Check for
Updates

Architectural Clones: Toward Tactical Code Reuse

Daniel E. Krutz and Mehdi Mirakhorl
Software Engineering Department
Rochester Institute of Technology

1 Lomb Memorial Drive
Rochester, NY, USA
{dkrutz, mehdi}@se.rit.edu

ABSTRACT

Architectural tactics are the building blocks of software architec-
ture. They describe solutions for addressing specific quality con-
cerns, and are prevalent across many software systems. Once a de-
cision is made to utilize a tactic, the developer must generate a con-
crete plan for implementing the tactic in the code. Unfortunately,
this is a non-trivial task for even experienced developers. Develop-
ers often resort to using search engines, crowd-sourcing websites,
or discussion forums to find sample code snippets. A robust Tactic
Search Engine can replace this manual, internet-based search pro-
cess and help developers to reuse proper architectural knowledge
and accurately implement tactics and patterns from a wide range of
open source systems. In this paper we analyze several implemen-
tations of architectural tactics in the open source community and
identify the foundation for building a practical Tactic Search En-
gine. We also introduce the concept of tactical-clones which may
be used as the basic element of a tactic search engine.

CCS Concepts

eSoftware and its engineering — Software architectures;

Keywords

Tactical Code Clone, Software Architecture, Code Reuse

1. INTRODUCTION

The success of any complex software-intensive system is de-
pendent on how effectively it addresses the stakeholder’s quality
attribute concerns such as security, usability, availability, and in-
teroperability. Designing a system to satisfy these concerns in-
volves devising and comparing alternate solutions, understanding
their trade-offs, and ultimately making a series of design choices.
These architectural decisions typically begin with design primitives
such as architectural tactics and patterns.

Tactics are the building blocks of architectural design [1], re-
flecting the fundamental choices that an architect makes to address
a quality attribute concern. Architectural tactics come in many dif-
ferent shapes and sizes and describe solutions for a wide range of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SAC 2016, April 04-08, 2016, Pisa, Italy
© 2016 ACM. ISBN 978-1-4503-3739-7/16/04. .. $15.00
DOI: http://dx.doi.org/10.1145/2851613.2851787

1480

quality concerns. Architectural tactics are particularly prevalent
across high-performance and fault tolerant software systems. Re-
liability tactics such as Redundancy with Voting, Heartbeat, and
Check-Pointing provide solutions for fault mitigation, detection,
and recovery. Performance tactics such as Resource Pooling and
Scheduling help optimize response time and latency.

The importance of rigorously and robustly implementing archi-
tectural tactics was highlighted by a previous work [14] which in-
vestigated tactic implementations in Hadoop and OFBiz and eval-
uated their degree of stability during the maintenance process. For
each of these projects, we retrieved a list of bug fixes from the
change logs (Nov. 2008 - Nov. 2011 for Hadoop, and Jan. 2009 -
Nov. 2011 for OFBiz). The previous analysis showed that tactic-
related classes incurred 2.8 times as many bugs in Hadoop, and 2.0
times as many bugs in OFBiz as non-tactic related classes. These
observations suggest that tactic implementations, if not correctly
developed, are likely to contribute towards the well-documented
problem of architectural degradation [24]. Less experienced devel-
opers sometimes find this challenging, primarily due to the variabil-
ity points that exist in a tactic, and the numerous design decisions
that need to be made in order to implement a tactic in a robust and
effective way. A robust tactic search engine which can share sam-
ple code snippets from successful implementations of tactics in the
open source community can be invaluable for developers.

Our primary contributions in this paper are:

1. Report the results of a qualitative code review study con-
ducted to identify challenges in implementing architectural
tactics and reusing tactical code.

2. Identify the foundations of a practical tactic search engine.

3. Introduce the notion of factical clones and formulate the next
steps in realizing a tactic search engine.

Although there has been some initial development of source code
recommender systems [11, 12], the primary focus of this previous
research is only on retrieving generic functional code and not tacti-
cal code. Therefore the challenges of obtaining and recommending
tactical code is still unexplored. This paper focuses on identifying
these challenges.

This paper organized as follows: Section 2 presents the under-
lying methodology used to conduct the qualitative study of tactic
implementations. Section 3 discusses the results of our qualita-
tive study, tactic implementation issues, reusability concerns and
other observations across several implementation of architectural
tactics. This section also summarizes the foundations for devel-
oping a practical tactic search engine. Section 4 presents the def-
initions of tactical clones and the process of extracting sample ar-
chitectural clones from source code of several open source systems.
Section 5 presents possible future work to build on our research and
Section 6 discusses related works. Section 7 concludes our paper.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2851613.2851787&domain=pdf&date_stamp=2016-04-04

2. METHODOLOGY

Prior to proposing more specific guidelines for developing a tac-
tic search engine, we conducted an extensive study of architec-
tural decisions and their implementations in 40 performance cen-
tric, safety critical dependable systems [16].

2.1 Goals

Current research lacks insight into the implementation of tactics.
Revealing low-level and non-abstract issues in developing architec-
tural tactics can help shape the foundation of a tactic search engine.

2.2 Research Question

Our study is focused on the following research question: What
are the implementation characteristics of architectural tactics that
are reflected in the source code?

2.3 Project Selection

The following process was used to select a set of open source
projects for this study.

e Selection through Code Search: The source code search en-
gine Koders was used to locate projects which have imple-
mented a set of predefined architectural tactics. The search
query for each tactic is composed of keywords used in the
libraries that the architect has previously used to implement
the tactics. The results have been peer reviewed to ensure
that each project has implemented the architectural tactic.
Selection by Meta-Data: Project-related documents, such as
design documents and online forums were searched for ref-
erences and pointers to architectural tactics. This search was
followed by a detailed source code review to ensure that each
identified project has the tactics implemented.

We have identified 40 open source projects using this process.
The projects are elicited from different application domains, with

diverse sizes, and developed using different programming languages.

This dataset includes projects which are comparable to industrial
applications including Chromium, Apache Hadoop, Ofbiz and Hive.

2.4 Study: Learning from the Trenches

For each of the examined projects we identified architecturally
significant requirements, architectural tactics used to address them,
and source files used to implement tactics. For all identified tactics,
a peer-code review was conducted to extract code snippets imple-
menting the tactics. This was followed by a manual reverse engi-
neering process where our team members utilized Sparx Enterprise
Architect' reverse engineering features to draw a class diagram for
each instance of the tactic. In this study, two code reviewers who
are experienced in software architecture were asked to document
their observations of tactic implementations and formulate the chal-
lenges that impacts the development of a tactic search engine.

3. QUALITATIVE STUDY

As aresult of this study we observed five issues related to our re-
search questions that can also significantly influence development
of a practical tactic search engine:

3.1 No Single Solution

There is no single way to address quality requirements and also
no single way to implement an architectural tactic. System tac-
tics may be implemented entirely differently from one system to

"http://www.sparxsystems.com/products/ea/downloads.html

1481

another. This divergence is due to the differences in the context
and constraints of each project. For example, we reviewed the im-
plementation of the Heartbeat tactic for reliability concerns in 20
different software systems. We observed the Heartbeat tactic being
implemented using (i) direct communication between the emitter
and receiver roles found in (Chat3 and Smartfrog systems), (ii) the
Observer pattern where the receiver is registered as a listener to the
emitter found in the Amalgam system, (iii) the Decorator pattern in
which the Heartbeat functionality was added as a wrapper to a core
service found in (Rossume and jworkosgi systems), and finally (iv)
numerous proprietary implementations which did not follow any
documented designs.

Therefore a tactic-search engine can not primarily rely on struc-
tural dependencies as a means of learning the best tactic imple-
mentation.

HeartBeat = «USES® Receiver
Message
r——— =]
| |
N ! |
wusese 1| | | wusesw
! Calls SendHeartBest W
Emitter e — — i Configurations
T e T

(a) HeartBeat with configuration files

winterfaces
HeartbeatListener

Heartbeat
sendPulse

+ b
+ Runf): void

istener) : void ailed() : void

3
+ sendPulse]) : void

L

ServerCommunicationManager

+ heartbestFailed(: void
+ sendPulse() : void

(b) Observer design pattern to implement the tactic

Sender winterfaces
— = Service
zCallse &
F—————— .+ ————— = 9
Service ServiceDecorator
aUSESn 1
HeartbeatService e — — e EELERE Concrete
Variables HeartbeatService| Decorator

(c) Decorator design pattern to implement the tactic

Figure 1: Hadoop : (a)Hadoop, Chat3, smartfrog (b)Amalgam
System (c)Thera, JSRB, Rossume Systems

3.2 Structure Is Not a Key, But Impacts Code
Quality

Unlike design patterns which tend to be described in terms of
classes and their associations, tactics are described in terms of roles
and interactions [1]. This means that a tactic is not dependent upon
a specific structural format. While a single tactic might be imple-
mented using a variety of design notions or proprietary designs, the
structural properties of tactical files can have a significant impact
on the quality of the tactic. Flaws such as cyclic dependencies, im-
proper inheritance, unstable interfaces, and modularity violations

Figure 2: Resource Pooling Tactic Implemented in Apache
Hadoop Project

are strongly correlated to increased bug rates and the elevated main-
tenance costs.

Figure 2 displays the Resource Pooling tactic in the Apache Hadoop
project. Nodes in this graph represent the source file, and the edges
are method calls between the source files. We observed several
such tactic implementations that did not expose a well organized
code structure. Typically, the source files in the tactic form a full
graph with several cyclic dependencies between each pair of files.

A tactic-search engine should take into account the internal qual-
ity of recommended code to avoid suggesting code with design and
structural flaws.

3.3 Tactical Clones, Right Level of
Reuse-Granularity

While the implementation of tactics vary between different sys-
tems, the intrinsic characteristics of tactics are maintained across
different projects. These are known as architectural or tactical
clones. Based on our observations, tactical clones are the mini-
mum reusable tactical features. In our code review process, we
found that even for a simple tactic like Heartbeat the implementa-
tion would result in a large number of interrelated files, with each
playing a different role. Some of which include Heartbeat Emitter,
Heartbeat Receiver, Configuration files to set Heartbeat intervals
and other parameters,supporting classes and interfaces to imple-
ment each tactical roles. More complex tactics, specially the cross-
cutting ones can easily impact hundreds of source files. Therefore
recommending code snippets for those tactics would create a large
search space for the developers with lesser degree of reusability.

The lack of structure, and a concrete micro-level design which
can be recovered across multiple projects indicates that method
level clones are the right level of granularity. In the next section
we provide examples of such tactical clones.

3.4 Tactics Are Misused, Degraded or Imple-
mented Incorrectly.

Open source repositories contain numerous cases where archi-
tectural tactics have been adopted by developers without them fully
understanding the driving forces and variability points associated
with each tactic and consequences of implementing the tactic [16].
The Heartbleed issue is a good example of such a misuse. Heartbeat
functionality in OpenSSL is an optional feature, although many de-
velopers have ignored this option.

In our analysis of bug reports in tactical fragments of the Hadoop
project, we found that when a tactical file had a bug, then 89% of
these concerns were due to issues such as unhandled exceptions,
type mismatches, or missing values in a configuration file. Incor-
rect implementations led to 11% of all reports. These bugs involved

1482

misconceptions in the use of the tactic, so that the tactic failed to ad-
equately accomplish its underlying architectural goals. These types
of bugs caused the system to crash under certain circumstances. For
example, in one case a replication decision with a complex syn-
chronization mechanism was misunderstood for different types of
replica failures. Another example was a scheduling tactic which
resulted in a deadlock problem. This investigation shows that sys-
tems are exposed to new risks during implementation of the tactical
decisions.

A practical tactic search engine, needs to take into account tacti-
cal code qualities, and the context in which the tactics are adopted,
Additional quality factors include the history of bug fixes and refac-
toring activities on the candidate clones.

3.5 Object Oriented Metrics Are Not Indica-
tor of Tactical Code Quality

We performed a detailed investigation of bug fixes in two of the
systems included in our study. Our initial analysis of the OO met-
rics of Chidamber et al. [6] and tactical code snippets in Apache
Hadoop and OfBiz indicates that tactical code snippets typically
have a relatively higher code complexity compared to non-tactical
code snippets [14]. For example, implementing thread pooling re-
quires devising solutions for the thread safe problem which will
results in a more complex implementation. Therefore OO metrics
such as WMC (Weighted Methods per Class) or CBO (Coupling
Between Object classes) can not solely be a good indicator of an
improved tactical code snippet.

A good tactic search engine must take novel code metrics into
account to filter potentially complex code samples. Such metrics
should help filter code snippets which are difficult to comprehend
and modify.

4. ARCHITECTURAL CLONES: A STEP TO-
WARD TACTICAL CODE REUSE

The qualitative study we conducted motivated the utilization of
tactical clones as an appropriate level of granularity in respect to
code reusability. In order to illustrate the concepts of architec-
tural or tactical clones, our qualitative study was followed by an
exploratory study where we established a representative sample of
these design clones. To assist, we developed a semi-automated pro-
cess for retrieving candidate instances of tactic-related classes then
detected code clones across these tactical files.

The process of detecting tactical clones involves the following
steps: (1) building a software repository, (2) extracting instances
of architectural tactics, (3) extracting code clones across projects,
and (4) manually inspecting the results to investigate our hypoth-
esis that tactical clones are a practical granularity for architectural
reuse.

4.1 Building a software repository

To build our repository of software systems, we preselected 37
open source projects with a high number of architectural tactics.

4.2 Extracting architectural tactics

We utilized a previously developed tactic detection algorithm
and tool [15, 17] to identify architectural tactics. These Tactic De-
tector’s classifiers have been trained to find architectural tactics
such as audit trail, asynchronous method invocation, authentica-
tion, checkpointing and roll back, Heartbeat, role-based access
control (RBAC), resource pooling, scheduling, ping echo, hash-
based method authentication, kerberos and secure session man-
agement. Due to space constraints, we provide only an informal

1 iprotected static boolean hasBasePermission (GenericValue userLogin, HttpServle
(ServletContext) reguest.gethttribute ("servlietCo!

2 ServletContext context =

3 @ Authorization authz = (Authorization) request.getAttribute ("authz"):
Security security = (Security) regquest.getAttribute ("security"):
String serverId = (String) context.gethrtribute ("_serverIdn);
String contextPath = reguest.getContextPath ();
ComponentConfig.WebappInfo info =
CompenentConfig.getWebAppInfo (serverld, contextPath);

E] if (security != null) {

10 if (info '= null) {

11 A for (String permission info.getBasePermission [())] {

1 if (! "NONE".equals (permission)
15 && ! security.hasEntityPermission (permission,
1 return false:

"_VIEW",| userLs

‘\protected static boolean hasBasePermission (GenericValue userlogin, HetpServl
ServletContext context = (ServletContext) reguest.getAttribute ("servietC

Security security = (Security) request.getAttribute ("security");
String serverld = (String) context.getAttribute ("_serverIdn);
String contextPath = request.getContextPath ();
ComponentConfig.Webapplnfo info =
ComponentConfig.getWebippInfo (serverld, contextPath);
if (security != null) {
if (info '= null) {

String [[] permissions = info.getBasePermission ()7

for (int i = 0;

i < permissions.length; i ++) {

o0k

if (! "NONE".equals (permissions [[i])
&& ! security.hasEntityPermission (permissions [i],
return false;

" VIEW", t

Figure 3: Tactical Clones Detected in Two different Projects

description of our tactic detection approach. However a more com-
plete description of the approach, including its related formulas,
may be found in previous publications [13, 17]. The tactic detec-
tion technique uses a set of classification techniques. These classi-
fiers are trained using code snippets representing different architec-
tural tactics, collected from hundreds of high-performance, open-
source projects [13,16,17]. During the training phase, the classifier
learns the terms (method and variable names as well as develop-
ment APIs) that developers typically use to implement each tactic
and assigns each potential indicator term a weight with respect to
each type of tactic. The weight estimates how strongly an indicator
term signals an architectural tactic. For instance, the term priority
is found more commonly in code related to the scheduling tactic
than in other kinds of code, and therefore the classifier assigns it a
higher weighting with respect to scheduling. During the classifica-
tion phase, the indicator terms are used to evaluate the likelihood
that a given file implements an architectural tactic.

The accuracy of the Tactic Detector has been evaluated in several
studies [13,15,17]. In a series of experiments it was able to cor-
rectly reject approximately 77-100% of non-tactical code classes
(depending on tactic types); recall 100% of the tactics-related classes
with precision of 65% to 100% for most tactics tactics. The recall
for the authentication, audit trail and asynchronous method invoca-
tion was 70% .

While this approach does not return perfectly precise results, it
has a tuning parameter which enables us to only include the tactical
files with higher prediction confidence in our analysis, which will
significantly reduce the search space and assist with the task of
retrieving candidate tactical clones.

4.3 Detecting Tactical Clones

In order to detect architectural clones we used code clone detec-
tion techniques to identify reused tactical methods across different
projects. We define the four types of tactical code clones by ex-
tending the definitions from Roy et al. [21].

Type-1 tactical clones are the simplest, representing identical
tactical code except for variations in whitespace, comments, and
layout to the type-4 clones, which are the most complex.

Type-2 tactical clones have variations in identifiers, types, whites-
pace, literals, layout, and comments, but are otherwise syntactically
identical.

Type-3 tactical clones are tactical fragments which are copied
and have modifications such as added or removed statements, vari-
ations in literals, identifiers, whitespace, layout and comments.

Type-4 tactical clones, are tactical code segments that perform
the same computation, but have been implemented using different
syntactic variants.

In an extensive experiment we ran a leading clone detection tool
Nicad [21], over the tactical code snippets from 37 projects. We
chose Nicad for our analysis since it is a mature and refined tool
which has demonstrated its effectiveness in previous research [20].

1483

Table 1: Discovered Tactical Clones Across 37 Projects.

Tactic Number of Clones | In Total Tactical Files
Audit 50 352
Authenticate 151 252
Checkpointing | 8 138
Ping Echo 10 103
Pooling 1021 1073
RBAC 436 477
Scheduling 76 117
Secure Session | 249 299
HeartBeat 0 11
Kerbrose 0 21

4.4 Results

Table 1 shows tactics used in our study, as well as the number
of tactical clones across projects. The last column of this table
illustrates the total number of tactical files used in our analysis.
The tactical clones were detected at the method level. While we
could have detected tactical clones at the sub-method level, we re-
alized that method level tactical clones are easier to comprehend
and therefore easier to reuse for the developers. We do not report
tactical clones within the same project since developers typically
reuse the source code within a project. We were interested in the
tactical clones reused across various projects so we could identify
intrinsic and reusable tactical code snippets. As a result of our ex-
ploratory study we found several examples of identical tactical code
snippets. While most of the clones were type 1, 2 and 3, we also
had several examples of conceptually equivalent tactical code snip-
pets (type 4).

Figure 3 shows the source code for RBAC tactics across two dif-
ferent projects. In this example two developers in different systems
have potentially created the same code snippets to implement the
tactic. This example is one instance among several similar obser-
vations of tactical clones across different projects. This supports
the hypothesis that tactical clones are an appropriate level of gran-
ularity in respect to code reusability. However, as stated in future
work we plan to examine this hypothesis in set of developer studies.

S. FUTURE WORK

This paper provides crucial information about tactic implemen-
tation and code reuse. However, there is still future work to be
conducted in this area.

5.1 Conceptually Equivalent Tactical Clones

While tactical clone types 1, 2, and 3 primarily represent syn-
tactically equivalent tactical code snippets reused across various
projects, sharing and reusing tactical code snippets that are type 4
clones would be very beneficial. Our initial investigation indicates
that type-4 or semantically equivalent tactical clones can be de-
tected using complex code similarity techniques such as symbolic

Table 2: An Example HeartBeat Tactical Clone

HeartBeat Example #1

HeartBeat Example #2

boolean shouldBeRunning=true;

int smalllnterval=10;

long lastHeartbeat=0;

int heartbeatInterval=10;

while (shouldBeRunning) {
Thread . sleep (smalllnterval);

if (System.currentTimeMillis ()—lastHeartbeat >

heartbeatInterval){
sendHeartbeat () ;

lastHeartbeat= System.currentTimeMillis () ;

}
}

and concolic analysis [8, 10].

Concolic analysis combines concrete and symbolic values to tra-
verse all possible paths of an application. Since concolic analysis
is not affected by syntax or comments, identically traversed paths
are indications of duplicate functionality, and therefore function-
ally equivalent code. These traversed paths are expressed in the
form of concolic output which represents the execution path tree
and displays the utilized path conditions and representative input
variables. In order to detect tactical-clones we used a concolic anal-
ysis based clone detection technique [8—10] on two type-4 clone
examples examples of Heartbeat are shown in Table 2.

We then ran concolic analysis on these two code segments which
produced the matching concolic output shown in Table 3 which in-
dicated that original code snippets are tactical type-4 clones. In
this example, variable type integers are represented by a generic
tag “SYMINT.” Though not present in this example, other variable
types are represented in a similar fashion in concolic output. Ac-
tual variable names do not appear anywhere in the output and are
irrelevant to this clone detection process. This can be very benefi-
cial for the type-4 clone detection process. We anticipate that open
source repositories have a large number of tactical type-4 clones
which can be used as input for a tactic search engine.

In future work we plan to extend a primitive clone detection tech-
nique based on concolic analysis that is able to identify semanti-
cally equivalent code snippets. We will also augment this approach
with text mining and information retrieval techniques.

5.2 Large Scale Study

Future work should also include a larger scale study where at
least several hundred open source projects will be studied to better
understand how pervasive tactical clones are. We will also con-
duct a quantitative study to compliment our initial qualitative study
reported in this paper. For each of the identified issues, we will ex-
amine how frequently they occur across different implementations
of tactics.

5.3 Developer Study

A series of experiments are required to rigorously evaluate the
practical value of tactical clones in software reusability. A study
may be conducted where developers can use a tactic-search engine
to look for tactic implementations in terms of clones. The developer
feedback regarding the usefulness, reusability and practicality of
retrieved tactical code would then be collected.

6. RELATED WORK

While no previous works have investigated architectural tactics
as we have, numerous previous studies have analyzed code clones
and their impact on software development. Juergens et al. [7] stud-

1484

long lastRunTime=0;
long timeSpan=System.currentTimeMillis () ;
long timeSinceLastRun=
System.currentTimeMillis ()—lastRunTime ;
if (timeSinceLastRun >10) {
sendHeartbeat () ;
lastRunTime System . currentTimeMillis () ;

}

ied the consequences that code clones had on program correct-
ness. This work found that commercial and open source software
systems often suffer from inconsistent changes due to the pres-
ence of code clones, thus leading to possible system faults and in-
creased maintenance costs. Many previous works have stated that
code clones are undesirable since they often lead to more bugs and
make their remediation process more difficult and expensive [4,19].
Other research has shown that clones may also substantially raise
the maintenance costs associated with an application [7], the im-
portance of which is highlighted by the fact that the maintenance
phase of a project has been found to encompass between 40% and
90% of the total cost of a software project [22]. Ultimately, unin-
tentionally making inconsistently applied bug fixes to cloned code
across a software system increases the likeliness of further system
faults [2].

Nicad is a powerful text-based hybrid clone detection technique,
but there are numerous other popular clone detection tools and
techniques. Some of which include Simian?, CloneDR?, MeCC*,
CCCD [9], and Simcad [23]. We are confident in our selection of
Nicad due to its effectiveness which has been demonstrated in pre-
vious research [21].

Although code clones have been demonstrated to be detrimen-
tal in certain situations, code reuse is imperative for most soft-
ware development projects. Numerous previous works have studied
software reuse on both open source, and commercial applications.
Code reuse has been found to save significant time and resources
for most projects, along with increasing the overall quality of the
software [3]. Heinemann [5] performed an empirical study in 20
open source projects and analyzed 3.3 MLOC. Their analysis found
that 9 of the 20 examined applications had software reuse rates of
over 50%. Fortunately, most of the reuse was through black-box
reuse, and not through simply copying & pasting source code from
the various applications. Mockus [18] conducted a study to deter-

Zhttp://www.redhillconsulting.com.au/products/simian/
3http://www.semdesigns.com/products/clone/
“http://ropas.snu.ac.kr/mecc/

Table 3: Diff of HeartBeat Concolic Output
Concolic Segment #1 Concolic Segment #2

PCs: 1 1 0 ### PCs: 1 1 0
a_l_SYMINT, a_l_SYMINT,
a_1_SYMINT, a_1_SYMINT,
d1_2_SYMREAL, d1_2_SYMREAL,
a_l_SYMINT, a_l_SYMINT,

dl_2_SYMREAL,
s1_3_SYMSTRING,

dl_2_SYMREAL,
s1_3_SYMSTRING,

mine the extent of software reuse in open source projects, identify
the most reused code, and investigate patterns of large-scale reuse.
This work found that 50% of the files were being used in more than
one project, and that the most widely reused components were gen-
erally small, although some were comprised of hundreds of files.

Although there have been a few source code recommender sys-
tems [11, 12], the primary focus of these works are on generic
source code, and not tactical code snippets. Therefore the chal-
lenges of obtaining and recommending architecturally significant
code is still unexplored. This paper conducted a qualitative study
and reported challenges related to implementation and reuse of tac-
tical code snippets.

7. CONCLUSION

In this work we investigated the challenges toward creating a ro-
bust and practical tactic search engine. The study revealed issues
related to coding architectural tactics. Furthermore, our study sug-
gests that the notion of architectural clones can provide a reusable
level of granularity for a tactic search engine. Future work will
examine this suggestion through a rigorous developer study.

8. ACKNOWLEDGMENTS

The work in this paper was partially funded by the US National
Science Foundation grant #CCF-1543176.

9. REFERENCES

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Addison-Wesley, 3rd edition, 2012.

[2] F. Deissenboeck, B. Hummel, and E. Juergens. Code clone
detection in practice. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume
2, ICSE ’10, pages 499-500, New York, NY, USA, 2010.

[3] P. Devanbu, S. Karstu, W. Melo, and W. Thomas. Analytical
and empirical evaluation of software reuse metrics. In
Software Engineering, 1996., Proceedings of the 18th
International Conference on, pages 189—199, Mar 1996.

[4] E. Duala-Ekoko and M. P. Robillard. Clone region
descriptors: Representing and tracking duplication in source
code. ACM Trans. Softw. Eng. Methodol., 20(1):3:1-3:31,
July 2010.

[5] L. Heinemann, F. Deissenboeck, M. Gleirscher, B. Hummel,
and M. Irlbeck. On the extent and nature of software reuse in
open source java projects. In Proceedings of the 12th
International Conference on Top Productivity Through
Software Reuse, ICSR’11, pages 207-222, Berlin,
Heidelberg, 2011. Springer-Verlag.

[6] M. Hitz and B. Montazeri. Chidamber and kemerer’s metrics
suite: a measurement theory perspective. Software
Engineering, IEEE Transactions on, 22(4):267-271, Apr
1996.

[7] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner.
Do code clones matter? In Proceedings of the 31st
International Conference on Software Engineering, pages
485-495. IEEE Computer Society, 2009.

[8] D.E. Krutz. Concolic Code Clone Detection. PhD thesis,
Nova Southeastern University, 2012.

[9] D. E. Krutz, S. A. Malachowsky, and E. Shihab. Examining
the effectiveness of using concolic analysis to detect code
clones. In Proceedings of the 30th Annual ACM Symposium
on Applied Computing, SAC °15, pages 1610-1615, New
York, NY, USA, 2015. ACM.

[10] D. E. Krutz and E. Shihab. Cccd: Concolic code clone
detection. In Reverse Engineering (WCRE), 2013 20th
Working Conference on, 2013.

[11] Y. Malheiros, A. Moraes, C. Trindade, and S. Meira. A
source code recommender system to support newcomers. In
Computer Software and Applications Conference
(COMPSAC), 2012 IEEE 36th Annual, pages 19-24, July
2012.

[12] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang,
and B. Mobasher. Recommending source code for use in
rapid software prototypes. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, pages 848-858, 2012.

[13] M. Mirakhorli. Preserving the quality of architectural
decisions in source code, PhD Dissertation, DePaul
University Library, 2014.

[14] M. Mirakhorli and J. Cleland-Huang. Modifications, tweaks,
and bug fixes in architectural tactics. In Proceedings of the
12th Working Conference on Mining Software Repositories,
MSR 15, pages 377-380, Piscataway, NJ, USA, 2015. IEEE
Press.

[15] M. Mirakhorli, A. Fakhry, A. Grechko, M. Wieloch, and
J. Cleland-Huang. Archie: A tool for detecting, monitoring,
and preserving architecturally significant code. In ACM
SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), 2014.

[16] M. Mirakhorli, P. Mider, and J. Cleland-Huang. Variability
points and design pattern usage in architectural tactics. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering,
FSE 12, pages 52:1-52:11. ACM, 2012.

[17] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A
tactic centric approach for automating traceability of quality
concerns. In International Conference on Software
Engineering, ICSE (1), 2012.

[18] A. Mockus. Large-scale code reuse in open source software.
In Emerging Trends in FLOSS Research and Development,
2007. FLOSS’07. First International Workshop on, pages
7-7. IEEE, 2007.

[19] M. Mondal, C. K. Roy, and K. A. Schneider. An empirical
study on clone stability. SIGAPP Appl. Comput. Rev.,
12(3):20-36, Sept. 2012.

[20] C. K. Roy and J. R. Cordy. An empirical study of function
clones in open source software. In Reverse Engineering,
2008. WCRE’08. 15th Working Conference on, pages 81-90.
IEEE, 2008.

[21] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of
near-miss intentional clones using flexible pretty-printing
and code normalization. In Proceedings of the 2008 The 16th
IEEFE International Conference on Program Comprehension,
pages 172-181, 2008.

[22] R. Shukla and A. K. Misra. Estimating software maintenance
effort: a neural network approach. In Proceedings of the 1st
India software engineering conference, ISEC *08, pages
107-112, New York, N, USA, 2008. ACM.

[23] M. Uddin, C. Roy, and K. Schneider. Simcad: An extensible
and faster clone detection tool for large scale software
systems. In Program Comprehension (ICPC), 2013 IEEE
21st International Conference on, pages 236-238, May 2013.

[24] J. van Gurp, S. Brinkkemper, and J. Bosch. Design
preservation over subsequent releases of a software product:
a case study of baan erp: Practice articles. J. Softw. Maint.
Evol., 17:277-306, July 2005.

