Securing Integration of Cloud Services in
Cross-Domain Distributed Environments

Bojan Suzic
Institute for Applied Information Processing and Communications
) Graz, Austria
bojan.suzic@iaik.tugraz.at

ABSTRACT

Traditional cloud integration scenarios, as adopted by many
organizations, assume business processes to be executed in a
cross-domain context, connecting on-premise and cloud ap-
plications. The emerging model of cloud-based integration
platforms extends these scenarios by transferring business
process execution entirely to the cloud. Although this ap-
proach provides numerous benefits and opens a new range of
opportunities, its adoption requires reconsideration of cur-
rently applied practices and their adjustment to a new per-
spective.

In this work, we analyze the existing approaches to cross-
domain service composition based on cloud integration plat-
forms. We particularly focus on the security of these ap-
proaches, considering currently dominant OAuth 2.0 web au-
thorization protocol and emerging UMA protocol. For this
purpose, we present a new tool that enables UMA support
in Apache Camel integration framework. We then analyze
and discuss the integration flows relying on both protocols.
Finally, based on RMIAS framework, we provide a security
assessment of both approaches, presenting an overview of
issues and challenges for future work.

CCS Concepts

eNetworks — Cloud computing; eSecurity and privacy
— Distributed systems security; Web protocol security;

Keywords

web protocols; integration platforms; data security; cloud
computing; service composition

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions @acm.org.

SAC 2016,April 04 - 08, 2016, Pisa, Italy

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-3739-7/16/04. .. $15.00

DO http://dx.doi.org/10.1145/2851613.2851622

The cloud adoption among the enterprises has already taken
a significant scale. Considering recent surveys [4], 86 per-
cent of companies globally spend at least part of their IT
budgets on cloud services. However, as diverse as they are,
cloud services can be adopted in various ways, enabling hy-
brid scenarios that allow a vast amount of critical business
services to remain executed in an on-premise setting. Such
approaches enable enterprises to improve their business pro-
cesses by leveraging cloud services, but still provide enough
options to restrict organizational exposure to security and
integration issues that appear with new platforms.

The emerging category of cloud-based integration services,
also known as Integration Platform as a Service (IPaaS),
as promising as it is, aspires to disrupt the standard model
of hybrid on-premise and cloud-integrations by transferring
the execution of core business processes solely to the cloud.

In this work, we approach the issue of cloud-based integra-
tions from the perspective that considers data security and
privacy aspects in cross-domain based interactions and flows.
We analyze the applicability of existing and emerging proto-
cols and their impact on security in complex environments.
In our analysis, we point to the issues derived from the ex-
isting setups and interfaces and demonstrate how a novel,
user-centered and decentralized authorization protocol can
be applied to improve the security of cloud integration pro-
cesses. However, we show that even this solution might not
satisfy all security requirements in an optimal way.

1.1 Contribution

Our contribution is threefold. First, we present a new tool,
acUMA, an extension of Apache Camel integration frame-
work that enables the reliance on novel UMA [16] protocol
for cloud-based authorization and service integration. This
is, by our knowledge, the first implementation of such ser-
vice. In our second contribution, we apply this tool and
analyze the flows of both OAuth 2.0 and UMA protocols in
the context of cloud integration platforms. Based on this
analysis, we provide a discussion and comparison of these
two approaches in the terms of the controls that enhance
security. Our last contribution in this work is security as-
sessment, of both approaches based on RMIAS framework
[3], which establishes an overview of security-related chal-
lenges and issues, mapping the directions for future work to
advance security aspects of cloud-based integrations.

http://dx.doi.org/10.1145/2851613.2851622

2. BACKGROUND AND RELATED WORK

The approach of cloud-based integration got broader atten-
tion recently, as the products focused on integration and
management of cloud services started to appear and gain
traction. The emergence of these services, however, does
not imply the establishment of a new discipline. Enterprise
integration, in its various forms, has been present for more
than a decade [24]. Following its emergence in the form of
cloud-based technologies, analysts tried to establish and de-
fine the field of cloud-based integration services. One of the
notable contributions in this direction has been provided by
Pezzini et al., who identified TPaaS as a suite of cloud ser-
vices enabling development, execution and governance of in-
tegration flows connecting any combination of on-premises
and cloud-based processes, services, applications and data
within individual, or across multiple organizations [17].

The analysis of functional and organizational aspects, as well
as the detailed overview of integration platforms, technolo-
gies and challenges have been provided in [19]. Pethuru
identified challenges for SaaS and Xaa$S integrations, includ-
ing dynamic nature of SaaS interfaces, dynamic character-
istics of metadata of SaaS solutions and data quality and
integrity issues. Potocnik and Juric provided other classifi-
cation of issues in SaaS as [PaaS integration, including data
integrity and security, data transformation and migration,
connectivity, governance, monitoring and orchestration [18].
Other contributions in defining the concepts and challenges
in cloud-based service integrations have been provided in the
works of Kleeberg et al. [12] and Baude et al. [2].

As they both deal with the integration of enterprise systems
and processes, integration platforms often overlap or share
similar issues with other related concepts. These include
Cloud Brokerage, Business-to-Business Integration, as well
as Enterprise Application Platforms and API Management.

2.1 Integration Platform Scenarios and Issues

The typical activity performed under integration platforms
in the cloud is presented in Fig. 1. It shows the execution of
workflows in the cloud integration platform that consolidate
the services and resources present across the cloud. In this
figure, the integration platform additionally connects to on-
premise organizational systems, but its processes can also
stretch to the systems of other organizations, showing the
capability to access heterogeneous, cross-domain systems.

One of the scenarios for the interest of this work considers
the access to the customer’s resources located at other cloud
services, as shown in the figure. The example instance of this
flow can be illustrated with the platform that connects to
organizational Gmail account, retrieves the messages, pro-
cesses them internally and then, according to predefined
triggers, consumes the interface on organizational Salesforce
account. This scenario illustrates the cloud-based execution
of a business process that consumes customer’s resources
across different cloud instances, which will be further dealt
with the scope of this work.

The typical integration scenario does not differ much from
the previous example. In its base form, it encompasses the
use of organizational accounts at third party providers, with
the goal to execute the predefined tasks or complex work-

Cloud App

Cloud App

Enterprise A

Organisation B

Cloud Platform

On-premise Integratlcq Platform

Figure 1: Flows in cloud integration platforms

flows. This processing is commonly realized using Web APIs
exposed by the service provider, which are secured using
widely adopted mechanisms. Based on the current state of
the web, one of those mechanisms is OAuth 2.0 protocol [9].
OAuth 2.0, however, lacks fine-grained, policy-enhanced, as-
sured and auditable data flow control and monitoring, as it
will be shown in this work.

2.2 Why is Cloud Integration Different?

Traditional integration approaches have been customized
for on-premise setups, dealing with the security from intra-
organizational perspective. The transition to the cloud in-
creased the attack surface and introduced new challenges to
the overall security. In the cloud, and especially when ap-
plying the integration scenarios among different actors, the
interactions get executed among diverse, often unrelated en-
tities. These entities exist in various organizations and of-
ten operate in different jurisdictions. The security of these
flows needs to be properly assured and enforced with new
approaches that acknowledge the heterogeneity and com-
plexity of the whole environment.

2.3 Paper Outline

In the following section, we introduce acUMA, our extension
that enables the use of novel UMA protocol in integration
flows. We then analyze and discuss two approaches to cloud-
based integration using standard OAuth 2.0 setup and UMA
protocol. Finally, we assess the security of both protocols
and provide a conclusion in the final section.

3. CLOUD INTEGRATION WITH ACUMA

For the purpose of evaluation of UMA-based integration
flows, we have assessed available integration platforms and
frameworks, focusing primarily on the possibility to sup-
port OAuth 2.0 and UMA protocols. We could not find any
framework that supports UMA protocol. In our opinion, the
primary reason for missing support for UMA is relatively re-
cent stabilization of its core profile [16]. As the protocol is
missing broad adoption among service providers, the incen-
tive to support it in integration platforms and frameworks
is still low.

In order to evaluate UMA flows in the domain of integra-
tion platforms we have decided to extend one of the existing
frameworks and analyze protocol flows using reference plat-
forms and demonstration prototype. Our primary selection

[Routing engine

@ Message filter
processor

Route N
from(“file:/usr”).

filter().
xpathexpression().
to(“jms:aQueue”);

Processors

File
MS
acUMA

Components

Figure 2: Architecture of Apache Camel

criteria for integration framework for extension was its open-
ness, broad adoption, active community and good documen-
tation. Based on these parameters, the Apache Camel 2.15
has been selected. For integration with the web and API
authorization framework, as well as for evaluation of OAuth
2.0 flows, we have adjusted and deployed ozAuth server [8].

Apache Camel is a Java-based framework, available under
Apache 2 license. It can be deployed as a standalone Java
application or integrated into other frameworks that pro-
vide the complete functionality of an enterprise service bus
(ESB), such as Apache ServiceMix. Other projects that in-
tegrate Apache Camel include JBoss Fuse, OpenESB and
Talend suite.

The architecture of Apache Camel is presented in Fig. 2,
depicting three main fundaments of the framework and po-
sitioning our acUMA component among them. The core of
this framework consists of a routing and mediation engine
that implements Enterprise Integration Patterns (EIP) [10].
Based on the specification of routes, which can be done using
one of Camel’s domain specific languages (DSL), the engine
manages the traversal and processing of messages in the sys-
tem. This processing is performed by processors, which are
also used to implement supported EIP patterns. Further-
more, the connectivity of framework with other systems is
established through the components. They expose the plat-
form, acting as a neutral interface between the systems. The
part of the component that interfaces with other systems is
abstracted as an endpoint, a factory that creates producers
and consumers that interact with other systems in both in-
coming and outgoing directions, respectively.

In order to enable Apache Camel to take part in UM A-based
flows, we have extended its functionality by implementing
the acUMA component that enables consumption of UMA-
protected endpoints. This extension is implemented as a
reference prototype, consisting of the components listed in
Table 1, along with their role. We have additionally adopted
the existing gauth component and applied it to further work
for the purpose of evaluation.

In our setup we have deployed one Apache Camel instance
in Apache Karaf container, installed in a virtual machine
on a VirtualBox host with i5-4300U CPU and 8GB RAM.
This guest has been assigned with one vCPU and 1.5GB
RAM. Additionally, we have deployed three more instances
with the same configuration, taking the role of cloud applica-

Table 1: acUMA Components

acUMARSController glﬁlﬁaiisofl?gé?:rlggftion
acUMAASControlier | "8) ion server
acUMA Processor _Sgggért;o%vidiiﬁi%ﬁ Aclaim
refService ?nggfgfzﬁly Ste li: iggplication
dbLayer persistence layer for application

tion (based on Redmine), authorization server and resource
server (based on oxAdmin). This setup has been used to
support our analysis and provide practical insight into flows.

4. ANALYZING INTEGRATION FLOWS

In this section we present the results of the analysis of in-
tegration flows performed in the test deployment environ-
ment, as described in the previous section. The deployment
scenario assumes that the integration flows are executed be-
tween systems that belong to different organizational enti-
ties, located in separate domains and hosted completely in
the cloud. We discuss and compare these approaches and
their effects to data security and user privacy in the context
of integrated cross-domain services.

4.1 The Scenario and Context

We analyze data flows among cloud services based on two
protocols. The first one, governed by OAuth 2.0 [9], rep-
resents the common approach that is used by a majority
of cloud services and applications to provide authorization
consents for cross-entity data accesses. The second approach
considers recent standardization efforts done by Kantara Ini-
tiative and IETF, based on UMA protocol [16].

In the following subsections we provide more details on each
protocol and its application in cloud integration flows. In
our analysis, we focus on the steps that are of interest for
trust establishment and security in inter-entity interactions.
The first activity, authorization of a client, enables a client
to consume cloud resources on behalf of a resource owner.
The second activity, consuming cloud resources, refers to
the processing activity of an authorized client, repeated in
separate and independent flows. This activity is also referred
as resource retrieval, additionally covering the case of basic
access to the resource. The client in our scenario refers to
integration platform that consumes and processes resources
of different cloud services on behalf of an resource owner.

4.2 OAuth 2.0

OAuth 2.0 builds on the concepts introduced by OAuth in
2010, with the primary aim to enable clients to access server
resources on behalf of a resource owner [9]. Standardized in
2012, OAuth 2.0 has refined initial concepts and architecture
of OAuth by introducing new types of flows and support
for non-browser based applications, reducing complexity for
client implementations and defining new token types.

In OAuth 2.0 scenario, a resource owner, an entity capable
of giving access to protected resources, authorizes a client

Client Int-Platform AuthZ-S
o T T T
[L_L']—(l)-» I I
(2) |
—(3 - |
(4) >
o) < (5)
[m]:(e)— |
(7] |
(&) >
! ©)
< (10}
L (11)—>|j:(1z)—>
| (13—

Figure 3: Authorizing int. platform in OAuth 2.0

Int-Platform Cloud-App

J—r—1

Figure 4: Resource retrieval in OAuth 2

to make requests to protected resources on behalf of a re-
source owner. A client is a device-agnostic term that refers
to an application that accesses the protected resource hosted
by resource server. Authorization server, the fourth entity
in this setting, issues access tokens to the client, providing
that the authorization consent by the resource owner has
been previously obtained. Additional details on OAuth 2.0
specification and its application can be found in [9].

4.2.1 Authorizing Integration Platform

As defined in OAuth 2.0 flows [9], this process assumes that
the integration platform has been previously registered with
the cloud service authorization server, and that the autho-
rization code grant type has been applied in the flow.

As depicted in Fig. 3, the flow starts with (1), where the
process gets initiated by the user that navigates its client to
integration platform and its interface (2), which requests the
access to the external resource provider. After the resource
provider is specified, the integration platform redirects the
user’s client to authorization server that governs the access
to resource provider (3, 4). The authorization server then
provides the client with the authorization interface (5) that
is presented to the user (6) to provide consent.

After the access to the resources gets consented by the user
(7), the client forwards the consent related data back to the
authorization server (8), which processes the request and
creates an authorization code (9). This code is then provided
to the client in the form of redirect response (10), which gets
forwarded to integration platform (11). The platform needs
to present an authorization code to the authorization server
(12) in order to get access token (13).

4.2.2 Consuming Cloud Resources

Access token represents the credential applied when access-
ing protected resources. It is provided in the form of a string
and has a particular scope and validity. Using an access to-

ken, the integration platform can access resource server (1)
and obtain the requested resource (2), as shown in Fig. 4.
The process described in this figure is subsequently repeated,
until the access token becomes invalid or expires.

As its validity is in practice set for a longer period of time,
the possession of an access token enables the integration
platform to access the resource in future independent ses-
sions, respectively. Alternatively, OAuth 2.0 specification
establishes an optional refresh token type which might be
provided by authorization server along with the access to-
ken. Due to the similarity of flows we describe the process
containing the access token and refer to specifications for
further details [9].

43 UMA

UMA (User-managed Access) is OAuth 2.0 based proto-
col, developed as a result of efforts of User-Managed Access
Work Group at Kantara Initiative and previous work based
on User-Managed Access Control [14]. It is realized as a
profile of OAuth 2.0, defining the flows, processes and APIs
that govern the access to protected resources in distributed
environment based on a resource owner policies and central-
ized authorization server. UMA specifications have been re-
cently adopted as Kantara Initiative Recommendations and
have been submitted to IETF. Core specifications of UMA
include User-Managed Access Profile of OAuth 2.0 [16] and
OAuth 2.0 Resource Set Registration [15].

UMA profile considers four entities to take place in inter-
action, similarly as in OAuth 2.0, and introduces requesting
party as an additional entity that uses a client to access a
protected resource. During the permission-gathering flow to
access the resource, an authorization server might request
from this party to authenticate or provide additional infor-
mation. This process is governed in the scope of claims-
gathering flow, another flow introduced by the specification.
UMA defines two additional OAuth 2.0 protected APIs that
govern access to authorization server separately for clients
and resource servers. It also specifies two separate token
types to be used by clients when accessing resource server
(RPT) and authorization server (AAT). Additional details
are provided in specifications [16].

4.3.1 Authorizing Integration Platform

In contrast to OAuth 2, UMA does not require user’s pres-
ence in this step. In its standard flow, as shown in Fig.
5, UMA assumes that the integration platform, as a client,
tries to access the resource without providing an access to-
ken, referred as RPT (1). This results in resource server to
dynamically request the access decision from authorization
server (2). Considering that the client (integration platform)
is unknown, the authorization server denies the request (3).
The resource server then registers necessary permissions for
a particular client, access and resource and requests a per-
mission ticket (4). This ticket (5) enables a resource server
to instruct the integration platform with further required
steps (6). The platform then uses the ticket to request au-
thorization data from authorization server (7). Along with
the request, the platform provides its AAT token, obtained
during previous registration at the authorization server.

Int-Platform Cloud-App AuthZ-S

L T

I
(2—

——(E—
(a—

R a—

L
(7) >

| 8y
(9)

Figure 5: Authorizing cloud application in UMA

(1—»

A

Int-Platform Cloud-App AuthZ-S
i T
(1—» |
anl
[—Q3
[— (43— |

T 1

Figure 6: Resource retrieval in UMA

Depending on client’s status and authorization policy for a
particular resource, the authorization server might require
additional claims to be provided (8). This process can be
performed out-of-the band, in automatized manner, or man-
ually, by involving a requesting party. In the next step, the
authorization server provides a client with an RPT token
that is used to access the resource under particular setting
(9). This token enables the client to access the resource.
It is however subjected to verification during every access,
enabling dynamic evaluation of authorization policies.

4.3.2 Consuming Cloud Resources

As it can be observed from Fig. 6, when accessing external
resources using standard bearer token profile [16], UMA as-
sumes that each access should be separately evaluated and
checked. By integrating this requirement in the standard-
ized flow, UMA approach enables the separation of resource
and authorization server, enabling their operation in differ-
ent domains and cross-organizational setting.

Upon getting access request (1) that contains an RPT token,
the resource server verifies its validity with the authorization
server (2). Only when the permission is still valid, subjected
to dynamic evaluation of access policies, the authorization
server will grant the access to the resource (3) and resource
server will subsequently provide that resource to the inte-
gration platform (4).

4.4 Comparing OAuth 2.0 and UMA

In this section we compare the flows of both protocols and
consider the capabilities that affect the security of interac-
tions. Although they belong to the same family of protocols,
we can observe that OAuth 2.0 and UMA provide different
levels of support for security and flexibility in the flows.

4.4.1 Authorization of Peers

In OAuth 2.0, client authorization is performed with the as-
sistance of resource owner, which grants the access consent
under particular scope. This can be characterized as a syn-

chronous process, as the flow gets blocked until the resource
owner consents the access. It can be also described as an
explicit authorization, as the consent is provided explicitly.

In UMA, client authorization is performed out-of-the band,
using separate flow that is not tight to access request. There-
fore, a resource owner does not need to consume the services
of cloud app or take part in its flow in order to introduce it
to an authorization server. Instead, the resource owner de-
fines authorization policies on authorization server, setting
the particular conditions and requirements that apply to a
specific client, or a family of clients. Based on a separate
flows and policy-based authorization, this process can be
characterized as asynchronous, based on in implicit consent.

4.4.2 Distributed Access Control

As Fig. 4 suggests, the authorization server is not included
in the evaluation of OAuth 2.0 access requests. This is the
result of a neutral specification that does not prescribe the
methods and flows for evaluation of access requests. The
process of coordination is therefore left to particular imple-
mentations. The first consequence of that is the coupling
of resource and authorization servers, practically implying
that they need to reside in the same organization or site in
order to effectively coordinate token validation. The inclu-
sion of authorization server might not be necessary at all,
as the same effect can be accomplished by relying on shared
database system used by both instances, or on some other
component.

The second consequence of this non-specification is that re-
source servers are free to interpret possible errors or negative
results obtained in the process of validation. The specifica-
tion does not deal with the details and granularity of error
responses provided to the clients as well. This limits the
scope of alternate flows in cross-domain execution environ-
ments, implying their reduction to a binary decision in the
standard case, affecting the dependability of distributed sys-
tems [1], crucial for their interconnection.

UMA approaches this issue by specifying the protection API
and resource set registration between resource and autho-
rization server [15]. This allows the structured evaluation
of access requests, enabling the decoupling of access and re-
source server and their deployment in separate, cross-domain
context. The distributed access control, therefore, enables
the deployment of one centralized server that will control
the access to user’s resources in different domains.

4.4.3 Evaluation of Access Requests

In Section 4.4.2 we pointed to the issue of coupling between
servers resulting from omitted specification in OAuth 2.0.
Contrary to that, UMA establishes the process of access
request evaluation that governs the responsibilities both of
resource and authorization servers. This enables detaching
of authorization server from the infrastructure of resource
provider and its relocation to resource owner’s premises, or
to a third-party domain.

It should be furthermore noted that one resource server can
use different authorization servers, and that a particular au-
thorization server can govern the accesses for different re-
source servers, located in various domains as well. This

opens the possibilities to run authorization server indepen-
dently and provide its functionality in the form of a separate
cloud service.

4.4.4 Authorization Scope and Granularity

The other distinction that characterizes the evaluation of
access requests in OAuth 2.0 and UMA is the granularity of
authorizations. OAuth 2.0 provides the access on a basis of
a scope, which represents an abstract construct that refers
to a resource-server specific environment. The authorization
is not tight to particular resource or access request, but to
hard-coded scope that implicitly encompasses the range of
resources available to the client. The common application of
a scope considers it as a functionality necessary to accom-
plish an action, such as permission to read files, ability to
submit videos, or obtaining user’s personal information.

In UMA, an access token is tight to a particular client and
refers to one or more permissions. Each permission describes
an individual resource set and client’s entitlements over it.
The granularity of access control is determined by abstract-
ing the scope of a resource set. Hence, a resource server
can internally consider a group of a resources, such as files
located under particular directory, to belong to a particu-
lar set, or it can refer each file as a separate resource set.
Such referencing enables more structured representation and
evaluation of access scopes in distributed environments.

4.4.5 Authorization Policies

Authorization policies enable users to define a structured
and reusable set of rules and requirements that are applied
in the process of policy enforcement. The separation of defi-
nition and enforcement of authorization policies furthermore
allows for a greater degree of flexibility, traceability and
manageability, especially in complex and distributed envi-
ronments. Authorization policies are considered as enablers
of effective data protection and access control [5, 22].

The capability to support separate policy definition differs
significantly between both protocols. While UMA enables
users to define complex authorization policies and delegate
their evaluation to an authorization server, the approach
used in OAuth 2.0 does not foresee any form of policies. In-
stead, OAuth 2.0 model requires the involvement of resource
owner in consent-gathering flow, establishing the explicit,
consent-based delegation of access that does not consider
any other form of information or requirement to be evalu-
ated.

The form and scope of policies that are included in UMA,
however, do not follow standardized or structured approach.
While its architecture based on separate policy evaluation
and policy enforcement entities purposely resembles XACML
approach [20], UMA avoids the specification of policies and
leaves this segment to be application and authorization server
specific. Such approach enables faster adoption of archi-
tecture, but hinders the interoperability and portability of
policies between different implementations.

4.4.6 Handling of Invalid Access Tokens

Similarly as the process of peer authorization, the handling
of invalid or expired access tokens in OAuth 2.0 requires the

involvement of the resource owner to gather a new access
consent. Furthermore, due to the opaque property of stan-
dard access tokens both in OAuth 2.0 and UMA, the client
system is not able to determine the reach of token valid-
ity. This results in an inability of OAuth 2.0 based flows
to continue the flows if the resource owner is not present.
In the case of UMA, when the token is invalidated or ex-
pired, the process might not require the involvement of a
resource owner. This solely depends on the authorization
policies set by the owner and dynamically evaluated on the
authorization server. Furthermore, even when the interven-
tion of a resource owner might be required, this interaction
can be performed in out-of-the band process, independently
of integration flow.

4.4.7 Gathering Claims

The additional feature of UMA that is not existing in OAuth
2.0 includes the capability to request initiation of claims-
gathering flows. This process can be initiated when inte-
gration platform accesses the authorization server for the
purpose of obtaining an RPT. Before this token gets issued
to the client, authorization server can initiate this additional
flow and request additional information to be provided. This
information includes the authentication token, but might be
extended with other claim types as well. Upon authenticat-
ing with the authentication server, the flow continues and
the client can access the protected resources again.

This control has potential to involve the application of ad-
ditional functions to improve the security of integrations,
such as communicating service agreements, obligations [20]
or providing other legally-related consents.

S. SECURITY ASSESMENT

In this section we approach both the current scenario based
on OAuth 2.0 and the scenario enabled by our acUMA con-
tribution. Considering the results and discussion provided
in the previous section, we analyze the security of both ap-
proaches. Our assessment focuses on particular scenarios
with service compositions based on integration workflows
that access data and execute processes in the cloud, cross-
ing heterogeneous domains on behalf of a customer. For
the purpose of this security assessment, we adopted security
goals defined in RMIAS framework [3], applying them to the
context of integration of distributed cloud applications [25].

5.1 Confidentiality

In this category, the system should ensure that only autho-
rized users can access the protected information. Consider-
ing the flows of both protocols presented in sections 4.2.1
and 4.2.1, as well the discussion related to authorization in
sections 4.4.1 and 4.4.3, we can conclude that both protocols
support the confidentiality requirement.

Be refining the confidentiality requirement with the princi-
ple of least privilege, the difference in conformance among
both protocols could be observed. Introduced by Saltzer
and Schroeder [21], and later discussed by Schneider [23],
the principle of least privilege assumes the process execu-
tion to be based on a minimal amount of privileges needed
to complete a task. Suboptimal support for this principle

can be observed especially in the case of OAuth 2.0, as it
provides widely scoped access to third parties.

In Section 4.4.4 we have shown how both protocols dealt
with the authorization and demonstrated improved granu-
larity level present in UMA. However, even the UMA ap-
proach does not fully satisfy the principle of least privilege,
as it does not catch all underlying contextual properties of
an access request. Such properties include the information
that describes the scope and a purpose of an access request,
as well as agent’s position in a cloud-based integration work-
flow. The enhancement of access control process with addi-
tional properties would allow to introduce the dimension of
contertual awareness, enabling structured and denser char-
acterization of access requests.

5.2 Integrity

While the dimension of confidentiality deals with the ac-
cess to data, the integrity in the scope of web authorization
protocols considers the assurance of data integrity and the
absence of unauthorized modifications.

The data modification in previously described flows is based
on client’s capability to alter data on a resource server. Sim-
ilarly to confidentiality, this capability is determined by the
scope of client’s authorization. Considering that OAuth 2.0
relies on a definition of wide access scope, as shown in Sec-
tion 4.4.4, the means to constraint client’s capabilities can
be considered as comparably weak. The capability to rely
on richer semantics and finer granularity for user’s permis-
sions enables UMA to restrict clients to individual access
methods, on a level of particular resources, enabling the au-
thorization servers to enforce more restrictive access control.

5.3 Accountability

In RMIAS framework [3], accountability refers to the ca-
pability of the system to hold users responsible for their ac-
tions. The supplementing work [7] defines the accountability
as a concept that allows the monitoring of the use of infor-
mation and the transparency of the whole process, so that
the misuse of information could be determined, and misbe-
having parties held accountable. Both web authorization
protocols in their current setups do not consider account-
ability. This presents a challenge for a future work.

5.4 Non-repudiation

Non-repudiation refers to the ability of a system to prove
occurrence or non-occurrence of an event, as well as par-
ticipation or non-participation of a party in a transaction.
Non-repudiation should be considered in juristic context, as
it requires legally-valid and acceptable supporting proofs.

Support for non-repudiation was not of primary concern in
the design of both protocols. As one of supporting blocks
of non-repudiation consists of authentication, the omission
of cryptographic functions in OAuth 2.0 renders it practi-
cally non-applicable for such requirements. Although not di-
rectly targeting non-repudiation, UMA claim-gathering flow
introduced in Section 4.4.7 the means to authenticate clients
and requesting parties using broadly adopted protocols [16].
These protocols include SAML 2.0 and OpenID Connect,
standardized approaches used for the purposes of critical

business-to-business and eGovernment transactions. Stronger
authentication, however, does not grant complete support
for non-repudiation [13], but provides one step further to
securing cross-entity transactions.

5.5 Auditability

Auditable systems should ensure persistent and reliable mon-
itoring of all actions performed within the system. The au-
ditability of distributed systems is considered as a non-trivial
requirement and has been already investigated in various do-
mains [6]. The both protocols that are subject of this work
do not explicitly consider audit capabilities in their design.
Therefore, we consider the audit measures to be out of the
scope of these approaches, delegated to be managed on other
system layers or approached as a future work.

5.6 Authenticity and Trustworthiness

The requirement of authenticity enables actors to verify the
identity and establish the trust in a third-party involved
in the transaction. The integration of proper authentica-
tion methods supports the fulfillment of other security re-
quirements as well, including the categories such as mon-
repudiation, auditability, confidentiality and integrity.

Verification of the identity in OAuth 2.0 encompasses the
resource owner and client that access authorization server.
In the case of implicit authorization grant [9], the verifica-
tion is restricted to the resource owner only. In UMA-based
flows, the verification extends to requesting party, an entity
that employs a client (agent) to access the resources, and a
resource server, an entity that registers resources and vali-
dates client access token at authorization server.

OAuth 2.0 does not explicitly prescribe the methods used
for client authentication, leaving the specifics to be agreed
between client and authorization server bilaterally. The
authentication should be considered separately of identifi-
cation, a process that establishes the identity of a third
party, which is also not included in the scope of specifica-
tions and as such considered as out-of-the-band process. In
UMA, similarly, the authentication is specified in the terms
of OAuth 2.0 flows by default. The specification provides
claim-gathering flow, as described in Section 4.4.7, enabling
the clients to authenticate using secure and reliable proto-
cols, such as SAML 2.0 and OpenID Connect. This enables
authentication based on high-assurance frameworks, as well.

In cases of both protocols, clients are required to authenti-
cate servers by the means of TLS-based authentication, with
the further possibility to rely on extended validation, pro-
viding that the necessarily chained trust relations are given,
and security related consequences considered [11].

5.7 Privacy

In RMIAS framework, privacy goal is supported by obey-
ing privacy legislation and enabling individuals to control,
where feasible, their personal information [3]. Translated
to cloud-based integrations where data is exchanged across
different entities, the accomplishment of privacy goal can be
considered as a challenging activity. While OAuth 2.0 do
not consider privacy in its design, UMA framework deals
with the privacy by providing the hints and recommenda-

tions to implementators and operators in specification suite
[16]. Although the distributed architecture of UMA enables
a higher degree of privacy and establishes controls for its im-
provement, this topic can be still considered as a challenge
for future work.

6. CONCLUSION

In contrast to other, on-premise based integration systems,
the workflows in the cloud integration platforms aim to be
dominantly executed in the cloud. Such setup includes not
only the execution of the primary business processes on
third-party cloud premises but the interactions with the
other cloud and on-premise systems on behalf of a client,
as well. In the course of these interactions, especially when
integrating with public services and APIs, the flows specified
in web authorization protocols are applied for the purpose of
access control and resource sharing. The resulting transition
of business process execution to the third-party environment
exhibits complex setups, uncontrollable permissions, and un-
clear responsibilities of involved parties. Such application re-
quires careful reconsideration of security requirements and
the issues arising from the use of standardized approaches,
not completely suited for complex interactions occurring in
the cross-domain environment.

In this work, we have introduced the extension that enables
Apache Camel integration framework to apply UMA pro-
tocol processes in its workflow. In our analysis of security
related controls and functionality of both OAuth 2.0 and
UMA protocols, we have discussed differences between these
approaches and how they affect security in the cloud-based
integration environment. We have demonstrated the bet-
ter alignment of UMA with security requirements for cloud-
based integrations. However, both protocols expose deficien-
cies in the overall security perspective.

7. ACKNOWLEDGEMENT

This work has been supported by the European Commis-

sion’s H2020 Programme under the SUNFISH project (N.644666).

8. REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and
C. Landwehr. Basic concepts and taxonomy of
dependable and secure computing. Dependable and
Secure Computing, IEEE Transactions on, 1(1), 2004.

[2] F. Baude, L. Filali, F. Huet, V. Legrand, E. Mathias,
P. Merle, C. Ruz, R. Krummenacher, E. Simperl,

C. Hammerling, et al. Esb federation for large-scale
soa. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 2459-2466. ACM, 2010.

[3] Y. Cherdantseva and J. Hilton. A reference model of
information assurance & security. In Awvailability,
Reliability and Security (ARES), 2018 Eighth
International Conference on, p. 546-555. IEEE, 2013.

[4] C. Coles and J. Yeoh. Cloud adoption practices &
priorities survey report. Cloud Security Alliance, 2015.

[5] C. Fournet, A. D. Gordon, and S. Maffeis. A type
discipline for authorization policies. In Programming
Languages and Systems, p. 141-156. Springer, 2005.

[6] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, and I. Stoica. Above
the clouds: A berkeley view of cloud computing.
University of California, Berkeley, 2009.

[7] R. Gajanayake, R. Iannella, and T. Sahama. Sharing
with care: An information accountability perspective.
Internet Computing, IEEFE, 15(4):31-38, 2011.

[8] Gluu Inc. GluuFederation - oxAuth, 2015.

[9] D. Hardt. The OAuth 2.0 authorization framework.
2012.

[10] G. Hohpe and B. Woolf. Enterprise integration
patterns. In 9th Conference on Pattern Language of
Programs, pages 1-9, 2002.

[11] C. Jackson, D. R. Simon, D. S. Tan, and A. Barth. An
evaluation of extended validation and
picture-in-picture phishing attacks. In Financial
Cryptography and Data Security. Springer, 2007.

[12] M. Kleeberg, C. Zirpins, and H. Kirchner. Information
systems integration in the cloud: Scenarios, challenges
and technology trends. In Future Business Software,
pages 39-54. Springer, 2014.

[13] S. Kremer, O. Markowitch, and J. Zhou. An intensive
survey of fair non-repudiation protocols. Computer
communications, 25(17):1606-1621, 2002.

[14] M. P. Machulak and A. Van Moorsel. Architecture and
protocol for user-controlled access management in web
2.0 applications. In Distributed Computing Systems
Workshops (ICDCSW), 2010 IEEE 30th International
Conference on, pages 62-71. IEEE, 2010.

[15] E. Maler, D. Catalano, M. Machulak, and
T. Hardjono. OAuth 2.0 Resource Set Registration.
2015.

[16] E. Maler, D. Catalano, M. Machulak, and
T. Hardjono. User-Managed Access (UMA) Profile of
OAuth 2.0. 2015.

[17] M. Pezzini and B. Lheureux. Integration platform as a
service: moving integration to the cloud. Gartner,
2011.

[18] M. Potoé¢nik and M. B. Juric. Integration of SaaS
using [PaaS. In The 1st International Conference on
CLoud Assisted ServiceS, page 35, 2012.

[19] P. Raj. Enriching the integration as a service paradigm
for the cloud era. Cloud computing—principles and
paradigms. Wiley, Hoboken, pages 57-96, 2011.

[20] E. Rissanen et al. extensible access control markup
language (xacml) version 3.0, 2013.

[21] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 63(9):1278-1308, 1975.

[22] P. Samarati and S. D. C. Di Vimercati. Access
control: Policies, models, and mechanisms. Lecture
notes in computer science, pages 137-196, 2001.

[23] F. B. Schneider. Least privilege and more. In
Computer Systems, pages 253—258. Springer, 2004.

[24] L. D. Xu. Enterprise systems: state-of-the-art and
future trends. Industrial Informatics, IEEE
Transactions on, 7(4):630-640, 2011.

[25] D. Zissis and D. Lekkas. Addressing cloud computing
security issues. Future Generation computer systems,
28(3):583-592, 2012.

	Introduction
	Contribution

	Background and Related Work
	Integration Platform Scenarios and Issues
	Why is Cloud Integration Different?
	Paper Outline

	Cloud Integration with acUMA
	Analyzing Integration Flows
	The Scenario and Context
	OAuth 2.0
	Authorizing Integration Platform
	Consuming Cloud Resources

	UMA
	Authorizing Integration Platform
	Consuming Cloud Resources

	Comparing OAuth 2.0 and UMA
	Authorization of Peers
	Distributed Access Control
	Evaluation of Access Requests
	Authorization Scope and Granularity
	Authorization Policies
	Handling of Invalid Access Tokens
	Gathering Claims

	Security Assesment
	Confidentiality
	Integrity
	Accountability
	Non-repudiation
	Auditability
	Authenticity and Trustworthiness
	Privacy

	Conclusion
	Acknowledgement
	References

