference is that
on graphs, unlike on trees, this falls short of full FO. We also provide a counterpart of this
result for GXPathreg, adding the transitive closure operator.

—We look at the analog of conditional XPath [Marx 2005] which captures FO over trees
and show that, in contrast, over graph databases, it can express queries that are not
FO-definable.

Comparisons with FO and relatives. To compare expressiveness of GXPath fragments with
first-order logic, we need to explain how to represent graph databases as FO structures. Since
all the formalisms can express reachability queries (at least with respect to a single label),
we view graphs as FO structures

G = 〈V, (Ea, Ea∗)a∈Σ〉

where Ea = {(v, v′) | (v, a, v′) ∈ E} and Ea∗ is its reflexive-transitive closure.

Recall that FOk stands for the k-variable fragment of FO, i.e., the set of all FO formulae
that use variables from a fixed set x1, . . . , xk. As we mentioned, on trees, the core fragment
of XPath 2.0 was shown to capture FO3. We now prove that the same remains true without
restriction to trees.

Theorem 4.6. GXPathcore = FO3 with respect to both path queries and node tests.

Proof. We use a result of Tarski and Givant stating that relation algebra with the basis
A of binary relations has the same expressive power as first order logic with three variables
over the signature A of binary relations and equality [Tarski and Givant 1987]. As we will
be using a slight modification of the result, we give the precise formulation here. The proof
of this version can be found in [Andréka et al. 2001] (see Theorem 1.9 and Theorem 1.10).
First we formalize relation algebras. Let A = {R1, . . . , Rn} be a set of binary relation

symbols. The syntax of relation algebra over A is defined as all expressions built from base

relations in A using the operators ∪, (·), ◦, (·)−, denoting union, complement, composition of
relations and the reverse relation. We are also allowed to use an atomic symbol Id denoting
identity.
Our algebra is then interpreted over a structure M = (V,RM1 , . . . , RMn) where all RMi are

binary relations over V . Interpretations of the symbols ∪, (·), ◦, (·)− and Id is the standard
union, complement (with respect to V 2), composition, and reverse of binary relations. Id
is simply the set of all (v, v) where v ∈ V . We will write (a, b) ∈ RM , or aRMb, when the
pair (a, b) belongs to relation R defined over V with relations Ri interpreted as RMi . In

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 L. Libkin, W. Martens and D. Vrgoč

the statement of the following fact, use the (standard) notation ϕ[x/a, y/b] to denote the
formula obtained from ϕ by substituting x by a and y by b.

Fact 4.7 ([Andréka et al. 2001]). Let A = {R1, . . . , Rn} be a set of binary relation
symbols.

— For every expression R in the relation algebra (A,∪, (·), ◦, (·)−, Id), there is an FO3 for-
mula in two free variables ϕR(x, y) such that, for every structure M = (V,RM1 , . . . , RMn),
we have

{(a, b) | aRMb} = {(a, b) | M |= ϕR[x/a, y/b]}.

—Conversely, for every FO3 formula ϕ(x, y) in two free variables, there exists a relation
algebra expression Rϕ such that, for every structure M = (V,RM1 , . . . , RMn), we have

{(a, b) |M |= ϕ[x/a, y/b]} = {(a, b) | aRMϕ b}.

Note that we view a graph database G = (V,E) as a structure over the alphabet of binary
relations Ea, Ea∗ , where a ∈ Σ. Then, a graph database is interpreted as a model

M = (V, (EMa , EMa∗)a∈Σ), where

Ea = {(v, v′) | (v, a, v′) ∈ E}

and Ea∗ is its reflexive transitive closure. Note that the Tarski-Givant result states some-
thing stronger, namely that the equivalence will hold over any structure, no matter if a∗ is
interpreted as the transitive closure of a or not. This means that it will in particular hold
on all the structures where it is, and those are our graph databases.
First, we give a translation from GXPathcore into FO

3. That is, for every path expression e,
we provide a formula Fe(x, y) in two free variables such that, for every graph database G =
(V,E), we have JeKG = {(v, v′) ∈ V 2 | M |= Fe[x/v, y/v

′]}, where M = (V, (EMa , EMa∗)a∈Σ)
and Ea = {(v, v′) | (v, a, v′) ∈ E} and Ea∗ its reflexive transitive closure. Similarly, for
every node expression ϕ, we define a formula Fϕ(x) in one free variable. The definition is
by induction on the structure of GXPathcore expressions.
The base cases are those of expressions a, a∗, a−, (a−)∗ and ⊤, and the formulae Fe are:

Fa(x, y) ≡ Ea(x, y); Fa∗(x, y) ≡ Ea∗(x, y); Fa−(x, y) ≡ Ea(y, x); F(a∗)−(x, y) ≡ Ea∗(y, x);
and F⊤(x) ≡ x = x. The induction cases are as follows:

— If e = [ϕ], then Fe(x, y) ≡ (x = y) ∧ Fϕ(x).
— If e = α · β, then Fe(x, y) ≡ ∃z(Fα(x, z) ∧ ∃x(x = z ∧ Fβ(x, y))).
— If e = α ∪ β, then Fe(x, y) ≡ Fα(x, y) ∨ Fβ(x, y).
— If ϕ = ¬ψ, then Fϕ(x) ≡ ¬Fψ(x).
— If ϕ = ψ ∧ ψ′, then Fϕ(x) ≡ Fψ(x) ∧ Fψ′(x).
— ϕ = 〈α〉, then Fϕ(x) ≡ ∃yFα(x, y).
— If e = α, then Fe(x, y) ≡ ¬Fα(x, y).

The claim easily follows. Note that we have shown that our expressions can be converted
into FO3 over a fixed interpretation of relation symbols appearing in our alphabet (that
is, when Ea∗ = (Ea)

∗). The result by Tarski and Givant is stronger, since it holds for any
interpretation. Note that this does not invalidate our result, since we are interested only in
this fixed interpretation of graph predicates.
To prove the equivalence of GXPathcore with FO3, we now show that every relation algebra

expression has an equivalent GXPathcore path expression. Namely, we show that, for every
relation algebra expression R over the signature (Ea, Ea∗)a∈Σ, there is a path expression
eR of GXPathcore such that, for every graph database G = (V,E), it holds that JeRKG =
{(a, b) ∈ RM}. Here M is obtained from G as before. In particular, we assume that Ea∗

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:33

is the reflexive transitive closure of Ea. We do this inductively on the structure of RA
expressions R.
For the base cases we have eEa

= a; eEa∗
= a∗; and eId = ε. Induction cases follow the

structure of the expressions:

eR1∪R2
= eR1

∪ eR2
; eR1◦R2

= eR1
· eR2

; eS− = (eS)
−; eS = eS .

To show the equivalence between R = S− and eR = (eS)
− we need the following claim.

Claim 4.8. For every GXPathcore path expression e, there is a GXPathcore expression e−

such that, for every graph G, Je−KG = {(v, v′) | (v′, v) ∈ JeKG}.

The proof of the claim is an easy induction on expressions. We simply push the reverse onto
atomic statements. Notice that this is the reason why we can not simply drop the converse
operators from our syntax. All the other equivalences follow from the definition and the
inductive hypothesis.
Now, let ϕ(x, y) be an arbitrary FO3 formula. By Fact 4.7 we know that there is a relation

algebra expression Rϕ equivalent to ϕ over all structures that interpret {Ea, Ea∗ | a ∈ Σ}. In
particular it is true over all the structures where Ea∗ = (Ea)

∗. By the previous paragraph we
know that there is a GXPathcore expression eRϕ

equivalent to Rϕ. In particular, this means
that, for every graph database G = (V,E), it holds that for the model M = (V, (Ea, Ea∗) |
a ∈ Σ), derived from G, we have the following:

{(a, b) |M |= ϕ[x/a, y/b]} = {(a, b) | (a, b) ∈ RMϕ }.

On the other hand, we also have:

JeRϕ
KG = {(a, b) | (a, b) ∈ RMϕ }.

Thus we conclude that

{(a, b) |M |= ϕ[x/a, y/b]} = JeRϕ
KM .

The previous part shows equivalence between path expressions and formulas with two free
variables. To deal with formulas with a single free variable F (x) we do the following. Define
F ′(x, y) = x = y ∧ F (x). Note that F ′ selects all pairs (v, v) such that F (v) holds. Now
find an equivalent path expression α (we know we can do this by going through relation
algebra) and let e = 〈α〉.

Not all results about the expressiveness of XPath on trees extend to graphs. For instance,
on trees, the regular fragment with no negation on paths (i.e., the path-positive fragment)
can express all of FO [Marx 2005]. This fails over graphs: GXPathreg fails to express even all

of FO2 when restricted to its path-positive fragment (i.e., the fragment that still permits
unary negation).

Proposition 4.9. There exists a binary FO2 query that is not definable in
GXPathpath-posreg .

Proof sketch. The idea is to observe that path-positive fragments of GXPath can-
not define the universal binary relation on an input graph. The query not definable in
GXPathpath-posreg is then the one saying that there are at least two nodes in a given graph.

Formally, let ψ(x, y) ≡ ∃x∃y(¬(x = y)). It is easy to see that JψKG = {(x, y) | (x, y) ∈ V 2}
if G = 〈V,E〉 has at least two nodes and JψKG = ∅ otherwise. (Notice that the variables
x, y in ψ are immediately “overwritten” by the existential quantification, which is why
JψKG 6= {(x, y) | (x, y) ∈ V 2 and x 6= y}.) Consider the graphs G1 = 〈{v, v′}, ∅〉 and
G2 = 〈{v}, ∅〉. That is, we have no edges. It follows that JψKG1 = {(v, v′), (v′, v)} and

JψKG2 = ∅. It can be shown by induction on the structure of path GXPathpath-posreg expressions

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 L. Libkin, W. Martens and D. Vrgoč

that we either have that JαKG1 = {(v, v), (v′, v′)} and JαKG2 = {(v, v)}, or JαKG1 = ∅ and
JαKG2 = ∅. Similarly for node expressions it can be shown that either JϕKG1 = {v, v′} and
JϕKG2 = {v}, or JϕKG1 = ∅ and JϕKG2 = ∅.

We now move to GXPathreg and relate it to a fragment of FO∗, the parameter-free frag-
ment of the transitive-closure logic. The language of FO∗ extends the one of FO with a
transitive closure operator that can be applied to formulas with precisely two free variables.
That is, for every FO formula F (x, y), the formula F ∗(x, y) is also an FO∗ formula. The
semantics is the reflexive-transitive closure of the semantics of F . That is, G |= F ∗(a, b)
iff a = b or there is a sequence of nodes a = v0, v1, . . . , vn = b for n > 0 such that
G |= F (vi, vi+1) whenever 0 ≤ i < n.
By (FO∗)k we mean the k-variable fragment of FO∗. Note that when we deal with FO∗

and (FO∗)k, we can view graphs as structures of the vocabulary (Ea)a∈Σ, since all the Ea∗
are definable and there is no reason to include them in the language explicitly.
Over trees, regular XPath is known to be equal to (FO∗)3 in terms of expressiveness [ten

Cate 2006]. The next theorem shows that over graphs, these logics coincide as well.

Theorem 4.10. GXPathreg = (FO∗)3.

Proof sketch. The containment of GXPathreg in (FO∗)3 is done by a routine transla-
tion. To show the converse, we use techniques similar to those in the proof of Theorem 4.6:
we extend (FO∗)3 and relation algebra equivalence to state that relation algebra with the
transitive closure operator has equal expressive power to (FO∗)3 over the class of all labeled
graphs. For this one can simply check that the inductive proof from [Andréka et al. 2001]
can be extended by adding two extra inductive clauses. Namely, when going from relation
algebra to FO3 we state that expressions of the form R∗ are equivalent to F ∗

R(x, y), where
FR is the formula equivalent to R. In the other direction we state that F ∗(x, y) is equivalent
to (RF (x, y))

∗. Here, by RF (x, y) we denote the expression equivalent to F (x, y), when the
variables are used in that particular order. After that one verifies that the correctness proof
of [Andréka et al. 2001] applies.

What about the relative expressive power of GXPathcore and GXPathreg? For positive
fragments, known results on trees (see [ten Cate and Marx 2007]) imply the following.

Corollary 4.11. GXPathposcore (GXPathposreg .

We shall now see that the strict separation applies to the full languages. This is not com-
pletely straightforward even though GXPathcore is equivalent to a fragment of FO, since the
latter uses the vocabulary with transitive closures. This makes it harder to apply standard
techniques, such as locality, directly. We shall see how to establish separation by taking a
detour through conditional XPath.

Conditional GXPath. To capture FO over XML trees, Marx showed that one can use
conditional XPath, which essentially adds the temporal until operator [Marx 2005]. That is,
it expands the core-XPath’s a∗ with (a[ϕ])∗, which checks that the test [ϕ] is true on every
node of an a∗-labeled path. Formally, its path formulae are given by:

α, β := ε | | a | a− | a∗ | a−
∗
| (a[ϕ])∗ | (a−[ϕ])∗ | [ϕ] | α · β | α ∪ β | α

We refer to this language as GXPathcond. We now show that the FO capture result fails
rather dramatically over graphs: there are even positive GXPathcond queries not expressible
in FO.

Theorem 4.12. There is a GXPath
pos
cond query not expressible in FO.

Note that the standard inexpressibility tools for FO, such as locality, cannot be applied
straightforwardly since the vocabulary of graphs already contains all the transitive closures

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:35

Ea∗ . In fact, this means that in GXPath
pos
cond the query asking for transitive closures of base

relations is trivially definable, even though it is not definable in FO over the Eas. The way
around this is to combine locality with the composition method: we use locality to establish
a winning strategy for the duplicator in a game that does not involve transitive closures
and then use composition to extend the winning strategy to handle transitive closures.

Proof. To prove Theorem 4.12 we will need several auxiliary results.
Let Σ = {a, b, σ, τ} be an alphabet of labels. For an arbitrary graph G = (V,E) over the

singleton alphabet {a} and two fixed nodes s, t ∈ V we define a Σ-labeled graph G(s, t) as
follows. First, it contains all the nodes and edges of G. For every node v /∈ {s, t} in V we
add a new node vb and an edge (v, b, vb) to G(s, t). We also add two new nodes, s0 and t0,
together with edges (s0, σ, s) and (t, τ, t0), coming into s and leaving t. These nodes and
edges are added to distinguish s and t in our graph. Finally, we add one extra node called
A and, for every other node in G(s, t), we add two edges: one going into A and the other
returning from A to the same node, both labeled a. The modifications are illustrated in the
following image.

s0 s

t

t0

A

v

vb

v′

v′b

w

wb

σ τ

a

b b

b

a

a

By C we denote the class of all G(s, t), obtained from G and s, t ∈ V as above, for every
G over {a} and s, t ∈ V . Define C− to be the class of graphs that are obtained from the
graphs in C by removing the node A and all the associated edges. Let the property P stand
for

t is reachable from s via a path labeled with (a[b])∗.

That is, t is reachable from s by a path that proceeds forwards by a-labeled edges, but also
has to have a b labeled edge leaving every internal node on the path. To obtain the desired
result we will first prove the following claim.

Claim 4.13. The property P is not expressible in FO with vocabulary
{Ea, Eb, Eσ, Eτ , Ea∗ , Eb∗ , Eσ∗ , Eτ∗} over the class C. Here, as before, we assume that
Eℓ∗ is the reflexive transitive closure of Eℓ, for ℓ ∈ {a, b, σ, τ}.

The main idea of the proof is as follows. Assume that P is expressible in FO, over the full
vocabulary, by a formula of quantifier rank m. Then we will show that there exist graphs
G1
d and G2

d (parametrized by d ≥ 0) such that G1
d ≡m G2

d. However, by construction, G1
d

and G2
d will not agree on P , which is a contradiction.

More precisely, the proof goes through three lemmas. We will use Hanf-locality and com-
position of games.
In the first lemma, we use the standard notion of a neighborhood of an element in a

structure, and the notion of Hanf-locality. For details, see [Libkin 2004]. Specifically, for
two graphs G1, G2, we write G1

⇆d G
2 if there is a bijection f between nodes of G1 and

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 L. Libkin, W. Martens and D. Vrgoč

nodes of G2 (in particular, the sets of nodes must have the same cardinality) such that the
radius-d neighborhoods of each node v in G1 and f(v) in G2 are isomorphic. The radius-d
neighborhood around v is the substructure generated by all nodes reachable from v by a path
(using all types of edges and going both forwards and backwards) of length at most d, with
v interpreted as a distinguished constant (which thus must be preserved by isomorphisms
between neighborhoods).
Locality is meaningless over structures in C, since every two nodes are connected by a

path of length 2, so ⇆2 is an isomorphism. This is why we use several steps to prove our
result.

Lemma 4.14. For every d ≥ 0 there exist two graphs G1
d and G2

d, as structures of the
vocabulary {Ea, Eb, Eσ, Eτ}, in C− such that G1

d ⇆d G
2
d and G1

d satisfies P , while G2
d does

not.

Proof. To see this take arbitrary d and let the graphs G1
d and G2

d be as in the following
two images. All the labels on the circles are a, the incoming edges from the nodes s0 to the
nodes s are labeled σ, the outgoing edges from the nodes t to nodes t0 are labeled τ , and
the edges from the nodes v to the nodes vb are labeled b.

s v1

v2d+1

v2d+2

u1

u2d+2
t

v′2d+2

v′1

u′2d+2

u′2d+1

u′1

s0 vb1

vb2d+1

vb2d+2

ub1

ub2d+2t0

v′b2d+2

v′b1

u′b2d+2

u′b2d+1

u′b1

Graph G1
d

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:37

s
v1v′2d+2

v2d+2v′1

s0
vb1v′b2d+2

vb2d+2v′b1

Graph G2
d

t u2d+2

u′1

u1u′2d+2

t0

ub2d+2u′b1

ub1u′b2d+2

Let f : G1
d → G2

d be the bijection defined by the node labels in the natural way: each
node gets mapped to the one with the same name in the other graph. That is, we set
f(s) := s, f(vi) := vi, then f(v

b
i) := vbi and similarly for v′i, ui, etc.

To see that G1
d ⇆d G

2
d we have to check N

G1

d

d (c) ∼= N
G2

d

d (f(c)) for every c. This is now
easily established, since the d neighborhood of any c and f(c) will simply be extended
chains of length d around c and f(c). In particular, it is possible that they intersect the d
neighborhood of either s or t, but never both. We thus conclude that they will always be
isomorphic, giving us the desired result.

From Lemma 4.14 and Corollary 4.21 in [Libkin 2004], which shows that Hanf-locality with
a sufficiently large radius implies the winning strategy for the duplicator in an Ehrenfeucht-
Fräıssé game, we obtain the following.

Lemma 4.15. For every m ≥ 0 there exists d ≥ 0 so that G1
d ≡m G2

d.

As usual, by ≡m we denote the fact that duplicator has a winning strategy in an m-round
Ehrenfeucht-Fräıssé game. This game is still played on structures in the vocabulary that
does not use transitive closures.
Now let G1

d and G2
d be obtained from G1

d and G2
d by adding, as in the picture above, a

node A with a-edges to and from every other node. We view these graphs as structures of
the vocabulary that has all the relations Eℓ and Eℓ∗ for each of the four labels ℓ we have.
Next, we show

Lemma 4.16. If G1
d ≡m G2

d, then G1
d ≡m G2

d.

The strategy is very simple: the duplicator plays by copying the moves from the game
G1
d ≡m G2

d as long as the spoiler does not play the A-node. If the spoiler plays the A-node
in one structure, the duplicator responds with the A-node in the other. We now need to
show that this preserves all the relations. Clearly this strategy preserves all the relations Eℓ
among nodes other than the A-node, simply by assumption. Moreover, since Eℓ∗ = Eℓ for
ℓ 6= a, we have preservation of the transitive closures other than that of Ea as well. So we
need to prove that the strategy preserves Ea∗ , but this is immediate since in both graphs
Ea∗ is interpreted as the total relation. This proves the lemma.
The claim now follows from the lemmas: assume that P is expressible in FO, over the

full vocabulary, by a formula of quantifier rank m. Pick a sufficiently large d to ensure that
G1
d ≡m G2

d. Then G1
d and G2

d must agree on P , but they clearly do not, since the extra

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 L. Libkin, W. Martens and D. Vrgoč

paths introduced in these graphs compared to G1
d and G2

d go via the A-node, which does
not have a b-successor.
To conclude the proof of Theorem 4.12, consider a conditional graph XPath expression

σ(a[b])∗[τ]. Over graphs as considered here it defines precisely the property P , which, as
just shown, is not FO-expressible in the full vocabulary.

We can now fulfill our promise and establish separation between GXPathcore and
GXPathreg. Since GXPathcore ⊆ FO and we just saw a conditional (and thus regular) GXPath
query not expressible in FO, we have:

Corollary 4.17. GXPathcore (GXPathreg.

4.3.2. Expressiveness of data languages. We saw that, for navigational features, core graph
XPath captures FO3. The question is whether this continues to be so in the presence of
data tests. First, we need to explain how to describe data graphs as FO-structures to talk
about FO with data tests.
Following the standard approach for data words and data trees [Segoufin 2007], we do

so by adding a binary predicate for testing if two nodes hold the same data value. That
is, a data graph is then viewed as a structure G = 〈V, (Ea, Ea∗)a∈Σ,∼〉 where v ∼ v′ iff
ρ(v) = ρ(v′). To be clear that we deal with FO over that vocabulary, we shall write FO(∼).
If we want to talk about constant data tests (i.e., c=), we add a new unary symbol Dc,
for each c ∈ D that will denote that the data value equals c. In that case we shall refer to
FO(c,∼). It turns out that the equivalence with FO3 breaks when we consider XPath style
data tests, as the following theorem shows.

Theorem 4.18.

— GXPathcore(eq) (FO3(∼);
— GXPathcore(c, eq) (FO3(c,∼).

Proof sketch. The first containment uses the translation into FO3 shown in the proof
of Theorem 4.6. For the new data operators, we use the following. If e = 〈α = β〉 then

Fe(x) ≡ ∃y, z(y ∼ z ∧ Fα(x, y) ∧ ∃y(z = y ∧ Fβ(x, y)))

and likewise for the inequality comparison. Translation of constants is self-evident.
To prove strictness we show that the FO3 query F (x, y) ≡ x ∼ y is not definable in

GXPathreg(c, eq). Note that F defines the set of all pairs of nodes carrying the same data
value. The proof of this is implicit in the proof of Proposition 4.19.

Thus, the standard XPath data tests are insufficient for capturing FO3 over data graphs.
This naturally leads to a question: what can be added to data tests to capture the full power
of FO3? The answer, as it turns out, is quite simple: we need to use the same sort of data
value tests as in regular queries with data tests (RQDs). Recall that these are defined by
adding two expressions to the grammar for α: one is α=, the other is α6=. The semantics,
over data graphs, is

Jα=KG = {(v, v′) ∈ JαKG | ρ(v) = ρ(v′)}
Jα6=KG = {(v, v′) ∈ JαKG | ρ(v) 6= ρ(v′)}

In other words, we test whether data values at the beginning and at the end of a path are
the same, or different. We recall that such an extension is denoted by ∼, i.e., we talk about
languages GXPath(∼) (with the usual sub- and superscripts). The first observation is that
these tests indeed add to the expressiveness of the languages.

Proposition 4.19. The path query a=, for a ∈ Σ, is not definable in GXPathreg(c, eq).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:39

Note that the query a= is definable on trees by the GXPathcore(eq) query [〈ε = a〉]·a·[〈ε =
a−〉]. This is because the parent of a given node is unique. However, on graphs this is not
always the case, and thus new equality tests add power.
The idea of the proof is that even though GXPathreg(c, eq) can test if a node has an

a-successor with the same data value by the means of expression 〈ε = a〉, which will return
the set {v ∈ V | ∃v′ ∈ V and (v, v′) ∈ Ja=KG}, it has no means of retrieving that particular
successor. Specifically, we show that it is possible to find two data graphs G1 and G2, such
that Ja=KG1 6= Ja=KG2 , but for every GXPathreg(c, eq) query e we have JeKG1 = JeKG2 . Both
G1 and G2 have K6 as their underlying graph, with different data values attached. The
proof is essentially by mundane case analysis and is present in the online appendix.

With the extra power obtained from equality tests, we can capture FO3 over data graphs.

Theorem 4.20. GXPathcore(∼) = FO3(∼).

Proof. We follow the technique of the proof of Theorem 4.6. All of the translations used
there still apply. The proof that relation algebra is contained in the language GXPathcore(∼)
is the same as without data values. We only have to add conversion of the new symbol ∼:
if R =∼, then e = ε ∪ (ε)=.
For the other direction we have to show how to translate new path expressions α= and

α6= into FO3(∼). This is done as follows: if e = α= then Fe(x, y) ≡ Fα(x, y) ∧ x ∼ y and
likewise for inequality. The equivalences easily follow. Now the theorem follows from the
equivalence of relation algebra and FO3 [Tarski and Givant 1987].

By adopting the technique used in Theorem 4.10 it is straightforward to see that the
previous result extends to GXPathreg(∼).

Theorem 4.21. GXPathreg(∼) = (FO∗)3(∼).

As mentioned before, one could also allow constant tests in the language. It is then easy
to see that the equivalence extends to FO with constants.

Corollary 4.22.

—GXPathcore(c,∼) = FO3(c,∼).
—GXPathreg(c,∼) = (FO∗)3(c,∼).

4.4. Comparing GXPath with other languages

Here we compare GXPath to path languages introduced in Section 3 as well as to tradi-
tional navigational languages such as RPQs, CRPQs and NREs. Note that GXPath enriches
RPQs with new navigational abilities and it is therefore worthwhile examining how the
navigational part of the language fares when compared to other extensions of RPQs.

Relative expressiveness of navigational fragments. Our first goal is to compare the ex-
pressiveness of navigational GXPath fragments with that of traditional graph languages. We
start with nested regular expressions and, after that, look at path languages such as RPQs,
CRPQs, and relatives.
As expected, GXPathreg is strictly more expressive than NREs. However, we show that

NREs do capture the positive fragment of GXPathreg.

Theorem 4.23. GXPathposreg = NRE (GXPathpath-posreg .

Proof. First, we show that NRE (GXPathreg. Using a straightforward inductive con-
struction one can show how to convert a nested regular expression into an equivalent path
expression of GXPathreg. Note that all the operations can be written down verbatim, minus
the [n] expression whose GXPathreg equivalent is [〈en〉], where en is an expression equivalent
to n.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 L. Libkin, W. Martens and D. Vrgoč

Next we show that GXPathcore query q = a[¬〈b〉] is not expressible by an NRE. Consider
the data graph G with two nodes v, v′ and both a and b-labeled edges, going both from
v to v′ and v′ to v. It is easy to see that JqKG = ∅. In contrast, it can be shown by an
easy induction on the structure of NREs n that there exist nodes x1, x2, y1, y2 ∈ {v, v′}
such that (v, x1), (v

′, x2), (y1, v), (y2, v
′) ∈ JnKG. This means that, for every NRE n, we have

JnKG 6= ∅ which means that no NRE equivalent to q exists. (Notice that the proof works for
any alphabet we would take for the NRE.)
We now show that GXPathposreg = NRE. We already know that nested regular expressions

can be expressed as GXPath queries. Since no negation operators are used to obtain this we
obtain the inclusion of NRE in GXPathposreg .
To complete the proof we now show how to convert an arbitrary GXPathposreg expression

into an equivalent nested regular expression. More precisely, we show that for every path
expression α of our fragment there exists a nested regular expression nα such that for every
graph G we have (x, y) ∈ JαKG iff (x, y) ∈ JnαKG. Moreover, for every node expression ϕ we
define a nested regular expression nϕ such that x ∈ JϕKG iff (x, x) ∈ JnϕKG. We do this by
induction on the structure of our GXPathposreg expressions. If e is a or a−, or ε, then ne = e,
and if e = ⊤, then ne = ε. The inductive step is as follows:

— If e = [ϕ], then ne = [nϕ]
— If e = α · β, then ne = nα · nβ
— If e = α ∪ β, then ne = nα + nβ
— If e = ϕ ∧ ψ, then ne = ε[nϕ] · ε[nψ]
— If e = ϕ ∨ ψ, then ne = ε[nϕ + nψ]
— If e = 〈α〉, then ne = ε[nα].

It is easy to see the equivalence between defined expressions.

We will now show that XPath-like formalisms are incomparable with CRPQs and similar
queries in terms of their navigational expressiveness. The simple restriction, GXPathposreg , is
not subsumed by CRPQs. In fact, it is not even subsumed by unions of two-way CRPQs
(which allow navigation in both ways). On the other hand, CRPQs are not subsumed by
the strongest of our navigational languages, GXPathreg.

Theorem 4.24. CRPQs and GXPath fragments are incomparable:

— GXPathposreg 6⊆ CRPQ (even stronger, there are GXPathposreg queries not definable by
U2CRPQs);

— CRPQ 6⊆ GXPathreg.

Proof. The first item follows from Theorem 4.23 and Theorem 1 in [Barceló et al. 2012],
where it was shown that there exists a NRE not expressible by U2CRPQs.
To see that the second item holds we first show that for every GXPathreg expression e

there exists an L3
∞ω formula Fe equivalent to it (i.e., a formula in infinitary logic with 3

variables). After that we give an example of a CRPQ that is not expressible in this logic
using a standard multi-pebble games argument. To be more precise, we will be working
with L3

∞ω formulas over the alphabet {Ea | a ∈ Σ} (and with the equality symbol). All the
relations are binary and simply represent a labeled edge between two nodes. We will denote
data graphs as structures for this logic by G = 〈V, (Ea)a∈A〉.
Now for every path expression α we will define a formula Fα(x, y) such that (v, v′) ∈ JαKG

iff G |= Fα[x/v, y/v
′]. Likewise, for a node expression ϕ, we define a formula Fϕ(x) such

that v ∈ JϕKG iff G |= Fϕ[x/v]. We do this by induction on GXPathreg expressions.

Basis:
— α = a then Fα(x, y) ≡ Ea(x, y)
— α = a− then Fα(x, y) ≡ Ea(y, x)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:41

— α = ε then Fα(x, y) ≡ x = y
—ϕ = ⊤ then Fα(x) ≡ x = x

Inductive step:
— α′ = [ϕ] then Fα′(x, y) ≡ x = y ∧ Fϕ(x)
— α′ = α · β then Fα′(x, y) ≡ ∃z(∃y (y = z ∧ Fα(x, y)) ∧ ∃x (x = z ∧ Fβ(x, y)))
— α′ = α ∪ β then Fα′ (x, y) ≡ Fα(x, y) ∨ Fβ(x, y)
— α′ = α∗ then define

—ϕ1
α(x, y) ≡ Fα(x, y),

—ϕn+1
α (x, y) ≡ ∃z (∃y (y = z ∧ Fα(x, y)) ∧ ∃x (x = z ∧ ϕnα(x, y)))

—Finally, set Fα′ (x, y) ≡
∨

n∈ω ϕ
n
α(x, y)

— α′ = α then Fα′(x, y) ≡ ¬Fα(x, y)
—ϕ′ = ¬ϕ then Fϕ′(x) ≡ ¬Fϕ(x)
—ϕ′ = ϕ ∧ ψ then Fϕ′(x) ≡ Fϕ(x) ∧ Fψ(x)
—ϕ′ = 〈α〉 then Fϕ′(x) ≡ ∃yFα(x, y).

It is straightforward to show that the translation has the desired property.
Next we define a binary CRPQ ϕ(x, y) that has no GXPathreg equivalent. For the sepa-

ration argument it will suffice to assume that all edges are labeled with the same symbol a.
The CRPQ ϕ(x, y) states that there is a K4 subgraph, with x, y as two of its nodes.

ϕ(x, y) := (x, a, y) ∧ (x, a, z) ∧ (x, a, w) ∧

(y, a, x) ∧ (z, a, x) ∧ (w, a, x) ∧

(y, a, z) ∧ (y, a, w) ∧

(z, a, y) ∧ (w, a, y) ∧

(z, a, w) ∧ (w, a, z).

Note that ϕ(K3) = ∅, while ϕ(K4) 6= ∅. However, it is well known that no L3
∞ω sentence F

can distinguish K3 and K4 (cf. [Libkin 2004]), since the duplicator has a winning strategy
in an infinite 3-pebble game on these graphs, simply by preserving equality of pebbled
elements. Thus, ϕ cannot be expressed by a GXPathreg query.

On the other hand, the positive fragment of GXPathcore can be captured by unions of
two-way CRPQs.

Proposition 4.25. GXPath
pos
core (U2CRPQ.

Proof. We have seen an example of U2CRPQ not expressible by GXPath in Theorem
4.24. To see that the inclusion holds we show that for every GXPathposcore expression e we can
construct an equivalent U2CRPQ. That is, for every path expression α we define a U2CRPQ,
named ψα(x, y), in two free variables, x and y, such that for every graph database G we
have JαKG = ψα(G). Similarly for every node expression ϕ we define a U2CRPQ ψϕ(x). We
do so by induction on the structure of GXPathposcore expressions.

Basis:
—For α = ε we have ψα(x, y) := (x, ε, y).
—For α = we have ψα(x, y) :=

∨

a∈Σ(x, a, y).
—For α = a we have ψα(x, y) := (x, a, y).
—For α = a− we have ψα(x, y) := (x, a−, y).
—For α = a∗ we have ψα(x, y) := (x, a∗, y).
—For α = a−

∗
we have ψα(x, y) := (x, a−

∗
, y).

—For ϕ = ⊤ we have ψϕ(x) := ∃y(x, ε, y).
Inductive step:

—For α = [ϕ] we have ψα(x, y) := (x, ε, y) ∧ ψϕ(y).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 L. Libkin, W. Martens and D. Vrgoč

—For α = α′ · β′ we have ψα(x, y) := ∃zψα′(x, z) ∧ ψβ′(z, y).
—For α = α′ ∪ β′ we have ψα(x, y) := ψα′(x, y) ∨ ψβ′(x, y).
—For ϕ = ϕ1 ∧ ϕ2 we have ψϕ(x) := ψϕ1

(x) ∧ ψϕ2
(x).

—For ϕ = ϕ1 ∨ ϕ2 we have ψϕ(x) := ψϕ1
(x) ∨ ψϕ2

(x).
—For ϕ = 〈α〉 we have ψϕ(x) := ∃yψα(x, y).

It is straightforward to show that the defined expressions are equivalent.

GXPath and path languages. When comparing GXPath with path languages from Section
3 we will consider the regular fragment with ∼ type data tests, since they subsume classical
XPath-style tests. While it is apparent from the definition of GXPathreg(c,∼) that it contains
RQDs, we can also show that the containment is strict.

Proposition 4.26. The class of RQD queries is strictly contained in GXPathreg(c,∼).

Proof. To see that the containment is strict consider the GXPath query q = (a[b])∗.
Note that this is also an NRE. To obtain a contradiction assume that there is some RQD Qq
equivalent to q. Now consider a graphG with edges (v1, a, v2) and (v2, b, v3). Data values are
not important here so we do not list them explicitly. It is easily checked that (v1, v2) ∈ JqKG.
By our assumption we also have that (v1, v2) ∈ Qq(G). But since Qq is an RQD this means

that there is some regular expression with equality eq such that Qq = x
eq
−→ y and:

—There is a path π starting with v1 and ending with v2, and
— λ(π) belongs to L(eq).

However, the only path in G connecting v1 and v2 is π = v1av2. Consider now the graph
G′ obtained from G by removing the edge (v2, b, v3). We now have (v1, v2) /∈ JqKG

′

, but
π = v1av2 is still a path in G′ with λ(π) ∈ L(eq). This then implies that (v1, v2) ∈ Qq(G

′),
a contradiction.

Comparing GXPath to more expressive path languages we can see that the ability to use
variables makes them capable of expressing queries outside the reach of GXPath. We also
show that the converse is true, as new navigational features allow GXPath to define patterns
not captured by paths.

Proposition 4.27. GXPathreg(c,∼) is incomparable in terms of expressive power with
RQMs and register automata.

Proof sketch. It is easily seen that the example from Proposition 4.26 can be used to
give a GXPath query not expressible by any of the path languages.
To prove the reverse it is straightforward to extend the proof of Theorem 4.24 to show

that GXPathreg(c,∼) is contained in three variable infinitary logic L3
∞ω (with data value

comparison relation ∼ and unary relations coding constants). It is well known that this
logic cannot define models that have at least four different elements [Libkin 2004]. However,
one can readily check that such a query is expressible by RQMs and register automata.

4.5. Hierarchy of the fragments

By coupling the basic navigational languages – GXPathcore and GXPathreg – with various
possibilities of data tests, such as no data tests, constant tests, XPath-style equality tests,
RQD equality tests, or all of them, we obtain sixteen languages, ranging from GXPathcore
to GXPathreg(c, eq,∼). Recall that adding counting does not affect expressiveness, only the
complexity of query evaluation.
The question is then, how do these fragments compare to each other?
First thing we note is that some of the fragments collapse. Namely, from Theorem 4.20

we know that every GXPathcore(eq) query can be expressed in GXPathcore(∼), and the same
holds for regular fragments using Theorem 4.21.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:43

To perform such a transformation explicitly we simply need to show how to convert every
test of the form 〈α = β〉 to one using only = comparisons from GXPathcore(∼) and that the
same can be done for inequality. It is not difficult to see that every node expression of the
form 〈α = β〉 is equivalent to GXPathcore(∼) expression 〈α · (α− ·β)= ·β−∩ε〉, and similarly
for 6=.
Therefore we can conclude that every fragment where both eq and ∼ data tests are

present collapses to the one with only ∼. For example, GXPathcore(eq,∼) is the same as
GXPathcore(∼) and so on, bringing the number of possible fragments to twelve. Next we
establish the full hierarchy of the remaining fragments.

Theorem 4.28. The relative expressive power of graph XPath languages with data com-
parisons is as shown below:

GXPathreg(c,∼)

GXPathcore(c,∼)

GXPathreg(c, eq)

GXPathreg(∼)

GXPathcore(c, eq)

GXPathreg(c)

GXPathreg(eq)

GXPathcore(∼)

GXPathcore(eq)

GXPathcore

GXPathcore(c) GXPathreg

Here, an arrow indicates strict containment, while the lack of an arrow indicates that the
fragments are incomparable.

Proof. The result follows from Corollary 4.17 (for navigational fragments), the fact
that ∼ comparisons subsume usual XPath-style tests, and the following two observations
which show that c tests and eq or ∼ tests are not mutually definable. Namely, take an
alphabet Σ containing letter a. Let c be a fixed data value. Then:

—There is no GXPathreg(∼) expression equivalent to the GXPathcore(c) query qc := c=.
—There is no GXPathreg(c) expression equivalent to the GXPathcore(eq) query qeq := 〈a 6= a〉.

For the first item, simply take two single-node data graphs G1 and G2, with G1’s single node
holding value c and G2 holding a different value c′. Hence, JqcK

G1 selects the only node of
G1, while JqcK

G2 = ∅. However, a straightforward induction on the structure of expressions
shows that, for every GXPathreg(∼) query e we have JeKG1 = JeKG2 .
For the second item assume that there is an GXPathreg(c) expression eeq equivalent to

qeq. Take three arbitrary pairwise distinct data values x, y, z that are different from all the
constants appearing in eeq and let G1 and G2 be data graphs on nodes v1, v2, v3, both with
a-labeled edges from v1 to v2 and v3, so that data values assigned to v1 and v2 are x and
y, but in G1, the node v3 gets data value z while in G2 it gets y. Then a straightforward

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 L. Libkin, W. Martens and D. Vrgoč

induction on GXPathreg(c) expressions e that use only constants appearing in eeq shows that
JeKG1 = JeKG2 . Thus, qeq cannot be equivalent to eeq, since JqeqK

G1 6= JqeqK
G2 . Note that this

also shows that GXPathcore (GXPathcore(c) and GXPathcore (GXPathcore(eq).

As shown in Proposition 4.2, the path positive and the positive fragments are strictly
contained in the full language. Furthermore, Theorem 4.23 shows that the positive fragment
cannot express node negation.
Another natural question here is to see how the expressive power of fragments that use

both inequality and equality comparisons differs from the ones that compare data values for
equality only. A subfragment of a ∼ fragment using only equalities (that is, subexpressions of
the form α6= are not permitted) will be denoted by ∼=, while the corresponding subfragment
of an eq fragment will be denoted by eq=. The following theorem establishes the hierarchy
of such fragments. It is important to note here that, in the absence of path negation, one
can no longer simulate eq tests using the ∼ tests. Note that in order to avoid notational
clutter we disregard constants in this comparison.

Theorem 4.29. The relative expressive power of GXPathcore fragments based on restrict-
ing negation in navigational features or data comparisons is given below.

GXPathcore(eq) GXPathcore(∼)

GXPathpath-poscore (eq) GXPathcore(eq=) GXPathcore(∼=) GXPathpath-poscore (∼)

GXPathposcore(eq) GXPathpath-poscore (eq=) GXPathpath-poscore (∼=) GXPathposcore(∼)

GXPathposcore(eq=) GXPathposcore(∼=)

Here, an arrow from one fragment to another signifies that the source fragment is contained
in the target one. A dashed line indicates containment and a full line proper containment.
An analogous set of results holds for GXPathreg.

Proof. As just discussed, the positive fragments are strictly contained in the path-
positive ones when they use the same type of tests. Furthermore, by Proposition 4.2, we
know that the path-positive fragments are strictly contained in the full language allowing
negation over paths when using the same type of data tests.
From Theorems 4.20 and 4.18 we also get that when path negation is present, ∼ fragments

subsume the ones with eq tests, but not vice versa.
To show that eq= fragments are strictly contained in corresponding eq fragments, we

simply need to take a graphG1 with two nodes holding the same data value, connected by an
a-labeled edge in both directions and a graph G2, this time with two nodes holding different
data values, again connected by a-labeled edges. Both graphs also have self loops labeled a
for each node. A straightforward induction on GXPathcore(eq=) expressions shows that the
result of any expression is the same on both graphs. However, the 〈a 6= ε〉 differentiates the
two. Note that this proof does not work for ∼= and ∼.
Proposition 4.19 and the discussion before Theorem 4.28 imply that GXPathcore(eq=) is

strictly contained in GXPathcore(∼=).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:45

Finally, to see that with the presence of path negation the ∼= fragment can define α6=

observe that α6= is equivalent to α= ∩ α. Naturally, this containment is not strict.

Note that some of the inclusions in Theorem 4.29 are not proved to be strict. We do
however conjecture that all of the one-way arrows denote strict inclusions.

5. CONJUNCTIVE QUERIES

A standard extension of RPQs is to that of conjunctive RPQs, or CRPQs [Calvanese et al.
2000; Deutsch and Tannen 2001; Florescu et al. 1998]. These add conjunctions of RPQs
and existential quantification over variables, in the same way as conjunctive queries extend
atomic formulae of relational calculus. We now look at similar extensions of queries from
Section 3 and Section 4.

5.1. Conjunctive path queries

First we examine how the classes of conjunctive queries behave when their base atoms are
queries from one of the path languages introduced in Section 3. Formally, they are defined
as expression of the form

Ans(z) :=
∧

1≤i≤m

xi
Li−→ yi, (6)

where m > 0, each xi
Li−→ yi is a query in one of the formalisms from Section 3, and z is a

tuple of variables among x and y. Note that the xis and yjs are not required to be pairwise
distinct. A query with the head Ans() (i.e., no variables in the output) is called a Boolean
query. To establish terminology we will talk about:

—Conjunctive regular data path queries (CRDPQs), when each xi
Li−→ yi is an RDPQ,

—Conjunctive regular queries with memory (CRQMs), when each xi
Li−→ yi is an RQM,

—Conjunctive regular queries with data tests (CRQDs), when each xi
Li−→ yi is an RQD,

We will also use the name conjunctive data path query (CDPQ) for a query from any of
the three classes just defined.
These queries extend their base atoms with conjunction, as well as existential quantifica-

tion: variables that appear in the body but not in the head (i.e., variables in x and y but
not z) are assumed to be existentially quantified.
The semantics of a CDPQ Q of the form (6) over a data graph G = 〈V,E, ρ〉 is defined

as follows. Given a valuation ν :
⋃

1≤i≤m{xi, yi} → V , we write (G, ν) |= Q if (ν(xi), ν(yi))

is in the answer of xi
Li−→ yi on G, for each i = 1, . . . ,m. Then Q(G) is defined as the set of

all tuples ν(z) such that (G, ν) |= Q, where ν(z) denotes the pointwise application of ν to z.
If Q is Boolean, we let Q(G) be true if (G, ν) |= Q for some ν (that is, as usual, the empty
tuple models the Boolean constant true, and the empty set models the Boolean constant
false).
As before, we study data and combined complexity of the query evaluation problem, i.e.

checking, for a CDPQ Q, a data graph G and a tuple of nodes v, whether v ∈ Q(G) (for
data complexity the query Q is fixed).
First, we show that for all the formalisms studied in the previous chapter, no cost is

incurred by going from a single query to a conjunctive query as far as data complexity is
concerned.

Theorem 5.1. The data complexity of conjunctive data path queries remains NL-
complete if they are defined using RDPQs,RQMs, or RQDs.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 L. Libkin, W. Martens and D. Vrgoč

Proof. Consider a query of the form (6) and let z′ be the tuple of variables from x and
y that is not present in z. To check whether v ∈ Q(G), we need to check whether there exists
a valuation v′ for z′ so that under that valuation each of the queries in the conjunction in
(6) is true.

We know from the previous sections that checking whether v
L

−→ v′ evaluates to true for
some nodes v, v′ can be done with NL data complexity for all the formalisms mentioned in
the theorem. Thus, given a data graph G = 〈V,E, ρ〉, we can enumerate all the tuples from

V |z′|, and for each of them check the truth of all the queries in conjunction (6). Since we deal
with data complexity, |z′| is fixed, and thus such an enumeration can be done in logarithmic
space, showing that query evaluation remains in NL. Note that the NL algorithms can be
composed here since they are independent one of another.

For combined complexity, we have the same bounds for CRDPQs and CRQMs. For
CRQDs we get NP-completeness, which matches the combined complexity of conjunctive
queries and CRPQs.

Theorem 5.2. The combined complexity of conjunctive regular data path queries re-
mains PSpace-complete if they are specified using RDPQs or RQMs. It is NP-complete if
they are specified using RQDs .

Proof. PSpace-hardness follows from the corresponding results for RQMs, and NP-
hardness follows from NP-hardness of relational conjunctive queries. Thus we show upper
bounds. The algorithm (using notations from the proof of Theorem 5.1) is the same in all
the cases: guess a tuple v′ of nodes for z′, and check whether all the queries in conjunction
(6) are true. We know that for RDPQs and RQMs the latter can be done in PSpace; since
PSpace is closed under nondeterministic guesses we have the PSpace upper bound for
combined complexity. For CRQDs, an NP upper bound for the algorithm follows from the
PTime bound for combined complexity for RQDs.

5.2. Conjunctive GXPath

Conjunctive GXPath queries are defined as expressions of the form:

Ans(w) :=
∧

1≤i≤m

(xi, αi, yi) ∧
∧

1≤j≤m′

ψj(zj), (7)

where m,m′ ≥ 0, each αi is a path expression, each ψj a node expression, and w is a tuple
of variables among x, y and z. A query with the head Ans() (i.e., no variables in the output)
is called a Boolean query.
The semantics of a conjunctive GXPath query Q of the form (7) over a data graph G =

〈V,E, ρ〉 is defined as follows. Given a valuation ν :
⋃

1≤i≤m{xi, yi} ∪
⋃

1≤j≤m′{zj} → V ,

we write (G, ν) |= Q if (ν(xi), ν(yi)) is in JαiK
G, for each i = 1, . . . ,m and ν(zj) ∈ JψjK

G,
for j = 1, . . . ,m′. Then Q(G) is defined as the set of all tuples ν(z) such that (G, ν) |= Q.
If Q is Boolean, we let Q(G) be true if (G, ν) |= Q for some ν.

Example 5.3. Coming back to the example with actors and movies from Figure 1, we
can now ask for people who have collaborated both with Kevin Bacon and Paul Erdős. This
query is defined by:

Q(x) = (x, (actor− · actor)∗[Kevin Bacon=], y) ∧ (x, (actor− · actor)∗[Paul Erdős=], z).

Note that this query is expressible by GXPath with no conjunction (by using intersection),
however, the syntax used by conjunctive queries is more intuitive, especially when one needs
conjunction of three or more conditions. Furthermore, conjunction of four or more queries
is no longer expressible, since GXPath is contained in L3

∞,ω (Theorem 4.24).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:47

Query answering RDPQ RQM
RQM

over finite languages
RQD GXPath

data complexity NL-complete NL-complete NL-complete NL-complete PTime
combined complexity PSpace-complete PSpace-complete NP-complete PTime PTime

(a) for a single query

Query answering CRDPQ CRQM CRQD Conjunctive GXPath

data complexity NL-complete NL-complete NL-complete PTime
combined complexity PSpace-complete PSpace-complete NP-complete NP-complete

(b) for conjunctive queries

Fig. 4. Summary of complexity results for classes of queries studied in this paper

If the database is further extended to include people who have co-written papers, we
could also express the query returning people with a finite Erdős-Bacon number. For this,
the second conjunct in the queryQ would simply change to (x, (author−·author)∗[Erdős=], z),
where an author edge connects each paper with one of its authors.

As before, we study data and combined complexity of the query evaluation problem, i.e.
checking, for a query Q, a data graph G and a tuple of nodes v, whether v ∈ Q(G) (for
data complexity the query Q is fixed).

Theorem 5.4.

—Data complexity for conjunctive GXPath queries is in PTime.
—Combined complexity is NP-complete.

The data complexity bound easily follows from query evaluation bounds for GXPath
queries. For combined complexity we do the standard guess and check algorithms, using
again the fact that the language can be evaluated in PTime. The NP lower bound follows
from the result for CRPQs [Barceló et al. 2012].

6. SUMMARY AND CONCLUSIONS

Historically, querying graph data was done in two completely separate ways: either one
would query the raw data residing in the graph while completely disregarding how the data
is connected, or one would query only the topology of the model, determining intricate
patterns connecting the data, but not doing any reasoning on the data itself. The main
objective of this paper was to explore principles of good query language design that combines
these two modes of querying. Namely, we propose languages that, in addition to being able
to ask questions about the underlying topology of the model, also allow us to determine
how the actual data changes while navigating in the graph.
Having studied how various data and navigational features affect the ability of the lan-

guage to express relevant queries, as well as how they influence efficiency (a summary of
this is given in Figure 4), we come to a conclusion that there are no clear winners when it
comes to choosing a particular language, if the context is not known. Indeed, for a specific
scenario we might value a certain set of functionalities above others, and consider a language
allowing these functionalities best suited for our purposes. In a different setting we might
dismiss the same language on grounds of high complexity. Because of this we can not bring
one of the proposed languages forward as the language for graphs with data, however, we
can point to good candidates when a specific capability is required.
For example, if we are interested solely in navigational queries a clear candidate would be

GXPath, or some of its fragments. Not only does this language extend all of the previously
studied navigational languages (with the only exception being extended RPQs [Barceló et al.
2012] which are incomparable with GXPath) but it is also closely connected to logic — both
FO and PDL, and has efficient query evaluation algorithms matching those of previously
studied navigational languages.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 L. Libkin, W. Martens and D. Vrgoč

On the other hand, if we require the ability to use memory, for instance to ask queries
that propagate data (in)equality along the path connecting two data points, it seems that
RQMs are the way to go. Not only do these queries have high expressive power matching
that of register automata, but their syntax is also clear and easily understandable. The
price we have to pay in this case is high complexity — namely PSpace-complete.
For highly efficient languages, the clear winner are RQDs, however, we might be willing

to trade their somewhat limited expressive power for that of GXPath fragments with linear
time query evaluation.

7. FUTURE WORK

The theoretical study that we undertook here enabled us to determine the practical potential
of a query language. Most issues pertaining to the complexity cost of including certain
features into a language have been settled. However, since mixing topology and data is a
relatively new concept in graph databases, there are still many questions that remain open,
and thus many possible directions for future research. We finish by briefly outlining some
of them.

Comparisons with practical languages. Most existing languages for graph databases [Dex
2013; Neo4j 2013] do not even support navigational functionalities provided by regular
path queries and have a relational mindset when it comes to comparing data values. One
notable exception is SPARQL [Harris and Seaborne 2013], the native language for RDF data.
Graph features of SPARQL are centered around property paths, which are similar to regular
path queries with inverse [Calvanese et al. 2000]. These can be combined using standard
relational operators, thus allowing the language to express unions of conjunctive regular
path queries. Data value tests in SPARQL are allowed using the FILTER operator, which
enables to test for data (in)equality in a set of CRPQ outputs. Determining the connection
between SPARQL queries and graph languages is an important task and, as witnessed by
the abundance of the literature on the problem [Libkin et al. 2013b; Reutter et al. 2015;
Kostylev et al. 2015b], one that is not solved easily. There are several challenges that we
are facing. To start with, RDF data is in several aspects different from graph databases and
thus straightforward translations between the two settings are not always possible [Libkin
et al. 2013b]. Furthermore, property paths are not precisely equivalent to RPQs since they
operate over an infinite alphabet of IRIs [Kostylev et al. 2015b]. In addition, many graph
constructions are not available in SPARQL due to the lack of a more general transitive
closure operator. In fact, [Reutter et al. 2015] showed that there are several implementation
issues that hamper the usability of SPARQL in the graph context. All of this tells us that
capturing navigational SPARQL queries using graph languages is an an intriguing problem
requiring much further investigation.
Besides expressivity comparisons, note also that languages such as SPARQL or SQL with

transitive closure always have conjunctive queries built in, which has important complexity
consequences. Since evaluation of conjunctive queries over graphs is NP-complete in com-
bined complexity, so is the evaluation of SPARQL or SQL with transitive closure. Languages
such as GXPath and NREs are fundamentally different since, by design, they can only ex-
press tree-shaped queries, that is, the underlying structure of GXPath-queries or NREs is
always a tree. This is the main reason why GXPath queries can be evaluated in polynomial
time combined complexity. The characterization of tractable queries in SPARQL and, in
particular, tree-shaped SPARQL queries is still a topic of ongoing research, see, e.g. [Barceló
et al. 2015].

Additional features. We have already explored how some basic add-ons, such as conjunc-
tive queries, affect our languages. There are, of course, many other features that come into
play when languages are applied, such as aggregation or allowing more freedom in manip-
ulating the attribute data. For example we could compare string values for substrings, or

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:49

do arithmetical operations over integers. While a general theory for adding such languages
to first-order logic is well developed [Kuper et al. 2000], it would be interesting to look how
adding them can be accommodated into the languages we proposed. What we also hope to
achieve is a syntax that would be more attractive to users who require multiple attributes
per node (or edge). There are various options that present themselves here, as our languages
are readily extensible to support this functionality, but some careful examination of actual
requirements by various groups of users is needed to determine which syntax is better suited
for such a language.

Using languages in different scenarios. We would also like to explore how our languages
can be used in new application domains that require navigational and data patterns to
be detected in the underlying model. One area that we had in mind is querying data and
workflow provenance. Here one typically stores information about how data is created and
modified and sometimes it is useful to have the ability to track the origins of such data.
For example if a bug is found in a large software project it is important to locate the
library, or the modification of code, that led to this bug. Another possible application is
in description logics, since the underlying model there is basically that of a graph. Indeed,
some preliminary results on this have already been published in [Kostylev et al. 2015a].

Static analysis. Static analysis of queries is an important component of query optimiza-
tion, including tasks such as query containment or query equivalence. These problems are
also relevant in other tasks, for instance virtual data integration. Some preliminary results
on these problems are available in [Vrgoč 2014]. However, there are still many unresolved
issues of interest, and known techniques from the XML context [Figueira 2010] do not seem
to be readily transferable to graphs.

Incomplete information. Finally, it would be interesting to see how missing and incom-
plete data impacts graph languages. In a limited way, this problem was looked at in [Reutter
2013b; Barceló et al. 2014], which however only dealt with navigational aspects of graph
languages and did not consider data values. From the study of incompleteness in XML
[Abiteboul et al. 2006; Barceló et al. 2010], we know that the interaction between naviga-
tion and handling data values complicates the issue quite considerably. In fact, studies in the
XML setting were restricted to very simplistic queries, essentially those returning relations,
to apply the classical notion of certain answers to them. Recently, however, new techniques
for understanding query answering over incomplete data in a data-model independent way
have been introduced [Libkin 2014], and we hope to adapt them to the graph model.

ACKNOWLEDGMENTS

The authors would like to thank Juan Reutter, Tony Tan and the referees for their helpful comments.
Part of this work was done when Vrgoč was at the University of Edinburgh. We acknowledge support of
EPSRC grants G049165, J015377, and M025268, DFG grant MA 4938/2–1 and Millennium Nucleus Center
for Semantic Web Research Grant NC120004.

REFERENCES

S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.

S. Abiteboul, L. Segoufin, and V. Vianu. 2006. Representing and querying XML with incomplete information.
ACM Transactions on Database Systems 31, 1 (2006), 208–254.

S. Abiteboul and V. Vianu. 1999. Regular path queries with constraints. J. Comput. Syst. Sci. 3, 58 (1999),
428–452.

A.V. Aho. 1990. Handbook of Theoretical Computer Science. 255–300 pages.

N. Alechina, S. Demri, and M. de Rijke. 2003. A modal perspective on path constraints. J. Log. Comput.
13, 6 (2003), 939–956.

N. Alechina and N. Immerman. 2000. Reachability logic: An efficient fragment of transitive closure logic.
Logic Journal of the IGPL 8, 3 (2000), 325–337.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50 L. Libkin, W. Martens and D. Vrgoč

H. Andréka, I. Németi, and I. Sain. 2001. Handbook of Philosophical Logic (2 ed.). Vol. 2. Springer, Chapter
Algebraic logic.

R. Angles and C. Gutierrez. 2008. Survey of graph database models. Comput. Surveys 40, 1 (2008).

P. Barceló. 2013. Querying Graph Databases. In 32th ACM Symposium on Principles of Database Systems
(PODS).

P. Barceló, D. Figueira, and L. Libkin. 2012. Graph logics with rational relations and the generalized
intersection problem. In 27th Annual IEEE Symposium on Logic in Computer Science (LICS).

P. Barceló, L. Libkin, A. W. Lin, and P. T. Wood. 2012. Expressive languages for path queries over graph-
structured data. ACM TODS 38, 4 (2012).

P. Barceló, L. Libkin, A. Poggi, and C. Sirangelo. 2010. XML with incomplete information. J. ACM 58, 1
(2010), 1–62.

P. Barceló, L. Libkin, and J. L. Reutter. 2014. Querying Regular Graph Patterns. J. ACM 61, 1 (2014),
8:1–8:54.

P. Barceló, J. Pérez, and J.L. Reutter. 2012. Relative Expressiveness of Nested Regular Expressions. In
AMW. 180–195.

P. Barceló, R. Pichler, and S. Skritek. 2015. Efficient Evaluation and Approximation of Well-designed
Pattern Trees. In ACM Symposium on Principles of Database Systems (PODS). 131–144.

M. Benedikt, W. Fan, and F. Geerts. 2008. XPath satisfiability in the presence of DTDs. J. ACM 55, 2
(2008).

M. Bojanczyk. 2010. Automata for data words and data trees. In RTA.

M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. 2011. Two-variable logic on words
with data. ACM TOCL 12, 4 (2011).

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. 2009. Two-variable logic on data trees and
XML reasoning. J. ACM 56, 3 (2009).

M. Bojanczyk and P. Parys. 2011. XPath evaluation in linear time. J. ACM 58, 4 (2011).

P. Bouyer, A. Petit, and D. Thérien. 2001. An algebraic characterization of data and timed languages. In
CONCUR. 248–261.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. 2000. Containment of conjunctive regular
path queries with inverse. In 7th International Conference on Principles of Knowledge Representation
and Reasoning (KR). 176–185.

D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi. 2009. An automata-theoretic approach to
regular XPath. In DBPL. 18–35.

S. Cassidy. 2003. Generalizing XPath for directed graphs. In Extreme Markup Languages.

R. Cleaveland and B. Steffen. 1993. A Linear-Time Model-Checking Algorithm for the Alternation-Free
Modal Mu-Calculus. Formal Methods in System Design 2, 2 (1993), 121–147.

M. Consens and A.O. Mendelzon. 1990. GraphLog: A visual formalism for real life recursion. In 9th ACM
Symposium on Principles of Database Systems (PODS). 404–416.

I. Cruz, A.O. Mendelzon, and P. Wood. 1987. A graphical query language supporting recursion. In ACM
Special Interest Group on Management of Data 1987 Annual Conference (SIGMOD). 323–330.

S. Demri and R. Lazić. 2009. LTL with the freeze quantifier and register automata. ACM TOCL 10, 3
(2009).

S. Demri, R. Lazić, and D. Nowak. 2007. On the freeze quantifier in constraint LTL: Decidability and
complexity. Information and Computation 205, 1 (2007), 2–24.

A. Deutsch and V. Tannen. 2001. Optimization properties for classes of conjunctive regular path queries.
In 8th International Workshop on Database Programming Languages (DBPL). 21–39.

Dex 2013. DEX query language, Sparsity Technologies. http://www.sparsity-technologies.com/dex.php.
(2013).

Facebook. 2014. Graph Search. https://www.facebook.com/about/graphsearch.

W. Fan. 2012. Graph pattern matching revised for social network analysis. In ICDT. 8–21.

D. Figueira. 2009. Satisfiability of downward XPath with data equality tests. In 28th ACM Symposium on
Principles of Database Systems (PODS). 197–206.

D. Figueira. 2010. Reasoning on words and trees with data. Ph.D. Dissertation. ÉNS de Cachan.

G. H. L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht, S. Vansummeren, and Y.
Wu. 2011. Relative expressive power of navigational querying on graphs. In ICDT. 197–207.

D. Florescu, A. Y. Levy, and D. Suciu. 1998. Query Containment for Conjunctive Queries with Regular
Expressions. In PODS. 139–148.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data A:51

S. Fortune, J. Hopcroft, and J. Wyllie. 1980. The directed homeomorphism problem. Theoretical Computer
Science 10 (1980), 111–121.

G. Gottlob, C. Koch, and R. Pichler. 2005. Efficient algorithms for processing XPath queries. ACM Trans.
Database Syst. 30, 2 (2005), 444–491.

Gremlin 2013. Gremlin Language. https://github.com/tinkerpop/gremlin/wiki. (2013).

C. Gutierrez, C. Hurtado, A. O. Mendelzon, , and J. Pérez. 2011. Foundations of semantic web databases.
J. Comput. System Sci. 77, 3 (2011), 520–541.

S. Harris and A. Seaborne. 2013. SPARQL 1.1 Query Language. W3C Recommendation. http://www.w3.
org/TR/sparql11-query/. (March 2013).

M. Kaminski and N. Francez. 1994. Finite memory automata. Theoretical Computer Science 134, 2 (1994),
329–363.

M. Kaminski and T. Tan. 2006. Regular expressions for languages over infinite alphabets. Fundamenta
Informaticae 69, 3 (2006), 301–318.

M. Kaminski and T. Tan. 2008. Tree automata over infinite alphabets. In Pillars of Computer Science.
386–423.

M. Kay. 2004. XPath 2.0 Programmer’s Reference. Wrox.

E. V. Kostylev, J. L. Reutter, M. Romero, and D. Vrgoč. 2015b. SPARQL with Property Paths. In The
Semantic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part I. 3–18.

E. V. Kostylev, J. L. Reutter, and D. Vrgoč. 2015a. XPath for DL Ontologies. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. 1525–
1531.

G. M. Kuper, L. Libkin, and J. Paredaens (Eds.). 2000. Constraint Databases. Springer.

M. Lange. 2006. Model checking propositional dynamic logic with all extras. J. Applied Logic 4, 1 (2006),
39–49.

L. Libkin. 2004. Elements of Finite Model Theory. Springer.

L. Libkin. 2014. Certain answers as objects and knowledge. In Principles of Knowledge Representation and
Reasoning (KR). 328–337.

L. Libkin, W. Martens, and D. Vrgoč. 2013a. Querying Graph Databases with XPath. In ICDT.

L. Libkin, J. L. Reutter, and D. Vrgoč. 2013b. TriAL for RDF: Adapting Graph Query Languages for RDF
Data. In PODS.

L. Libkin and D. Vrgoč. 2012a. Regular expressions for data words. In LPAR. 274–288.

L. Libkin and D. Vrgoč. 2012b. Regular Path Queries on Graphs with Data. In ICDT. 74–85.

K. Losemann and W. Martens. 2012. The complexity of evaluating path expressions in SPARQL. In PODS.
101–112.

M. Marx. 2003. XPath and Modal Logics of Finite DAG’s. In TABLEAUX. 150–164.

M. Marx. 2005. Conditional XPath. ACM Trans. Database Syst. 30, 4 (2005), 929–959.

Neo4j 2013. Neo4j, The graph database. http://www.neo4j.org/. (2013).

F. Neven, Th. Schwentick, and V. Vianu. 2004. Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Log. 5, 3 (2004), 403–435.

J. Pérez, M. Arenas, and C. Gutierrez. 2009. Semantics and complexity of SPARQL. ACM Transactions
on Database Systems 34, 3 (2009).

J. Pérez, M. Arenas, and C. Gutierrez. 2010. nSPARQL: A navigational language for RDF. Journal of Web
Semantics 8, 4 (2010), 255–270.

J. L. Reutter. 2013a. Containment of Nested Regular Expressions. CoRR abs/1304.2637. (2013).

J. L. Reutter. 2013b. Graph Patterns: Structure, Query Answering and Applications in Schema Mappings
and Formal Language Theory. Ph.D. Dissertation. School of Informatics, University of Edinburgh.

J. L. Reutter, A. Soto, and D. Vrgoč. 2015. Recursion in SPARQL. In The Semantic Web - ISWC 2015 -
14th International Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings,
Part I. 19–35.

R. Ronen and O. Shmueli. 2009. SoQL: a language for querying and creating data in social networks. In
25th International Conference on Data Engineering (ICDE). 1595–1602.

H. Sakamoto and D. Ikeda. 2000. Intractability of decision problems for finite-memory automata. Theor.
Comput. Sci. 231, 2 (2000), 297–308.

M. San Mart́ın and C. Gutierrez. 2009. Representing, querying and transforming social networks with
RDF/SPARQL. In 6th European Semantic Web Conference (ESWC). 293–307.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:52 L. Libkin, W. Martens and D. Vrgoč

L. Segoufin. 2006. Automata and logics for words and trees over an infinite alphabet. In CSL. 41–57.

L. Segoufin. 2007. Static analysis of XML processing with data values. SIGMOD Record 36, 1 (2007), 31–38.

A. Tarski and S. Givant. 1987. A Formalization of Set Theory Without Variables. AMS.

B. ten Cate. 2006. The expressivity of XPath with transitive closure. In 25th ACM Symposium on Principles
of Database Systems (PODS). 328–337.

B. ten Cate and M. Marx. 2007. Navigational XPath: calculus and algebra. Sigmod Record 36, 2 (2007),
19–26.

D. Vrgoč. 2014. Querying graphs with data. Ph.D. Dissertation. School of Informatics, University of Edin-
burgh.

P.T. Wood. 2012. Query Languages for Graph Databases. Sigmod Record 41, 1 (2012), 50–60.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Online Appendix to:
Querying Graphs with Data

LEONID LIBKIN, University of Edinburgh

WIM MARTENS, Universität Bayreuth

DOMAGOJ VRGOČ, PUC Chile and Center for Semantic Web Research

A. PROOF OF PROPOSITION 3.13

We prove this by induction on the structure of e. Note that the initial assignment of Ae

is not specified in advance. We will simply put the assignment in as needed, since it does
not change the structure of the underlying automaton. In what follows we will identify the
vector x of variables with the set of registers (i.e. positions) it corresponds to. For example
the vector (x3, x5) will correspond to the set I = {3, 5} of registers.
If (e, w, σ) ⊢ σ′, we will write w ∈ L(e, σ, σ′) and similarly if Ae = (Q, q0, F,⊥, δ) started

with σ accepts w with σ′ in the registers, we write w ∈ L(Ae, σ, σ
′).

— If e = ε, then Ae = (Q, q0, F,⊥, δ), where Q = {d}∪ {w} is the set of states, q0 = d is the
initial state, F = {w} the set of final states and the only transition is (d, ε, ∅, w).

— If e = a, for some a ∈ Σ then Ae = (Q, q0, F,⊥, δ), where Q = {d1, d2} ∪ {w1, w2} is
the set of states, q0 = d1 the initial state, F = {w2} the final state and the transition
functions are as follows: δw = {(w1, a, d2)} is the word transition relation, and δd =
{(d1, ε, ∅, w1), (d2, ε, ∅, w2)} is the data transition relation.

— If e = e1 + e2 then by the inductive hypothesis we already have automata Ae1 =
(Q1, d1, F1,⊥, δ1) and Ae2 = (Q2, d2, F2,⊥, δ2) with the desired property. The registers of
Ae will be the union of registers of Ae1 and Ae2 . To obtain the desired automaton we set

Ae = (Q, d0, F,⊥, δ), where
—Q = Q1 ∪Q2 ∪ {d0}, where d0 is a new data state,
—F = F1 ∪ F2,
—To δ we add all transitions from Ae1 and Ae2 and in addition, for every transition

(d, c, I, w) ∈ δ1 ∪ δ2, where d = d1, or d = d2, we add a transition (d0, c, I, w).
To see that this automaton has the desired property assume that w ∈ L(e1 + e2, σ, σ

′).
This means (e1 + e2, w, σ) ⊢ σ′. By definition, (e1, w, σ) ⊢ σ′ or (e2, w, σ) ⊢ σ′. By the
induction hypothesis it follows that either Ae1 , or Ae2 accepts w and halts with σ′ in
the registers (when started with σ). From this it is clear that Ae can simulate the same
accepting run when started with σ in the registers (by using the transition from d0 to the
appropriate automaton and continuing on the same run there). (Note that all conclusions
here are equivalences.)

— If e = ↓x.e1 then again by the induction hypothesis we have Ae1 = (Q1, d1, F1,⊥, δ1) with
the desired property. The automaton for Ae is defined as Ae = (Q1 ∪ {d0}, d0, F1,⊥, δ),
where d0 is a new data state and δ contains all the transitions of Ae1 and in addition,
for every transition (d1, c, I, w), going from the initial state of Ae1 , we add a transition
(d0, c, I ∪ x,w) to δ. The registers of Ae are the union of registers of Ae1 and |x| new
registers.
To see the equivalence, assume that w ∈ L(e, σ, σ′). By definition (e, w, σ) ⊢ σ′. It follows
that (e1, w, σx=v1) ⊢ σ′, where v1 is the first data value in w and σx=v1 is the same as
σ except that every register in x contains v1. By the induction hypothesis we know that
Ae1 with σx=v1 as initial assignment has an accepting run on w ending with σ′ in the

c© YYYY ACM 0004-5411/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

App–2 L. Libkin, W. Martens and D. Vrgoč

registers. But then Ae starting with σ in the registers can go through the same run with
the exception that the first transition will change σ to σx=v1 and since all other transitions
are the same we have the desired result. (Note that all conclusions here are equivalences.)
It is important to note that potential confusion of the variables will cause no conflicts.
To see this assume we have a transition (d1, c, I, w) in Ae1 and we start with σ as initial
assignment. If I and x have variables in common it will not matter, since all of them will
get replaced by the same value, namely the first data value of w. This means that the
first step of the run will end up with the same result. Also note that no transition in δd
with d1 as the first component will have c 6= ε, since this would amount to an expression
starting with a condition, something disallowed by our syntax.

— If e = e1[c] then let Ae1 = (Q1, d1, F1,⊥, δ1) be an automaton for e1 as before. We define
Ae = (Q, d1, F,⊥, δ) where Q = Q1 ∪{wf}, with wf a new state, F = {wf} and for every
transition (d, c′, I, w) where w ∈ F1 we add a transition (d, c′ ∧ c, I, wf) to Ae. We have
to add a new state simply because our original automaton could have looped back from
some final state.
To get the equivalence assume again that w ∈ L(e, σ, σ′). By definition (e1, w, σ) ⊢ σ′ and
σ′, v |= c, where v is the last data value in w. From the induction hypothesis we get an
accepting run of Ae1 with σ as initial configuration and σ′ as final one. But since σ′, v |= c
instead of the last transition we can simply make a transition to wf in Ae (since all other
transitions are the same). We again notice that all the implications can be reversed, i.e.
we can prove the equivalence.

— If e = e1 · e2, take again Ae1 and Ae2 as above. The automaton for e is simply the union
of the previous two automata, but in addition to the already existing transitions we add
the following: for every (d, c, I, w) in Ae1 , where w ∈ F1 and for every (d2, c

′, I ′, w′) in
Ae2 , where d2 is the initial state of Ae2 , we add (d, c ∧ c′, I ∪ I ′, w′) to δ. Note that I is
going to be an empty set, since we work with well formed expressions. We also make d1
the initial state and F2 the set of final states. The registers of Ae are again the union of
registers of Ae1 and Ae2 .
To get the desired result once again assume that w ∈ L(e, σ, σ′). This means (e, w, σ) ⊢ σ′,
which implies that there exists some σ′′ and a splitting w = w1 · w2 of w such that
(e1, w1, σ) ⊢ σ′′ and (e2, w2, σ

′′) ⊢ σ′. By the induction hypothesis we know that there is
an accepting run of Ae1 on w1 starting with σ and ending with σ′′ in the registers and
also an accepting run of Ae2 on w2 starting with σ′′ and ending with σ′ in the registers.
But we can simply combine these two runs into an accepting run of Ae on w. We do so by
setting σ as initial assignment and tracing the run of Ae1 till the final state. Now instead
of taking the last transition we will take one of the newly added transitions from the next
to final state in Ae1 to the next to first state in Ae2 . Note that we can do this since we
know there is an accepting run of Ae2 on w2 and since w = w1 · w2, so their last and
first data value, respectively, coincide. Note that at this point we end up with σ′′ in the
registers and can continue the accepting run of Ae2 and thus Ae.
Conversely, if we have an accepting run of Ae on w, we split the run, and thus the path,
into the part before and after taking the new transition added while constructing the
automaton. Note that we have to take this transition in order to pass from the initial
state, which is in Ae1 part of Ae, to a final state, which is in a Ae2 part of Ae. From this
it follows that w ∈ L(e).

— If e = e+1 , then let again Ae1 be the automaton from the induction hypothesis. Note first
that this automaton has at least four states, since Proj(e1) 6= ε, where Proj(e) denotes the
projection to the finite alphabet Σ, and transitions going directly from initial to final state
can only accept the empty word, so they will not alter computations or acceptance. We let
the automaton for e be the same as the one for e1, but we add the following transitions:
for every (d, c, I, w) with w ∈ F1 and for every (d1, c

′, I ′, w′), where d1 is the initial state

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data App–3

3 v4

3

v5

3

v6

2v1

2

v2

2

v3
G1

3 v4

3

v5

3

v6

2v1

2

v2

3

v3
G2

Fig. 5.

of Ae1 , we add (d, c ∧ c′, I ∪ I ′, w′) to our transition function, thus bypassing the last and
the first state.
Assume now that (e, w, σ) ⊢ σ′. Then either (e1, w, σ) ⊢ σ′, so we are done by the in-
duction hypothesis, or w = w1 · · ·wk with k ≥ 2 and valuations σ1, . . . , σk+1 exist such
that (e1, wi, σi) ⊢ σi+1 for i = 1, . . . , k. But then by the induction hypothesis we have
computations of Ae1 with σi as the initial assignment and σi+1 as final assignment that
accept wi, for i = 1, . . . , k. Note that this actually means that we start with σ, do a com-
putation for w1, end with σ2 in the registers, then take the new transition bypassing the
end state for this computation and thus starting the computation with σ2 in the registers
(and updating the registers as dictated by the first transition in the new cycle), etc., until
we reach σ′ after reading wk, thus accepting w.
For the converse, if Ae accepts w when started with σ and ended with σ′ then we simply
split the data path for every time we take the additional transitions added in the con-
struction of Ae. From this we get computations of Ae1 on sub-paths with intermediate
valuations. By the induction hypothesis we have acceptance of these subpaths by e1 with
appropriate valuations and thus the membership of the entire path w in L(e, σ, σ′) .

This concludes the proof. It is straightforward to see that the construction can be done
in PTime.

B. PROOF OF PROPOSITION 4.19

Proof. Here we prove that even though GXPathreg(c, eq) can test if a node has an a-
successor with the same data value by the means of expression 〈ε = a〉, which will return
the set {v ∈ V | ∃v′ ∈ V and (v, v′) ∈ Ja=KG}, it has no means of retrieving that specific
successor.
We will first prove the result without constant tests. To prove that a= is not expressible in

GXPathreg(eq) over graphs we will give two graphs G1 and G2, such that Ja=KG1 6= Ja=KG2 ,
but for every GXPathreg(eq) query e we have JeKG1 = JeKG2 . Both G1 and G2 are based
on the graph K6, that is, the complete graph with six vertices. We will therefore have
V = {v1, . . . , v6} as the set of vertices in both graphs, and the data values attached to the
vertices in G1 are 2,2,2,3,3,3 and in G2 they are 2,2,3,3,3,3. All the edges in both G1 and G2

are labeled a. The graphs G1 and G2 are pictured in Figure 5. It follows from the definitions
that (v2, v3) ∈ Ja=KG1 , while (v2, v3) /∈ Ja=KG2 . We conclude that Ja=KG1 6= Ja=KG2 .
We now show that for every GXPathreg(eq) query e we have JeKG1 = JeKG2 . In particular

we show the following:

—For every path query α one of the following holds:
— JαKG1 = JαKG2 = ∅, or

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

App–4 L. Libkin, W. Martens and D. Vrgoč

— JαKG1 = JαKG2 = Id(V), or
— JαKG1 = JαKG2 = V 2, or
— JαKG1 = JαKG2 = V 2 − Id(V).

— For every node query ϕ one of the following holds:
— JϕKG1 = JϕKG2 = ∅, or
— JϕKG1 = JϕKG2 = V .

Here Id(V) stands for the set {(x, x) | x ∈ V }, with V the set of vertices in G1 and G2.
We prove this claim by induction on the structure of our GXPathreg(eq) expression e.

The base cases trivially follow. For the induction step assume that our claim is true for the
expressions of lower complexity. We proceed by cases.

— If α = [ϕ] then by the inductive hypothesis we have two cases.
—Either JϕKG1 = JϕKG2 = ∅, in which case JαKG1 = JαKG2 = ∅,
—Or JϕKG1 = JϕKG2 = V , in which case JαKG1 = JαKG2 = Id(V).

— If α = α′ ∪ β′ then the claim follows from the induction hypothesis and the fact that the
set {∅, V 2, V 2 − Id(V), Id(V)} is closed under taking unions.

— If α = α′ · β′ we proceed as follows.
Note first that JαKG1 = ∅ iff Jα′KG1 = ∅ or Jβ′KG1 = ∅ (this follows from the inductive
hypothesis about the structure of the answers, since for every other case the sets have
nonempty composition). This is now equivalent to the same being true in G2 and thus to
JαKG2 = ∅.
If JαKG1 6= ∅ then we know that both Jα′KG1 and Jβ′KG1 belong to {V 2, V 2−Id(V), Id(V)}.
The claim now simply follows from the inductive hypothesis and the fact that the set
{V 2, V 2 − Id(V), Id(V)} is closed under composition of relations.

— If α = α′ we have four cases.
— In case that Jα′KG1 = Jα′KG2 = ∅ we have JαKG1 = JαKG2 = V 2.
— In case that Jα′KG1 = Jα′KG2 = V 2 we have JαKG1 = JαKG2 = ∅.
— In case that Jα′KG1 = Jα′KG2 = V 2 − Id(V) we have JαKG1 = JαKG2 = Id(V).
— In case that Jα′KG1 = Jα′KG2 = Id(V) we have JαKG1 = JαKG2 = V 2 − Id(V).

— If α = α′∗ we have the same situation as in the previous case. In particular we know that
the transitive closures in each case will be the same.

— If ϕ = ¬ϕ we have the following.
— In case that Jϕ′KG1 = Jϕ′KG2 = V we have JϕKG1 = JϕKG2 = ∅.
— In case that Jϕ′KG1 = Jϕ′KG2 = ∅ we have JϕKG1 = JϕKG2 = V .

— If ϕ = ϕ′ ∧ ψ′ the claim easily follows.
— If ϕ = 〈α〉 we consider the value of JαKG1 .

— In case that JαKG1 = JαKG2 = ∅ we get JϕKG1 = JϕKG2 = ∅.
— In case that JαKG1 = JαKG2 = V 2, Id(V), or V 2 − Id(V) we get JϕKG1 = JϕKG2 = V .

— If ϕ = 〈α = β〉 we proceed by cases, depending on the value of JαKG1 and JβKG1 .
Note that if either equals ∅ we get that JϕKG1 = JϕKG2 = ∅. There are now nine possible
cases remaining.
(1) JαKG1 = JαKG2 = Id(V) and JβKG1 = JβKG2 = Id(V) implies that JϕKG1 = JϕKG2 = V .
(2) JαKG1 = JαKG2 = Id(V) and JβKG1 = JβKG2 = V 2 implies that JϕKG1 = JϕKG2 = V .
(3) JαKG1 = JαKG2 = Id(V) and JβKG1 = JβKG2 = V 2 − Id(V) implies that JϕKG1 =

JϕKG2 = V .
(4) All the remaining cases have the same result.

— If ϕ = 〈α 6= β〉 we proceed by cases, depending of the value of JαKG1 and JβKG1 .
Note that if either equals ∅ we get that JϕKG1 = JϕKG2 = ∅. Just as for 〈α = β〉 we
have nine cases. It is easily verified that we have JϕKG1 = JϕKG2 = V for each case,
except when JαKG1 = JαKG2 = Id(V) and JβKG1 = JβKG2 = Id(V). In this case we get
JϕKG1 = JϕKG2 = ∅.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Querying Graphs with Data App–5

To extend the induction to work for constants, we assume the contrary. Let e be an
expression defining a=. We exchange the data values 2 and 3 in our graphs G1 and G2 with
any two data values that do not appear as constants in e. The proof is now the same as in
the case without constants. This completes the proof.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

