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ABSTRACT deed, some attributes tf, ¢, andt; have become obso-

Data quantity and data quality, like two sides of a coin, '€t€ and thus inaccurate. -

are equally important to data management. This paper

provides an overview of recent advances in the study of ) ] )
data quality, from theory to practice. We also address 1he example shows that if the quality of the data is
challenges introduced by big data to data quality man- Pad, we cannot find correct query answers no matter

agement. how scalable and efficient our query evaluation algo-
rithms are.
1. INTRODUCTION Unfortunately, real-life data is often dirty: inconsis-

When we talk about big data, we typically empha- tent, inaccurate, incomplete, obsolete and duplicated.
size the quantity (volume) of the data. We often focus Indeed, “more than 25% of critical data in the world’s
on techniques that allow us to efficiently store, manage P companies is flawed” [53], and “pieces of infor-
and query the data. For example, there has been a hosfhation perceived as being needed for clinical decisions
of work on developing scalable algorithms that, given a Were missing from 13.6% to 81% of the time” [76]. It
query@ and a dataseD, compute query answe€( D) is also estimated that “2% of records in a customer file

whenD is big. become obsolete in one month”[31] and hence, in a cus-
tomer database, 50% of its records may be obsolete and
But can we trust) (D) as correct query answers? inaccurate within two years.

Dirty data is costly. Statistics shows that “bad data or
poor data quality costs US businesses $600 billion annu-
ally” [31], “poor data can cost businesses 20%-35% of
their operating revenue” [92], and that “poor data across
businesses and the government costs the US economy

1 . find disti | in Edinburah $3.1 trillion a year” [92]. Worse still, when it comes to
( g Q”enyQl IS to find distinct em%oyies INEINDUIGN 1 gata, the scale of the data quality problem is histori-
whose first name is Mary. A textbook answerxpin cally unprecedented.

Dy is that@,(Dy) consists of tuples, andts.
0 Q1(Do) P et ° These suggest that quantity and quality are equally

However, there are at least three reasons that dis- important to big datai.e.. big data = data quantity +
credit our trust inQ1(Dy). (a) In tuplet,, attribute P 9 €., DIy a y

ExampLE 1. Intable Dy of Fig. 1, each tuple spec-
ifies the nameRN, LN), phone (country cod€C, area
code AC, landline, mobile), address {treet, city and
zip), and maritalstatus of an employee. Consider the
following queries.

t1[AC] is 131, which is the area code of Edinburgh, not data guallty ) . )

of London. Hence, is “inconsistent”, andt; [city] may This paper aims to provide an overview of recent ad-

actually be Edinburgh. (b) Tuples and t; may re- vances in the study of data quality, from fundamental

fer to the same person, i.e., they may not destinct. research (Section 2) to practical techniques (Section 3).

(c) RelationD, may be incomplete: there are possibly It also identifies challenges introduced by big data to
employees in Edinburgh whose records are not included 9t quality management (Section 4). Due to the space

in Dy. In light of these, we do not know wheti@y (D) constraint, this is by no means a comprehensive survey.
gives us all correct answers. We opt for breadth rather than depth in the presentation.

Nonetheless, we hope that the paper will incite interest
in the study of data quality management for big data.

We refer the interested reader to recent surveys on the
subject [7, 11, 37,52, 62, 78].

(2) Suppose that;,t> andts refer to the same Mary,
and that they were once correct records (except the ad-
dress oft;). Query@- is to find her current last name.

It is not clear whether the answer is Smith or Luth. In-



FN LN CC | AC | landline | mobile street city zip status
t1: | Mary Smith | 44 | 131 | 3855662 | 7966899 5 Crichton London WI1B 1JL | single
to: | Mary Luth 44 | 131 null null 10 King’s Road| Edinburgh | EH4 8LE | married
ts3: | Mary Luth 44 | 131 | 6513877 7966899 8 Mayfield Edinburgh | EH4 8LE | married
ta: Bob | Webber| 01 | 908 | 6512845| 3393756| PO Box212 | Murray Hill | NJ 07974 single
ts: | Robert | Webber| 01 | 908 | 6512845 null 9 Elm St. Murray Hill | NJ 07974 single

Figure 1: An emplo

2. FOUNDATIONS OF DATA QUALITY

Central to data quality are data consistency, data
deduplication, information completeness, data currency
and data accuracy. The study of data quality has been
mostly focusing on data consistency and deduplication
in relational data. Nonetheless, each and every of the
five central issues introduces fundamental problems. In

this section we survey fundamental research on these is-
sues. We highlight dependency-based approaches since

they may vyield a uniform logical framework to handle
these issues.

2.1 Data Consistency

Data consistencyefers to the validity and integrity
of data representing real-world entities. It aims to detect
errors (inconsistencies and conflicts) in the data, typi-
cally identified as violations oflata dependencig#n-
tegrity constraints). It is also to help vspair the data
by fixing the errors.

There are at least two questions associated with data bl _
consistency. What data dependencies should we use tgapleaux:
detect errors? What repair model do we adopt to fix theT

errors?

Data dependencies Several classes of data dependen-
cies have been studied as data quality rules, including

e functional dependencie$Ds) and inclusion de-
pendenciesIfDs) [14, 23] found in textbooks
(e.g.,[1]);

conditional functional dependencieSHDs) [38]
and conditional inclusion  dependencies
(CINDs) [15], which extendFDs and INDs,
respectively, with a pattern tableau of semanti-
cally related constants;

denial constraintsXCs) [8, 23], which are uni-
versally quantified first-order logi¢Q) sentences
of the formVz—(¢(Z)A3(Z)), whered(z) is a
non-empty conjunction of relation atoms over
and 5(z) is a conjunction of built-in predicates
=7#<>, 5,2

equality-generating dependencies [Bl:Ds [9]),

a special case dDCs when(z) is of the form
x;=xj; our familiar FDs are a special case of
EGDs;

yee datasetD,

e tuple-generating dependencies [2[GDs [9]),
FO sentences of the foriviz (¢(z) — 35 (¥ (Z, 7)),
whereg¢(z) and(z,y) are conjunctions of rela-
tion atoms over andzUy, respectively, such that
each variable oft occurs in at least one relation
atom of¢(z);

full TGDs [2], special case of GDs without ex-
istential quantifiersj.e., of the formVz(¢(z) —
¥(2)); and
LAV TGDs [2], a special case of GDs in which
¢(z) is a single relation atomt.AV TGDs sub-
sumelNDs.

ExaAMPLE 2. We may use the followingFDs as
data quality rules on the employee relation of Figure 1:

1 = ((CC,zip—street), Tp1),
P2 = ((CC,ACHClty)a TP2)1

whereCC,zip — street and CC, AC — city are FDs em-
bedded in theCFDs, and Tp; and Ty are pattern

Tpo: | CC [ AC city
'p1: | CC | zip || street _ _ _
44 _ _ 44 | 131 Edinburgh
01 | 908 || Murray Hill

CFD ¢ states that in the UK (whe@C = 44), zip code
uniquely determinestreet. In other words,CC,zip —
street is anFD that is enforced only on tuples that match
the patternCC = 44, e.g., ont;—t3 in Dy, but not on
t4—ts. Takingy as a data quality rule, we find thag
andt; violatey; and hence, are inconsistent: they have
the sameip but differ instreet. Such errors cannot be
caught by convention&lDs.

CFD ¢4 says that country codeéC and area codé\C
uniquely determineity. Moreover, in the UK (i.e.CC
= 44), whenAC is 131, city must be Edinburgh; and
in the US CC = 01), if AC is 908, thencity is Mur-
ray Hill. It catchest; as a violation, i.e., a single tu-
ple may violate &FD. Note thatp, subsumes conven-
tional FD CC,AC—city, as indicated by the first tuple
in Tpo, in which " is a “wildcard” that matches any
value (see [38] for details). O

To decide what class of dependencies we should use
as data quality rules, we want to strike a balance be-
tween its “expressive poweri'e., whether it is capable



Dependencies Implication to find an answer to a given query in every repair of the

IE%S S COE(") (Cf-l [%])( - original database. Both approaches are based on the no-
S -complete (CI. . . .. . .

FDs + INDs Undecidable (cf. (1) tion of repairs. We focus on data repairing in this paper,
CEDs coNP-complete [38] and refer the interested reader to a comprehensive sur-
CINDs EXPTIME-complete [15] vey [11] and recent work [12, 67, 86, 87] on consistent

CFDs + CINDs undecidable [15] query answerlng_
DCs coNP-complete [8]
TGDs undecidable (cf. [1]) Repair models Assume a functiorcost(D, D,.) that

measures the difference between instanbeand D,
of a relational schem&, such that the smaller it is,
the closerD,. is to D. Given a set of dependencies

of catching errors commonly found in practice, and the @nd an instancé of R, arepair of D relative toX

complexity for reasoning about its dependencies and for @nd cost(,) is an instanceD,. of R such thatD, =%
repairing data. andcost(D, D,.) is minimum among all instances &

There are two classical problems for reasoning about that satisfyx. Several repair models have been studied,
dependencies: the satisfiability and implication prob- Pased on howost(D, D,.) is defined:

Table 1: Complexity of implication analysis

lems. e S-repair [23]: cost(D,D,) = |D\D,|, where
Satisfiability For a clas€’ of dependencies ande(C, D, C D; assuming that the information it is in-

we useD = to denote that a databage satisfiesy, consistent but complete, this model allows tuple
depending on how is defined. For a set CC, we use deletions only;

D E¥ to denote thaD satisfies all dependenciesin e C-repair [6]: cost(D, D,) = |D®& D,|, whereD®
The satisfiability problenfor C is to decide, given a fi- D, is defined as(D\D,)U(D,\D); assuming
nite set” CC defined on a relational scher®g whether that D is neither consistent nor complete, this
there exists a nonempty finite instanbeof R such that model allows both tuple deletions and tuple inser-
DE3X. Thatis, whether the data quality rulesihare tions;

consistent themselves. _ . e CC-repair [2]: a C-repair such thatD& D, | is
We can specify arbitrarlyDs without worrying about strictly smaller thariD& D! | for all D!, that sat-
their satisfiability. Indeed, every set BGDs (or TGDs) isfiesy: and

can be satisfied by a single-tuple relation [8]. How-
ever, a set oDCs or CFDs may not be satisfiable by

a nonempty database. While the satisfiability problem
for DCs has not been settled, it is known that itN&-
complete forCFDs [38], owing to the constant patterns
in CFDs. That is, the expressive power GFDs and For example, the repair model of [14] assumes (a) a
DCs come at a price of a higher complexity. weightw(t, A) associated with each attributeof each
tuplet¢ in D, and (b) adistancefunction dis(v,v") for
valuesv andv’ in the same domain. Intuitivelyy (¢, A)
indicates the confidence in theccuracyof ¢[A], and
dis(v,v’) measures how clos¢ is to v. The cost of
changing the value of an attributf4] from v to v’ is

. ; . defined as:ccost(v,v')=w(t, A)-dis(v,v’). Thatis, the
cide, giver>; € C andyp €C over arelational scherrid, more accurate(the origin(a[lA] valu((av is) and the more

whetherX:|=p. The implication analysis helps us re- distant the new value’ is from v, the higher the cost

move redun_dant data quallty_rl_JIes and hence, speed UPof the change is. The cost of changing a tuple #
error detection and data repairing processes.

) i . isthe sum otost(t[A],t'[A]) for A ranging over all at-
Table 1 summarizes known complexity of the impli- ipytes in¢ in which the value of[A] is modified. The
cation analysis of data dependencies used as data quality.qgt of changingD to D, denoted bycost(D, D,), is
rules. the sum of the costs of modifying tuplesih In prac-

. . tice, repairing is typically carried out vid-repair (see
Data repairing. There are two approaches to obtaining Sectionps) g5 ypiealy pair (

consistent information from an inconsistent database,

both proposed by [6]data repairingis to find another ~ The repair checking problenConsider a clas§ of de-
database that is consistent and minimally differs from pendencies and a repair modelwith which function
the original database; amdnsistent query answering costp(,) is associated. Thepair checking problerfor

e U-repair [91, 14]: cost(D, D,.) is a numerical ag-
gregation function defined in terms of distances
and accuracy of attribute valuesihand D,.; this
model supports attribute value modifications.

Implication Consider a finite se£ CC of dependen-
cies and anothepeC, both defined on instances of a
relational schem&k. We say that™ implies ¢, de-
noted byX =, if for all instancesD of R, D=y as
long asD =%. Theimplication problenfor C is to de-




Dependencies Repair model|  Repair checking be dirty, and moreover, even when the data sources are
full TGDs S-repair PTIME [85] seemingly reliable, inconsistencies and conflicts often
onefD + onelND Srepar | coNP-complete [23] emerge when we integrate the data [14].
DCs S-repair LOGSPACE (cf. [2]) .
WA LAV TGDs T EGDs | S-reparr TOGSPACE [2] A variety _of _approaches_ _ha_ve been proposed for
full TGDs + EGDs S-repair | PTIME-complete [2] data deduplication: probabilistie@.,[49, 65, 95]),
WA TGDs + EGDs S-repair coNP-complete [2] learning-based [27, 82], distance-based [60], and rule-
DCs C-repair | coNP-complete [73] based [3, 44, 61] (see [33, 62, 78] for surveys). In this
full TGDs + EGDs C-repair coNP-complete [2 _ ; _
WA TCDs + ECDs Crrepair <oNP-complete [2 E\f;\éaz;\évj ﬁ&;{:;gn rule-based collective and collabora
DCs CC-repair coNP-complete [2] P !
full TGDs + EGDs CC-repair coNP-complete [2 . . . . . .
WA TGDs + EGDs CCrepair coNP-complete [2 Data deduplication. To simplify the discussion, con-
fxed FDs U-repair coNP-complete [14] sider a single relation schem&. This does not
fixed CINDs U-repair | coNP-complete [14] lose generality since for any relational schefRa=

(Ry,...,R,), 0ne can construct a single relation schema
R and a linear bijective functiofi() frominstances oR
to instances oR, without loss of information. Consider
a setFE of entity typeseach specified by[ X ], whereX
is a set of attributes aR.
Given an instanc® of R and a sef of entity types,

Table 2: Complexity of repair checking

(C,T) is to decide, given a finite sét CC of depen-
dencies defined over a relational scheRyaand two in-

stancesD and D, of R, whetherD, is a repair ofD data deduplicatioris to determine, for all tuples ¢’ in

relative toX andcostr (;)? _ D, and for each entity type X ], whether[X ] andt’[X]
The repair checking problem has been studied for var- should be identified,e., they refer to the same entity of

ious dependencies and repair models; some of the com-type ¢. Following [13], we callt[X] and¢'[X] refer-
plexity bounds are presented in Table 2. Here a set of encedo ¢ entities.

TGDs is said to be weakly acyclic (WA) if its depen-
dency graph does not have a cycle going through a spe-
cial edge that indicates an existentially quantified vari- we may consider two entity typesiddress specified
able inXY (see [2] for details). by (CC,street,city,zip), and person as the list of all

Table 2 tells us that data repairing is rather expen- attributes of employee. Given employee tuplesd
sive, especially fol/-repair when attribute values are ¢/, deduplication is to decide whethéfaddress] and
allowed to be updated: following [14], one can show ¢'[address] refer to the same address, and whethand
that its data complexity is already intractable when only ¢’ are the same person. O
FDs or INDs are used.

ExamMpPLE 3. On the employee relation of Figure 1,

As observed in [13], references to different entities
may co-occur, and entities for co-occurring references
should be determined jointly. For instance, papers and
authors co-occur; identifying two authors helps identify
their papers, and vice versa. This is referred tezals
lective entity resolutiorfdeduplication) [13]. A graph-

2.2 Data Deduplication

Data deduplicatioris the problem of identifying tu-
ples from one or more (possibly unreliable) relations
that refer to the same real-world entity. It is also

klnc;\_/vn as ;ecord_gwat:fhmg, re((:jordlllmlt(agde, ?_?.tlty.res— based method is proposed in [13] to propagate similar-
olution, instance identification, duplicate identificatjo ity among references, for collective deduplication. A

MErge-purge, datgbasg har.denlng, name matchlng, CO'olatalog-like language is introduced in [5], with recur-
_refer(_ance_ resolu_t|on, identity l_JnC(_artalnty, and object sive rules for collective deduplication.

identification. It is a longstanding issue that has been

studied for decades [49], and is perhaps the most eXten'Matching rules.
sively studied data quality problem.

The need for data deduplication is evident &g.,
data quality management, data integration and fraud de-
tection. It is particularly important to big data, which
is often characterized by a large number of (heteroge-
neous) data sources. To make practical use of the data, ExampLE 4. Matching dependencies on the em-
it is often necessary to accurately identify tuples from ployee relation of Figure 1 include the following:
different sources that refer to the same entity, so that we
can fuse the data and enhance the information about the ¢, = V¢,¢'(¢{CC,AC, landline] =¢'[CC, AC, landline]
entity. This is nontrivial: data from various sources may — t[address| =t'[address]),

Rules were first studied in [3] for
deduplication. Extending [3], a class ofatching de-
pendenciess defined in [44] in terms of similarity pred-
icates and a matching operater, based on a dynamic
semantics [34].



1o = Vt, ' (t[LN,address| =¢'[LN,address] At[FN]~t'[FN] ~ The example shows that repairing helps deduplica-

— t[person]=1'[person]), tion and vice versa. This is also observed in [5]. Al-
g = Vi, ¢/ (t[CC,AC, mobile] =t'[CC, AC, mobile] gorithms for unifying repairing and deduplication are
— t[person]=1'[person]), given in [45]. In addition to data consistency, it has

also been verified that data deduplication should also
landline phone, them[address| and ¢'[address] should be combined with the analyses of data currency (timeli-

refer to the same address and be equalized via updates;ness) and data accuracy [42, 70].
(b) ¥ says that ift and¢’ have the same address and Putting these together, we advocatellaborative
last name, and if they hawimilar first names, then they deduplicationthat incorporates the analyses of data
refer to the same person; and (¢) states that if and¢’ consistency (repairing), currency, accuracy and co-
have the same mobile phone, then they should be iden-Occurrences of attributes into the deduplication process,
tified as the same person. Hetedenotes a predicate  Not limited to co-occurring references considered in col-
for similarity of FN, such that, e.g., Bok Robert, since  lective deduplication [13].
Bob is a nickname of Robert. )

These rules identify; andts in Figure 1 as follows. 2.3 Information Completeness
(@) By 91, t4[address| andts[address| should be iden- Information completenessoncerns whether our
tified although their values areadically different and database has complete information to answer our
(b) by (a) andy», t4 andt; refer to the same person. queries. Given a databage and a queny, we want
Note that matching dependencies can be “recursively” to know whetherQ can be correctly answered by using
applied: the outcome of (a) is used to deduce (b), for only the data inD.

collective deduplication. 0 A database is typically assumed either closed or open.

Intuitively, (a); states that ift andt’ have the same

There exists a sound and complete axiom system for ' ynder the Closed World Assumption (CWA), our
deducing matching dependencies from a set of known database includes all the tuples representing real-

matching dependencies, based on their dynamic seman- \yqrid entities, but somattribute valuesmay be
tics [34]. The deduction process is in quadratic time. missing

Moreover, “negative rules” such as “a male and a fe- )
male cannot be the same person” can be expressed as ® Under the Open World Assumption (OWA), our
database may only be a proper subset of the set of

matching dependencies without the need for introduc- >< i
ing negation [45]. tuples that represent real-world entities. That is,

An operational semantics is developed for matching both tuples and values may be missing.

dependencies in [12] by means of a chase process withthe cwa is often too strong in the real world [76]. Un-

matching functions. It is shown that matching depen- qar the OWA, however, few queries can find correct an-
dencies can also be used in data cleaning, together withg,\ars

related complexity bounds for consistent query answer- 14 gea| with missing values, representation systems
ing [12]. Other types of rules have also been studied in, 4.0 typically used €.g., c-tables, v-tables [59, 64]),

e.g.[4, 16, 89]. based on certain query answers, which are recently re-

Collaborative deduplication. Dat . d ded vised in [71]. There has also been work on coping with
oflaboralive deduplication. Data reépairing and dedu- missing tuples, by assuming that there exists a virtual
plication are often taken as separate processes. To im-

h ¢ both the two should b databaseé). with “complete information”, and that part
E;?f\i/gd [55?ccuracyo oth processes, the two Should b€yt 1 is known as a view oD, [69, 77, 80]. Given such

a databasé), we want to determine whether a query
EXAMPLE 5. We show how data repairing and posedonD. can be answered by an equivalent query on

deduplication interact to identify;—¢; of Figure 1 as D, via query answering using views.

follows.

(&) By CFD ¢, of Example 2, we have that and

t3 have the same address. By matching dependenc
1o of Example 4, we deduce that and t3 refer to
the same person. Moreover, we can enrigh by
to[landline,mobile] := ¢3[landline, mobile].

Relative information completeness We can possibly
>)olo better by making use of master data. An enterprise
nowadays typically maintainmaster datga.k.a. refer-
ence datj a single repository of high-quality data that
provides various applications with a synchronized, con-

sistent view ofthe core business entitied the enter-
(b) By 13 of Example 4, we deduce thgtandts refer prise [74].

to the same person. Thereforg;t3 refer to the same

Given a databasP and master datB,,,, we specify a
Mary. O

setV of containment constrain{86]. Such a constraint



[RCDP(Lg, L) | combined complexity [36]] data complexity [17]] pendencies used in the analysis of data consistency, such

(FO, CQ) undecidable undecidable as CFDs and CINDs [36]. Hence we can study data
(€Q, CQ) IT7-complete PTIME consistency and information completeness in a uniform
(UCQ, UCQ) 115 -complete PTIME framework.

Table 3: Relative information completeness 2.4 Data Currency
_ _ Data currency(timelines$ aims to identify the cur-
is of the formg(D) Cp(Dy,), whereg is a query onD, rent values of entities represented by tuples in a (possi-
andp is a simple projection orD,,. Intuitively, D, bly stale) database, and to answer queries with the cur-
is closed-world, and the part d? that is constrained  yent values.
by V'is bounded byD,,,, while the rest is open-world. There has been work on how to define current tuples
We refer to a databade that satisfied” as aparnally by means of timestamps in temporal databases ¢sge,
gloseddatabasw.r.t._(Dm,V). A database). IS apar- [24, 83] for surveys). In practice, however, timestamps
tially closed extensionf D if DC D, and D, is par-  are often unavailable or imprecise [96]. The question is
tially closedw.r.t. (D, V) itself. how to determine data currency in the absence of reli-

A partially closed databasP is said to becomplete able timestamps.
for a query@ relative to (D,,,,V) if for all partially
closed extension®. of D w.rt. (D,,,V), Q(D.)= Modeling data currency. We present a model proposed
Q(D). That is, there is no need for adding new tuples to in [43]. Consider a database that possibly contains
D, since they either violate the containment constraints, stale data. For each tuple D, t[eid] denotes the id of
or do not change the answer@in D. In other words, the entity that represents, obtained by data deduplica-
D already contains complete information necessary for tion (see Section 2.2).

answering?) [36]. (1) The model assumescurrency order< 4 for each at-
tribute A of each relation schem@, such that for tuples
t; andt, of schemaR in D, if ¢4 [eid] =2 [eid], i.e.,when

t; andt, represent the same entity, than< 4 ¢, indi-
cates that, is more up-to-date than in the A attribute
value. This is to model partially available currency in-
formation inD.

ExamMpPLE 6. Recall that relationD, of Figure 1
may not have complete information to answer qugry
of Example 1. Now suppose that we have a master re-
lation D,,, of schemaFN, LN, city), which maintains
complete employee records in the UK, and a contain-
ment constraint: men LN cityocc=44(Do) C Dy, 1.€., _ _
the set of UK employees by is contained inD,,,. Then  (2) The model usesurrency constraintso specify cur-
if Q1(Dy) returns all employees in Edinburgh found in  réncy relationships derived from the semantics of the
D,, we can safely conclude tha, is complete for); data, expressed as denial constraints equipped with con-
relative to(D,,, {$}). 0 stants.

Several problems have been studied for relative in-  EXAMPLE 7. Extending relatiorD, of Figure 1 with
formation completeness [17, 36]. One of the prob- attributeeid, currency constraints o, include:
lems, denoted byRCDP(Lq,Lc), is to determine,

given a queryQ, master dataD,,, a setV of con- VSat((S[eid]Zt[eid]“A‘_S[Stat”US]=“ma”ied" A
tainment constraints, and a partially closed database t_[StatUS].: single” ) — t=<status ),
D w.rt. (D,,,V), whetherD is complete forQ rela- Vs, t((s[eid] =t[eid] At <status s — <IN S).

tively to (D,,,V), whereLg and Lo are query lan- ) ) .
guages in which) andg (in containment constraints) These constraints are derived from the semantics of the

are expressed, respectively. Some complexity boundsdat@: () marital changes from “single” to “married”,

of RCDP(Lq,Lc) are shown in Table 3, wheréQ, but not the o_therway around; and (bN andstat_us are

UCQ andFO denote conjunctive querieSRJ), unions correlated: ift has more current status than it also

of conjunctive queriesSPJU) andFO queries (the full has more currentN.

relational algebra), respectively. The complexity bounds ~ Based on these, quety, of Example 1 can be an-

demonstrate the difficulty of reasoning about informa- SWered with the most currebiN value of Mary, namely,

tion completeness. Relative information completeness Luth. -

has also been studied in the setting where both values ) ]

and tuples may be missing, by extending representation Based on currency orders and constraints, we can define

systems for missing values [35]. (3) consistent completion®¢ of D, which extend< 4
Containment constraints are also able to express de-in D to a total order on all tuples pertaining to the same



[ CCQA(Lg) | combined complexity [43]] data complexity [43]] mostly been dealing with customer, citizen and patient

FO PSPACE-complete coNP-complete data, they are rapidly expanding into financial and quan-
CQ, UCQ I15-complete coNP-complete titative data domains.
What does the industry need from data quality tools?
Table 4: Certain current answers Such tools are expected to automate key elements, in-

cluding: (1) data profiling to discover data quality
rules, in particular “dependency analysis (cross-table

. . - -
entity, such thatD¢ satisfies the currency constraints; and cross-dataset analysis)”; (2) cleaning, “the mod-

and e . -
ification of data values to meet domain restrictions,
(4) from D¢, we can extract theurrent tuplefor each  integrity constraints or other business rules”; and (3)
entity eid, composed of the entity’s most currehivalue  matching, “the identifying, linking and merging of re-
for each attributed based on< 4. This yields thecur- lated entries within or across sets of data”, and in partic-
rent instanceof D consisting of only the currenttuples 5, “matching rules or algorithms” [54].
of the entities inD, from which currency orders can be In this section we briefly survey techniques for pro-
removed. filing (discovery of data quality rules), cleaning (error
(5) We computeertain current answers a query) in detection and data repairing) and matching (data dedu-
D, i.e.,answers tay in all consistent completion®® plication).
of D.

Several problems associated with data currency are3-1  Discovering Data Quality Rules
studied in [43]. One of the problems, denoted by  To clean data with data quality rules, the first ques-
CCQA(Lq), is to decide, given a databade with tion we have to answer is how we can get the rules. It
partial currency orders:4 and currency constraints, a is unrealistic to rely on domain experts to design data
query@ € L and a tuplel, whethert is a certain cur-  quality rules via an expensive and long manual process,
rent answer t@) in D. Some of the complexity results  or count on business rules that have been accumulated.
for CCQA(Lg) are shown in Table 4. This highlights the need for automaticalliyscovering
andvalidatingdata quality rules.

2.5 Data Accuracy
Rule discovery For a clas€ of dependencies that are

Data accuracyrefers to the closeness of values in a - ) -
database to the true values of the entities that the dataUS€d @s data quality rules, ttiscovery problenfor C is

in the database represents, when the true values are noptat€d as follows. Given a database instancet is to

KNOWn. find aminimal cover a non-redundant set of dependen-
While it has long been recognized that data accuracy ¢1€S t_hat_ is logically equivalent to the set of all depen-

is critical to data quality [7], the topic has not been well  dénciesirC thathold onD.

studied. Prior work typically studies the reliability of A number of discovery algorithms are developed for,

data sources.g.,dependencies [30] and lineage infor- €-9-

mathn [9(_)] of d.ata sources to detect copy relationships e FDs, €.g.,[63, 93], andINDs (see [72] for a sur-

and identify reliable sources, vote counting and prob- vey):

abilistic analysis based on the trustworthiness of data Y),

sources [51, 97]. e CFDs, e.g.,[21, 39, 56, 58], andINDs [56];
Complementary to the reliability analysis of sources, e denial constraint®Cs [25]; and for

relative accuracy is studied in [_18]._ Given_tupf@sand « matching dependencies [84].

t2 that pertain to the same entity, it is to infer whether _ _

t1[A] is more accurate than[A] for attributesA of the Discovery algorithms are often based on the Iev_eIW|se

tuples. The inference is conducted by a chase process@pproach proposed by [63%.g.,[21, 39], depth-first

by combining the analyses of data consistency, currency search of [93]e.g.,[25, 39], and association rule min-

and correlated attributes. ing [39, 56].

Rule validation. Data quality rules are discovered from
3. DATA CLEANING TECHNIQUES possibly dirty data, and are likely “dirty” themselves.

As Gartner [54] put it, the data quality tool market Hence given a set of discovered rules, we need to
is “among the fastest-growing in the enterprise software identify what rules in>; make sense, by checking their
sector”. It reached $1.13 billion in software revenue in satisfiability. In addition, we want to remove redundant
2013, about 13.2% growth, and will reach $2 billion rules fromX, by making use of implication analysis (see
by 2017, 16% growth. While data quality tools have Section 2.1).



It is nontrivial to identify sensible rules from. Re-
call that the satisfiability problem iNP-complete for
CFDs, and is nontrivial foDCs. Nevertheless, approx-
imation algorithms can be developed. KdfDs, such

algorithms have been studied [38], which extract a set

Y’ of satisfiable dependencies fromy and guarantee
thatX’ is “close” to a maximum satisfiable subsetof
within a constant bound.

3.2 Error Detection

After data quality rules are discovered and validated,
the next question concerns how to effectively catch er-

rors in a database by using these rules. Given a databas%

D and a set of dependencies as data quality rules,
ror detection(a.k.a. error localizatiofis to find all tu-
ples inD that violate at least one dependencyinEr-
ror detection is a routine operation of data quality tools.

To clean data we have to detect errors first. Many users

simply want errors in their data to be detected, without
asking for repairing the data.

Error detection methods depend on (a) what depen-

a new wildcard [38]. Thus two SQL queries as above
suffice fory. O

The SQL-based method also works fdNDs [20].

Distributed data. In practice a database is often frag-
mented and distributed across different sites. In this set-
ting, error detection necessarily requires data shipment
from one site to another. For both vertically or hori-
zontally partitioned data, it idlP-complete to decide
whether error detection can be carried out by shipping a
bounded amount of data, and the SQL-based method no
longer works [40]. Nevertheless, distributed algorithms
re in place to dete&FD violations in distributed data,
with performance guarantees [40, 47].

3.3 Data Repairing

After errors are detected, we want to fix the errors.
Given a databasP and a set of dependencies as data
quality rules,data repairing(a.k.a. data imputationis
to find a repairD, of D with minimum cost(D, D,.).

dencies are used as data quality rules, and (b) whether'Ve focus on thé/-repair model based on attribute-value
the data is stored in a local database or distributed acrosgnodifications (see Section 2.1), as it is widely used in

different sites.

Centralized databases When D resides in a central-
ized database and whenis a set ofCFDs, two SQL
queriesQ° and@’ can beautomaticallygenerated such
that@Q<(D) andQ" (D) return all and only those tuples
in D that violate. [38]. Better still, Q¢ and@" are in-
dependent of the number and size@Ds in X. That

is, we can detect errors by leveraging existing facility of
commercial relational DBMS.

ExamMPLE 8. To detect violations of oo
((CC,AC —city), Tpy) of Example 2, we use the
following Q¢ andQ":

Q€ SELECT * FROM Rt, Tpa tp

WHERE ¢[CC,AC] <t,[CC, AC] AND t[city] %, [city]

QY SELECT DI STNCT CC,AC FROM R t, Tpo L,
VHERE ¢[CC,AC]<t,[CC,AC] ANDt, [city]="_’
GROUP BY CC,AC HAVI NG COUNT(DI STNCT city)> 1

wheret[CC,AC] =< ¢,[CC,AC] denotes {{CC] = ¢,[CC]
t,[CC] ="_") AND(t[AC] = ¢,[AC] ORt,[AC] =" );
and R denotes the schema of employee datasets.
tuitively, Q¢ catches single-tuple violations @b, i.e.,
those that violate a pattern iff’p,, and Q" identifies
violations of theFD embedded ip,. Note thatp¢ and
QY simply treat pattern tableai’», as an “input” re-
lation, regardless of its size. In other word@¢ and
Q" are determined only by theD embedded irp,, no
matter how large the tablealips is.
When consists of multipl€CFDs, we can “merge”
theseCFDs into an equivalent one, by making use of

In-

the real world [54].

Heuristic fixes. Data repairing is cost-prohibitive: its
data complexity iscoNP-complete for fixedFDs or
INDs [14]. In light of this, repairing algorithms are
mostly heuristic, by enforcing dependencies’inone
by one. This is nontrivial.

ExAMPLE 9. Consider two relation schemas
Ri(A,B) and Ry(B,C), an FD on R;: A—B,
and an IND R,[B]CR;[B]. Consider instances
Dlz{(1,2),(1,3)} of R,y and DQZ{(2,1),(3,4)},
where D, does not satisfy thED. To repair(D1, D),

a heuristic may enforce theD first, to “equalize” 2
and 3; it then needs to enforce th&lD, by ensuring
that D, includes{2,3} as its B-attribute values. This
yields a repairing process that does not terminated

Taking bothFDs and INDs as data quality rules, a
heuristic method is proposed in [14] based on equiva-
lence classes, which group together attribute values of
D that must take the same value. The idea is to separate
the decision of which values should be equal from the
decision of what values should be assigned to the equiv-
alence classes. Based on twat(,) function given in
Section 2.1, it guarantees to find a repair. The method
has been extended to repair data based Bds [28],
EGDs and TGDs [55] with a partial order on equiva-
lence classes to specify preferred updates,[A6«[26]
by generalizing equivalence classes to conflict hyper-
graphs. An approximation algorithm for repairing data
based or-Ds was developed in [66].



A semi-automated method is introduced in [94] for A framework is developed in [46] for inferring certain
data repairing based o@FDs. In contrast to [14], it fixes for input tuples. Although it may not be able to fix
interacts with users to solicit credible updates and im- all the errors in the data based on available information,
prove the accuracy. Another repairing method is studied it guarantees that each update fixes at least one error, and
in [45], which picks reliable fixes based on an analysis that no new errors are introduced in the entire repairing
of the relative certainty of the data, measured by entropy. process. The process may consult users to validate a
There have also been attempts to unify data repairing minimum number of attributes in the input tuples. Static
and deduplication [45] based @frDs, matching depen-  analyses of editing rules and certain regions can also be
dencies and master data. found in [46].

Editing rules are generalized in [29] by allowing
Certain Fixes. A major problem with heuristic repair-  generic functions to encompass editing rules [€]Ds
ing methods is that they do not guarantee to find correct and matching dependencies. However, it remains to
fixes; worse still, they may introduce new errors when be justified whether such generic rules can be validated
attempting to fix existing errors. As an example, to fix themselves and whether the fixes generated are sensible
tuplet, of Figure 1 that violate€FD ¢ of Example 2, at all.
a heuristic method may very likely changécity] from
London to Edinburgh. While the change makesa “re- Beyond data repairing. Data repairing typically as-
pair”, the chances are that for the entity represented by sumes that data quality rules have been validated. In-
t1, AC is 020 andckity is London. That is, the heuristic  deed, in practice we use data quality rules to clean data
update does not correct the errortifAC], and worse  only after the rules are confirmed correct themselves. A
yet, it change$, [city] to a wrong value. Hence, while  more general setting is studied in [22], when both data
the heuristic methods may suffice for statistical analysis, and data quality rules are possibly dirty and need to be
e.g.,census data, they are often too risky to be used in repaired.
repairing critical data such as medical records. There has also been work on (a) causality of er-

This highlights the need for studying certain fixes for rors [75] and its connection with data repairs [81], and
critical data,i.e., fixes that are guaranteed to be cor- (b) propagation of errors and dependencies in data trans-
rect [46]. To identify certain fixes, we make use of formations[19, 48].

(a) master data (Section 2.3), (b) editing rules instead
of data dependencies, and (c) a chase process for infer3.4 Data Deduplication

ring “certain regions” based on user confirmation, mas- A number of systems have been developed for

ter data and editing rules, where certain regions are at- yata deduplicationg.g., BigMatch [95], Tailor [32]

tribute values that are validated. _ Swoosh [10] AJAX [50], CrowdER [88] and Cor-
Edltlng _rules are dynamic constraints that tell us leone [57], as stand-alone tools, embedded packages in

which attributes should be changed and to what values ETL systems, or crowd-sourced systems. Criteria for

they should be changed. In contrast, dependencies haveye, o10ning such systems include (a) accuracy, to reduce
a static semantics; they are capable of detecting the presy, oo matchegfalse positives) andalse non-matches
ence of errors in the data, but they do not tell us how to (false negatives); and (b) scalability with big data. To
fix the errors. improve accuracy, we advocate collaborative deduplica-
tion (Section 2.2), including but not limited to collective
deduplication [13]. For scalability, parallel matching
methods need to be developed and combined with tra-
ditional blocking and windowing techniques (see [33]).
We refer the interested reader to [62, 78] for detailed
surveys.

ExamMPLE 10. Assume master dafa,,, with schema
R, (postal, C,A) for postal code, city and area code in
the UK. An editing rule fotD, of Fig. 1 is as follows:

o: (postal,zip) — ((C,city), (A,AC)),

specified with pairs of attributes frob,,, and Dy. It
states that for an input tuplé if t[zip] is validated and 4. CHALLENGES INTRODUCED BY
there exists a master tuplec D,,, such thatt[zip] = BIG DATA

s[postal], then update|city, AC]:=s[C, A] is guaranteed
a certain fix, and[AC,city] becomes a certain region
(validated). Suppose that there is= (W1B 1JL,
London, 020) inD,,,, and thatt;[zip] of Figure 1 is
validated. Thert; [AC] should be changed to 020; here
t1[city] remains unchanged. O

The study of data quality has raised as many ques-
tions as it has answered. In particular, a full treatment is
required for each of data accuracy, currency and infor-
mation completeness, as well as their interaction with
data consistency and deduplication. Moreover, big data
introduces a number of challenges, and the study of big



data quality is in its infancy. cessing all entities in parallel; and (3) resolve inconsis-
tencies across different entities, again in parallel.

Volume. Cleaning big data is cost-prohibitive: discov- We find that this approach allows us to effectively
ering data quality rules, error detection, data repairing and efficiently deduce accurate values for each entity,
and data deduplication are all expensieeg.,the data by reasoning about data consistency, data deduplication
complexity of data repairing isoNP-complete forFDs with master data, data accuracy and data currency to-
andINDs [14]. To see what it means in the context of gether [18, 42].
big data, observe that a linear scan of a datasef PB ] o )
size (1017 bytes) takes days using a solid state drive with Bounded incremental repairing We advocateincre-
a read speed of 6GBIs, and it takes year® ifs of EB mental data. repairing Given a big dat_aseD, a set®
size (10'® bytes) [41]. of data quality r_ulgs, a_repalDr of D with X, and up-

To cope with the volume of big data, we advocate the datesAD to D, itis to find changesA D, to the repair
following approaches, taking data repairing as an exam- - such thatD, ©AD,. is a repair of DG AD with 3,

ple. where D A D denotes the updated dataset/ofwith
AD:; similarly for D, &AD,.
Parallel scalable algorithmsWe approach big data re- Intuitively, small changesAD to D often incur a

pairing by developing parallel algorithms. This is often  small number of new violations to the rulessh hence,
necessary since in the real world, big data is often dis- changesA D, to the repairD, are also small, and it is
tributed. more efficient to findAD,. than to compute a new re-

Itis notalways the case that the more processors are pair starting from scratch. In practice, data is frequently
used, the faster we get. To characterize the effective- updated, but the changesD are typically small. We
ness of parallelization, we formalize parallel scalapilit  can minimize unnecessary recomputation’pf by in-
following [68]. cremental data repairing.

Consider a datasé? and a sek of data quality rules. The benefit is more evident if there exists a bounded
We denote by(|D|,|X|) the worst-case running time of  incremental repairing algorithm. As argued in [79], in-
asequential algorithnfor repairingD with 33; and by cremental algorithms should be analyzed in terms of
T(|D|,|%|,n) the time taken by a parallel algorithm for  |CHANGED| = |AD| + |AD,|, indicating the updating
the taskby usingn processorstakingn as a parameter.  costs that arenherent tothe incremental problem itself.
Here we assume < | D/, i.e.,the number of processors  An incremental algorithm is said to H®undedif its
does not exceed the size of the data, as commonly foundcost can be expressed as a function@{ANGED| and
in practice. |3|, i.e.,it depends only ofCHANGED| and|X|, inde-

We say that the algorithm zarallel scalablef pendent otthe size of bigD.

o1 This suggests the following approach to repairing and
T(IDL, 1%l m)=0((1D], [Z]) /n)+ (n] X)) . maintaining a big datasé?. (1) We compute repaib,.
That is, the parallel algorithm achieves a polynomial re- of D oncg in parallel by using a number of processors.
duction in sequential running time, plus a “bookkeep- (2) In response to updatesD to D, we incrementally
ing” costO((n|X|)!) for a constant that isindependent  computeA D,., by reducing the problem of repairing big
of | D|. D to an incremental problem on “small data” of size

Obviously, if the algorithm is parallel scalable, then |CHANGED|. The incremental step may not need a lot

for a givenD, it guaranteeghat the more processors of resources.

are used, the less time it takes to repairlt allows us Besides the scalability of repairing algorithms with
to repair big data by adding processors when needed. Ifbig data, we need to ensure the accuracy of repairs. To

an algorithm is not parallel scalable, it may not be able this end, we promote the following approach.

to efficiently repairD when D grows bigno matter how )
manyprocessors are used. Knowledge bases as master dataMaster data is ex-

tremely helpful in identifying certain fixes [46], data
Entity instances We propose to deal with entity in-  repairing [45] and in deducing the true values of enti-
stances instead of processing the big datasdirectly. ties [18, 42]. A number of high-quality knowledge bases
An entity instance.. is a set of tuples irD that pertain  are already developed these days, and can be employed
to the same entity. It is substantially smallethan D, as master data. We believe that repairing algorithms
and typically retains a manageable size wiiegrows  should be developed by taking the knowledge bases as
big. This suggests the following approach to repairing master data, to improve the accuracy.
big data: (1) clusteD into entity instanced., by us-
ing a parallel data deduplication algorithm; (2) for each Velocity. Big datasets are “dynamic”: they change fre-
entity e, deduce “the true values” effrom I., by pro-




quently. This further highlights the need for develop-

ing bounded incremental algorithms for data cleaning.
WhenCFDs are used as data quality rules, incremental

Whang, and J. Widom. Swoosh: a generic approach to entity
resolution.VLDB J, 18(1):255-276, 2009.

[11] L. Bertossi.Database Repairing and Consistent Query
Answering Morgan & Claypool Publishers, 2011.

algorithms are in place for error detection in centralized [12] L. E. Bertossi, S. Kolahi, and L. V. S. Lakshmanan. Data

databases [38] and distributed data [47], and for data
repairing [28]. Nonetheless, parallel incremental algo-
rithms need to be developed for error detection, data re-

pairing and deduplication.

Variety. Big data is also characterized by its hetero-
geneity. Unfortunately, very little is known about how to

model and improve the quality of data beyond relations.

In particular, graphs are a major source of big datg.,

social graphs, knowledge bases, Web sites, and trans

cleaning and query answering with matching dependencigs an

matching functionsTCS 52(3):441-482, 2013.

I. Bhattacharya and L. Getoor. Collective entity resigin in

relational dataTKDD, 1(1), 2007.

P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cased

model and effective heuristic for repairing constraints/alue

modification. INSIGMOD, pages 143-154, 2005.

[15] L. Bravo, W. Fan, and S. Ma. Extending inclusion depemies
with conditions. InVLDB, 2007.

[16] D. Burdick, R. Fagin, P. G. Kolaitis, L. Popa, and W.-@rT A
declarative framework for linking entities. I€DT, 2015.

[17] Y. Cao, T. Deng, W. Fan, and F. Geerts. On the data coritplex

of relative information completenedsf. Syst, 45:18-34, 2014.

[13]

[14]

portation networks. However, integrity constraints are [18] Y. Cao, W. Fan, and W. Yu. Determining the relative aeoyr

not yet well studied for graphs to determine the consis-
tency of the data. Even keys, a primary form of data
dependencies, are not yet defined for graphs. Given a

graphG, we need keys that help us uniquely identify
entities represented by verticesGh

Keys for graphs are, however, a departure from their 1
counterparts for relations, since such keys have to be
specified in terms of both attribute values of vertices and [22]
the topological structures of neighborhoods, perhaps in 23]
terms of graph pattern matching by means of subgraph

isomorphism.
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