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1. INTRODUCTION

Live-Virtual-Constructive (LVC) simulations are complex systems comprising a combi-
nation of live (real people operating real equipment), virtual (real people operating sim-
ulated equipment or vice versa), and constructive (wholly simulated) entities. Nodes in
the system support the simulation of one or more entities and are often geographically
distributed to leverage unique assets (e.g., physical test range space or high-fidelity
full motion simulators). Nodes are connected in a peer-to-peer fashion and commu-
nicate using protocols such as Distributed Interactive Simulation (DIS) [DIS Steering
Committee 1998], the High Level Architecture (HLA) [Dahmann et al. 1997], or the Test
and Training Enabling Network Architecture (TENA) [Powell and Noseworthy 2012].

Distributed LVC simulation promises a number of benefits for the test and evaluation
(T&E) community, including reduced costs, access to simulations of limited availability
assets, the ability to conduct large-scale multiservice test events, and recapitalization
of existing simulation investments. Consequently, the Department of Defense (DoD)
is increasingly turning to LVC simulation and virtual environments to support T&E
events. LVC simulations have been used to test communications for unmanned aircraft
systems [Parker et al. 2009], conduct cyber-security analysis [Van Leeuwen et al. 2010],
and quantify radar measurement errors [Hodson et al. 2013].

Ensuring rigorous results for T&E events supported by LVC simulation requires ad-
dressing three fundamental data quality challenges: quantifying numerical errors due
to weakly consistent nodes, assessing measurement accuracy with respect to tolerance
requirements, and assessing measurement quality in the absence of absolute truth
values.
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2. DATA QUALITY CHALLENGES

LVC simulations are typically designed as fully replicated, geographically distributed
database applications with real-time constraints. The data of interest are composed
of entity and world state information and derived quantities such as collisions or
weapons effectiveness. These data must be replicated at each node to meet availability
and responsiveness requirements. The inclusion of live or virtual entities imposes real-
time constraints on database responsiveness since long read/write latencies cannot
be tolerated. Consequently, entity state updates (i.e., writes to a database record) are
propagated to other system nodes after taking effect locally and are delayed due to
network latency. Thus, not all nodes see the same simulation state at the same time.
If updates cease, the system will eventually become consistent [Terry et al. 1994]. As
such, LVC simulations can be viewed in the same context as eventually consistent
distributed datastores such as Amazon’s Dynamo [DeCandia et al. 2007], Cassandra
[Lakshman and Malik 2009], or Megastore [Baker et al. 2011].

For any eventually consistent distributed database, a fundamental question is “How
eventual is eventual?” Common measures of eventual consistency are time (how long
it takes for readers to see the result of a write) and versions (how many versions
old is a given read result) [Bailis and Ghodsi 2013]. For LVC simulations and other
distributed virtual environments, deviation (e.g., Euclidean distance) from a “true”
value is a common measure of consistency [Yu and Vahdat 2002; Aggarwal et al. 2004;
Zhou et al. 2004].

Quantifying the numerical error associated with eventual consistency is a key chal-
lenge for LVC simulations. Although there is a growing body of literature characterizing
the consistency of distributed databases such as Dynamo and Cassandra [Wada et al.
2011; Rahman et al. 2012; Bailis et al. 2012], these works focus on time or version
staleness as the measure of consistency, feature read-heavy workloads, and are not
necessarily geographically distributed. In contrast, LVC simulations are more con-
cerned with numerical error, have a balanced read/write workload, and are distributed
geographically.

During a test event, measurements may be taken at any simulation node. Inconsis-
tencies in the replicated state are reflected as measurement errors. A second challenge
lies in assessing whether each measurement error lies within a precision tolerance.
This assessment must be conducted during system design to ensure the simulation is
capable of meeting test requirements. Additionally, it must occur during the test execu-
tion to provide a quantification of the uncertainty associated with each measurement.

A third challenge for LVC simulations is assessing the quality of measurements
without a known truth value, particularly in the discrete case [Mauve 2000]. This is
especially true for derived quantities that depend on inconsistent state data such as
collisions and weapons effects. In this case, each interacting node may compute a result
that is correct according to its state replica and different from other interacting nodes.
Furthermore, the uncertainty can vary based on the node taking the measurement.

3. CONCLUSION

LVC simulations enable large-scale operationally relevant T&E events at reduced cost,
provide access to limited availability assets, and recapitalize existing simulations.
System architectures based on weakly consistent replicated databases and unreliable
update protocols yield three fundamental challenges for data quality: quantifying error
due to eventual consistency, assessing measurement accuracy with respect to desired
tolerances, and assessing measurement quality in the absence of a truth value. Ad-
dressing these challenges is fundamental to ensuring the veracity and rigor of T&E
events supported by LVC simulation.
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