
A High-Level and Scalable Approach for Generating
Scale-Free Graphs using Active Objects

Keyvan Azadbakht1 Nikolaos Bezirgiannis1 Frank S. de Boer1 Sadegh Aliakbary2

1Centrum Wiskunde en Informatica, Amsterdam, Netherlands
{k.azadbakht, n.bezirgiannis, f.s.de.boer}@cwi.nl

2Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
s_aliakbary@sbu.ac.ir

ABSTRACT
The Barabasi-Albert model (BA) is designed to generate
scale-free networks using the preferential attachment mecha-
nism. In the preferential attachment (PA) model, new nodes
are sequentially introduced to the network and they attach
preferentially to existing nodes. PA is a classical model
with a natural intuition, great explanatory power and a sim-
ple mechanism. Therefore, PA is widely-used for network
generation. However the sequential mechanism used in the
PA model makes it an inefficient algorithm. The existing
parallel approaches, on the other hand, suffer from either
changing the original model or explicit complex low-level
synchronization mechanisms. In this paper we investigate
a high-level Actor-based model of the parallel algorithm of
network generation and its scalable multicore implementa-
tion in Haskell.

CCS Concepts
•Computing methodologies→ Parallel programming lan-
guages;

Keywords
Social Network, Actor Model, Multicore Processor, Parallel
Algorithm, Cooperative Scheduling

1. INTRODUCTION
Social networks in the real world appear in various domains
such as, among others, friendship, communication, collabo-
ration and citation networks. Social networks demonstrate
nontrivial structural features, such as power-law degree dis-
tributions, that distinguish them from random graphs. There
exist various network generation models that synthesize ar-
tificial graphs that capture properties of real-world social

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851722

networks. Some existing network generative models are the
Erdos-Renyi (ER) [15] model of random graphs, the Watts-
Strogatz (WS) [26] model of Small-world networks, and the
Barabasi-Albert model of scale-free networks. Among these
models, Barabasi-Albert model, which is based on Preferen-
tial Attachment [7], is one of the most commonly used mod-
els to produce artificial networks, because of its explanatory
power, conceptual simplicity, and interesting mathematical
properties [25]. The need for efficient and scalable methods
of network generation is frequently mentioned in the liter-
ature, particularly for the preferential attachment process
[2, 5, 8, 11, 16, 21–23, 25, 27]. Scalable implementations are
essential since massive networks are important; there are
fundamental differences between the structure of small and
massive networks even if they are generated according to
the same model, and there are many patterns that emerge
only in massive networks [20]. Analysis of the large-scale
networks is of importance in many areas, e.g. data-mining,
network sciences, physics, and social sciences [6]. The prop-
erty that we have focused on in this paper is the degree of the
nodes and by preferential attachment (PA) we mean degree-
based preferential attachment. In PA-based generation of
the networks, each node is introduced to the existing graph
preferentially based on the degrees of the existing nodes,
i.e., the more the degree of an existing node, the higher the
probability of choosing it as the target of a new connection.

The PA-based parallel and distributed versions of generating
the scale-free graphs are based on a partitioning of the nodes
and a parallel process for each partition which adds edges
to its nodes. The edges are generated by random selection
of target nodes. The data structure prescribed in the Copy
Model [19] guarantees that the selection of the target is done
consistently, e.g., the probability distribution of selecting the
target nodes in the parallel version should remain the same
as the distribution in the sequential one. However, from
the point of view of the control flow, the following main
problem arises: random selection requires synchronization
between the parallel processes because of not-yet-resolved
target nodes and the need for conflict resolution, namely,
the selection of a node which has already been selected as a
target of the given source node.

The main contribution of this paper is a high-level Actor-
based model for the PA-based generation of networks which
avoids the use of low-level intricate synchronization mech-
anisms. A key feature of the Actor-based model itself, so-
called cooperative scheduling, however, poses a major chal-

1244

lenge to its implementation. In this paper we discuss the
scalability of a multi-core implementation based on Haskell
which manages cooperative scheduling by exploiting the high-
level and first-class concept of continuations [24]. Continu-
ations provide the means to “pause” (part of) the program’s
execution, and programmatically switch to another execu-
tion context; the paused computation can be later resumed.
Thus, continuations can faithfully implement cooperative
scheduling in a high-level, language-builtin manner.

The rest of the paper is organized as follows. The description
of the Actor-based modeling framework which is used to
model the PA-based generation of massive networks is given
in section 2. Section 3 elaborates on parallelizing the PA
model. The implementation-specific details and the results
for the proposed solution are presented in Section 4. Section
5 mentions the related works. Finally we conclude in section
6.

2. THE MODELING FRAMEWORK
The Actor-based modeling framework supports concurrency
and synchronization mechanisms for concurrent objects. It
is based on the ABS (Abstract Behavioral Specification) lan-
guage [18] which is developed for designing executable mod-
els of distributed object-oriented systems . The ABS uses
asynchronous method calls, futures, interfaces for encapsu-
lation, and cooperative scheduling of method activations [12]
inside concurrent objects [17]. This feature combination
results in a concurrent object-oriented model which is in-
herently compositional and which supports various analysis
tools [4], e.g., resource analysis [3].

Apart from a functional layer which includes algebraic data
types and pattern matching, the modeling framework addi-
tionally features global arrays as a mutable data structure
shared among objects which fits well in the multicore setting
to decrease the amount of costly message passing, and also
to simplify the model. We extended the ABS to support the
feature. In general, this feature can cause complicated and
hard-to-verify programs and thus the programmer should
use the feature in a disciplined manner, such as provided by
our model (which restricts the model to single write access),
to avoid race conditions.

3. PARALLELIZING THE PA MODEL
In this section we present the solution for the PA problem
utilizing the idea of active objects cooperating in a mul-
ticore setting. For the solution we adopt the copy model,
introduced in [19]. We first introduce the main data struc-
ture of the proposed approach which is based on the graph
representation in copy model. Next we present the basic syn-
chronization and communication mechanism underlying our
solution and its advantages over existing solutions.

3.1 The Graph Representation
We introduce one shared array, arr, as the main data struc-
ture that holds the representation of the graph. The array
consists of the edges of the graph. Each (i, j) where i, j > 0
and j = i+ 1, and j mod 2 = 0 shows an edge in the graph
between arr[i] and arr[j] (Figure 1a).

According to the PA, each node is added to the existing
graph via a constant number of edges (referred to as m)
targeting distinct nodes. There is also an initial clique, a
complete graph with the size of m0 where (m0 > m), which
is stored at the beginning of the array. Therefore the size
of the array is calculated based on the number of nodes,
num, and the number of edges that connect each new node
to the existing distinct nodes, m. The connections of a new
node are established via a probability distribution of the
degrees of the nodes in the existing graph, that is, the more
the degree of the existing node, the more the probability
of choosing it as the target. For instance, if the node n is
the new node to be added to the graph with the existing
graph with [1..n − 1] nodes then, according to equation 1,
the probability distribution of choosing the existing nodes
is [p1..pn−1]. (deg(i) gives the degree of the node i in the
existing graph)

pi =
deg(i)∑n−1

j=1 deg(j)

n−1∑
i=1

pi = 1 (1)

As we mentioned, the connections for the new node should
be distinct. Therefore if a duplicate happens the approach
retries to make a new connection until all the connections
are distinct. This graph representation provides the above
mentioned probability distribution since the number of oc-
currences of each node in the array is equal to its degree.
As you see in figure 1b, in order to add node n to the exist-
ing graph containing n− 1 nodes, with the assumption that
m = 3, targets are selected randomly from the slots that are
located previous to the node n. It is obvious that self-loop
cannot happen, i.e., an edge whose source and target are the
same. Figure 1c illustrates an optimization on the array so
that the array only contains the targets of the edges since
the sources for each node are calculable. The array is half
size as the one in Figure 1b. Each slot in the array can have
one of two states: resolved or unresolved. In the former case
it contains the node number which is greater than zero, and
in the latter it contains zero.

The sequential solution for the problem consists of process-
ing the array from left to right to resolve all the slots. The
parallel alternative, on the other hand, is to have multiple
active objects processing partitions of the array in parallel.
We distinguish between the following uses of indices. At the
lowest level we have the indices of the slots. The next level
is the id of the nodes. Each node contains slots. Finally at
the top level we have the id of the partitions. Each partition
contains nodes and consequently slots. In the proposed ap-
proach the partitions satisfy the following equations which
express that the sets of indices of the partitions are mutu-
ally disjoint (equation 3); that their union is equal to the
whole array (equation 2); furthermore, the sequence of slots
of each node must be placed in one partition (equation 4)
so that one active object resolves the new node and race
conditions are avoided for the checking duplicates:

w⋃
i=1

pari = G (2)

∀(1 ≤ (i 6= j) ≤ w).pari ∩ parj = ∅ (3)

∀i, j ∈ G.(node(i) = node(j))→ (par(i) = par(j)) (4)

1245

(a) The array which represents the graph

(b) The nth node and its connections to the existing graph
with n− 1 nodes

(c) A memory usage optimization to the array based on copy
model

Figure 1: The array representing the graph

where G is the global set containing all the indices of the
shared array, w holds the number of partitions, pari is the
set which holds the indices of the ith partition of the ar-
ray, node(i) is a function that returns the node id to which
the slot of the array with index i belongs, and par(i) is a
function that returns the partition id to which the index i
belongs. Note that indices that belong to a specific node
differ from the occurrences of that specific node in the ar-
ray. The former indices are the slots that represents the
edges that are created during introducing the new node to
the graph, which its size is constant (denoted by m), while
the latter changes during the graph generation.

There are different approaches to partition the array so that
they hold the above equations, such as Consecutive and
Round Robin Node Partitioning (CSP and RRP respec-
tively). As it is shown in [2], RRP is more efficient and it is
observed a better load balancing among processors as well
as less unresolved chains of dependencies (Figure 2) which
leads to less computational overhead. Therefore we have
utilized RRP to partition the array among active objects.

3.2 Synchronization of Chains of Unresolved
Dependencies

Each active object only resolves (i.e. writes to) the slots
which belong to its own partition . Nevertheless it can read

Figure 2: An example of the general sketch of dependencies
(right to left) and computations (left to right)

(a)

(b)

Figure 3: Two different solutions for the PA problem (the
second one is the proposed approach)

all the slots throughout the array. In the parallel solution,
an active object may select a slot as the target which is not
resolved yet since either the other active object responsible
for the target slot has not processed it or the target slot
may wait for another target itself (see dependency chains in
figure 2). The way waiting for unresolved slots is managed
is crucial for the complexity of the model and its scalabil-
ity. Next we describe the two main approaches to deal with
unresolved dependencies (Figure 3):

Synchronization by communication: Active object A pro-
cesses its own partition of the array and for each unresolved
randomly selected slot it sends a request to the object B
responsible for the target. When object B processes the re-
quest, it checks whether the slot is resolved. If it is not
then it stores the information of the request (e.g. the sender
id, the slot requiring the value of the target) in a corre-
sponding data structure. Because B is the only object which
writes to the target slot when it is resolved, it suffices that
B answers all the stored requests waiting for the resolved
target by broadcasting the value of the slot. As such this
approach exploits the wait-notify pattern rather than busy-
wait polling, and it can be efficient depending on how the
programmer implements the data structure. However, this
approach involves a low-level ad-hoc management of the re-
quests through the explicit user-defined implementation of
the storage and retrieval of the requests. Note that in this
approach there are exactly two messages that have to be
passed for each request for an unresolved slot (Figure 3a).

Synchronization by Cooperative Scheduling : Active object A
processes its own partition of the array and for each unre-
solved randomly selected slot it sends an asynchronous self
request for the target value. When object A schedules and
processes the request it checks whether the slot is resolved

1246

or not (by a Boolean condition) and if not it awaits on this
condition. This means that the request process is suspended.
It is notified when the boolean condition evaluates to true
and stored back in the object’s queue of active processes
(Figure 3b). This approach also avoids busy-waiting and
follows the wait-notify pattern. However, the key feature in
this approach is the use of cooperative scheduling in which
the executing process of an active object can release con-
ditionally the control cooperatively so that another process
from the queue of the object can be executed. The contin-
uation of the process which has conditionally released the
control will be stored into a separate queue of suspended
processes. These processes are stored again in the object’s
queue for execution when they are notified. The Haskell im-
plementation of this mechanism takes care of the low-level
storage, execution and suspension of the processes generated
by asynchronous messages. The ABS code itself, see below,
remains high-level by means of its programming abstractions
describing asynchronous messaging and conditional release
of control.

3.3 The Actor-based Model of PA
The main part of the encoding of our proposed approach is
depicted in Figure 4. The worker objects are active objects
which resolve their corresponding partitions. To this aim,
each worker goes through its own partition and it checks a
randomly selected target for each of its slots (note that m
denotes the number of connections, or slots in the array, per
node). If the target slot is already resolved then the worker
takes the value and resolves the slot of the current index in
case there is no conflict. If it is not resolved yet then it calls
the request method asynchronously. The request method
awaits on the target until it is resolved. Then it uses the
value of the resolved target to resolve the current slot, if
there is no duplicate. In case of a duplicate, the algorithm
selects another target randomly in the same range as the
previous one.

Note that the calls to the request method in lines 8 and 22
are asynchronous (denoted by exclamation mark) and syn-
chronous (denoted by dot) respectively. The asynchronous
call is introduced so as to spawn one process per each unre-
solved dependency. In the synchronous call, however, there
is no need to spawn a new process since the current process is
already introduced for the corresponding unresolved depen-
dency. Note that suspension of such a process thus involves
in general an entire call stack, which poses one of the major
challenges to the implementation of ABS, but which is dealt
with in Haskell by the high-level and first-class concept of
continuations (described in more detail below).

4. IMPLEMENTATION AND RESULTS
The implementation of the proposed PA algorithm is done
in the ABS language with its actively developed abs2haskell
backend [9]. The backend translates ABS source-to-source
down to Haskell code. Haskell was chosen because of its
relative good execution speed and the straightforward map-
ping of ABS features to equivalent in Haskell. ABS, as de-
scribed in Section 2, is a statically-typed, purely-functional
language at its core with an object-oriented layer and strict
evaluation; comparatively, Haskell is a statically-typed, purely-

1: Each active object O executes the following in parallel
2: run(...) : void
3: for each Node i in the partition do
4: for j = 1 to m do
5: target← random[1..(i− 1) ∗m]
6: current = (i− 1) ∗m+ j
7: if arr[target] = 0 then
8: this ! request(current, target)
9: else if duplicate(arr[target], current) then
10: j = j − 1 . Repeat for the current slot j
11: else
12: arr[current] = arr[target] . Resolved

13:
14:
15: request(target : Int, current : Int) : void
16: await (arr[target] 6= 0)
17: . At this point the target is resolved
18: value = arr[target]
19: if duplicate(value, current) then
20: target = random[1..target/m ∗m]
21: . Calculate the target for the current again
22: this.request(target, current)
23: else
24: arr[current] = value . Resolved

25:
26:
27: duplicate(value : Int, current : Int) : Boolean
28: for each i in (indices of the node to which current

belongs) do
29: if arr[i] == value then
30: return True
31: return False

Figure 4: The sketch of the proposed approach

functional language with a by-default lazy evaluation strat-
egy. The translation of the functional core becomes a one-
to-one mapping, where we add on-top support for inter-
faces (through Haskell typeclasses) and subtyping (through
Haskell existential types).

During execution, the de-facto Haskell compiler (GHC) em-
ploys for its runtime system a M:N hybrid threading model,
where M lightweight (in terms of memory) threads are mapped
to N SMP-enabled kernel threads through a time-sharing
fashion (usually M>N). In our setting, each active object
(actor) becomes such a lightweight thread, and instead ABS
processes become coroutines, which are even more lightweight,
suspendable computations implemented on top of Haskell’s
first-class continuations. The continuation is a language-
builtin construct to suspend the current execution of a pro-
cess in the program and store its “future” execution simply
as data; the data include the process’ closure (a function
together with its environment, i.e. free variables) and the
current call stack. Coroutines (in our case ABS processes)
are cooperatively scheduled: a running coroutine may de-
cide to suspend its execution and its associated active ob-
ject (thread) will pick another process to run based on a
scheduling strategy for processes (round-robin by default).
In contrast, ABS objects are preemptively scheduled by the
Haskell runtime system to take advantage of multicore par-

1247

allelism.

The ABS code for the algorithm maintains a global, mu-
table, O(1), boxed array: each array-cell is an ABS future
coupled with a set of active objects (their thread references)
as “listeners”. An ABS process will suspend its execution
until the future of the array cell is resolved; the active ob-
ject that resolves the future will inform the set of listeners
to wake up the corresponding suspended processes. This ex-
tension of future-arrays is integrated naturally in the ABS
ecosystem through the await on-boolean-condition. Finally,
we use a random-number library with each active object hav-
ing each own, separate random-number generator for perfor-
mance reasons.

Results: We run the program of the PA-based generation of
networks in ABS2Haskell based on the proposed approach
on SURFsara cluster on a 16 core processor 2.30 GHz (Intelő
Xeonő CPU E5-2698 0) with 128GB of memory [1].

The program is verified using a set of test cases (e.g. check-
ing for the resolution of all edges of the graph and checking
duplicates for the final graph). Figure 5 illustrates the de-
gree distribution of two networks: one generated by sequen-
tial method which follows the original model of PA, and the
other one by our proposed parallel method. According to
this experiment, the degree distribution of the graphs gen-
erated by our proposed method follows a power-law degree
distribution. In Figure 6, the performance and the scalabil-
ity of the program is depicted for different input parameters.
The performance of the program is good in comparison with
the performance of the efficient sequential implementation
of the PA in abs2haskell.

Looking at the performance results, one point worth men-
tioning is the super-linear speedup observed when going
from 1-core to a 2-core execution for any of the 4 distinct
runs. We speculate that this can most likely be attributed
to the great effect a multi-level CPU cache can have on a
multicore setup. Specifically for our case and granted our
SURFSara experimentation system, a doubling in number
of cores leads to the doubling of the size of L1 and L2 cache
(the shared L3 cache stays the same). This results to less
overall cache misses on a 2-core setup, which greatly adds
to the performance, hence the super-linear speedup. How-
ever, this effect is only clearly observable when transitioning
from 1-core to 2-core; after 2 cores, the parallel threading
overhead overshadows any larger-cache benefit. Still, this
remains just a speculation; we are planning to investigate
more on the reason and the impact a cache behaviour can
have over the PA graph generation.

5. RELATED WORK
There exist some attempts to develop efficient implementa-
tions of the PA model [2,5,8,16,21,22,25,27]. Some existing
works focus on more efficient implementations of the sequen-
tial version [5, 8, 25]. Such methods propose the utilization
of data-structures that are efficient with respect to mem-
ory consumption and time complexity. Few existing meth-
ods are based on a parallel implementation of the PA model
[2,22,27], among which some methods [22,27] are based on a
version of the PA model which does not satisfy its basic crite-
ria (i.e., consistency with the original model). The approach

(a)

(b)

Figure 5: The degree distribution of a network with 105

nodes and m = 3 generated by the sequential and the pro-
posed parallel methods

in [2] requires complex synchronization and communication
management and generates considerable overhead of mes-
sage passing. This stems from that this latter approach is
not developed for a multicore setting but for a distributed
one. However our focus is to have a high-level scalable and
parallel implementation of the original PA model utilizing
the computational power of multicore architectures.

6. CONCLUSION AND FUTURE WORK
We showed that the PA-based generation of networks allows
a high-level and scalable multicore implementation using the
ABS language and its Haskell backend that supports coop-
erative multitasking via continuations and multicore paral-
lelism via its lightweight threads. Due to space limitations
we omitted a comparison with the use of the Encore pro-
gramming language which is a new object-oriented parallel
programming language based on actors [10] and which is
based on a runtime system in C.

Future work will be dedicated toward further optimizations
of the Haskell runtime system for the ABS. Other work of
interest is to formally restrict the use of shared data struc-
tures in the ABS to ensure encapsulation. One particular
approach is to extend the compositional proof-theory of con-
current objects [14] with foot-prints [13] which capture write
accesses to the shared data structures and which can be used

1248

(a) (b)

(c) (d)

Figure 6: The performance and scalability results of the proposed approach in ABS2Haskell

to express disjointness of these write accesses.

7. ACKNOWLEDGEMENTS
Partly funded by the EU project FP7-612985 UpScale:
From Inherent Concurrency to Massive Parallelism through
Type-based Optimizations (http://www.upscale-project
.eu). Partly funded by the EU project FP7-610582 ENVIS-
AGE: Engineering Virtualized Services (http://www.envisage
-project.eu). This work was carried out on the Dutch na-
tional e-infrastructure with the support of SURF Founda-
tion. The authors would like to thank Tobias Wrigstad and
Dave Clarke for their helpful comments and suggestions.

8. REFERENCES
[1] Surfsara. https://surfsara.nl/.

[2] M. Alam, M. Khan, and M. V. Marathe.
Distributed-memory parallel algorithms for generating
massive scale-free networks using preferential
attachment model. In Proceedings of SC13:
International Conference for High Performance
Computing, Networking, Storage and Analysis,
page 91. ACM, 2013.

[3] E. Albert, P. Arenas, J. C. Fernández, S. Genaim,
M. Gómez-Zamalloa, G. Puebla, and G. Román-Dı́ez.
Object-sensitive cost analysis for concurrent objects.
Softw. Test., Verif. Reliab., 25(3):218–271, 2015.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and
D. Zanardini. Cost analysis of object-oriented
bytecode programs. Theor. Comput. Sci.,
413(1):142–159, 2012.

[5] J. Atwood, B. Ribeiro, and D. Towsley. Efficient
network generation under general preferential
attachment. arXiv preprint arXiv:1403.4521, 2014.

[6] D. Bader, K. Madduri, et al. Parallel algorithms for
evaluating centrality indices in real-world networks. In
Parallel Processing, 2006. ICPP 2006. International
Conference on, pages 539–550. IEEE, 2006.

[7] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. science, 286(5439):509–512, 1999.

[8] V. Batagelj and U. Brandes. Efficient generation of
large random networks. Physical Review E,
71(3):036113, 2005.

[9] N. Bezirgiannis and F. S. de Boer. ABS: a high-level
modeling language for Cloud-Aware Programming. In
Proc. SOFSEM ’16. Springer, 2016. To appear.

[10] S. Brandauer, E. Castegren, D. Clarke,
K. Fernandez-Reyes, E. B. Johnsen, K. I. Pun, S. L. T.
Tarifa, T. Wrigstad, and A. M. Yang. Parallel objects
for multicores: A glimpse at the parallel language
encore. In Formal Methods for Multicore Programming
- 15th International School on Formal Methods for the
Design of Computer, Communication, and Software
Systems, SFM 2015, Bertinoro, Italy, June 15-19,
2015, Advanced Lectures, pages 1–56, 2015.

[11] D. Chakrabarti, Y. Zhan, and C. Faloutsos. R-mat: A
recursive model for graph mining. In SDM, volume 4,
pages 442–446. SIAM, 2004.

[12] F. S. De Boer, D. Clarke, and E. B. Johnsen. A
complete guide to the future. In Programming
Languages and Systems, pages 316–330. Springer,
2007.

[13] F. S. de Boer and S. de Gouw. Being and change:

1249

Reasoning about invariance. In Correct System Design
- Symposium in Honor of Ernst-Rüdiger Olderog on
the Occasion of His 60th Birthday, Oldenburg,
Germany, September 8-9, 2015. Proceedings, pages
191–204, 2015.

[14] J. Dovland, E. B. Johnsen, and O. Owe. Verification
of concurrent objects with asynchronous method calls.
In 2005 IEEE International Conference on Software -
Science, Technology and Engineering (SwSTE 2005),
22-23 February 2005, Herzelia, Israel, pages 141–150,
2005.

[15] P. Erdös and A. Rényi. On the central limit theorem
for samples from a finite population. Publ. Math. Inst.
Hungar. Acad. Sci, 4:49–61, 1959.

[16] D. Gregor and A. Lumsdaine. The parallel bgl: A
generic library for distributed graph computations.
Parallel Object-Oriented Scientific Computing
(POOSC), page 2, 2005.

[17] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3):463–492, 1990.

[18] E. B. Johnsen, R. Hähnle, J. Schäfer, R. Schlatte, and
M. Steffen. Abs: A core language for abstract
behavioral specification. In Formal Methods for
Components and Objects, pages 142–164. Springer,
2012.

[19] R. Kumar, P. Raghavan, S. Rajagopalan,
D. Sivakumar, A. Tomkins, and E. Upfal. Stochastic
models for the web graph. In Foundations of
Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 57–65. IEEE, 2000.

[20] J. Leskovec. Dynamics of large networks. ProQuest,
2008.

[21] Y.-C. Lo, H.-C. Lai, C.-T. Li, and S.-D. Lin. Mining
and generating large-scaled social networks via
mapreduce. Social Network Analysis and Mining,
3(4):1449–1469, 2013.

[22] Y.-C. Lo, C.-T. Li, and S.-D. Lin. Parallelizing
preferential attachment models for generating
large-scale social networks that cannot fit into
memory. In Privacy, Security, Risk and Trust
(PASSAT), 2012 International Conference on and
2012 International Confernece on Social Computing
(SocialCom), pages 229–238. IEEE, 2012.

[23] S. Nobari, X. Lu, P. Karras, and S. Bressan. Fast
random graph generation. In Proceedings of the 14th
International Conference on Extending Database
Technology, pages 331–342. ACM, 2011.

[24] J. C. Reynolds. The discoveries of continuations. Lisp
and symbolic computation, 6(3-4):233–247, 1993.

[25] R. Tonelli, G. Concas, and M. Locci. Three efficient
algorithms for implementing the preferential
attachment mechanism in yule-simon stochastic
process. WSEAS Transactions on Information Science
and Applications, 7(2):176–185, 2010.

[26] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’networks. nature, 393(6684):440–442,
1998.

[27] A. Yoo and K. Henderson. Parallel generation of

massive scale-free graphs. arXiv preprint
arXiv:1003.3684, 2010.

1250

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

