
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
Po
P
*

Ar
t ifact *

A
EC

P
POptimistic Concurrency with OPTIK

Rachid Guerraoui
EPFL

rachid.guerraoui@epfl.ch

Vasileios Trigonakis ∗

EPFL
vasileios.trigonakis@epfl.ch

Abstract
We introduce OPTIK, a new practical design pattern for design-
ing and implementing fast and scalable concurrent data structures.
OPTIK relies on the commonly-used technique of version numbers
for detecting conflicting concurrent operations. We show how to
implement the OPTIK pattern using the novel concept of OPTIK
locks. These locks enable the use of version numbers for imple-
menting very efficient optimistic concurrent data structures. Exist-
ing state-of-the-art lock-based data structures acquire the lock and
then check for conflicts. In contrast, with OPTIK locks, we merge
the lock acquisition with the detection of conflicting concurrency in
a single atomic step, similarly to lock-free algorithms. We illustrate
the power of our OPTIK pattern and its implementation by intro-
ducing four new algorithms and by optimizing four state-of-the-art
algorithms for linked lists, skip lists, hash tables, and queues. Our
results show that concurrent data structures built using OPTIK are
more scalable than the state of the art.

1. Introduction
Building concurrent data structures (CDSs) in a pessimistic manner
is easy, but typically does not lead to good performance. For exam-
ple, one can design a linked list protected by a global lock in a
few minutes, but inevitably, this list will be non-scalable. Accord-
ingly, optimistic concurrency is deployed in every state-of-the-art
data structure (e.g., lists [19, 29], hash tables [8, 37], trees [4, 41],
queues [39, 40]). With optimistic concurrency, operations perform
some non-synchronized work, before employing synchronization
(i) for validating this optimistic work, and (ii) for possibly modi-
fying the data structure. Performing non-synchronized work allows
concurrent threads to execute truly in parallel.

Nevertheless, optimistic concurrency additionally introduces
the need for validating the non-synchronized parts of the operation
in order to detect conflicting concurrent operations. Validating this
optimistic work is far from being trivial. Every new scalable CDS
algorithm introduces a new neat technique for efficiently handling
validation. Concrete examples are the linked list by Tim Harris [19]
that marks the least significant bit of a pointer to indicate deletions,
as well as the binary search tree by Natarajan et al. [41] that marks
edges instead of nodes to minimize the number of stores. These
techniques are great, but are very specific to the corresponding data
structure and are thus hardly generalizable to other structures.

∗ Author names appear in alphabetical order.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright 2016 held by Owner/Author. Publication Rights Licensed to ACM.

PPoPP ’16 March 12-16, 2016, Barcelona, Spain
Copyright c© 2016 ACM 978-1-4503-4092-2/16/03. . . $15.00
DOI: http://dx.doi.org/10.1145/2851141.2851146

optimistic
work

v version← lock() if (v == version)

unlock()

false

critical
section

true

version++unlock()

v-a

v-biv

vivii

iiiiii

Figure 1. The OPTIK pattern (high-level view).

Ideally, general-purpose design patterns could assist developers
in creating efficient CDSs. Design patterns are commonplace in
software engineering as they allow for easy and efficient solutions
to recurring problems. In concurrent programming, commonly-
used software constructs such as locks, semaphores, monitors, and
thread pools can be viewed as design patterns. However, these
patterns are very low level. Higher-level patterns are required for
systematically designing and implementing efficient CDSs.

Of course, there are techniques for simplifying the design of op-
timistic CDSs that could be viewed as high-level design patterns.
The read-copy update (RCU) [35] technique stipulates wait-free
reads and safe memory reclamation. RCU is intended for read-
dominated workloads and might result in low scalability in the
presence of updates. Software transactional memory (STM) [46]
can be also used to design CDSs. Nevertheless, due to the instru-
mentation and the metadata overhead of STMs, the resulting CDSs
are typically slower than their lock-free or lock-based counterparts.
Hardware transactional memory (HTM) [26] removes the instru-
mentation overhead of STMs by keeping track of the transactional
metadata in hardware. Although HTM already exists in commer-
cial processors [30], it is not yet ubiquitous. Additionally, naively
implementing CDSs with HTM results in non-scalable implemen-
tations (e.g., accessing the whole list within a transaction) [50].

In this paper, we introduce OPTIK,1 a new pattern for design-
ing and implementing fast and scalable concurrent data structures.
OPTIK relies on version numbers for detecting concurrency. A ver-
sion number is coupled with a lock that protects a set of data (e.g.,
one list node). The version number has the same granularity as the
lock, thus we can devise both coarse- and fine-grained algorithms
with OPTIK. An optimistic operation, such as an insertion in a hash-
table bucket, uses the version number in the following steps (Fig-
ure 1): (i) it locally stores the current value of the version in or-
der to later use it for validation, (ii) it performs some optimistic,
non-synchronized work, (iii) it grabs the corresponding lock, (iv) it
validates that the version number has not changed, (v-a) if valida-
tion fails, it releases the lock and restarts the operation, otherwise
(v-b) it performs the critical-section work, and then (vi) it incre-
ments the version number to indicate to other threads that the pro-
tected data has been modified, and finally, (vii) it releases the lock.

1 The name OPTIK stands for “optimistic concurrency with ticket locks,” as
our first implementation of OPTIK locks builds on top of ticket locks.

mailto:rachid.guerraoui@epfl.ch
mailto:vasileios.trigonakis@epfl.ch

optimistic
work

v version← optik_trylock_version(v)

false

critical
section

true

unlock()

Figure 2. The OPTIK pattern implemented with OPTIK locks.

Intuitively, the validation in step (v) can fail because the ver-
sion number has been incremented between steps (i) and (iii). This
alteration indicates that a concurrent thread completed a modifi-
cation on the protected data, rendering the optimistically accessed
data inconsistent. Naturally, the reader might wonder about (a) the
genuineness of OPTIK, and (b) why it has not been recognized in
the past as a pattern for designing CDSs.

Version numbers have been extensively used in databases [32],
STMs [6, 9], and distributed systems [1, 12]. However, as we more
thoroughly discuss in the related-work section (§6), we are the
first to recognize that the underlying idea can be expressed in a
general way that offers a fast technique for detecting concurrency
in CDSs. We argue that the main reason why the OPTIK pattern has
not appeared in the past is the lack of an efficient implementation.

Consider the steps taken in Figure 1. To detect concurrency with
versions, we must include the “overhead steps” (i), (iv), and (vi). To
make things even worse, if validation in step (iv) fails, the thread
has acquired the lock, possibly after contending for it, just to fail the
validation and restart. To the best of our knowledge, most existing
state-of-the-art lock-based algorithms, such as the linked-list by
Heller et al. [22] and the skip list by Herlihy et al. [29], include
exclusively the overhead for step (iv), namely for validating that the
optimistic results are still consistent.2 Consequently, implementing
the OPTIK pattern as described above, would not only include
the same overheads as existing algorithms, but also the ones for
keeping track of and incrementing the version numbers.

We solve the aforementioned limitations of the OPTIK pat-
tern by introducing the OPTIK-lock abstraction that merges lock-
ing with validation. OPTIK locks rely on the simple observa-
tion that existing lock algorithms, such as ticket locks, employ
version numbers in their implementation. Accordingly, we de-
sign the OPTIK-lock abstraction that offers an extended inter-
face to traditional locks. In particular, OPTIK locks offer the
optik trylock version(lock, targetv) function that ac-
quires the lock iff (a) the lock is free, and (b) the current version
in the lock is the same as the targetv version. We concretely im-
plement the OPTIK-lock abstraction on top of ticket locks.3 As the
unlock function of ticket locks simply increments the version, we
can also merge unlocking with incrementing the version number.

Accordingly, as we show in this paper, we can efficiently imple-
ment the OPTIK pattern using OPTIK locks (Figure 2). The result-
ing implementation guarantees that if the lock is acquired, then the
critical section will be performed. Therefore, we are able to reduce
contention behind the lock and to avoid the wasted work of wait-
ing for the lock only to fail the validation. Locking and validation
are performed with a single compare-and-swap. In a sense, OPTIK
locks bring lock-based algorithms closer to their lock-free counter-
parts, where validation and the actual modifications are performed
in single steps with atomic operations.

We illustrate the effectiveness of OPTIK by (a) designing new
algorithms and by (b) optimizing existing state-of-the-art ones for
linked lists, hash tables, skip lists, and queues. In particular, we
design two new linked list algorithms, one based on global and

2 Each algorithm uses custom techniques for implementing this validation.
3 As we show in §3, we can implement OPTIK locks on top of other lock
algorithms as well.

one on fine-grained locks, and we introduce the concept of node
caching for speeding up list traversals. Based on these lists, we de-
sign two corresponding hash tables. Additionally, we design a new
concurrent array map and use it in a hash table, and we employ
OPTIK locks in optimizing existing hash tables. Furthermore, we
use OPTIK locks to simplify validation in the optimistic skip-list
algorithm [29] and we design a novel, simple skip-list algorithm
based on the OPTIK pattern. Finally, we design three variants of the
classic Michael-Scott queues [39] and we also introduce the con-
cept of victim queues for reducing enqueue contention. Our OPTIK-
lock library, together with the data structures we design and opti-
mize with OPTIK are available at http://go.epfl.ch/optik.

The main contributions of this paper are as follows:
• We identify the OPTIK design pattern that can be used to easily

design and optimize concurrent data structures.
• We introduce OPTIK locks that offer a concrete and efficient

implementation of the OPTIK pattern.
• We design four new highly-efficient data-structure algorithms

and optimize four existing state-of-the-art algorithms.

We focus in this paper on using OPTIK in CDSs. Nevertheless,
we could imagine using OPTIK, instead of the classic lock interface,
wherever a lock can be used. The only requirement is that the crit-
ical section must include a read-only prefix that can be optimisti-
cally performed before acquiring and validating the OPTIK lock. Of
course, we do not claim that OPTIK is a silver bullet for all concur-
rency problems, but rather that it is an efficient design pattern for
various use cases. For example, OPTIK locks are not very suitable
for protecting large chunks of data that can be independently up-
dated (e.g., the next pointers of a node of a large skip list). In these
cases, OPTIK can lead to false validation failures due to updates on
unrelated data (e.g., §5.3). Additionally, an OPTIK lock comprises
a single memory location, thus, as every lock algorithm, it can be-
come a scalability bottleneck if heavily stressed (e.g., §5.4).

The rest of the paper is organized as follows. In §2, we recall
some background notions on CDSs. We describe the OPTIK pat-
tern/lock and use them in two concrete examples in §3 and §4, re-
spectively. We then illustrate how to use OPTIK in designing and
optimizing various CDSs in §5. We discuss related work in §6, and
we conclude the paper in §7.

2. Concurrent Data Structures
Data structures allow for efficient storage and retrieval of data
elements. These elements are typically identified by unique keys.
In particular, search data structures (e.g., lists, hash tables) include
three main operations: (i) search, for searching for an element with
a given key, (ii) insert, for inserting a new element in the structure if
the key is not already there, and (iii) delete, for deleting an existing
element. Other data structures, such as queues, offer a different
interface. Queues are FIFO structures with two main operations:
(i) enqueue, to place an element at the head of the queue, and
(ii) dequeue, to remove the current tail element (if any).

Concurrent data structures (CDSs) can be simultaneously ac-
cessed by multiple threads through their interface. The consistency
of CDSs is typically measured with respect to linearizability [28].
Linearizable CDS algorithms are commonly classified based on the
progress guarantees they offer. It is common to distinguish between
blocking [27], lock-free, and wait-free [25] algorithms. Blocking al-
gorithms typically rely on locking and might block, waiting for a
lock to be released. Lock-free algorithms are non-blocking in the
sense that (i) they do not employ locks, and (ii) they ensure that at
least one process in a system can make progress. Finally, wait-free
algorithms are also non-blocking and guarantee that every process
in a system eventually makes progress. In practice, wait-free algo-

http://go.epfl.ch/optik

version
number

lock
O
P
T
IK

protects the critical section
and the version number

indicates the number of
completed critical sections

Figure 3. The basic building block of the OPTIK pattern.

rithms are slower than their lock-based and lock-free counterparts
and are thus not very commonly used.

Most state-of-the-art CDS algorithms are optimistic, regardless
if they are lock-based or lock-free. They are optimistic in the
sense that they first optimistically perform some work, without
synchronizing with other threads, and then synchronize to validate
the consistency of the optimistic work and to modify the state of the
structure. Lock-based algorithms do so using locks and validation
within the critical section, while lock-free algorithms use atomic
operations, such as compare-and-swap, to simultaneously validate
and update the target nodes of the data structure.

3. OPTIK

In this section, we detail the OPTIK pattern, we present the OPTIK-
lock abstraction, and we describe two concrete implementations
of the OPTIK-lock abstraction. We also then discuss practical con-
siderations regarding implementing and using OPTIK, such as lock
nesting, memory barriers, and memory reclamation.

3.1 The OPTIK Pattern
As we point out in §1, the OPTIK pattern relies on version numbers
to detect potentially conflicting concurrency (see Figure 1). As Fig-
ure 3 shows, this version number is coupled with a lock and shares
the same granularity as that lock (i.e., it protects the same data).
The version number is incremented upon every successful critical
section that modifies the shared protected state. Thus, intuitively,
we can detect whether there were concurrent modifications on the
protected state if we observe a version change.

Accordingly, with OPTIK we can implement some sort of a
transaction (we discuss this resemblance with transactions below),
where we read the version number before starting the optimistic
part of the transaction. Then, whenever we want to modify the
protected data, we acquire the lock and check whether the version
number is still the same. If that is the case, then no other thread
could have completed a concurrent operation. Otherwise, we know
that at least one thread has concurrently committed a modification.

Because the version number has the same granularity as the cor-
responding lock, we might have false conflicts. For example, in
a linked list protected by a global lock (see §5.1), every commit-
ted modification conflicts with any concurrent one, although they
might operate on completely unrelated parts of the list. In practice,
in most cases we can control the granularity of the lock, hence the
granularity of the version number.4

The OPTIK pattern has three main strengths. First, it offers a
concrete way of “thinking” about optimistic concurrency, similar
to STMs. With an STM, the designer makes use of transactions,
but then it is up to the STM runtime to optimistically execute and
coordinate these transactions. In contrast, with OPTIK, the designer
must explicitly delimit the optimistic and the synchronized parts of
an operation. Still, she does not need to rely on ad-hoc techniques,
such as marking pointers, for validating the optimistic results. Sec-
ond, the OPTIK pattern has a concrete, fast implementation based
on OPTIK locks. If the pattern is appropriately employed, the result-
ing CDS will be efficient and scalable (as we show in §5). Third,
in our experience (see §4 and §5), OPTIK-based CDSs are simpler

4 Skip lists are somewhat of an exception to this rule (see §5.3).

and easier to prove correct than the state of the art. In many OPTIK-
based CDSs, the linearization point of an insertion or deletion is the
actual write that makes a node physically linked or unlinked.

OPTIK vs. STM Transactions. The OPTIK pattern can be viewed
as a transaction. OPTIK shares some common characteristics with
traditional STM transactions, especially those that defer synchro-
nization to the commit phase (e.g., [6, 9, 14]). First, they are both
explicitly delimited (i.e., we know where the transaction begins and
where it ends). Second, they both include an optimistic phase. Fi-
nally, the optimistic phase is followed by a validation/commit phase
where conflicting concurrency is typically detected. If there are
conflicts, then both OPTIK and STM transactions are restarted, oth-
erwise they commit their modifications. For instance, OPTIK trans-
actions are very similar to the ones of NOrec STM [6]. NOrec em-
ploys a global lock that is further used as a version number for
validation, in a way similar to OPTIK.

However, in contrast with STMs, OPTIK does not offer iso-
lation or atomicity guarantees. STM transactions are typically
opaque [18] (i.e., they are serializable and they disallow even non-
committed transactions from accessing inconsistent state). OPTIK
allows transactions to access the intermediate results of other ongo-
ing transactions. Additionally, STM transactions typically provide
all-or-nothing semantics (i.e., atomicity). With OPTIK, a transac-
tion can partially complete and then restart. The atomicity control
is fully up to the programmer. Precisely because of this lack of
guarantees, OPTIK can operate with zero instrumentation overhead.

3.2 The OPTIK-Lock Abstraction
The OPTIK-lock abstraction merges locking with version-number
validation in a single atomic step.5 By doing so, we can implement
the OPTIK pattern without the extravagant overhead of locking and
then failing the validation (compare Figures 1 and 2). OPTIK locks
extend the traditional lock interface with various functions. The
most important ones are listed and explained below:
• optik trylock version(lock, targetv) [non-blocking]:

acquires the lock iff the lock is free and the version of the
lock is the same as in targetv. Returns a boolean indicating
whether the lock was acquired.
• optik lock version(lock, targetv) [blocking]:

acquires the lock and returns a boolean that shows whether the
version that was acquired is the same as in targetv.
• optik unlock(lock) [non-blocking]:

increments the lock’s version number and releases the lock.
• optik revert(lock) [non-blocking]:

reverts the version of the lock to the one before acquiring the
lock. It can be used to release the lock when no modifications
were performed in the critical section.
• optik get version(lock) [non-blocking]:

returns the current version of the lock.
• optik get version wait(lock) [blocking]:

waits until the lock is free and returns its current free version.
• optik is same version(v0, v1) [non-blocking]:

returns a boolean on whether versions v0 and v1 are the same.
• optik is locked(v) [non-blocking]:

returns a boolean on whether version v is locked.
We provide two implementations of the OPTIK-lock abstraction,

one on top of ticket and one on top of versioned locks. For brevity,
we detail the versioned-lock-based implementation (as it is sim-
pler than the one on top of ticket locks) and discuss the additional
functionality that OPTIK locks on top of ticket locks offer. In princi-
ple, the OPTIK-lock abstraction can be implemented on top of more

5 Of course, it is up to the corresponding implementation of the abstraction
to guarantee this single-step locking and validation.

1 typedeftypedeftypedef volatilevolatilevolatile uint64_tuint64_tuint64_t optik_toptik_toptik_t ;
2 ###definedefinedefine OPTIK INIT 0
3 ###definedefinedefine OPTIK LOCKED 0x1LL //odd values -> locked

5 intintint o p t i k t r y l o c k v e r s i o n (optik_toptik_toptik_t∗ l , optik_toptik_toptik_t t a r g e t v) {
6 ififif (o p t i k i s l o c k e d (t a r g e t v) | | ∗ l != t a r g e t v)
7 returnreturnreturn f a l s e ;
8 returnreturnreturn CAS(l , t a r g e t v , t a r g e t v + 1) == t a r g e t v ;
9 }

11 intintint o p t i k l o c k v e r s i o n (optik_toptik_toptik_t∗ lock , optik_toptik_toptik_t t a r g e t v) {
12 optik_toptik_toptik_t o l c u r ;
13 dododo {
14 dododo {
15 o l c u r = ∗ l o c k ;
16 } whilewhilewhile (o p t i k i s l o c k e d (o l c u r)) ;
17 } whilewhilewhile (CAS(lock , o l c u r , o l c u r + 1) != o l c u r) ;
18 returnreturnreturn o l c u r == t a r g e t v ;
19 }

21 voidvoidvoid o p t i k u n l o c k (optik_toptik_toptik_t∗ l o c k) {
22 ∗ l o c k ++; // mem-release
23 }

25 voidvoidvoid o p t i k r e v e r t (optik_toptik_toptik_t∗ l o c k) {
26 ∗ lock−−; // mem-release
27 }

29 intintint o p t i k i s l o c k e d (optik_toptik_toptik_t v) {
30 returnreturnreturn (v & OPTIK LOCKED) ;
31 }

33 optik_toptik_toptik_t o p t i k g e t v e r s i o n (optik_toptik_toptik_t∗ l o c k) {
34 returnreturnreturn ∗ l o c k ; // mem-acquire
35 }

37 optik_toptik_toptik_t o p t i k g e t v e r s i o n w a i t (optik_toptik_toptik_t∗ l o c k) {
38 dododo {
39 optik_toptik_toptik_t o l v = ∗ l o c k ; // mem-acquire
40 ififif (! o p t i k i s l o c k e d (o l v))
41 returnreturnreturn o l v ;
42 } whilewhilewhile (1) ;
43 }

45 intintint o p t i k i s s a m e v e r s i o n (optik_toptik_toptik_t v1 , optik_toptik_toptik_t v2) {
46 returnreturnreturn v1 == v2 ;
47 }

Figure 4. Code for OPTIK locks on top of versioned locks.

lock algorithms. Nevertheless, optik trylock version is in the
heart of the OPTIK pattern, thus we argue that every OPTIK-lock im-
plementation must provide atomic (i.e., single compare-and-swap)
locking and validation. Such an implementation requires base lock
algorithms which incorporate version numbers.

OPTIK Locks Using Versioned Locks
An OPTIK lock (optik t) is just an 8-byte unsigned counter
(uint64 t in C). An odd value for the counter indicates that the
lock is locked, while an even value means unlocked. The acquire
function tries, until successful, to compare-and-swap (CAS) the
current (even) value v with v + 1. The release function simply
increments the counter value. Figure 4 includes the concrete imple-
mentation of the OPTIK abstraction on top of versioned locks. We
briefly discuss this implementation.

First, optik trylock version, the most important OPTIK
function, returns false (lines 6-7) if the lock is already locked or
if the current lock version is not the same as the target version
(targetv). The former check is necessary for correctness, oth-
erwise the operation might try to erroneously CAS an odd value
to an even one. The latter check is an optimization for avoiding
unnecessary CAS invocations.

Similarly, optik lock version spins while the lock is locked
and the tries to acquire the lock with a CAS. The unlock and revert

 0

 2

 4

 6

 8

 1 10 20 30 40 50 60

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

 0

 12

 24

 36

 48

 1 10 20 30 40 50 60

#
 C

A
S

 p
e

r
v
a

lid
a

ti
o

n

Threads

ttas optik-ticket optik-versioned

Figure 5. Locking and validation with and without OPTIK locks.

functions increment and decrement the lock value, respectively,
to indicate that the lock is now free and that a modification was
(not) performed. The optik is locked function simply checks
whether the given version is an odd number. The get version
and get version wait functions return the current version of the
lock. The latter spins while the lock is locked and only then returns
the version number. Finally, optik is same version compares
whether two version numbers are equivalent.

OPTIK Locks Using Ticket Locks
Ticket locks have a number of very unique properties. First, al-
though they typically occupy just 8-bytes:
structstructstruct t i c k e t t { uint32_tuint32_tuint32_t t i c k e t , c u r r e n t ; } ;

they are fair. To acquire the lock, the thread grabs a ticket t with an
atomic fetch-and-increment and waits until t==lock->current.
To unlock, the owner simply increments the lock’s current field.

Additionally, ticket locks show the amount of queuing be-
hind the lock. For instance, if lock->ticket - lock->current
equals to three, then the lock is occupied and two more threads are
queued, waiting to acquire the lock. We can use this information
to take decisions depending on the levels of contention (see §5.4
for an example). Finally, each thread is able to check how far from
acquiring the lock it is in the queue. We can use this information to
implement efficient backoff schemes. Note that we are not the first
to exploit these properties of ticket locks [7, 31, 36].

Based on these properties of ticket locks, OPTIK locks offer
the optik num queued and the optik lock[version] backoff
extensions. The former returns the number of threads waiting for
the lock, while the latter implements waiting with backoff that is
proportional to the distance of the thread from acquiring the lock.

A shortcoming of OPTIK on top of ticket locks compared to
the implementation over versioned locks is the 32-bits long version
number of the former. If a thread stores the version number and then
“sleeps” for 232 lock acquisitions, then the version number could
overflow, resulting in a potentially incorrect validation.6 In contrast,
OPTIK locks on top of versioned locks require 263 acquisitions
while the thread is sleeping (two increments per acquisition).

The OPTIK Pattern with and without OPTIK Locks
We illustrate the necessity of OPTIK locks with an experiment. We
compare the throughput of a single OPTIK lock with the through-
put of implementing version validation without OPTIK locks. As
we explain earlier, to validate the version number without OPTIK
locks the thread must always acquire the lock. We implement this
behavior using 8 bytes; 4 bytes for a test-and-test-and-set (TTAS)
lock and 4 bytes for the version number. The version number is
validated and incremented while holding the lock.

Figure 5 depicts the validated lock-acquisition throughput with
and without OPTIK locks, as well as the average number of CAS op-
erations that are executed per successful validation on an Intel Xeon

6 If the lock delivers 100M acquires/s, which is almost impossible on mod-
ern hardware [7], the thread must sleep for∼40s for the overflow to happen.

server (see §5 for platform details and our experimental settings).
The two OPTIK-lock implementations behave identically and de-
liver significantly higher throughput than validating with normal
locking. OPTIK locks are more than 10 times faster than TTAS on
average, explained by the number of CAS invocations per valida-
tion that grows significantly with TTAS due to lock contention.7

As we explain earlier, without OPTIK locks the threads might wait
behind the lock to later fail the validation.

3.3 Practical Considerations
OPTIK with Lock Nesting. The OPTIK pattern offers the “read
then lock-validate version” functionality for a single OPTIK lock.
Lock nesting (i.e., acquiring and holding more than one lock at a
time) requires acquiring the locks one after the other. Therefore,
although the validation of an earlier lock succeeds, the validation
of a later one might fail. For example, it might happen that:

optik trylock version(l1, v1) → true;
optik trylock version(l2, v2) → false.

Depending on the semantics of the algorithm, failing the second
optik trylock version can have different outcomes. For exam-
ple, on the delete operation of a linked list (see §4.2 for details),
failing the second trylock results in restarting the whole operation
after reverting the first lock. On our novel OPTIK-based skip-list
algorithm (see §5.3), we perform incremental insertions: Once the
OPTIK lock for a skip-list level is acquired, the new node is linked
to that level. If a subsequent trylock fails, the operation is restarted,
but the locks for the already inserted levels are not reacquired.

OPTIK and Memory Fences. As we show in Figure 4, imple-
menting OPTIK locks requires certain memory ordering guarantees
when loading and storing on the shared word of the lock. In short,
loading the version number (e.g., in optik get version) requires
acquire semantics: No other memory access of the same thread can
be reordered before this load. Similarly, storing on the memory of
the lock (e.g., in optik revert) requires release semantics: No
other memory access of the same thread can be reordered after this
store. Notice that on x86 architectures the implementation of these
memory-ordering semantics does not require any memory fences.

OPTIK and Memory Reclamation. OPTIK decouples concur-
rency control from memory reclamation. Accordingly, OPTIK can
be used with practically any memory-reclamation scheme, such
as hazard pointers [38], RCU [35], quiescent states [19, 20]. Our
CSDS implementations with OPTIK use ssmem,8 a simple memory
allocator with quiescent-based memory reclamation.

4. Concrete OPTIK Examples
We illustrate in detail how to use the OPTIK pattern on two ex-
amples: (i) a map structure (abstract data type), and (ii) a novel
concurrent linked-list algorithm.

4.1 OPTIK-based Array Map
A map contains key-value pairs and exports the three main oper-
ations of search data structures, namely search, insert, and delete
(see §2). We implement the map as a fixed-sized array, hence, inser-
tions that do not find an empty spot return false (we do not employ
array resizing for simplicity). In §5.2, we use our map design in a
concurrent hash table.

We first briefly describe a lock-based array map that protects
every operation with a global lock and then show how to optimize
this array map using the OPTIK pattern.

7 If we use a test-and-set lock instead of a TTAS, the number of CAS per
validation “explodes.”
8 ssmem is available at https://github.com/LPD-EPFL/ssmem.

Lock-based Map. The design of a pessimistic, lock-based array
map is straightforward: All three operations grab the lock and then
traverse the array. If search or delete operations find the target key
while traversing, they complete the operation (i.e., read the value of
the key-value pair and, for deletions only, delete the key), unlock
the lock, and return. If insertions find the key while traversing, they
release the lock and return false. If they do not, they insert the new
key-value pair in a free spot (if any), release the lock, and return
true. If no spot is empty, insertions return false.

OPTIK-based Map. We use the OPTIK pattern/lock to introduce
optimism in the pessimistic lock-based map. Intuitively, search
operations, as well as updates that return false, do not modify
the data structure. Therefore, ideally, they must complete without
locking. Of course, the actual insertions or deletions in the map
have to synchronize for correctness.

The OPTIK pattern splits an operation into three main phases:
(i) optimistic, non-synchronized (read-only) work, (ii) validation
and locking, and (iii) pessimistic, synchronized (write-mostly)
work. We transform the map operations to follow the three phases.
Figure 6 contains the code for the concurrent OPTIK-based array
map. In what follows, we describe the code step by step.

Delete. The delete operation (Figure 6(a)) follows the three
phases of OPTIK. It first stores the current OPTIK version number
(line 9) and traverses the array without synchronization (lines 10-
19), looking for the target key (line 11). If the key is not found in the
array, it just returns NULL without ever locking (line 20). If the key
is found in line 11, then the operation tries to acquire the lock using
optik trylock version with the version that was earlier stored.
If the validation is successful, it deletes the key, releases the lock,
and returns the value (lines 14-17). If optik trylock version
fails, the operation is restarted (lines 12-13).

Insert. Insertions (Figure 6(b)) follow very similar logic with
deletions. If the key is found while traversing the array, the opera-
tion returns false without ever acquiring the lock. If not, it tries to
acquire the lock with optik trylock version and, if successful,
it performs the insertion (if there is a free array spot).

Search. We want the search operation to be lock-free, otherwise,
the total throughput of the map will be dictated by the maximum
lock throughput. Nevertheless, we must guarantee the atomicity of
reading key-value pairs. In other words, we have to ensure that

1 typedeftypedeftypedef structstructstruct { typedeftypedeftypedef structstructstruct {
2 key_tkey_tkey_t key ; key_val_tkey_val_tkey_val_t∗ a r r a y ;
3 val_tval_tval_t v a l ; size_tsize_tsize_t s i z e ;
4 } key_val_tkey_val_tkey_val_t ; optik_toptik_toptik_t∗ l o c k ;
5 } map_tmap_tmap_t ;

7 val_tval_tval_t o p t i k m a p d e l e t e (map_tmap_tmap_t∗ map , key_tkey_tkey_t key) {
8 restartrestartrestart :
9 optik_toptik_toptik_t vn = o p t i k g e t v e r s i o n (map−>l o c k) ;

10 forforfor (intintint i = 0 ; i < map−>s i z e ; i ++) {
11 ififif (map−>a r r a y [i] . key == key) {
12 ififif (! o p t i k t r y l o c k v e r s i o n (map−>lock , vn))
13 gotogotogoto restartrestartrestart ;
14 map−>a r r a y [i] . key = NULLNULLNULL ;
15 val_tval_tval_t v a l = map−>a r r a y [i] . v a l ;
16 o p t i k u n l o c k (map−>l o c k) ;
17 returnreturnreturn v a l ;
18 }
19 }
20 returnreturnreturn NULLNULLNULL ;
21 }

(a) Delete operation of OPTIK-based concurrent map.

https://github.com/LPD-EPFL/ssmem

1 intintint o p t i k m a p i n s e r t (map_tmap_tmap_t∗ map , key , v a l) {
2 restartrestartrestart :
3 optik_toptik_toptik_t vn = o p t i k g e t v e r s i o n (map−>l o c k) ;
4 intintint f r e e i d x = −1;
5 forforfor (intintint i = 0 ; i < map−>s i z e ; i ++) {
6 key_tkey_tkey_t c u r r k e y = map−>a r r a y [i] . key ;
7 ififif (c u r r k e y == key) { returnreturnreturn falsefalsefalse ; }
8 elseelseelse ififif (c u r r k e y == 0) { f r e e i d x = i ; }
9 }

11 ififif (! o p t i k t r y l o c k v e r s i o n (map−>lock , vn))
12 gotogotogoto restartrestartrestart ;

14 intintint r e s = falsefalsefalse ;
15 ififif (f r e e i d x >= 0) {
16 map−>a r r a y [f r e e i d x] . key = key ;
17 map−>a r r a y [f r e e i d x] . v a l = v a l ;
18 r e s = truetruetrue ;
19 }
20 o p t i k u n l o c k (map−>l o c k) ;
21 returnreturnreturn r e s ;
22 }

(b) Insert operation of OPTIK-based concurrent map.

1 val_tval_tval_t o p t i k m a p s e a r c h (map_tmap_tmap_t∗ map , key_tkey_tkey_t key) {
2 restartrestartrestart :
3 optik_toptik_toptik_t vn = o p t i k g e t v e r s i o n w a i t (map−>l o c k) ;
4 forforfor (intintint i = 0 ; i < map−>s i z e ; i ++) {
5 ififif (map−>a r r a y [i] . key == key) {
6 val_tval_tval_t v a l = map−>a r r a y [i] . v a l ;
7 optik_toptik_toptik_t vnc = o p t i k g e t v e r s i o n (map−>l o c k) ;
8 ififif (o p t i k s a m e v e r s i o n (vn , vnc))
9 returnreturnreturn v a l ;

10 gotogotogoto restartrestartrestart ;
11 }
12 }
13 returnreturnreturn NULLNULLNULL ;
14 }

(c) Search operation of OPTIK-based concurrent map.

Figure 6. An OPTIK-based concurrent array map data structure.

between matching an array key with the target key and reading the
value, there was no concurrent modification on this key-value pair.

We achieve this guarantee using the OPTIK version number.
The search operation (Figure 6(c)) reads the version number in the
beginning of the operation (line 3), like update operations do. This
time, however, we employ the optik get version wait function
that blocks until the lock is free. Once the key is matched (line 5),
we read the corresponding value and check whether the version
has changed (lines 6-8). If it did change, then the operation is
restarted, otherwise the value is returned. The reason for acquiring
an unlocked version in line 3 is that we need to ensure that the
search operation was not concurrent with any update operations on
the same key during the execution of lines 5-6.

We could decrease the “granularity” of the version number for
search operations, by reading the version before line 5. We would
still be able to acquire atomic snapshots of the key-value pairs.
However, doing so puts a lot of stress on the cache line of the
OPTIK lock, resulting in lower performance than the design in Fig-
ure 6. (Actually, we can devise various schemes for validating the
key-value snapshot using the version number.)

In terms of correctness, successful updates are serialized behind
the lock. Successful search operations are trivially correct, as they
complete iff there were no concurrent modifications. Unsuccessful
search operations can be linearized so that they never observe the

 0

 20

 40

 60

 80

 1 10 20 30 40 50 60T
h
ro

u
g
h
p
u
t
(M

o
p
s
/s

)

Threads

Small map
(4 elements, 10% updates)

 0

 1

 2

 3

 1 10 20 30 40 50 60
Threads

Large map
(1024 elements, 10% updates)

 0

 10

 20

 30

 40

mcs optikL
a
te

n
c
y
 d

is
tr

ib
u
ti
o
n

(K
c
y
c
le

s
)

05%
25%
50%
75%
95%

 0

 100

 200

 300

 400

mcs optik

mcs optik

srch-suc insr-suc delt-suc srch-fal insr-fal delt-fal

Figure 7. Lock-based vs. OPTIK-based map. The latency-
distribution results are taken on 10 threads.

target key. Similarly, unsuccessful updates can be linearized so that
they do (or do not) observe the target key.

Lock-based vs. OPTIK-based Array Map. We compare the two
map implementations on two workloads on an Intel Xeon (see §5
for platform details and our experimental settings). Figure 7 depicts
the results, where mcs represents the lock-based map protected by
an MCS lock [36]. On both the small and the large maps, the OPTIK
version (optik) is faster than the lock-based one. optik has two main
benefits compared to mcs. First, search operations (80% of the
workload) do not acquire the lock. Second, unsuccessful updates
(∼10% of the operations) also do not need to synchronize.

If we exclude the results on multiprogramming (i.e., more
threads than hardware contexts), where mcs suffers, optik is on
average 4.7 and 1.4 times faster than mcs on the small and the
large map, respectively. On the small workload, since there are just
four spots in the map array, many operations fail (e.g., deletions do
not find the key they are looking for). For example, on 10 threads,
only 25% of the updates are successful, resulting in 5% total ef-
fective updates. Overall, the results can be largely explained by
the latency distributions. optik significantly reduces the latencies
for search operations and for unsuccessful deletions. The reduction
is less profound on unsuccessful insertions, as a portion of those
failures is due to insufficient space in the array. In these cases, both
optik and mcs acquire and release the lock before returning false.
Additionally, the effects of failing optik trylock version and
restarting are visible on the tail latencies of successful updates.

4.2 OPTIK-based Linked List
The main idea behind a sorted OPTIK-based linked list is to keep
track of the necessary version numbers while traversing the list.
In a sense, similarly to hand-over-hand locking (also known as
lock coupling) [27], the OPTIK-based list performs hand-over-hand
version tracking. Figure 8 includes the code of our implementation.
We defer the evaluation of our list to §5.

Delete. The delete operation (Figure 8(a)) is the most complex
operation of the OPTIK-based linked list, because it requires locking
two nodes; the one being deleted and its predecessor node. Travers-
ing the list (lines 11-15) keeps track of these two version num-
bers that are later used for locking with optik trylock version
(lines 18-23). If locking the predecessor node fails, the operation
is restarted, otherwise the node to be deleted is locked. If this lat-
ter optik trylock version fails, the predecessor’s OPTIK lock
is reverted, instead of unlocked, in order to avoid false conflicts
with other concurrent operations. Notice that due to OPTIK, (i) no

deleted flag is required (as in [22]), and (ii) the OPTIK lock of
the deleted node is never released, which prohibits updates from
reusing this node. Essentially, the linearization point of a deletion
is the actual write on the pred->next pointer in line 24.

Insert. Inserting in the OPTIK-based linked list (Figure 8(b)) re-
quires locking and validating only the predecessor node (line 12).
This OPTIK lock ensures that there are no concurrently completed
modifications on the predecessor node p or on p->next.

Search. The search operation (Figure 8(c)) of the OPTIK-based
linked list is completely oblivious to concurrency. We can support
this 100% sequential search design because the linearization points
of updates are the actual stores on the predecessor node.

5. OPTIK in Concurrent Data Structures
In this section, we illustrate the power and usefulness of OPTIK for
optimizing and designing concurrent data structures (CDSs) (i.e.,
linked lists, hash tables, skip lists, and queues). In contrast to §4,
we keep the CDS descriptions high-level for brevity. Before that,
we describe the evaluation settings that we use in our experiments
and the two platforms that we evaluate our data structures on.

Experimental Methodology. We evaluate various algorithms via
microbenchmarks. Unless stated otherwise, all OPTIK implemen-
tations use OPTIK locks on top of versioned locks. Similarly, un-
less stated otherwise, non-OPTIK implementations use test-and-set
locks. (Notice that for highly-contented locks, such as the locks in
concurrent queues, we use MCS locks.) We take the non-OPTIK al-
gorithm implementations from the ASCYLIB library [8] (we use
the optimized versions of the algorithms). Additionally, we use the
memory allocator of ASCYLIB that provides garbage collection
and we use 8-byte long keys and values. Backoff schemes can sig-
nificantly affect the performance of CDSs (e.g., when an operation
fails and must be restarted). For fairness, all data structures use

1 typedeftypedeftypedef structstructstruct node { typedeftypedeftypedef structstructstruct {
2 key_tkey_tkey_t key ; val_tval_tval_t v a l ; node_tnode_tnode_t∗ head ;
3 optik_toptik_toptik_t l o c k ; } ll_tll_tll_t ;
4 structstructstruct node∗ n e x t ;
5 } node_tnode_tnode_t ;

7 val_tval_tval_t o p t i k l l d e l e t e (ll_tll_tll_t∗ l i s t , key_tkey_tkey_t key) {
8 restartrestartrestart :
9 node_tnode_tnode_t ∗pred , ∗ c u r = l i s t −>head ;

10 optik_toptik_toptik_t predv = cu r v =
o p t i k g e t v e r s i o n (& cur−>l o c k) ;

11 dododo {
12 pred = c u r ; p redv = cu rv ;
13 c u r = cur−>n e x t ;
14 cu rv = o p t i k g e t v e r s i o n (& cur−>l o c k) ;
15 } whilewhilewhile (cur−>key < key) ;
16 ififif (cur−>key != key) { returnreturnreturn NULLNULLNULL ; }

18 ififif (! o p t i k t r y l o c k v e r s i o n (& pred−>lock , p redv))
19 gotogotogoto restartrestartrestart ;
20 ififif (! o p t i k t r y l o c k v e r s i o n (& cur−>lock , cu rv)) {
21 o p t i k r e v e r t (& pred−>l o c k) ;
22 gotogotogoto restartrestartrestart ;
23 }
24 pred−>n e x t = cur−>n e x t ;
25 val_tval_tval_t r e s u l t = cur−>v a l ;
26 o p t i k u n l o c k (& pred−>l o c k) ;

28 n o d e g c f r e e (c u r) ;
29 returnreturnreturn r e s u l t ;
30 }

(a) Delete operation of OPTIK-based concurrent linked list.

1 intintint o p t i k l l i n s e r t (ll_tll_tll_t∗ l i s t , key , v a l) {
2 restartrestartrestart :
3 node_tnode_tnode_t ∗pred , ∗ c u r = l i s t −>head ;
4 optik_toptik_toptik_t predv = cu r v = OPTIK INIT ;
5 dododo {
6 cu rv = o p t i k g e t v e r s i o n (& cur−>l o c k) ;
7 p red = c u r ; p redv = cu rv ;
8 c u r = cur−>n e x t ;
9 } whilewhilewhile (cur−>key < key) ;

10 ififif (cur−>key == key) { returnreturnreturn falsefalsefalse ; }

12 ififif (! o p t i k t r y l o c k v e r s i o n (& pred−>lock , p redv))
13 gotogotogoto restartrestartrestart ;
14 node_tnode_tnode_t∗ newnode = new node (key , va l , c u r) ;
15 pred−>n e x t = newnode ;
16 o p t i k u n l o c k (& pred−>l o c k) ;
17 returnreturnreturn truetruetrue ;
18 }

(b) Insert operation of OPTIK-based concurrent linked list.

1 val_tval_tval_t o p t i k l l s e a r c h (ll_tll_tll_t∗ l i s t , key_tkey_tkey_t key) {
2 node_tnode_tnode_t∗ c u r = l i s t −>head ;
3 whilewhilewhile (cur−>key < key) { c u r = cur−>n e x t ; }
4 ififif (cur−>key == key) { returnreturnreturn cur−>v a l ; }
5 returnreturnreturn NULLNULLNULL ;
6 }

(c) Search operation of OPTIK-based concurrent linked list.

Figure 8. An OPTIK-based linked-list data structure.

the exact same backoff function. We use exponentially increasing
backoff times with up to 16k cycles maximum backoff. Further-
more, after every iteration, threads wait for a short duration, in or-
der to avoid long runs [39].

On every run, we set the initial size of the data structure and
the key range that the threads operate on. On every iteration, each
thread selects a key at random within the given range. We keep the
range double the initial size and the percentages of insertions and
deletions the same, so that the size of the structure remains close
to the initial. Because the key range is double the initial, roughly
half of the update operations on search data structures return false.
The update rate that we report on the graphs represents the effective
percentage of updates, namely the ones that alter the data structure.
For our skewed workloads, we use a zipfian distribution of keys
with a = 0.9, where the largest keys are the most popular. Our
results are the median value of 11 repetitions of 5 seconds each.
We do not pin threads to cores, but let the OS do the scheduling.

For our latency measurements, we use the the per-core times-
tamp counter [30] for accurately measuring the duration of an oper-
ation in cycles. In detail, every thread holds an array of 16K latency
measurements that, in the end of each experiment, are collected
and translated to latency distribution (boxplots reporting 5th, 25th,
50th, 75th, and 95th percentile latencies).

We use the following two multi-cores:

Xeon. The 20-core Intel Xeon consists of two sockets of Xeon
E5-2680 v2 Ivy-Bridge 10-core (20 hyper-threads). It runs at
2.8 GHz and includes 32 KB, 256 KB, and 25 MB (per die) L1,
L2, and LLC, respectively.

Opteron. The 48-core AMD Opteron contains four Opteron 6172
multi-chip modules (MCMs). Each MCM has two 6-core dies, for
a total of 8 memory nodes. It operates at 2.1 GHz and has 64 KB,
512 KB, and 5 MB (per die) L1, L2, and LLC data caches.

5.1 OPTIK in Linked Lists
We use OPTIK in the design of concurrent (sorted) linked lists.
The simplest algorithm is of course a sequential list protected by a

 0

 0.2

 0.4

 0.6

 0.8

 1 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

) Large
(8192 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 2

 4

 6

 8

 1 10 20 30 40 50 60

Medium
(1024 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 10

 20

 30

 40

 50

 1 10 20 30 40 50 60

Small
(64 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 0.2

 0.4

 0.6

 1 10 20 30 40 50 60

Large skewed
(8192 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 8

 16

 24

 32

 40

 1 10 20 30 40 50 60

Small skewed
(64 elements, 20% updates)

O
p

te
ro

n
X

e
o

n

 0

 0.4

 0.8

 1.2

 1.6

 1 12 24 36 48 56 64

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

O
p

te
ro

n
X

e
o

n

 0

 2

 4

 6

 8

 10

 1 12 24 36 48 56 64

Threads

O
p

te
ro

n
X

e
o

n

 0

 3

 6

 9

 12

 15

 1 12 24 36 48 56 64

Threads

O
p

te
ro

n
X

e
o

n

 0

 0.4

 0.8

 1.2

 1 12 24 36 48 56 64

Threads

O
p

te
ro

n
X

e
o

n

 0

 3

 6

 9

 12

 15

 1 12 24 36 48 56 64

Threads

O
p

te
ro

n
X

e
o

n

harris lazy mcs-gl-opt optik-gl optik optik-cache lazy-cache

Figure 9. Throughput of linked-list algorithms on Xeon and Opteron on various workloads.

scalable global lock, such as an MCS lock. Naturally, this algorithm
does not offer any concurrency as all operations are serialized
behind the lock. An easy optimization on the global-lock algorithm
is to implement the search operation so that it does not acquire
the lock (given that memory reclamation is properly handled). The
linearization point of updates is then the actual memory writes that
access the predecessor node of the one being updated.

Nevertheless, updates are fully serialized behind the global lock,
resulting in low scalability. We can alleviate this with OPTIK by
introducing optimism to the update operations. The transformation
is very similar to that of the concurrent map in §4.1. Note that
concurrent modifications might not be conflicting, still, using a
global lock will result in false conflicts. Because of this limitation
and of the high load on the global lock, this linked-list design is
not expected to scale well on contended scenarios. We can resolve
these limitations using fine-grained locking (see §4.2 for the design
of the fine-grained OPTIK-based linked list).

Additionally, inspired by the fact that version numbers reveal
whether a list node has been modified, we develop the idea of node
caching. In short, each thread keeps track of the last accessed node
after each operation, accompanied by the version number that the
thread observed. This node can be subsequently used as the entry
point for the next operation on the list, given that (i) it has not been
deleted, and (ii) it is a correct entry point (i.e., in a sorted list, the
key of the cached node is less than the target key). Of course, we
must ensure that the memory of deleted nodes is not re-used while
the node is still referenced by any node cache. Node-caching can
be also applied on non-OPTIK algorithms, given that we can avoid
the ABA problem and that we can detect whether a node is valid.

Correctness. The OPTIK-based global-lock list is trivially cor-
rect as it disallows concurrency of modifications. The linearization
point of both insertions and deletions can be set to the actual write
on the predecessor’s next pointer. Search operations either observe
the concurrent modifications in the vicinity of the target key, or not.

Evaluation. Figure 9 depicts the throughput of the aforemen-
tioned linked-list algorithms on various workloads. For compari-
son, we include the results of the lazy linked-list algorithm [22]
(lazy), that has been shown to be very efficient [8, 16], as well as
the lock-free list by Harris [19] (harris). We implement the node-
caching idea on the lazy list (lazy-cache) and on the fine-grained
OPTIK-based list (optik and optik-cache in the graph). mcs-gl-opt
represents a global-lock list protected by an MCS lock, including
the non-synchronized search optimization we describe earlier.

Clearly, the node-cache optimization (optik-cache, lazy-cache)
brings important performance benefits as it probabilistically re-
duces the list-traversal duration. For instance, on the large list,

49.8% of the operations make use of the node cache, while on
the small list the hit rate drops to approximately 40%. On these
two workloads, optik-cache delivers 50% and 15% higher average
throughput than the version without the cache (optik).

Additionally, the OPTIK-based global-lock list (optik-gl) deliv-
ers higher throughput than mcs-gl-opt in all workloads. optik-gl
mostly benefits from the fact that for 20% of the operations–the
unsuccessful ones–it returns without acquiring the lock.

Finally, the fine-grained OPTIK-based list (optik) performs simi-
larly to lazy and harris for the low-contention workloads (i.e., large,
large-skewed, and medium). However, optik is more scalable than
lazy on high-contention levels. On 64 elements, optik is on aver-
age 22% faster than lazy. Note that optik stresses the locks less
than lazy, because the operations do not acquire the lock if they are
going to fail the validation. This difference is clear on the small-
skewed workload, where neither lazy, nor lazy-cache can sustain
the contention of the highly-contented nodes.9 Additionally, optik
behaves much better than lazy on multiprogramming and is, on av-
erage, just 5% slower than harris even on the small workloads.

5.2 OPTIK in Hash Tables
We adapt and use the two OPTIK-based linked lists (§4.2, §5.1) in
the design of two novel hash tables. Intuitively, the list protected by
a global lock, resulting in per-bucket locking, is more suitable for
hash tables. We also use the array map of §4.1 in the design of a
third hash table.

We further use OPTIK locks to optimize existing hash tables. In
a hash table, an update operation (i.e., an insertion or a deletion)
might not be feasible: Delete (resp. insert) operations return false
if the corresponding key is not found (resp. is found). Many hash-
table algorithms (e.g., Java ConcurrentHashMap [34]) implement
updates by directly locking the corresponding bucket, regardless if
the operation is feasible. This unnecessary locking hinders scalabil-
ity [8]. In these algorithms, in order to return false without locking
if an update is not feasible, we must add an extra read-only traver-
sal of the bucket. If the operation cannot be performed, no lock is
acquired and the operation simply returns false after this first traver-
sal. Otherwise, if the operation can be performed, we must acquire
the bucket lock and then re-traverse the bucket to ensure that no
concurrent modification operated on the target key. Consequently,
for every successful update, we have two traversals of the bucket.
We can avoid the second traversal with OPTIK locks, using either
optik lock version or optik trylock version. In the begin-
ning of the operation, we keep track of the version number of the
bucket and use this version in the OPTIK-lock call. If the version is

9 The most contented node is accessed by 15% of the requests.

 0

 150

 300

 450

 600

 1 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

) Medium
(8192 elements, 20% updates)

O
p
te

ro
n

X
e
o
n

 0

 50

 100

 150

 200

 1 10 20 30 40 50 60

Small skewed
(512 elements, 20% updates)

O
p
te

ro
n

X
e
o
n

 0

 40

 80

 120

 160

 1 12 24 36 48 56 64

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

O
p
te

ro
n

X
e
o
n

 0

 15

 30

 45

 60

 75

 1 12 24 36 48 56 64

Threads

O
p
te

ro
n

X
e
o
n

lazy-gl

java

java-optik

optik

optik-gl

optik-map

Figure 10. Throughput of hash-table algorithms on Xeon and
Opteron on various workloads.

validated, no concurrent modification has completed on this bucket,
hence we do not need to re-traverse the bucket.

Correctness. The three hash tables that are based on the two
OPTIK lists and the map are correct because of the correctness of
these base data structures. The optimizations for avoiding double
traversal with OPTIK are correct because the bucket cannot be
modified without increasing the version number of the bucket lock.

Evaluation. Figure 10 includes the results of various hash ta-
bles. We set the number of buckets to be equal to the number
of initial elements, so that initially every bucket contains on av-
erage one element. In the interest of space, we only show the
results with medium and small-skewed sized hash tables. On
the missing graphs, the behavior of the hash tables is in accor-
dance with the results shown in Figure 10. Apart from the three
OPTIK-based hash tables (optik, optik-gl–for per-bucket locking,
and optik-map), we create a hash table with lazy linked lists
adapted to use per-bucket locking (lazy-gl). Additionally, we
evaluate Java’s util.concurrent.ConcurrentHashMap [34]
(java), as well as a modified version that avoids double pars-
ing using optik trylock version, as we describe above. The
ConcurrentHashMap algorithm uses lock striping: It partitions
the buckets into n segments. Each segment (and its buckets) is
protected by a single lock and can be individually resized. We con-
figure n to be 128, based on Java’s documentation [42] “Ideally,
you should choose a value to accommodate as many threads as
will ever concurrently modify the table.”

Optimizing java with OPTIK (java-optik) brings benefits only in
the presence of (high) contention. On the large hash table (65536
elements–not shown in the graph), the improvement is just 1.9%,
because there are practically no validation failures. Additionally,
the second pass on the bucket of java is very fast, as the first pass
brings the bucket data in the L1 cache of the core.

Furthermore, optik-map does not scale well on the small work-
loads on Xeon due to the hardware. In brief, the buckets of optik-
map are allocated in consecutive memory locations, thus occu-
pying a few contiguous cache lines, resulting in increased hard-
ware prefetching on Xeon in our experiments. For example, on
20 threads, the small hash table triggers three orders of magnitude
more last-level-cache prefetches than the medium one. This inac-
curate prefetching leads to low scalability due to high coherence
traffic. Once the size of the hash table is large enough, optik-map
becomes the fastest hash table on both platforms. The other hash
tables do not face the aforementioned problem, because they dy-
namically allocate each node that is inserted in the hash table.

Regarding the remaining three hash tables, optik-gl is the
fastest. optik-gl is 2-times faster than lazy-gl on average (31% faster
on the non-skewed workloads). optik is on average 9% slower than
optik-gl, as for some operations optik acquires two locks instead of
the one lock in optik-gl. On the small-skewed workload, we see the
power of the OPTIK pattern compared to normal locking: optik-gl
and optik are both 3.7-times faster than lazy-gl on average. Even on
the large-skewed workload (not in the graph), lazy-gl is on average
more than 2-times slower than the OPTIK-based hash tables.

5.3 OPTIK in Skip Lists
In theory, OPTIK is not very suitable for skip lists. With per-node
lock granularity, the same version protects all the next pointers of
the node. Consequently, validating the node with OPTIK results in
false conflicts. Still, using OPTIK in skip lists results in simpler
designs than the existing state-of-the-art ones [15, 29]. We first
simplify validation in the optimistic skip list by Herlihy et al. [29],
using optik lock version. If the validation is successful, then
the corresponding node has not been modified, thus we do not need
to validate the optimistic results in another way. This specific skip
lists checks that the node is not logically deleted and that the next
pointer at the corresponding level has not been altered.

We also use OPTIK in the design of a new skip-list algorithm.
As in any skip list, update operations parse the list and keep track
of the predecessor and successor nodes at each level. Due to OPTIK,
parsing also keeps track of the version number of each predecessor
node. These version numbers are later used for validation. Once the
parsing finds the spot to modify, it locks and validates the prede-
cessor nodes and then performs the modifications. If the validation
fails, the locks are released and the operation is restarted. We im-
plement two variants of the OPTIK-based skip list. The first one, in
case validation fails, performs more fine-grained validation (same
one as in [29]). The second one immediately restarts the operation
if an OPTIK validation fails.

Correctness. The modified Herlihy skip list maintains the cor-
rectness of the initial algorithm. Our modifications only involve
reducing validation in case the optik lock version function is
able to validate the previously observed version.

For brevity, we only describe the correctness sketch of the
OPTIK-based skip list that immediately restarts on a trylock fail-
ure. Both insertions and deletions traverse the list and keep track of
the predecessor nodes and their version at each level. As the OPTIK
lock protects the whole predecessor node p, we do not need to keep
track of the successor nodes for validating p->next. Insertions try
to acquire the lock and perform the insertion of the new node ea-
gerly (i.e., they do the physical linking of the node immediately af-
ter acquiring the lock of that level). If an optik trylock version
call fails, the operation is restarted and, after re-parsing the list, the
insertion continues from the level that failed. A flag, similar with
the fullylinked flag in Herlihy skip list, ensures that a partially in-
serted node will not be concurrently deleted. Similarly, a deletion
atomically sets the flag of the target node to deleted and unlinks the
node after acquiring all predecessor locks. We can devise a variant
of the algorithm where deletions proceed progressively like inser-
tions. However, the coordination overhead between insertions and
deletions on the same node surpasses the benefits of being eager.

Evaluation. Figure 11 compares the Herlihy skip list (herlihy),
and the lock-free one by Fraser [15] (fraser), with the three lists that
we describe above. In the interest of space, we only show the results
on large-skewed and small-skewed lists. On low-contention levels
(large, medium non-skewed–not shown in the graph), all algorithms
behave similarly. Intuitively, all five implementations follow almost
identical code paths in the absence of conflicts: Most of the time is
spent traversing the list.

 0

 15

 30

 45

 60

 75

 1 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

) Large skewed
(65536 elements, 20% updates)

O
p
te

ro
n

X
e
o
n

 0

 10

 20

 30

 40

 50

 1 10 20 30 40 50 60

Small skewed
(1024 elements, 20% updates)

O
p
te

ro
n

X
e
o
n

 0
 4
 8

 12
 16
 20
 24

 1 12 24 36 48 56 64

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

O
p
te

ro
n

X
e
o
n

 0

 3

 6

 9

 12

 15

 1 12 24 36 48 56 64

Threads

O
p
te

ro
n

X
e
o
n

fraser herlihy herl-optik optik1 optik2

Figure 11. Throughput of skip-list algorithms on Xeon and
Opteron on various workloads.

Using optik lock version in the Herlihy skip list (herl-
optik) slightly affects the performance on the Opteron, but has a
large effect on Xeon. In brief, the faster validation with OPTIK re-
sults in an important reduction of operation restarts. For instance,
on the small-skewed workloads, on 20 threads on Xeon, without
OPTIK 30% of update operations have to restart due to concur-
rency, compared to 24% with OPTIK. Contrarily, on the Opteron
due to the overall lower throughput than Xeon, both herlihy and
herl-optik have 50% operation restarts on 20 threads.

On skewed workloads, we also notice the benefits of using
OPTIK, even though it can introduce unnecessary operation restarts.
In particular, optik2, which is the variant that immediately restarts
if there is a trylock failure, is more scalable than optik1, that uses
optik lock version and does fine-grained validation if the ver-
sion is not validated. For example, on very-high contention, on 20
threads, 40% of the operations have to restart with optik2, while
just 20% with fraser. Still, optik2 delivers 10% higher through-
put than fraser on 20 threads. The main reason for optik2 being
more scalable than the rest is the important property of OPTIK that
we have already extensively discussed: Threads fail the validation
with a single atomic operation, without waiting behind the occu-
pied lock. The other three lock-based skip lists do not include false
restarts, they do however include false contention behind the per-
node locks. optik2 also benefits from (i) simpler implementation
than the rest, as it does not include the fine-grained validations, and
(ii) the eager node insertion. Overall, optik2 is faster than fraser.
However, optik2’s throughput significantly drops on multiprogram-
ming, while fraser is able to sustain its throughput.

5.4 OPTIK in Queues
We use OPTIK in various concurrent queue designs. First, we op-
timize the classic Michael-Scott queues [39] (MS-queue) using
OPTIK locks. The first lock-based MS-queue variant employs the
optik lock version function to optimize the dequeue func-
tion: The operation is optimistically prepared so that if the val-
idation succeeds, only a single store is performed in the criti-
cal section. If the validation fails, the dequeue operation is pre-
pared and performed in the critical section, as usual. The second
(lock-based) variant is very similar to the first one, however, it
uses optik trylock version instead of the lock function. If the
validation fails, then the operation is restarted. The third variant
is a lock-based/lock-free MS-queue hybrid. We use the lock-free
enqueue implementation of the MS-queue unaltered. We opt for
this approach because the enqueue operations do not offer any op-

portunities for optimism. For the dequeue function we use the
OPTIK trylock implementation.

The final variant of MS-queue introduces the idea of victim
queues. The dequeue function uses the same trylock implementa-
tion as the last two designs. The enqueue implementation utilizes
the optik num queued function of OPTIK locks (on top of ticket
locks–see §3). If the number of waiting nodes is large (e.g., more
than two in our implementation), then the thread performs the in-
sertion in a secondary victim queue, instead of waiting behind the
lock. The first thread to put a node in the empty victim queue is re-
sponsible for linking the victim queue to the main one. The results
are (i) lower contention behind the lock, and (ii) a simple victim-
queue design as it does not interact with dequeue operations.

Correctness. The first three variants of MS-queue do not essen-
tially affect the correctness of the original designs. The fourth de-
sign employs the victim-queue idea. Enqueue operations either wait
behind the lock to normally perform their operation, or insert the
element in the secondary victim queue. This secondary queue is
linked to the main one, once the first thread to use it gets the lock.
This same thread is also responsible for emptying the victim queue
so it can be reused. Operations that utilize the victim queue have to
wait until the victim queue has been emptied, thus their elements
are visible in the main queue. This waiting ensures that they can be
linearized properly.

Evaluation. We evaluate the lock-based (ms-lb) and the lock-free
(ms-lf) MS-queues. We use ms-lb with MCS locks. We also evaluate
the three MS-queue variants (optik0, optik1, optik2), as well as the
one using victim queues (optik3). We initialize the queues with 65k
elements. The results include several interesting points (Figure 12).

First, ms-lb delivers stable performance, regardless of the con-
tention levels, due to the MCS locks. If we use any simple spinlock
algorithm (e.g., test-and-set) instead of MCS, the throughput of ms-
lb degrades as we increase contention. However, when the number
of threads becomes more than the number of hardware contexts, the
combination of locking and the fairness of MCS kills throughput.10

Second, the remaining queue algorithms do not scale and do not
even keep stable performance as we increase contention, especially
on Opteron. Unlike ms-lb with MCS locks, all other designs have
two single points–cache lines–of contention, namely the head and
the tail of the queue. Opteron is an 8-socket machine, thus increas-
ing the number of threads, increases the non-uniformity as well, re-
sulting in more expensive cache-coherence traffic [7]. Still, on both
platforms, ms-lb is slower than the rest on less than 6-7 threads.

Third, it is worth comparing the two MS-queues with the dif-
ferent OPTIK-based queue implementations. optik2 (lock-free en-
queue, OPTIK-based dequeue) behaves practically the same as ms-
lf , showing that the simple CAS validation of OPTIK locks does re-
semble lock-freedom. Then, the victim-queue technique of optik3
does bring some benefits that are mostly visible on the increasing-
size workload which stresses enqueues. optik3 is on average 28%
faster than ms-lf on this workload, while overall it is 7% faster.

Regarding optik1, on the one hand it contains the enqueue
implementation of ms-lb, thus on the increasing-size workload
it behaves similar to ms-lb. On the other hand, it uses the
optik trylock version implementation for dequeuing, show-
ing similar performance to optik2 and ms-lf . Furthermore, optik0
on the Opteron shows that using OPTIK locks with the lock/unlock
interface, under high contention, is not a good idea. At the end of
the day, OPTIK locks are simple spinlocks.

Finally, the latency-distribution graphs reveal the power and
the weaknesses of each implementation. For example, dequeuing

10 There are techniques, such as time-published queue-based locks [21], for
alleviating this problem.

 0

 2

 4

 6

 8

 3 10 20 30 40 50 60T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

) Decreasing size
(40% enqueue, 60% dequeue)

O
p

te
ro

n
X

e
o

n

 0

 2

 4

 6

 8

 3 10 20 30 40 50 60

Stable size
(50% enqueue, 50% dequeue)

O
p

te
ro

n
X

e
o

n

 0

 2

 4

 6

 8

 3 10 20 30 40 50 60

Increasing size
(60% enqueue, 40% dequeue)

O
p

te
ro

n
X

e
o

n

 0

 1

 2

 3

 4

 3 12 24 36 48 56 64

T
h

ro
u

g
h

p
u

t
(M

o
p

s
/s

)

Threads

O
p

te
ro

n
X

e
o

n

 0

 1

 2

 3

 4

 3 12 24 36 48 56 64

Threads

O
p

te
ro

n
X

e
o

n

 0

 1

 2

 3

 4

 3 12 24 36 48 56 64

Threads

O
p

te
ro

n
X

e
o

n

 0

 10

 20

 30

 40

ms-lf ms-lb optik0 optik1 optik2 optik3L
a

te
n

c
y
 d

is
tr

ib
u

ti
o

n
(K

c
y
c
le

s
)

Stable size
(on 10 threads)

O
p

te
ro

n
X

e
o

n

 0

 15

 30

 45

 60

ms-lf ms-lb optik0 optik1 optik2 optik3L
a

te
n

c
y
 d

is
tr

ib
u

ti
o

n
(K

c
y
c
le

s
)

O
p

te
ro

n
X

e
o

n

ms-lf ms-lb optik0 optik1 optik2 optik3 enqueue dequeue

Figure 12. Throughput and latency distribution of queue algorithms on Xeon and Opteron on various workloads.

an element is very fast with ms-lf , however, enqueuing is very
expensive. Similarly, enqueuing with optik3 is fast because of the
victim-queue approach, but dequeuing is slow.

5.5 Summary
The combination of the OPTIK pattern with OPTIK locks is a very
strong concurrency tool. We illustrate the power of OPTIK by:

• designing four new CDSs: (i) an array map with a correspond-
ing hash table, (ii-iii) a global-lock and a fine-grained linked list
with two corresponding hash tables, and (iv) a skip list;
• optimizing four state-of-the-art CDSs: (i) the
ConcurrentHashMap algorithm in Java [34], (ii) the op-
timistic skip list by Herlihy et al. [29], and (iii-iv) both the
lock-free and lock-based Michael-Scott queues [39];
• introducing two concurrency techniques: (i) node caching for

list structures, and (ii) victim queues for concurrent queues.

Of course, OPTIK is not always a suitable solution. The most
prominent example of such a case is stack data structures. We
briefly experiment with stacks (not shown in the graphs). More pre-
cisely, we redesign the classic lock-free stack by Treiber [48] using
OPTIK. The original and the OPTIK-based variants behave similarly.
Still, the contention levels that can be induced on a highly parallel
stack cannot be sustained by neither the “simple” OPTIK lock, nor
the lock-free solution. There are ways to alleviate this problem,
such as aggressive backoff mechanisms, or elimination [24]. Note
that large backoff times might result in large tail latencies.

6. Related Work
Variants of the OPTIK pattern can be basically found wherever op-
timistic concurrency is used (e.g., databases, distributed systems).
In the following, we highlight the pieces of work that are the most-
related to OPTIK.

Concurrent Data Structures (CDSs). There has been a large
amount of work on designing efficient and scalable CDSs, for
linked lists [19, 22, 37, 43], hash tables [8, 34, 37], skip lists [15,
43, 47], binary search trees [4, 8, 10, 13, 41], queues [39, 40, 49],
and stacks [24, 48]. Every new CDS design typically introduces a
new technique for detecting and handling concurrency. OPTIK is a
generic design pattern that provides a way of detecting conflicting
concurrency via version numbers in different CDSs.

ASCY [8] is a set of high-level principles that describe how
to design scalable search data structures. Unlike ASCY, OPTIK of-
fers a concrete design pattern and implementation. In our experi-
ence, search data structures with OPTIK do follow ASCY. In par-
ticular, the BST-TK binary search tree, part of the ASCY work,

detects concurrency with version numbers (as OPTIK does). Simi-
larly, Gramoli et al. [17] utilize version numbers to design a concur-
rent linked list which reduces synchronization over the lazy linked
list [22]. In this paper, we generalize the usage of version numbers
to a design pattern and show how to use it in various CDSs.

Optimistic Concurrency. Several concepts and tools have been
proposed for designing and implementing optimistic concurrency.

Read-copy update (RCU) [35] is a technique that was intro-
duced in the Linux kernel for easily designing CDSs with (i) wait-
free reads and (ii) memory reclamation. Nevertheless, RCU targets
read-mostly workloads. Arbel and Attiya [2] extend RCU to bet-
ter support concurrent updates. Still, their binary-search-tree de-
sign is slower than other state-of-the-art trees, especially on write-
intensive workloads. Predicate RCU (PRCU) [3] reduces the gran-
ularity of waiting in RCU. PRCU offers a tradeoff between the
amount of work that search operations must do and the amount of
waiting in updates. With OPTIK, we decouple memory reclamation
from concurrency control, thus we are able to achieve designs that
incur none of the aforementioned overheads of RCU/PRCU.

Transactional memory offers the concept of transactions for
implementing synchronization. Software transactional memory
(STM) [46] implements transactions in software. STM can be used
in the design of CDSs, but due to the instrumentation overheads
of STMs, the resulting implementations are typically slower than
their lock-free or lock-based counterparts [5]. Hardware transac-
tional memory (HTM) [26] implements transactions in hardware
and thus avoids the instrumentation and the metadata overhead of
STMs. Unfortunately, HTMs are currently neither ubiquitous nor
robust enough to be extensively used by CDS designers.

Speculative lock elision [44, 45] aims at reducing the overhead
of locking when critical sections do not actually conflict. A thread
might elide a lock, meaning that threads optimistically execute
their critical sections without acquiring that lock. If a true data
conflict appears, then the thread rollbacks and executes the critical
section normally. The main goal of lock elision is to enable writing
concurrent applications with coarse-grained locking that perform
well. In contrast, OPTIK’s main goal is to enable the design of high-
performance CDSs in a methodical way.

Flat combining [23] is another technique that appears promis-
ing for optimizing coarse-grained lock-based CDSs (e.g., queues).
With flat combining, an operation translates to a message to a ded-
icated server thread that performs the operation on a locally-held,
sequential data structure. Unlike OPTIK, flat combining is not suit-
able for highly-concurrent data structures, such as hash tables.

Sequence locks (seqlocks) [33] resemble OPTIK locks as they
include a lock and a version number. With seqlocks, readers ensure
that they read consistent data by double checking the version num-

ber. However, unlike OPTIK, seqlocks assume distinct readers/writ-
ers and keep the lock and the version separately. In fact, OPTIK
locks can be used in implementing the seqlock functionality.

Version Numbers in Concurrency. Optimistic concurrency con-
trol was introduced for optimizing database transactions [32] in
1981. It relied on transaction numbers for detecting conflicting con-
currency. In concurrent programming, many STM systems (e.g,
TL2 [9], TinySTM [14], NOrec [6], SpecTM [11]) rely on version
numbers for validating the optimistic results of transactions. Ver-
sion numbers have also been employed in distributed transactions
(e.g., [1, 12]) for detecting conflicts. To the best of our knowledge,
we are the first to extend the traditional lock interface, with OPTIK
locks, so that we merge validation with locking.

7. Conclusions
In this paper, we introduce the OPTIK design pattern and the under-
lying OPTIK locks. The OPTIK pattern offers a concrete and simple
way of detecting conflicting concurrency in concurrent data struc-
tures. Therefore, it can be used to methodically design fast and scal-
able data structures. OPTIK locks provide a concrete and efficient
implementation of the pattern. We illustrate the power of OPTIK by
(a) designing four novel concurrent-data-structure algorithms, and
by (b) optimizing four existing state-of-the-art ones.

Acknowledgments. We wish to thank our shepherd, Haibo Chen,
and the anonymous reviewers for their fruitful comments. We also
want to thank Tim Harris and the members of the Systems and
Networking group at MSR Cambridge for their useful feedback
during the early steps of OPTIK. This work has been supported in
part by the European ERC Grant 339539–AOC.

References
[1] M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis.

Sinfonia: A New Paradigm for Building Scalable Distributed Systems.
SOSP ’07.

[2] M. Arbel and H. Attiya. Concurrent Updates with RCU: Search Tree
as an Example. PODC ’14.

[3] M. Arbel and A. Morrison. Predicate RCU: An RCU for Scalable
Concurrent Updates. PPoPP ’15.

[4] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A Practical
Concurrent Binary Search Tree. PPoPP ’10.

[5] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras,
and S. Chatterjee. Software Transactional Memory: Why Is It Only a
Research Toy? ACM Queue ’08.

[6] L. Dalessandro, M. F. Spear, and M. L. Scott. NOrec: Streamlining
STM by Abolishing Ownership Records. PPoPP ’10.

[7] T. David, R. Guerraoui, and V. Trigonakis. Everything You Always
Wanted to Know About Synchronization but Were Afraid to Ask.
SOSP ’13.

[8] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized Concur-
rency: The Secret to Scaling Concurrent Search Data Structures. AS-
PLOS ’15.

[9] D. Dice, O. Shalev, and N. Shavit. Transactional Locking II. DISC
’06.

[10] D. Drachsler, M. Vechev, and E. Yahav. Practical Concurrent Binary
Search Trees via Logical Ordering. PPoPP ’14.

[11] A. Dragojević and T. Harris. STM in the Small: Trading Generality
for Performance in Software Transactional Memory. EuroSys ’12.

[12] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. FaRM: Fast
Remote Memory. NSDI ’14.

[13] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking
Binary Search Trees. PODC ’10.

[14] P. Felber, C. Fetzer, and T. Riegel. Dynamic Performance Tuning of
Word-based Software Transactional Memory. PPoPP ’08.

[15] K. Fraser. Practical Lock-Freedom. PhD thesis, University of Cam-
bridge, 2004.

[16] V. Gramoli. More than You Ever Wanted to Know about Synchroniza-
tion. PPoPP ’15.

[17] V. Gramoli, P. Kuznetsov, S. Ravi, and D. Shang. Brief Announce-
ment: A Concurrency-Optimal List-Based Set. DISC ’15.

[18] R. Guerraoui and M. Kapalka. On the Correctness of Transactional
Memory. PPoPP ’08.

[19] T. Harris. A Pragmatic Implementation of Non-blocking Linked Lists.
DISC ’01.

[20] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole. Performance
of Memory Reclamation for Lockless Synchronization. JPDC ’07.

[21] B. He, W. N. Scherer, and M. L. Scott. Preemption Adaptivity in
Time-Published Queue-Based Spin Locks. HiPC ’05.

[22] S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and
N. Shavit. A Lazy Concurrent List-Based Set Algorithm. OPODIS
’05.

[23] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat Combining and
the Synchronization-parallelism Tradeoff. SPAA ’10.

[24] D. Hendler, N. Shavit, and L. Yerushalmi. A Scalable Lock-free Stack
Algorithm. SPAA ’04.

[25] M. Herlihy. Wait-Free Synchronization. TOPLAS ’91.
[26] M. Herlihy and J. Moss. Transactional Memory: Architectural Support

for Lock-free Data Structures. ISCA ’93.
[27] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming,

Revised First Edition. 2012.
[28] M. Herlihy and J. Wing. Linearizability: A Correctness Condition for

Concurrent Objects. TOPLAS ’90.
[29] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A Simple Optimistic

Skiplist Algorithm. SIROCCO ’07.
[30] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,

Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B and 3C. 2015.
[31] S. Kashyap, C. Min, and T. Kim. Scalability in the Clouds!: A Myth

or Reality? APSys ’15.
[32] H.-T. Kung and J. Robinson. On Optimistic Methods for Concurrency

Control. TODS ’81.
[33] C. Lameter. Effective Synchronization on Linux/NUMA Systems.

Gelato Federation Meeting ’05.
[34] D. Lea. Overview of Package util.concurrent Release 1.3.4.

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/
dl/util/concurrent/intro.html, 2003.

[35] P. E. McKenney and J. D. Slingwine. Read-copy Update: Using
Execution History to Solve Concurrency Problems. PDCS ’98.

[36] J. M. Mellor-Crummey and M. L. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. TOCS ’91.

[37] M. M. Michael. High Performance Dynamic Lock-free Hash Tables
and List-based Sets. SPAA ’02.

[38] M. M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-
free Objects. PDS ’04.

[39] M. M. Michael and M. L. Scott. Simple, Fast, and Practical Non-
blocking and Blocking Concurrent Queue Algorithms. PODC ’96.

[40] A. Morrison and Y. Afek. Fast Concurrent Queues for x86 Processors.
PPoPP ’13.

[41] A. Natarajan and N. Mittal. Fast Concurrent Lock-free Binary Search
Trees. PPoPP ’14.

[42] Oracle. ConcurrentHashMap in Java Docs. https:
//docs.oracle.com/javase/7/docs/api/java/util/
concurrent/ConcurrentHashMap.html, 2015.

[43] W. Pugh. Concurrent Maintenance of Skip Lists. Technical report,
1990.

[44] R. Rajwar and J. Goodman. Speculative Lock Elision: Enabling
Highly Concurrent Multithreaded Execution. MICRO ’01.

[45] A. Roy, S. Hand, and T. Harris. A Runtime System for Software Lock
Elision. EuroSys ’09.

[46] N. Shavit and D. Touitou. Software Transactional Memory. PODC
’97.

[47] H. Sundell and P. Tsigas. Fast and Lock-free Concurrent Priority
Queues for Multi-thread Systems. JPDC ’05.

[48] R. Treiber. Systems Programming: Coping with Parallelism. Technical
report, 1986.

[49] P. Tsigas and Y. Zhang. A Simple, Fast and Scalable Non-blocking
Concurrent FIFO Queue for Shared Memory Multiprocessor Systems.
SPAA ’01.

[50] L. Xiang and M. L. Scott. Software Partitioning of Hardware Trans-
actions. PPoPP ’15.

http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html

	Introduction
	Concurrent Data Structures
	optik
	The optik Pattern
	The optik-Lock Abstraction
	Practical Considerations

	Concrete optik Examples
	optik-based Array Map
	optik-based Linked List

	optik in Concurrent Data Structures
	optik in Linked Lists
	optik in Hash Tables
	optik in Skip Lists
	optik in Queues
	Summary

	Related Work
	Conclusions

