
T
here is a difference between the
background required of a practitioner
or researcher in a scientific field and
an educator thereof. While the work of
the former requires extensive knowledge
and skills in the field itself, the latter must

have the additional ability to convey this knowledge to oth-
ers correctly and reliably, to teach the said skills, to provide
perspective, and to infuse the students with interest, curios-
ity, and enthusiasm. All this requires the educator to be more
of a scientific intellectual, at least as far as the field in ques-
tion is concerned. We claim that while some of this is a mat-
ter of personality and natural aptitude, some can be acquired
by being exposed to material that goes beyond the technical
core parts of the field.1

We take a closer look at these issues as they arise in the CS
field. In particular, we identify some of the additional material
with which CS educators should become acquainted, over and
above that normally covered by an undergraduate CS program.
As an interesting upshot of our work, we have constructed an
undergraduate course out of this material, and have already
had some experience delivering it. Parenthetically, it would
be interesting to do the same for other subjects, resulting in

Judith Gal-Ezer and David Harel

What (Else) Should
CS Educators Know?
Beyond the mastery of core CS material,
good CS educators should also be familiar
with a significant body of material
that will expand their perspectives on
the field, and consequently, enhance
the quality of their teaching.

1It goes without saying that CS educators must be edu-
cators, and not only experts in teaching computing.
For example, a high school CS teacher must
have studied the various educational mater-
ial required of any high school teacher.

COMMUNICATIONS OF THE ACM September 1998/Vol. 41, No. 9 77

TR
IS

H
A

 K
R

A
U

SS

http://crossmark.crossref.org/dialog/?doi=10.1145%2F285070.285085&domain=pdf&date_stamp=1998-09-01

special educator’s courses in fields other than CS.
We must first state in the strongest possible terms

that a CS educator must have a thorough background
in CS, on a fitting level. While it is reasonably obvi-
ous that college-level teachers must be equipped with
a doctoral degree in CS, the fact that high school-level
teachers must have a Master’s degree in CS is not
always sufficiently acknowledged. In fact, this
requirement is rarely met; in many high schools
worldwide, CS is taught by people who don’t even
have full undergraduate training in the subject they
teach. This situation must change, but it is not the
subject of this article.2 Hence, we proceed on the
assumption the educator has mastered the field itself
as befitting the level being taught.

We now claim that even an excellent formal CS
education might not suffice for the generality and per-
spective required of educators, even when they are
involved in teaching only parts of the subject. To
address this, we propose that over and above the reg-
ular courses, CS educators be exposed to a bird’s-eye
view of the field, preferably in two parts—the algo-
rithmic side and the systems side.

In addition to an overview, there are several topics
that we claim educators should study and become
familiar with, and we discuss each of them separately.
These topics form the basis of the CS educator’s course
we recommend. The topics are: Some history of CS—
that of the theory as well as that of the machines
themselves; the delicate question of the nature of the
field and its relationship with other disciplines; the
details of various CS curricula and study programs at
both high school and college/university levels; a vari-
ety of issues concerning the problems of teaching pro-
gramming; and the use of tools and aids in teaching
computer science.

When discussing these topics, we provide some
guidelines for covering them in the CS educator’s course
and list relevant bibliographic items. Some of these
items are more central or fundamental than others, and
it is these that ought to be at the basis of the CS educa-
tor’s course we recommend. We might add that in some
cases these writings provide a sufficiently broad and
general perspective to be of interest outside CS (for
example, to philosophers and historians of science).

In addition to becoming knowledgeable in the top-
ics we discuss (by taking a special educator’s course, or
by other means), a CS educator should also try to keep
up to date with relevant developments by reading the
professional periodicals in CS education. A sampling
of pertinent literature includes:

• Mathematics and Computer Education; published
three times per year by The MATYC Journal Inc.

• Computers and Education; published eight times
per year by Pergamon Press.

• SIGCSE Bulletin, a quarterly published by ACM’s
Special Interest Group on Computer Science
Education.

• Journal of Computer Science Education (JCSE); a
quarterly published by the International Society
for Technology in Education.

• Journal of Computers in Mathematics and Science
Teaching (JCMST); a quarterly published by the
Association for the Advancement of Computing
in Education.

• International Journal of Mathematical Education in
Science and Technology; a quarterly published by
Taylor and Francis Ltd.

• Journal of Educational Computing Research;
published eight times per year by Baywood
Publishing Co.

• Journal of Technology and Teacher Education; a quar-
terly published by the Association for the
Advancement of Computing in Education.

There are also regular columns on CS education in
Communications of the ACM and in IEEE’s Computer, as
well as in newsletters like ACM’s SIGACT News and
the Bulletin of EATCS.

As noted earlier, the approach taken here could be
useful in other fields as well, but clearly we concen-
trate on CS because of our own background and occu-
pation. Nevertheless, we feel there is something
different about tackling the issue of good education in
our field. The point is that CS is not only the scien-
tific basis of a major technological revolution, but has
at its heart a special and powerful way of thinking—
algorithmically—which is required in dealing with
the ever-complex modern world, and which is becom-
ing crucial in many other scientific and engineering
disciplines, too. Endowing students with the ability
to approach a new kind of problem that requires them
to think differently is a subtle and difficult educa-
tional challenge that requires careful attention.

History
Any history, and that of a scientific discipline in par-
ticular, has ramifications beyond the mere chrono-
logical listing of events and facts.

Studying the history of a science helps one appreci-
ate the difficulties that faced the pioneering figures
and provides a deeper understanding of the forces and
considerations that helped form it. This includes
lessons that can be learned from false starts, failures,
and misconceptions. Moreover, history provides a

78 September 1998/Vol. 41, No. 9 COMMUNICATIONS OF THE ACM

2For more details, see “A high school program in computer science” in Computer
(1995).

global perspective of the field and its structure, and
often clarifies its relationship with other fields. His-
tory also influences a student’s thinking about present
and future developments.

The history of CS is somewhat unique, for two
main reasons. First of all, the discipline itself is young
and is developing amazingly fast. Although one of the
earliest algorithms (for computing the greatest com-
mon divisor) goes back to Euclid, people commonly
agree that as a science computing has only been
around for something like 65 years. Many of its pio-
neers are still with us; budding computer scientists
can hear them teach and lecture, and can sometimes
even work with them.

Second, as we shall argue, CS itself is an unusually
dichotomic subject—one facet is more mathematical
and the other is a type of engineering—a fact that is
reflected interestingly in its history. On the one hand,
the mid-1930s witnessed some of the most funda-
mental work on the nature and boundaries of comput-
ing, regardless of the technology that would later be
used to implement it. This work was carried out by
mathematicians like Turing, Church, and Gödel. On
the other hand, the first general-purpose computers
were built just a little later, and in the process some of
the most basic and lasting principles governing the
structure and operation of actual computing devices
were formulated.3 This work was carried out by many
people, including physicists like Atanasoff, mathe-
maticians like von Neumann, and engineers like
Mauchly and Eckert.

As to incorporating historical aspects into standard
CS courses, many possibilities present themselves. For
example, when mentioning Cook’s theorem or the
Turing test, students can be sent off to find out more
about the people in question and their work (as is
nicely done in Koffman’s book). Lee’s paper discusses
several other such ideas.

As to integrating the history of the field into our CS
educator’s course, this should be done mainly by guided
reading that could lead to the preparation of written
reports and papers. These reports could be period-ori-
ented or subject-oriented, or could treat a subject from
the historical perspective of a single person.

The bibliographic list for this section is a partial col-
lection of possible starting points, but there are many
more. In particular, the list can be supplemented by arti-
cles—often lengthy and informative—taken from Annals
of the History of Computing, an IEEE quarterly, or from the
brief reports in Computer’s “looking.back” column.

Bibliography for History
Ashherst, F.G. Pioneers of Computing. Frederick

Muller, London, 1983.
Hodges, A. Alan Turing: The Enigma. Simon &

Schuster, New York, 1983.
Hyman, A. Charles Babbage, Pioneer of the Computer.

Princeton University Press, Princeton, NJ, 1982.
Katz, K. The present state of historical content in

computer science texts: A concern. SIGCSE
Bulletin, (1995).

Koffman, E.B. Pascal: Problem Solving and Program
Design. 4th ed. Addison-Wesley, Reading, MA,
1993.

Lee, J.A.N. Those who forget the lessons of
history are doomed to repeat it or, why I study
the history of computing. Annals of the History of
Computing 13, 1 (1996).

Lee, J.A.N. Computer Pioneers. IEEE Computer
Society Press, Los Alamitos, Calif., 1995.

Metropolis, N.C., et al., (Eds). A History of
Computing in the Twentieth Century. Academic
Press, New York, 1980.

Sammet, J.E. Some approaches to and illustrations
of programming language history. Annals of the
History of Computing, (1991).

Wexelblat, R.L. History of Programming Languages.
Academic Press, New York, 1981.

Wilkes, M.V. Computing Perspectives. Morgan
Kaufmann, San Francisco, 1995.

What Is CS?
The unique nature of CS, with its special algorithmic
way of thinking and extremely short history, has led
to a diversity of opinions about its very substance. As
an example, here are two strikingly conflicting
quotes by two prominent computer scientists:

“Computer science has such intimate relations with so many
other subjects that it is hard to see it as a thing in itself.”

—M.L. Minsky, 1979

“Computer science differs from the known sciences so deeply
that it has to be viewed as a new species among the sciences.”

—J. Hartmanis, 1994

So, is CS a science in its own right? We feel that in
a strange way both quotes are right on the mark: CS is
definitely a new and important science, but its rela-
tionships with other fields like mathematics, physics,
and electrical engineering are also very significant.4

However, what is important for us is that a CS educa-

COMMUNICATIONS OF THE ACM September 1998/Vol. 41, No. 9 79

3The fact that these technological developments came later—so that we knew about
what could be computed by algorithmic devices even before any such devices
existed—is in itself a remarkable historical fact.

4Interestingly, CS is closely related to the life sciences too, both in taking and in
giving. For example, AI research often draws upon brain research, and deep algorith-
mic ideas are being increasingly used in the human genome project.

tor be exposed to the wide variety of arguments and
opinions on these matters, and the bibliographical
items listed here are a good place to start.

In fact, there is no clear agreement even on the
name of the field. In European universities, the titles
of many of the relevant departments revolve around
the word “informatics,” whereas in the U.S. most
departments are “computer science.” To avoid using
the name of the machine in the title (a problem that
prompted Dijkstra to quip that doing so is like refer-
ring to surgery as knife science), some use the word
“computing” instead. Other department names con-
tain “information systems” or “computer studies.”
Another possible name for the field, which is not
intended to cover the full scope of CS but, rather, its
heart and basis, is “algorithmics.”

There are several causes of disagreement and confu-
sion regarding the what-is-CS question. One is the
dichotomy mentioned earlier between the mathemat-
ical and engineering facets of the field. For example,
the analysis of algorithms is on the mathematical side
of things, whereas software engineering is on the
engineering side.

Moreover, there are dichotomies within each of
these two facets. The mathematical aspects of CS
include not only computability and computational
complexity, touching upon logic, combinatorics and
probability theory, but also numerical analysis, which
can be viewed as a direct outcome of the need for
extremely heavy, yet accurate, computations. Interest-
ingly, the engineering facet of the field is also
dichotomic, with designing and building hardware
being in many ways quite a different kind of endeavor
from developing software.

As if all this were not enough, there is another prob-
lematic issue, more directly related to education. It is
rooted in the dire need to make people computer liter-
ate in this age and time; hence the tremendous effort
to integrate computers into education on all levels and
in a wide variety of ways. This, in turn, causes com-
puter science to be confused with computer literacy,
for example, algorithms with spreadsheets, program-
ming with word processing, and the average-case
analysis of random walks with Net surfing.

One way to get an idea of what the field is really
about is to inspect the various curricula proposed for
university-level study. The celebrated ACM 1968 cur-
riculum for undergraduate study, and its descendants
that appeared in later years, divide CS into informa-
tion structures and processes; information processing
systems; and methodologies. A different kind of
three-way division is given in the Algorithmics book,
which argues that a beneficial way to view CS is by the
kinds of complexity it deals with computational com-

plexity; system, or behavioral, complexity; and cogni-
tive complexity.

How should the what-is-CS topic be integrated
into our recommended course? The multitude of
opinions and approaches this topic invokes seems to
call for basing this part of the course on reading
assignments followed by extensive class discussion. It
is interesting to get the students to talk about their
own background, and the way they feel it did or did
not provide a comprehensive treatment of the field.
The bibliographic list for this section contains rele-
vant items for such reading, some written by central
figures in the debate.

Bibliography for “What is CS?”
Brooks, F.P. The computer scientist as toolsmith

II. Communications of the ACM 39, 3 (1996), 61–68.
Curriculum ‘68: Recommendations for academic

programs in computer science. Communications of
the ACM 11, 3 (1968), 151–157.

Dijkstra, E.W. On a cultural gap. The
Mathematical Intelligencer 8, 1 (1986), 48–52.

Denning, P.J. et al. Computing as a discipline.
Communications of the ACM 32, 1 1989, 9–23.

Harel, D. Algorithmics: The Spirit of Computing.
Addison-Wesley, Reading, Mass., 1987 (2nd
ed., 1992).

Hartmanis, J. About the nature of computer
science. Bulletin of EATCS 53, (1994), 170–190.

Knuth, D.E. Computer science and its relation to
mathematics. American Mathematical Monthly 81,
(1974), 323–343.

Knuth, D.E. Algorithmic Thinking and
Mathematical Thinking. American Mathematical
Monthly 92, (1985), 170–181.

Minsky, M.L. Form and content in computer
science. Communications of the ACM 17, 2 (1970),
197–215.

Minsky, M.L. Computer science and the
representation of knowledge. The Computer Age:
A Twenty Year View (Dertouzos, L. and J. Moses,
Eds.) MIT Press, Cambridge, Mass. 1979, 392–421.

A Bird’s-Eye View
As mentioned earlier, we propose that beyond whatever
technical knowledge students have acquired in CS, if
they are planning on becoming CS educators they could
benefit greatly from a general exposition of the disci-
pline. It should be as comprehensive as possible, with
depth and detail being sacrificed for scope and perspec-
tive. This overview cannot be part of the CS educator’s
course proposed here, if only because of its expanse;
other ways of delivering it should be found, such as by
individual reading or as a separate course.

80 September 1998/Vol. 41, No. 9 COMMUNICATIONS OF THE ACM

Many educators have thought long and hard about
how best to organize such an overview, and several
authors have written books along these lines. The
bibliographic list contains some of our favorites.
However, we feel that no single book is wholly satis-
factory for the present purposes. In fact, it is proba-
bly best to divide the desired bird’s-eye view into
two, in line with the divisions we’ve already men-
tioned—algorithmics and systems. The reason is
that both facets, with their methodologies and tech-
niques, are just too different to be described
together.

For the algorithmic portion of the story, we (not
surprisingly) recommend Algorithmics. As for the
engineering/systems part, we are not familiar with a
satisfactory book dedicated exclusively to such a sur-
vey, but good chapters on the subject appear, for
example, in the books of Brookshear, and Aho and
Ullman.

Bibliography for a Bird’s-Eye View
Aho, A., and Ullman, J.D. Foundations of Computer

Science. Computer Science Press, New York, 1992.
Biermann, A.W. Great Ideas in Computer Science.

MIT Press, Cambridge, Mass., 1990.
Brookshear, J.G. Computer Science: An Overview,

4th Ed. Addison-Wesley, Reading, Mass., 1994.
Dewdney, A.K. The New Turing Omnibus. Computer

Science Press, New York, 1993.
Goldshlager, L., and Lister, A. Computer Science:

A Modern Introduction. Prentice-Hall
International, London, 1988.

Harel, D. Algorithmics: The Spirit of Computing.
Addison-Wesley, Reading, Mass., 1987 (2nd ed.,
1992).

Pohl, I., and Shaw, A. The Nature of Computation:
An Introduction to Computer Science. Computer
Science Press, Rockville, Md., 1981.

Curricula
The topics we have discussed so far are usually of
interest to a wide range of people. The field’s edu-
cators, though, should also be interested in the
various approaches to teaching CS, which are
reflected in proposed curricula. A closer look at
how computing manifests itself in the realm of
education reveals three totally different directions,
only one of which deals with computer science
itself: disseminating computer literacy; using
computers in teaching other subjects; and teach-
ing CS. It is extremely important that CS educa-
tors be aware of this partition, taking care not to
confuse the spirit and methods of one direction
with those of the others.

Since this article concentrates on the third of these
directions, we shall not say much about the first two.
Still, it can be beneficial to incorporate into the CS
educator’s course some issues related to educating for
literacy or to the use of computers in teaching. For
example, a student can be asked to suggest ways of
employing computers to help teach a particular topic
in a different discipline.

As to CS curricula, we are interested here in both
the high school level and the college/university under-
graduate level.5 Over the past years, there has been a
steady evolution of undergraduate curricula in CS, the
latest of which is ACM’s Curriculum ‘91. These exten-
sive team efforts reflect the accumulated experience
and wisdom of many people; they embody interesting
ideas regarding the structure and contents of com-
puter science and how to best teach it. Given the fact
that the students in our CS educator’s course might
eventually find themselves participating in curricula
design or modification, it is important to get them to
take an active role in this part of the course. Students
could be asked to study proposed curricula in detail,
comparing them in terms of goals, underlying princi-
ples, and structure. A class discussion could then take
place where students would also report on the extent
to which the recommended curricula match their own
past CS studies.

On the high school level things have been some-
what slow, due in part to the lack of an adequate sep-
aration between CS and general computer literacy in
high school teaching. Nevertheless, there have been
efforts to establish CS curricula for high school,
including one by an ACM team, and a three-year pro-
gram that we have been involved in. These, too,
should be discussed in the course, since some of the
participating students could very well become high
school teachers.

It is noteworthy that many high school teachers
have never studied CS in an orderly fashion at all. As
a result, some have no real feel for the algorithmic
basis of CS, and are able to teach programming only,
and this very often just as the coding of simple algo-
rithms in a simple, fixed language. Consequently,
additional teacher training is often needed. A course
like the one proposed here could be useful for this pur-
pose too, in which case it could be given as part of a
specially tailored in-service training programs for high
school teachers. Such programs have indeed been pro-
posed, and could also be discussed in the course.

COMMUNICATIONS OF THE ACM September 1998/Vol. 41, No. 9 81

5We do not discuss graduate studies here; they are a topic in themselves. One differ-
ence is that teachers of graduate level CS programs typically have the technical back-
ground required to do their work (teaching skills is another matter). In any case,
even some graduate level teachers could probably benefit from acquainting them-
selves with the topics discussed here.

Bibliography for Curricula
Biermann, A.W. Computer science for the many.

Computer 27, 2 (1994), 62–73.
Curriculum ‘68: Recommendations for academic

programs in computer science. Communications of
the ACM 11, 3 (1968), 151–197.

Gal-Ezer J. Computer science teachers’
certification program. Computers and Education 25,
(1995), 163–168.

Gal-Ezer J., Beeri, C., Harel, D., and Yehudai, A.
A high-school program in computer science.
Computer 28, 10 (1995), 73–80.

Merrit, S., et al. ACM Model High School Computer
Science Curriculum. ACM Press, New York, 1994.

Maddux, C.D., Johnson, L. and Harlow, L. The
state of the art in computer education: Issues for
discussion with teachers-in-training. Journal of
Technology and Teacher Education 1, (1993),
219–228.

Poirot, J., et al. Proposed curriculum for programs
leading to teacher certification in computer
science. Communications of the ACM 28 (1985),
275–279.

Rogers, J., et al. Computer science for secondary
schools: Course content. Communications of the
ACM 28 (1985), 270–274.

Tucker, A., et al. Computing curricula 1991: A
summary of the ACM/IEEE-CS joint curriculum
task force report. Communications of the ACM 34,
6 (1991), 69–84.

The Problematics of
Teaching Programming
We now get to one of the most difficult parts of all.
It concerns questions such as when, to whom, how,
and why—indeed, whether—to teach programming.
This is a broad and a multisided topic, that is highly
controversial but also crucial in its long-lasting
influence on students. We do not get too deeply into
the debate itself, however, we do make a humble
attempt to put some order into the issues most
widely discussed in the literature.6

First, we should state clearly that we take pro-
gramming here in a rather broad sense, covering not
only the coding act itself, but also the design of the
algorithms underlying the programs and, to some
extent, considerations of correctness and efficiency. To
some, this interpretation of programming might be
the obvious one to adopt, but experience shows the
point ought to be made more explicitly.

One of the interesting questions that arise when

people start talking about teaching programming
revolves around “to whom.” The issue extends beyond
the CS boundaries: Should everyone have program-
ming skills? Here “everyone” includes college-level
students in other fields (for example, in the natural
and social sciences), and perhaps even non-CS-ori-
ented high school students. Do these people have to
be able to actually program a computer or perhaps
only to be more sophisticated users thereof. Does
knowing how to program bring any significant added
value in other kinds of problem-solving tasks?

In his 1974 paper in American Mathematical
Monthly, Knuth writes: “It has often been said that a
person does not really understand something until he
teaches it to someone else. Actually a person does not
really understand something until he can teach it to a
computer, i.e., express it as an algorithm.”

Fifteen years earlier, in a 1959 paper in the same
periodical, Forsythe wrote: “The automatic computer
really forces the precision of thinking which is alleged
to be a product of any study of mathematics.”

In any event, most people agree that anyone study-
ing CS ought to know how to program. Programming
in the broad sense of the word is the heart of the first
portion of virtually all CS programs on both the col-
lege/university level and the high school level.7 There
are exceptions—sometimes outspoken ones. Dijkstra,
for example, is opposed to teaching actual program-
ming in the first CS course. In his 1989 article, he
says: “Finally, in order to drive home the message that
this introductory programming course is primarily a
course in formal mathematics, we see to it that the
programming language in question has not been
implemented on campus so that students are pro-
tected from the temptation to test their programs.”
Most curricula, however, do not reflect this rather
extreme position.

Now comes the widely debated issue of the mother-
tongue, that is, the first programming language one
learns. Most people feel the first language, and espe-
cially the programming paradigm students first
encounter, has a significant impact on the way they
will attack problems later on. Arguments are con-
stantly made regarding the pros and cons of languages
of all flavors—procedural, declarational, functional,
logical, and object-oriented. The arguments are con-
troversial, and debates on the topic become heated,
giving rise to something of a culture war. The jury,
however, has not yet decided.

The impact of this first language decision can be

82 September 1998/Vol. 41, No. 9 COMMUNICATIONS OF THE ACM

7In our opinion, it is unfortunate that on the high school level most CS programs
contain little more than programming, hence the need for more extensive high school
curricula, such as that of ACM or the one we have been involved in, both mentioned
under Curricula.

6In this section we do not comment on the bibliographic items. In fact, the list
itself is extremely incomplete, given the vast amount of literature on the topic.

softened by familiarizing students with two or more
languages from different paradigms in early stages of
their CS education (even in high schools). There have
even been attempts to design multiparadigmatic lan-
guages, with two or three paradigms all rolled up in
one. (Due to the importance of the programming lan-
guage issue, and the huge amount of material pub-
lished on it, we devote a special bibliographic list to it.)

Bibliography for Programming Language Issues
Abelson, H., and Sussman, G.J. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, Mass., 1985.

Baranauskas, M.C.C. Observational studies about
novices’ interaction in a Prolog environment
based on tools. In Proceedings of the 7th Interna
tional PEG Conference, 1993, 537–549.

Bayman, P., and Mayer, R.E. Using conceptual
models to teach BASIC computer programming.

Journal of Educational Psychology 80, 3 (1988), 291–298.
Cooper, D. Oh! Pascal! W.W. Norton, New York

and London, (3rd ed.), 1993.
Fleury, A.E. Students beliefs about Pascal

programming. Journal of Educational Computing
Research 9, 3 (1993), 355–271.

Gal-Ezer, J. A pre-programming introduction to
algorithmics. Mathematics and Computer Education
30, 1 (1996), 61–69.

Joy, M., and Matthews, S. Some experience in
teaching functional programming. International
Journal of Mathematical Education in Science and
Technology 25, 2 (1994), 165–172.

Lee, A., and Pennington, N. The effects of
paradigm on cognitive activities in design.
International Journal of Human-Computer Studies 40
(1994), 577–601.

Savitch, W.J. Pascal, An Introduction to the Art and
Science of Programming. (3rd ed.) Benjamin/
Cummings, New York, 1991.

Wexelblat, R.I. The consequences of one’s first
programming language. Software—Practice and
Experience 14 (1981), 733–740.

Now, there have always been specific concepts
within programming that are hard to teach, especially
in precollege levels. They include the idea that an
algorithm, or program, is fixed yet is supposed to deal
with many different inputs of varying sizes; the very
notion of an assignment statement; control structures,
such as conditionals and repetitions, and so on. In par-
ticular, recursion is considered to be one of the univer-
sally most difficult concepts to teach. Notions that
transcend the programming act itself, and are relevant
to algorithms in general, can be difficult to teach too,

such as upper and lower bounds on the computational
complexity (such as running time) of a program and,
by extension, on the inherent complexity of the algo-
rithmic problem at hand.

Besides the language issue and the challenge of get-
ting difficult notions across, the very insistence that
programming is more than mere coding has its price,
too. Students must understand they are not in this
business only to get their programs to run, to para-
phrase the title of a well-known paper. They must be
taught and coached in the algorithmic way of think-
ing, and must come to grips with the difficulties and
pitfalls it entails. This is a broad and sweeping chal-
lenge for an educator, addressed by many authors, and
we recommend it be treated in detail in our course.

Bibliography for the Problematics
of Teaching Programming
Du Boulay, B. Some difficulties of learning to
program. Journal of Educational Computing Research
21, 1 (1986), 57–73.

Dijkstra, E.W. On the cruelty of really teaching
computing science. Communications of the ACM 32,
12 (1989), 1398–1414.

Hancock, C. Context and creation in the learning
of computer programming. For the Learning of
Mathematics 8, 1 (1988), 18–24.

Headrick, R.W. Structured programming
complexity revisited. Computers and Education 20,
4 (1993), 315–316.

Mayer, R.E. A psychology of learning BASIC.
Communications of the ACM 22, 11 (1979),
589–593.

Mayer, R.E., Dych, J.L., and Wilberg, W. Learning
to program and learning to think. Communications
of the ACM 27, 9 (1986), 605–610.

Murname, J. To iterate or to recurse? Computers and
Education 19, 4 (1992), 387–394.

Roberts, E.S. Thinking Recursively. John Wiley,
New York, 1986.

Saj-Nicole, A.J., and Soloway, E. But my program
runs! Journal of Educational Computing Research 2, 1
(1986), 95–125.

Wirth, N. Program development by stepwise
refinement. Communications of the ACM 14, 4
(1971), 221–227.

Tools and Methods for Teaching
In recent years, educational activities are becoming
increasingly dependent on computer-based teaching
aids. Surprisingly, CS education lags behind in this
kind of computerization. While students on all levels
will obviously use a computer to practice program-
ming, there is not enough good courseware to help

COMMUNICATIONS OF THE ACM September 1998/Vol. 41, No. 9 83

teach general CS topics (including programming).
Nevertheless, there have been several proposals.

For teaching Turing machines and other kinds of
automata, there are animation-based software packages,
such as Turing’s World by Barwise and Etchemendy.
Actually, a good way of exploiting computers in teach-
ing all kinds of CS topics is to use visualization and
graphic animation in their various guises.

Other methods proposed to help teaching comput-
ing include programming based on case studies, and
induction-based algorithmic design that incorporates
correctness considerations. See the articles by Linn
and Calancy, and by Manber, respectively. One of the
more interesting proposals for teaching precollege
programming is Pattis’ Karel the Robot.

As far as the CS educator’s course is concerned, this
is the most open-ended of our topics. First, as far as we
know, it has not yet been systematically looked into;
CS educators are not that concerned these days with
using tools. When they are, it is mainly in exploiting
the Internet for distance teaching, for distributing
homework assignments, and so on. Second, it is far
from clear how this topic should be incorporated into
our course. Instructors no doubt have their own
favorite tools and their own methods and techniques—
some of which are no doubt unpublished—and there is
no reason why they should not discuss them in the
course as they see fit. Students of the course might use
these in their own teaching activities later on in their
careers, and might even find themselves involved in
refining them or developing new ones themselves.

Bibliography for Tools and Methods for
Teaching
Barwise, J., and Etchemendy, J. Turing’s World.

CSLI Publications, Stanford, CA, 1993.
Brown, M.H. Zeus: A system for algorithm

animation and multi-view editing. In Proceedings
of Visual Languages ‘91, (Oct. 1991), 4–9.

Halewood, K., and Woodward, M.R. A uniform
graphical view of the program construction
process: GRIPSE. International Journal of
Man-Machine Studies 38 (1993), 805–837.

Jackson, D.F., et al. The design of software tools
for meaningful learning by experience. Journal of
Educational Computing Research 9 (1993), 413–443.

Linn, M.C., and Calancy, M.J. The case for case
studies of programming problems. Communica
tions of the ACM 35, 3 (1992), 121–132.

Manber, U. Using induction to design algorithms.
Communications of the ACM 31, 11 (1988), 1300–1313.

Pattis, R.E. Karel the Robot: A Gentle Introduction to
the Art of Programming. Wiley, New York, 1981,
(2nd ed., 1995).

Conclusion
In the more operational part of this article we have
made suggestions about what to include in a course
for CS educators (even stating that some of this ought
to be of interest outside the CS community). How-
ever, we have not been sufficiently explicit about how
such a course should be delivered, how the hours
ought to be divided, and so forth. This is deliberate,
as we do not feel there is enough accumulated expe-
rience in these matters to make clear-cut and strin-
gent recommendations, and in any case we feel that
instructors should shape the course as they see fit.

We do have some experience in implementing the
ideas discussed here. Gal-Ezer has given such courses at
Tel-Aviv University and The Open University, both in
Israel. The course uses a specially prepared study guide,
and a reader containing around 30 papers. We found it
very useful to have students prepare lengthy term
papers, and we are also planning to have a number of
invited lecturers, in the hope that both what they say
and how they say it will be of value to the students.

One of the main lessons we learned from teaching
the material was that students must have an appro-
priate CS background. We cannot stress this state-
ment enough. For example, one student in class was
from electrical engineering, another’s sole connection
to computing was via her use of computers in general
education, and a third’s CS knowledge was 25 years
old. These students simply did not fit in.

In summary, although our recommendations are
somewhat incomplete, we hope our work will help in
initiating such courses and in deciding on their struc-
ture and contents.

Judith Gal-Ezer (galezer@cs.openu.ac.il) is Head of the
Department of Mathematics and Computer Science at The Open
University of Israel, Tel-Aviv. Part of this work was done during a
sabbatical stay at the Weizmann Institute of Science.
David Harel (harel@wisdom.weizmann.ac.il) is Dean of the
Faculty of Mathematical Science at the Weizmann Institute of Sci-
ence, Rehovot, Israel. Part of this work was done during a visit to
Lucent Technologies, Bell Labs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 1998 ACM 0002-0782/98/0900 $5.00

c

84 September 1998/Vol. 41, No. 9 COMMUNICATIONS OF THE ACM

