
EMF-REST: Generation of RESTful APIs from Models

Hamza Ed-douibi, Javier Luis Cánovas Izquierdo, Abel Gómez,

Massimo Tisi, Jordi Cabot

AtlanMod team (Inria, Mines Nantes, LINA), Nantes, France

{hamza.ed-douibi,javier.canovas,abel.gomez-llana,

massimo.tisi,jordi.cabot}@inria.fr

Abstract. In the last years, RESTful Web services have become more and more

popular as a lightweight solution to connect remote systems in distributed and

Cloud-based architectures. However, being an architectural style rather than a

specification or standard, the proper design of RESTful Web services is not triv-

ial since developers have to deal with a plethora of recommendations and best

practices.

Model-Driven Engineering (MDE) emphasizes the use of models and model trans-

formations to raise the level of abstraction and semi-automate the development

of software. In this paper we present an approach that leverages on MDE tech-

niques to generate RESTful services. The approach, called EMF-REST, takes

EMF data models as input and generates Web APIs following the REST princi-

ples and relying on well-known libraries and standards, thus facilitating its com-

prehension and maintainability. Additionally, EMF-REST integrates model and

Web-specific features to provide model validation and security capabilities, re-

spectively, to the generated API. For Web developers, our approach brings more

agility to the Web development process by providing ready-to-run-and-test Web

APIs out of data models. Also, our approach provides MDE practitioners the ba-

sis to develop Cloud-based modeling solutions as well as enhanced collaborative

support.

1 Introduction

Web services have increasingly become popular mainly because they simplify clien-

t/server decoupling and foster interoperability. In the last years, the emergence of dis-

tributed architectures, specially Cloud-based ones, and mobile devices have also pro-

moted the development of lightweight applications over portable devices, which rely on

web Services rather than on heavyweight desktop-based solutions.

Among the different standards for designing distributed services (e.g., SOAP, WSDL

or WS-* specifications), there is a rising trend to use lightweight solutions based on

plain HTTP referred to as REpresentational State Transfer (REST) [11] services. REST

proposes the development of stateless distributed services and relies on simple URIs

and HTTP verbs to make the Web services broadly available for a number of front-end

devices. However, REST is rather an architectural style than a standard, therefore of-

fering a considerable design and implementation flexibility. This is in theory a good

thing but it can quickly lead to bad designs and architectures that end up not being con-

formant with the REST principles [19]. Thus, developing high-quality REST APIs for

non-trivial applications may become a hard and time-consuming task.



On the other hand, Model-Driven Engineering (MDE) is a paradigm which em-

phasizes the use of models to raise the level of abstraction and automation in the de-

velopment of software. By working at a high level of abstraction, we believe that the

application of MDE to the Web environment offers important benefits in development,

consistency and definition of concepts. For instance, MDE methodologies have been ap-

plied to bring more agility to the development of distributed applications by addressing

the different aspects of Web development.

As a way to combine the benefits of both domains, in this paper we propose EMF-

REST, an approach that leverages on MDE techniques to generate RESTful Web APIs

out of plain data models. The generated RESTful Web API relies on well-known li-

braries and standards with the aim of facilitating its understanding and maintainability.

Unlike other existing MDE-based approaches targeting the generation of Web services,

ours provides a direct mapping to access data models by means of Web services fol-

lowing the REST principles, thus liberating Web developers from parameterizing the

generation process or explicitly modeling the API to be generated. Additionally, EMF-

REST takes advantage of model and Web-specific features such as model validation

and security, respectively, thus providing the corresponding support in the resulting

RESTful Web API. We aim to target two main communities with EMF-REST. For Web

engineers, EMF-REST brings more agility to the Web development process by provid-

ing ready-to-run-and-test Web APIs out of data models. For MDE practitioners, our

approach provides the basis to develop model-based solutions relying on the Cloud as

well as an enhanced collaborative support for Web-based modeling tools. In this paper

we will mainly focus on the first group of users.

The remainder of this paper is structured as follows. Section 2 presents some back-

ground of REST and MDE. Section 3 describes how we devised the mapping between

EMF and REST principles, while Section 4 describes the additional EMF-REST fea-

tures. Section 5 presents the technical architecture of the generated REST API. Section

6 describes the steps we followed to generate the API. Section 7 presents the possible

applications of our approach. Section 8 discusses some related work. Finally, Section 9

concludes the paper and presents the future work.

2 Background

2.1 REST principles

In 2000, Roy Fielding identified specific design principles that led to the architectural

style known as REpresentational State Transfer (REST) [11]. By relying on the HTTP

protocol, this architectural style consists of several constraints to address separation of

concerns, visibility, reliability, scalability and performance. REST principles are de-

fined as:

Addressable resources Each resource must be addressable via a Uniform Resource

Identifier (URI).

Representation-oriented A resource referred by one URI may have different repre-

sentation formats (e.g., JSON, XML, etc.).



Statelessness Servers cannot hold the state of a client session. Instead, data represen-

tation formats provide information on how to manage the state of the application

for each client (e.g., using embedded URIs).

Uniform and Constrained Interface A small set of well-defined methods are used to

manipulate resources (i.e., HTTP verbs).

The last two principles are maybe the most distinguishing features of REST from

other Web services specifications. According to these principles, each request is treated

as an independent transaction and must only rely on the set of operations of the HTTP

protocol. HTTP methods are used in REST as follows:

GET Used to retrieve a representation of a resource. It is a read-only, idempotent and

safe operation.

PUT Used to update a reference to a resource on the server and it is idempotent as well.

POST Used to create a resource on the server based on the data included in the body

request. It is the only nonidempotent and unsafe operation of HTTP.

DELETE Used to remove a resource on the server. It is idempotent as well.

HEAD Similar to GET but returning only a response code and the header associated

with the request.

OPTIONS Used to request information about the communication options of the ad-

dressed resource (e.g., security capabilities such as CORS).

Being a collection of principles rather than a set of standards, several resources on

best practices and recommendations were written to help developers to write RESTful

Web services. In order to generate a high-quality RESTful Web API, we apply in EMF-

REST the best practices described in [19].

2.2 The MDE paradigm

The MDE paradigm emphasizes the use of models to raise the level of abstraction and to

automate the development of software. Abstraction is a primary technique to cope with

complexity, whereas automation is the most effective method for boosting productivity

and quality [25].

Modeling languages express models at different abstraction levels, and are defined

by applying metamodeling techniques [7]. In a nutshell, models are defined according to

the semantics of a model for specifying models, also called a metamodel. A model that

respects the semantics defined by a metamodel is said to conform to/to be an instance

of such a metamodel.

The Eclipse Modeling Framework (EMF) [2] has become the main reference for

modeling in Eclipse [10]. Among its features, EMF allows creating metamodels – by

using the Ecore language, a subset of the UML class diagrams – and their instances.

Along this paper, we refer to metamodels as Ecore models, and their instances as model

instances. Ecore can be considered as an implementation of MOF [20], a modeling and

metamodeling standard developed by the Object Management Group (OMG). Addition-

ally, EMF provides a generative solution which constructs Java APIs out of those mod-

els to facilitate their management, thus promoting the development of domain-specific

applications.



Family

address : String

Pet

name : String

breed : String

Dog Cat

RaceDog HuntingDog

Parent

Son

Daughter

Member

firstName : String

lastName : String

family

1

parents

0..2

family 1 sons

0..*

daughters

0..*

pets

0..*

Fig. 1. Simple Family Ecore Model.

On the other hand, model transformations generate software artifacts from models,

either directly by model-to-text transformations (e.g., using languages such as Acceleo

or Xpand) or indirectly by intermediate model-to-model transformations (e.g., using

languages such as ATL or ETL)1. By means of modeling languages and model transfor-

mations, it is possible to increase both the level of abstraction and provide automation

in MDE, respectively.

3 Mapping EMF and REST principles

The first step to build EMF-REST is to align the principles behind the MDE/EMF

and REST worlds. EMF-REST relies on EMF to represent the models from which the

RESTful Web APIs are generated. As EMF models and their instances are managed

by the corresponding APIs provided by the framework (i.e., Ecore and EObject APIs,

respectively), we need to define a mapping between such APIs and the REST princi-

ples presented before. In this section we explain how we map EMF with each REST

principle.

To illustrate the alignment, we will use a running example consiting in the creation

of a distributed application aimed at managing information about families (e.g., parents,

children, pets, etc.). Figure 1 represents a possible Ecore model for this example. As can

be seen, the Family concept includes one attribute (i.e., address) to represent the address

of the family and references the members (i.e., Member hierarchy, including Parents,

Sons and Daughters) and pets (i.e., Pet concept) of the family. Additionally, different

types of pets are allowed (i.e., Cat and Dog concepts plus RaceDog and HuntingDog

for dog types). Figure 2 shows an intantiation of this family model for the specific case

of the Simpsons family.

In what follows we will see how EMF-REST would allow to create the Simpons

family by calling a REST API generated from the Family model following the REST

principles.

3.1 Addressable Resources

Models in EMF are addressed via a URI, which is a string with a well-defined structure

as shown in the expression (1). This expression contains three parts specifying: (1) a

scheme, (2) a scheme-specific part and (3) an optional fragment. The scheme is the first

1Acceleo, XPand, ATL and ETL can be found at http://eclipse.org/modeling/



Simpsons : Family

address : ’742 Evergreen Terrace’

Homer : Parent

firstName : ’Homer’

lastName : ’Simpson’

Marge : Parent

firstName : ’Marge’

lastName : ’Bouvier’

Bart : Son

firstName : ’Bart’

lastName : ’Simpson’

Lisa : Daughter

firstName : ’Lisa’

lastName : ’Simpson’

Maggie : Daughter

firstName : ’Maggie’

lastName : ’Simpson’

Santa : RaceDog

breed : ’Greyhound’

name : ’Santa’s Little Helper’

SnowBall : Cat

breed : ’Unknown’

name : ’Snowball II’

parents parents sons daughters daughters

pets

pets

Fig. 2. The Simpsons Family.

part separated by the ":" character and identifies the protocol used to access the model

(e.g., platform, file or jar). In Eclipse we use platform for URIs that identify resources

in Eclipse-specific locations, such as the workspace. The scheme-specific part is in the

middle and its format depends on the scheme. It usually includes an authority that

specifies a host, the device and the segments, where the latter two constitute a local path

to a resource location. The optional fragment is separated from the rest of the URI by

the # character and identifies a subset of the contents of the resource specified by URI,

as we will ilustrate below. The expression (2) shows an example of a platform-specific

URI which refers to the Simpsons family model, represented as a file Simpsons.xmi

contained in a project called project in Eclipse workspace. It is important to note that in

EMF model instances include a reference to the Ecore model they conform to.

[scheme:][scheme-specific-part][#fragment] (1)

platform:/resource/project/Simpsons.xmi (2)

EMF-REST maps the previous URI to a Web URL as follows. The base URL pattern

of a model instance is defined by the expression (3). In the pattern, the part https://

[applicationLink]/rest is the URL of the Web application, modelId is the identifier of

the model (e.i., the Ecore model) and ModelInstanceId is the identifier of the model

instance being accessed (the XMI file). The URL (4) represents an example to retrieve

the Simpsons family. As can be seen, while the URI can address a file representing a

model instance (where a reference to the Ecore model is included), the URL requires

indicating the identifier of both the Ecore model and the model instance.

https://[applicationLink]/rest/[ModelId]/[ModelInstanceId] (3)

https://example.com/rest/Family/Simpsons (4)

This URL acts as the entrypoint for a particular model instance and points to its root

element, which is normally the case in EMF. When the model instance has more that

one root, EMF-REST points at the first.

Once pointing to the root of a model instance, addressing a particular element of the

model in the EMF API is done by using the part fragment in (1). The navigation is done

using the reference names in the Ecore model. For instance, the concept Family has the

reference parents to access to the list of parents. Using the EMF API, the URI is shown



in (5), while using the Web API, the URL is shown in (6).

platform:/resource/project/Simpsons.xmi#//@parents (5)

https://example.com/rest/Family/Simpsons/parents (6)

Depending on the cardinality of the reference this will return a specific element – if it

single-valued – or a collection of elements – if it is multi-valued (like in the case of

parents). Accessing a specific element contained in a collection can be done using (i)

the identifier of the element or (ii) its index in the list. For instance, the URI (7) retrieves

the element representing Homer in EMF, while in EMF-REST it is done using the call

(8). To identify an element, EMF-REST relies on the identifier flag provided by Ecore,

which allows setting the attribute acting as identifier for a given class2.

platform:/resource/project/Simpsons.xmi#Homer (7)

https://example.com/rest/Family/Simpsons/parents/Homer (8)

On the other hand, the call (9) will retrieve the first element of the collection of parents

in the EMF API. In EMF-REST, it is done by adding the parameter index in the URL

as illustrated in the call (10).

platform:/resource/project/Simpsons.xmi#//@parents.0 (9)

https://example.com/rest/Family/Simpsons/parents?index=0 (10)

3.2 Representation-Oriented

By default, EMF persists models using the XMI representation format. EMF-REST

offers the same XMI option but also a JSON-based storage in order to comply with the

representation-oriented principle of the REST architecture.

For the JSON, EMF-REST adheres to the following structure. Model concepts are

represented as JSON objects containing key/value pairs for the model attributes/refer-

ences. Keys are the name of the attribute/reference of the concept and values are their

textual representation in one of the datatypes supported in JSON (i.e., string, boolean,

numeric, or array). For attributes, their values are mapped according to the correspond-

ing JSON supported datatype or String when there is not a direct correspondence (e.g.,

float-typed attributes). When the attribute is multi-valued, its values are represented us-

ing the array datatype. For references, the value is the URI of the addressed resource

within the server (if the reference is multi-valued, the value will be represented as an

array of URIs). Listing 1 shows an example of the content format in JSON. Note that

references containing a set of elements from model hierarchies are serialized as a list of

JSON objects corresponding to their dynamic type (see pets reference including Race-

Dog and Cat JSON objects).

In XML, model concepts are represented as XML elements including an XML ele-

ment for each model attribute/reference. Attribute values are included as string values

2When the identifier flag is not used, the fallback behavior looks for an attribute called id,

name or having the unique flag activated.



Listing 1. Partial JSON representation of the Simpsons family.

1 {

2 "family":{

3 "address":"742 Evergreen Terrace",

4 "parents":{

5 "parent":[{

6 "uri":"https://example.com/rest/Family/Simpsons/parents/Homer"},{

7 "uri":"https://example.com/rest/Family/Simpsons/parents/Marge"}]

8 },

9 "pets":{

10 "raceDog":{"uri":"https://example.com/rest/Family/Simpsons/pets/Santa’s

Little Helper"},

11 "cat":{"uri":"https://example.com/rest/Family/Simpsons/pets/Snowball II"}

12 }

13 ...

14 }

15 }

Listing 2. Partial XML representation of the the Simpsons family.

1 <family>

2 <address>742 Evergreen Terrace</address>

3 <parents>

4 <parent>

5 <uri>https://example.com/rest/Family/Simpsons/parents/Homer</uri>

6 </parent>

7 <parent>

8 <uri>https://example.com/rest/Family/Simpsons/parents/Marge</uri>

9 </parent>

10 </parents>

11 <pets>

12 <raceDog>

13 <uri>https://example.com/rest/Family/Simpsons/pets/Santa’s Little Helper

</uri>

14 </raceDog>

15 <cat>

16 <uri>https://example.com/rest/Family/Simpsons/pets/Snowball II</uri>

17 </cat>

18 </pets>

19 ...

20 </family>

in the XML element representing such attribute, references are represented according

to their cardinality. If the reference is single-valued, the resulting XML element will

include only the URI of the addressed resource in the server. On the other hand, if the

reference is multi-valued, the resulting XML element will include a set of XML ele-

ments including the URIs addressing the resources. Listing 2 shows an example of the

content format in XML format.

3.3 Uniform and Constrained Interface & Statelessness

EMF supports loading, unloading and saving model instances after their manipulation.

In EMF-REST, these operations are managed by the application server. Models are

loaded (and unloaded) dynamically as resources when running the application manag-

ing the Web API, and they are saved after each operation is done, thus conforming to

the REST statelessness behavior.



Listing 3. Update the attribute of a concept using EMF generated API.

1 ...

2 hommerObj.setName("Homero"); // hommerObj is of type Parent

3 ...

Listing 4. HTTP call and JSON representation to update the firstname of the addressed parent.

1 PUT https://example.com/rest/Family/Simpsons/parents/Homer

2

3 {"parent":{

4 firstName:"Homero"

5 }

6 }

Table 1. Supported operations in the generated API.

OPERATION
HTTP

URL MODEL
METHOD

CREATE and add element to the collection POST
.../a/bs

A

B C

bs 0..* c 0..1

READ all the elements from the collection GET

READ the element

(1) identified by <id>,

(2) in the <i> position of the collection, or

(3) the element c

GET

UPDATE the element

(1) identified by <id>,

(2) in the <i> position of the collection, or

(3) the element c

PUT
(1) .../a/bs/<id>

(2) .../a/bs?index=<i>

(3) .../a/c

DELETE the element

(1) identified by <id>,

(2) in the <i> position of the collection, or

(3) the element c

DELETE

To manipulate model instances, EMF enables the basic CRUD (i.e., create, read,

update and delete) operations over model instances by means of either the EMF gener-

ated API or the EObject API. In EMF-REST, the same CRUD operations are mapped

into the corresponding HTTP methods (POST, GET, PUT, and DELETE). For instance,

Listing 3 shows the code to modify the name of the parent called Homer using EMF

generated API for the Family model. The same operation can be done on our EMF-

REST API by sending the PUT HTTP method containing the JSON representation of

the new Parent model element, as shown in Listing 4.

Table 1 shows how each CRUD operation is addressed along with several URL

examples. The first column of the table describes the operations. As can be seen, the

first two rows represent operations over collections, enabling adding new elements (see

first row) and reading their content (see second row). The rest of the rows describe

operations over either individual elements of a collection (see cases 1 and 2 of these

operations) or elements contained in a single-valued reference (see case 3). The second

column shows the correspondent HTTP method for each operation while the third col-

umn presents the corresponding URL for each case. Finally, the last column includes a

small model to better illustrate the cases considered in the table.



Fig. 3. Annotations on an excerpt of the example model.

4 Additional EMF-REST Features

EMF-REST also provides support for validation and security aspects in the generated

RESTful Web API. With this aim, our approach leverages on model and Web-specific

mechanisms, as we will describe below.

4.1 Validation

Validation is the process of verifying that the given data inputs respect the defined con-

straints at the model level Support for validating the API data calls is pretty limited in

current web technologies. The most relevant one for our scenario would be the Bean

Validation specification that defines an API to enforce the validation of Java Beans.

However, this specification can only ensure that fields follow certain constraints (e.g., a

field is not null) and cannot satisfy complex validation scenarios for model integrity

(e.g., a son cannot have more than two parents). On the other hand, MDE provides spe-

cific support for validating models, for instance, by providing an implementation (both

IDE support and run-time engine) the Object Constraint Language [26], a language

complementing UML [23] that allows software developers to write complex constraints

over object models. Thus, for validation, EMF-REST employs a model-based approach

using OCL to define constraints as annotations in the model elements.

OCL annotations can be attached to concepts in the model as invariants. An example

on the Simpsons family is shown in Figure 3. As can be seen, concepts include a set of

invariants inside the annotation OCL plus the annotation Ecore/constrains which spec-

ifies the invariants to execute. Invariants are checked each time a resource is modified

(i.e., each time the Web API is called from a Web-based client using the POST, PUT

or DELETE methods). This validation scheme is imposed to comply with the stateless

property of REST architetures, however, it may involve some design constraints when

creating the model. In those cases where models cannot be validated each time they

are modified (e.g., creating model elements requires several steps to fulfill cardinality

constraints), EMF-REST allows this validation process to be temporary be deactivated.

The results of the validation process are mapped into the corresponding HTTP response

messages (i.e., using status codes)



4.2 Security

Security is one of the cornerstones when developing Web-enabled applications. In this

case, there is little support for security definition and enforcement from the MDE side

since most tools just execute on a local environment but we have plenty of support from

web technologies to add security aspects to our generated API and protect the access to

the data models. In particular, our approach allows designers to provide some security

annotations on the model that are then translated into security restrictions as described

below. As part of the generation, EMF-REST also creates a separated admin view where

additional security information (like users and passwords) can be maintained.

In order to secure a Web application, we have to: (i) ensure that only authenti-

cated users can access resources, (ii) ensure the confidentiality and integrity of data

exchanged by the client and the server from the moment of sending a request to the mo-

ment of receiving a response, and (iii) prevent unauthorized clients from abusing data.

In order to address the previous requirements, EMF-REST relies on a set of security

protocols and services provided by Java EE which enable encryption, authentication

and authorization in Web APIs, as we will explain in the following.

Encryption If the connection is not secured, it is possible to intercept the packets and

collect sensitive data when interacting with a Web API. Encrypting the information ex-

changed between the client and server makes it only readable by the destination holding

the decryption key. The Web defines HTTPS protocol to add the encryption capacities

of SSL/TLS to standard HTTP communication. EMF-REST enforces the use to HTTPS

to communicate with its services.

Authentication Authentication is about validating the identity of a client attempting

to access a resource on a server. The validation process checks if the client has pro-

vided valid credentials and can be performed using several protocols, namely: basic

authentication, digest authentication and X.509 certificates. EMF-REST relies on ba-

sic authentication to provide the authentication mechanism since it is simple, widely

supported, and secure by using HTTPS. The basic authentication involves sending

a Base64-encoded username and password within the HTTPS request header to the

server. Upon reception, the server checks the credentials and send a response contain-

ing the requested data if credentials are correct or an unauthorized response otherwise.

Authorization The role of authorization is to define if the user has the permission to

access a resource. Authorization is usually combined with authentication to identify

users and determine which type operation is allowed for each one of them. While the

authentication is enabled by the protocol/server, the authorization is generally provided

by the application, which knows the permissions for each operation in the resources.

EMF-REST uses a simple role-based mechanism to support authorization in the gener-

ated Web API. Roles are associated to users (i.e., authentication) and operations in the

Web API (i.e., authorization). In EMF-REST roles are assigned to resources by adding

annotations to the model. Figure 3 illustrates the use of these annotations (e.g., see an-

notation Ecore/roles in the Member concept). Additionally, EMF-REST also provides

an admin view to create users and assigns one or more roles to each user, as we will

show in section 5.3.



���� ��� ���

������������	�
���

	
�

	����
�

������

�������������� ����������������������
���
���
�� �����
��

��������
���
��

��������������

�	� ��!����

������
���

���"#��

Fig. 4. Architecture of EMF-REST generated application.

5 EMF-REST API Architecture

To implement the features described in the previous sections, we devised the application

architecture presented in Figure 4. This architecture can then be seamlessly accessed

with a variety of clients.

The Web application is split into three main components according to the func-

tionality they provide: (1) content management, (2) validation and (3) security. The

application relies on EMF as modeling framework and uses the following additional

frameworks/specifications for each component, respectively: (1) Java Architecture for

XML Binding (JAXB) to enable the content format support, (2) Eclipse OCL frame-

work to provide validation before updating the model, (3) Java Persistence API (JPA)

to provide security support by storing the system users and their permissions in an em-

bedded database. The Web application also leverages on Enterprise Java Bean (EJB),

Context dependency Injection (CDI) and Java API for Representational State Transfer

(JAX-RS) specifications. EJBs enable rapid and simplified development of distributed,

transactional, secure and portable applications. They are in charge of loading the EMF

resources from the persistent storage and providing the necessary methods to manage

the resources (e.g., obtaining objects from the resource, removing objects) in a secure

and transactional way. These EJBs are then injected into JAX-RS services using CDI

technology. Thus, JAX-RS is used to expose EMF resources as Web services. In the

remaining of the section we describe how all these technologies are used in each com-

ponent.

5.1 Content Management

This component addresses the mapping between EMF and REST principles. It is in turn

split into two subcomponents: (1) content format, which addresses the mapping of the

second REST principle (i.e., Representation-Oriented); and (2) navigation/operation,

which addresses the rest of the REST principles.

Regarding the content format, EMF-REST enriches the EMF-generated API with

JAXB3 annotations, which enable the support for mapping Java classes to XML/J-

3https://jaxb.java.net/



Listing 5. Part of the Family concept.

1 @XmlRootElement (name="family")

2 public class FamilyImpl extends EObjectImpl implements Family {

3

4 protected EString address;

5 protected EList<Parent> parents;

6

7 @XmlElementWrapper(name = "parents")

8 @XmlJavaTypeAdapter(ParentAdapter.class)

9 @XmlAnyElement(lax=true)

10 public EList<Parent> getParents() {

11 if (parents == null) {

12 parents = new EObjectContainmentWithInverseEList<Parent>(Parent.

class, this, ExamplePackage.FAMILY__PARENTS, ExamplePackage.

PARENT__FAMILY);

13 }

14 return parents;

15 }

16

17 @XmlElementWrapper(name = "pets")

18 @XmlJavaTypeAdapter(PetAdapter.class)

19 @XmlAnyElement(lax=true)

20 public EList<Pet> getPets() {

21 if (pets == null) {

22 pets = new EObjectContainmentEList<Pet>(Pet.class, this,

23 ExamplePackage.FAMILY__PETS);

24 }

25 return pets;

26 }

27

28 @XmlElement

29 public String getAddress() {

30 return address;

31 }

32 ...

33

34 }

SON (i.e., marshalling/unmarshalling Java object into/from XML/JSON documents).

The Listing 5 shows an example of the use of JAXB annotations to produce the cor-

responding representation in JSON (as shown in Listing 1) and XML ((as shown in

Listing 2). As can be seen, each concept class is mapped to an XmlRootElement

element, while either XmlElement or XmlElementWrapper elements are used to

map the attributes or references of the class, respectively. Other annotations are used

to deal with the references and inheritance. For instance, XmlJavaTypeAdapter is

used to associate a reference of an element with the correspondent representation.

Navigation and operations are enabled by using JAX-RS, which provides a set of

Java APIs for building Web services conforming to the REST style. Thus, this specifica-

tion defines how to expose POJOs as Web resources, using HTTP as network protocol.

For each concept (e.g., Family) a resource will be created (e.g., FamilyResource)

annotated with Path (e.g., @Path("Family")). The @Path annotation has the

value that represents the relative root URI of the addressed resource. For instance, if

the base URI of the server is http://example.com/rest/, the resource will be

available under the location http://example.com/rest/Family. To produce

a particular response when a request with GET, PUT, POST and DELETE is inter-



cepted by a resource, resource methods are annotated with @GET, @PUT, @POST and

@DELETE what are invoked for each corresponding HTTP verb.

5.2 Validation

EMF-REST leverages on Eclipse OCL4, which provides an implementation of the OCL

OMG standard for EMF-based models, to validate the data by means of annotations

including the constrains to check the model elements. The generated API relies on the

provided APIs for parsing and evaluating OCL constraints and queries on Ecore models.

When constraints are not satisfied, the validation process will fire an exception that will

be mapped by JAX-RS into an HTTP response including the corresponding message

indicating the violated constraint.

5.3 Security

EMF-REST relies on the combination of Java EE and JAX-RS for the authentica-

tion and authorization mechanisms by using the concept of role, while encryiption

is provided by using HTTPS. To enable authentication, the deployment descriptor of

the WAR file (i.e., WEB-INF/web.xml) has been modified to include the security

constraints (i.e., <security-constraint>) defining the access privileges. As-

signing permissions for HTTP operations based on the roles provided in the model

is done by using the @RolesAllowed annotation. For example, as shown before,

Figure 3 shows that the role allowed for the Member concept is admin. This will re-

strict access to the resource to the users having the role ADMIN. To express this in the

generated API, the annotation @RolesAllowed({"ADMIN"}) is placed on top of

MemberResource. If no role is assigned to a concept, a @PermitAll annotation

is placed on the resource class meaning that all security roles are permitted to access

this resource. Note that security roles assigned to a resource are not inherited by its

sub-resources.

To manage the list of users and their roles, EMF-REST generates an admin view

that allows the manager of the API to add, edit and remove users. All created users have

a default role (i.e., user) allowing them to access unannotated concepts. The manager

can assign more roles to a user in order to grant him/her access to a specific resource.

6 Code Generation and Tool Support

In order to generate the REST APIs we created a Java tool available as an open-source

Eclipse plugin [1]. Figure 5 shows the steps followed by the tool to generate the appli-

cation starting from an initial Ecore model.

Step I of the process generates a Maven-based 5 project that serves as a skeleton of

the application. Maven allows a project to be built by using the so called Project Object

Model (POM) file, thus providing a uniform build system. The POM is initialized with

the required library dependencies described in the previous section.

4http://www.eclipse.org/modeling/mdt/?project=ocl
5http://maven.apache.org/



Fig. 5. EMF-REST generation process.

In Step II, the EMF code generation facility has been extended to include the re-

quired support for JAXB and validation. In particular, the EMF generator templates

have been extended to produce the code corresponding to the JAXB annotations and

the required methods to execute the OCL validation process.

Step III performs a set of model-to-text transformations using the ETL6 language

to generate the remaining elements, including: (1) the JAX-RS, CDI and EJB imple-

mentation classes, (2) the admin view developed and (3) a simple JavaScript API to

facilitate Web developers to build clients for the generated Web API. For each part

of the application (e.g., JAX-RS resources, etc.), an ETL transformation template has

been implemented to generate the appropriate behavior according the input Ecore class.

Since this step requires several transformations, the MTC tool [5] has been used to

orchestrate the flow of the Epsilon templates.

7 Applications

In this section we discuss potential applications of EMF-REST. The first section covers

the main scenario targeting EMF-REST illustrating how our approach can help web

developers to quickly create/prototype web services, while the second section illustrates

how EMF-REST can set the basis for promoting scalability and collaboration in MDE.

6https://www.eclipse.org/epsilon/



7.1 Generation of Web Services

To develop a REST API for a data model, web developers have to implement a middle-

ware framework supporting the REST access to the model elements and, additionally,

develop the extra support to cover a number of typically required features such as se-

curity, persistence or validation. Thus, the development process requires a considerable

effort, not only to implement the services, but also to study and apply the different

specifications and standards. When applying EMF-REST, designing Web services boils

down to providing the required data model as input and running the code generation

suite. Thus, EMF-REST can be used to obtain the core RESTful Web API allowing

developers to focus more on designing the REST client at an early stage of the devel-

opment process of a system. Even for web developers preferring to develop the REST

API themselves at a later stage, our generated one would be useful for prototyping and

validation purposes.

7.2 Scalability and Collaboration in MDE

Beside the application in the Web realm, EMF-REST also provides the basis for Web-

based model management. Many benefits can be achieved by moving model manage-

ment from classic environments (i.e., the Eclipse IDE) into distributed (i.e., Cloud)

architectures by the use of Web services. For instance, to cope with the increase of

MDE applications to large and more complex systems, which has led to performance

issues [16]. By using EMF-REST, developers have the ground to deploy the system in a

Platform-as-a-Service (PaaS) provider, in which model management would take advan-

tage of its scalability capabilities and may solve performance issues in MDE systems.

Thus, developers would not be limited by the capacity of their local machines in term of

memory and CPU. For instance, resource and time-consuming operations such as val-

idation or transformation would benefit from the scalable infrastructure of the current

Cloud providers (e.g., Amazon WS, Openshift).

Adopting a distributed system would also promote the collaboration between mod-

elers. As modeling activities rise and developer teams get geographicaly dispersed,

collaborative modeling environments are more and more necessary [4]. Using EMF-

REST at the metamodel level (i.e. the input of EMF-REST would not be a data model

but a metamodel framing the kind of models that could be created by calling the API

methods) would promote the collaborative development of new software models for the

project at hand or even the development of Domain-Specific Languages (DSLs). For

example, developers can work on an slice of the DSL while the others can provide live

feedbacks to improve and polish the DSL under development. Approaches such as Col-

laboro [8], currently providing a centralized collaboration environment, could benefit

from EMF-REST features to offer a distributed solution.

8 Related Work

Several efforts have been made to bring together MDE and Web Engineering. This

field is usually referred to as Model Driven Web Engineering (MDWE) and proposes



the use of models and model transformations for the specification and semiautomatic

generation of Web applications [24] [14] [21] [9] [27] [15] [13] [12] [17]. Mainly, data

models, navigation models and presentations models are used for this purpose.

Some of these works provide support for the generation of Web services as well,

but support for generation of RESTful APIs is very limited [22],[3] and [18]. Moreover,

these approaches require the designer to specifically model the API itself using some

kind of tool-specific DSL from which then the API is (partially) generated. Instead, our

approach is able to generate a complete RESTful API implementation from a plain data

model.

9 Conclusion

In this paper we have presented EMF-REST, an approach to generate ready-to-run-and-

test RESTful Web APIs out of domain models. The generated APIs rely on well-known

libraries and standards, and also provide extra features such as validation and security.

We believe our approach fills an important gap between the Web and modeling tech-

nologies, thus enabling Web developers to leverage on modeling techniques to generate

RESTful Web APIs and MDE practitioners to bring their models into the Web. EMF-

REST has been released as an Eclipse-plugin and is available at [1].

As further work, we would like to work on a small configuration DSL to help de-

signers parameterize the style of the generated API (e.g., configuring the URIs to the

resources). Existing approaches, like WADL7 and RSDL8, which also propose DSLs

to describe Web APIs, could be useful here. We are also interested in evaluating the

security and scalability of our approach and devise possible improvements (e.g., a more

fine-grained security mechanism or the implementation of different types of model stor-

age, e.g., NoSQL-based ones like Neo4EMF [6], at the server side). Last but not least,

we would also like to explore the benefits of using EMF-REST in combination with

client-side modeling environments, for instance, in Eclipse, thus enabling developers

to deal with large EMF models in a transparent way (i.e., models in Eclipse that are

remotely stored using an EMF-REST backend).

References

1. EMF-REST website. http://www.emf-rest.com/ (accessed 02/05/15)

2. EMF. http://www.eclipse.org/modeling/emf/ (accessed 02/05/15)

3. Towards Interoperability to the Implementation of RESTful Web Services: A Model Driven

Approach, author=Tavares, Nirondes and Vale, Samyr. In: ICONS conf. pp. 234–240 (2014)

4. Altmanninger, K., Seidl, M., Wimmer, M.: A Survey on Model Versioning Approaches. J.

Web Inf. 5(3), 271–304 (2009)

5. Alvarez, C., Casallas, R.: MTC Flow: A Tool to Design, Develop and Deploy Model Trans-

formation Chains. In: ACME workshop. pp. 1–9 (2013)

6. Benelallam, A., Gómez, A., Sunyé, G., Tisi, M., Launay, D.: Neo4EMF, A Scalable Persis-

tence Layer for EMF Models. In: ECMFA conf., pp. 230–241 (2014)

7http://www.w3.org/Submission/wadl/
8http://goo.gl/7wpf9y



7. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice.

Morgan & Claypool Publishers (2012)

8. Cánovas Izquierdo, J.L., Cabot, J.: Enabling the Collaborative Definition of DSMLs. In:

CAiSE conf. pp. 272–287 (2013)

9. Ceri, S., Fraternali, P., Bongio, A.: Web Modeling Language (WebML): a Modeling Lan-

guage for Designing Web Sites. J. Comp. Netw. 33, 137–157 (2000)

10. Eclipse website: http://eclipse.org (accessed 02/02/15)

11. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-

tures. Ph.D. thesis (2000)

12. Fons, J., Pelechano, V., Albert, M., Pastor, O.: Development of Web Applications from Web

Enhanced Conceptual Schemas. In: ER conf., pp. 232–245 (2003)

13. Garzotto, F., Paolini, P., Schwabe, D.: HDM–a Model-based Approach to Hypertext Appli-

cation Design. ACM Trans. Inf. Syst. 11, 1–26 (1993)

14. Jose Escalona, M., Aragon, G.: NDT. A Model-Driven Approach for Web Requirements.

IEEE Trans. Softw. Eng. 34(3), 377–390 (2008)

15. Koch, N., Kraus, A.: The Expressive Power of UML-based Web Engineering. In: IWWOST

workshop. vol. 16 (2002)

16. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E., Cuadrado, J.S., De Lara,

J., Ráth, I., Varró, D., Tisi, M., Cabot, J.: A Research Roadmap Towards Achieving Scalabil-

ity in Model Driven Engineering. In: SMDE workshop. pp. 1–10 (2013)

17. Marco, B., Cabot, J., Grossniklaus, M.: Tools for Modeling and Generating Safe Interface

Interactions in Web Applications. In: ICWE conf. pp. 482–485 (2010)

18. Maximilien, E., Wilkinson, H., Desai, N., Tai, S.: A Domain-Specific Language for Web

APIs and Services Mashups. In: ICSOC conf., pp. 13–26 (2007)

19. Mulloy, B.: Web API Design - Crafting Interfaces that Developers Love. Apigee (2012)

20. OMG MOG Specification: http://www.omg.org/mof (accessed 02/02/15)

21. Qafmolla, X., Nguyen, V.C.: Automation of Web Services Development Using Model Driven

Techniques. In: ICCAE conf. vol. 3, pp. 190–194 (2010)

22. Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: An Agile Approach

Supporting API-first Web Application Development. In: ICWE conf. pp. 7–21 (2013)

23. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual.

Pearson Higher Education (2004)

24. Schauerhuber, A., Wimmer, M., Kapsammer, E.: Bridging Existing Web Modeling Lan-

guages to Model-driven Engineering: A Metamodel for WebML. In: ICWE conf. (2006)

25. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Softw. 20(5), 19–25 (2003)

26. Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling with UML.

Addison-Wesley (1999)

27. WebRatio: http://www.webratio.com (accessed 02/05/15)


