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Abstract

Accelerators, such as Graphic Processing Units (GPUs),

are popular components of modern parallel systems. Their

energy-efficient performance make them attractive compo-

nents for modern data center nodes. However, they lack

control for fair resource sharing amongst multiple users.

This paper presents a runtime and Just In Time compiler

that enables resource sharing control and software managed

scheduling on accelerators. It is portable and transparent, re-

quiring no modification or recompilation of existing systems

or user applications. We provide an extensive evaluation of

our scheme with over 40,000 different workloads on 2 plat-

forms and we deliver fairness improvements ranging from

6.8x to 13.66x. In addition, we also deliver system through-

put speedups ranging from 1.13x to 1.31x.

Categories and Subject Descriptors D.3.4 [Software]:

Programming Languages—Processors, Run-time environ-

ments, Optimization

General Terms Performance, Experimentation, Measure-

ment

Keywords heterogeneous computing, GPUs, accelerators,

resource management, fair resource sharing, accelerator

sharing, multi-tasking, OpenCL

1. Introduction

Accelerators, such as Graphic Processing Units (GPUs), are

increasingly popular components of modern parallel plat-

forms. They deliver high computational throughput with re-

duced power for data parallel applications. However, this

∗ Currently at Intel Labs, e-mail: christos.margiolas@intel.com
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Figure 1: Sharing (a) standard OpenCL (b) accelOS

raw hardware performance comes at a software cost. Al-

though highly parallel, the accelerators are managed as co-

processors and support a limited number of concurrent ker-

nel executions at a time.

While sharing of accelerator resources is not an issue for

dedicated application systems found in HPC, it is a real bar-

rier for accelerator adoption in general purpose servers and

data centers. Such systems typically host multiple users who

cannot efficiently share and access accelerators. There is no

fair resource sharing on accelerators for execution requests

arriving concurrently from distinct users or applications.

Modern computing systems need a mechanism that al-

lows accelerators to be shared fairly among several concur-

rent kernel executions from distinct users. This should incur

minimal overhead and support immediate deployment in ex-

isting systems with minimal disruption.

This paper develops a portable and transparent approach

for accelerator sharing control. It enables concurrent space

sharing of the accelerator by multiple kernels without any

change to the application code, Operating System or hard-

ware. It is immediately deployable on existing hardware and

OpenCL[21] systems. Furthermore, our work does not com-

promise security in favor of improved accelerator sharing.

We achieve this by deploying a host runtime environment

and an LLVM[23] based, Just In Time (JIT) compiler. It de-

termines the number of work groups needed by each kernel

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

CGO’16, March 12–18, 2016, Barcelona, Spain
c© 2016 ACM. 978-1-4503-3778-6/16/03...
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(a) Individual Slowdowns. (b) System Unfairness. (c) System Throughput Speedup.

Figure 2: Parallel execution of bfs, cutcp, stencil, and tpacf.

so that all fit and have an equal share of hardware resource.

Kernel code is JIT modified so that the work performed by

the original number of work-groups is dynamically assigned

to the newly reduced number of work groups.

The need for concurrent space sharing of GPUs is well

known; in fact GPU manufacturers have separate hardware

queues specifically for this purpose. These are intended to

allow efficient utilisation by different application streams

and kernels. The NVIDIA architecture is a good example.

In practice, however, although 2 or more kernels can be sent

for execution, the hardware scheduler currently assigns all

resources to which ever one arrives first. There is no no-

tion of fair access. There have been hardware based pro-

posals to improve performance [12][29][7][5] and mem-

ory bandwidth[33]. They do not, however, investigate multi-

kernel scheduling and fair resource sharing. Furthermore,

they crucially require hardware modifications that are not

currently available.

There has been significant interest in software approaches

to GPU sharing for performance [31][1][15] and power

efficiency[18]. However, these techniques require static code

merging with no dynamic control and do not investigate fair

resource sharing. Furthermore, they raise security concerns

because they merge kernel codes of different applications

and users. There is also significant work proposing host run-

time and Operating System techniques for managing accel-

erator resources [20][34][26]. However, they focus on al-

lowing tasks to be easily allocated to a CPU or GPU, rather

than resource sharing control on accelerators.

Prior work has investigated system resource sharing for

non accelerator based systems [36][6][38][41][11] and a

number of proposed metrics quantify fairness[14][17][13].

We adopt the fairness metric proposed in [9] and extend it to

quantify fairness on accelerators.

This work presents accelOS, a host runtime and JIT com-

piler that enables resource control and scheduling on accel-

erators. Its operation remains transparent to the application,

OS and runtime libraries as there is no requirement for code

modifications or recompilation.

Our approach is evaluated extensively by using work-

loads consisting of multiple OpenCL kernels from the Par-

boil benchmark suite. We first evaluate all pairwise combi-

nations of kernels ( 25×25 = 625 in total). We then evaluate

16384, randomly selected 4-kernel combinations and 32768

randomly selected 8-kernel combinations. We compare our

approach to the hardware baseline and the Elastic Kernels

approach [31]. To show accelOS portability, we evaluate its

performance on two modern heterogeneous platforms from

two different manufacturers.

We dramatically improve fairness, ranging from 6.8x

to 13.66x. This has the added bonus of improving system

throughput on average from 1.13x to 1.31x. Our scheme

incurs no overhead due to our optimizations; in fact we ac-

tually improve isolated kernel execution times due to dy-

namic scheduling. In fact, we deliver an average single ker-

nel speedup of 1.07x and 1.1x on NVIDIA and AMD GPUs.

2. Motivation

Consider figure 1a which illustrates the typical execution of

four kernels launched concurrently, from distinct applica-

tions, on a modern dedicated GPU. Rather than executing

concurrently, each kernel is executed sequentially in turn.

As each kernel is able to use the majority of the system re-

sources, there is little space to execute the others. The first

one to execute effectively excludes the rest. There is no re-

source sharing control and the architecture does not support

preemption. This leads to unfair sharing for different appli-

cations and their users.

Figure 1b shows what happens when we use our infras-

tructure. It restricts resource allocation for kernels so that

they have more work per thread but less concurrent threads

and thus demand less system resources. The accelerator re-

sources are now allocated equally among the four kernel ex-

ecutions. This new behavior leads to fair accelerator sharing,

concurrent kernel executions and improved throughput.

2.1 Example

To make this concrete, let us consider the performance of

4 kernels, bfs, cutcp, stencil, and tpacf when concurrently

executing on an NVIDIA platform, using first the standard

software stack and then accelOS. Figure 2a shows the slow-

down of each kernel when executed concurrently relative to

executing in isolation. The standard scheme executes them

in order and bfs has the least slowdown as it is executed first

while program tpacf has the largest slowdown as it is ex-

ecuted last. accelOS slows each kernel more evenly giving
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Figure 3: (a) Standard OpenCL compared to (b) accelOS (b).

fairer access to the GPU. Using the unfairness metric [9],

this means that accelOS is 5.79x times fairer (figure 2b).

As accelOS is better able to use system resources, it

actually improves system throughput as well, 1.31x over

the standard scheme, as shown in figure 2c. An alternative

scheme, Elastic Kernels [31], attempts to statically merge

kernels when system resources may not be fully utilised.

This scheme is able to provide some improvement in system

throughput, 1.14x, but only marginaly improves fairness,

5.51, as it does not allocate resources evenly.

2.2 Throughput vs Fairness

This paper targets a particular type of fairness where we

aim to give each concurrent application an equal amount of

hardware resources. As shown in figure 2, this means that

each application is equally slowed down when sharing and

has the added benefit of improved overall throughput and

hence speedup. There may be occassions where it is deemed

fairer to give more resources to one application over another

e.g. if it is longer running or more important. This can easily

be achieved by changing the sharing ratio. Determining the

correct ratio is scenario dependent. In this paper we assume

equal sharing as the default.

2.3 Standard Scheduling Approach

OpenCL does not expose any control on how accelerator

resources are allocated among concurrent kernel execution

requests. In practice, the execution request that arrives first

tends to reserve all the available resources. This happens

for two reasons. First, the hardware and firmware of the

accelerator do not constrain the resources a kernel execution

uses. Second, a kernel execution request typically represents

a computational range that is large enough to occupy all the

accelerator resources.

Consider figure 3 which illustrates accelerator sharing

and work group scheduling for two parallel kernel execution

requests (A and B). Here, the accelerator has 4 compute units

(CUs). A’s Kernel Execution Range (NDRange) consists of

12 work groups (WGs), while B has 8 work groups.

Figure 3a illustrates current accelerator sharing and work

group scheduling. Here, the hardware/firmware scheduler

kernel void  K( … )
{
  gid=get_global_id();
  ..computation..
}

void  K( … )
{ 
  gid=get_virt_global_id();
  ..computation..
}

kernel void Sched( … )
{
   while (true) {
     vg=retrieve_vgroup();
     Call K for vg;
   }
}

Figure 4: A high level schema of our JIT compiler transfor-

mation targeting OpenCL Kernels.

assigns work groups to compute units based on hardwired

heuristics. There is no external control on how work groups

are assigned to the compute units. The kernel that arrives

first, kernel A in this example, allocates resources across all

the compute units and the scheduler assigns work groups

across the units in a round robin fashion. The work groups of

kernel B start executing only after the completion of kernel

A. The lack of resource sharing control leads to serialized

kernel executions and unfair sharing.

2.4 accelOS: Software Scheduling & Resource Sharing

Control

Figure 3b shows our approach. The number of work groups

for both kernel executions is now reduced. Both kernels A

and B now have just 2 work groups. The work groups of

kernel A start executing on compute units 0 and 1, while the

work groups of kernel B on compute units 2 and 3.

To ensure the original computation is performed, we have

to compute all the original work groups of each kernel exe-

cution. First of all, each of the original 12 work groups of A

(8 of B) are stored in a software queue as virtual groups. The

software queue is stored in accelerator memory as Virtual

NDRange A (B). Next, our JIT compiler transparently mod-

ifies the kernel code as shown in figure 4. It now consists of

a simple loop that dynamically dequeues a virtual group and

executes it. This means all the original work is done but uses

less physical resources. In figure 3b, work groups WG0 and

WG1 dequeue virtual groups and execute them. The actual
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virtual groups executed per compute unit will vary due to

dynamic scheduling.

The reduction of NDrange and the software scheduling

of virtual groups ensure fair sharing of accelerator resources

and efficient allocation of work to compute units. The opera-

tions of accelOS take place transparently and do not require

any modification of application code or changes in the exist-

ing software stack.

2.5 accelOS Design Internals

Our approach for software managed scheduling enforces

resource sharing control across kernel execution requests.

However, a kernel execution is bound to the resources ini-

tially allocated to it and cannot leverage additional resources

that may be released if other kernel executions terminate

first. The reason for this limitation is that the programming

model and accelerator architectures do not provide this func-

tionality neither expose the required level of architecture

control.

Our approach does not introduce any limitation about the

size and dimension of kernel execution ranges; in fact it

delimits any related architecture constrains. The execution

range, in our approarch, is represented at software level.

We also do not introduce any security compromise. Ev-

ery kernel execution operates independently and we do not

merge the code of different kernels.

3. Accelerator Resource Sharing Control

The key issue for our fair sharing scheme is determining

the right number of work groups per kernel execution. We

wish to determine the appropriate number of work groups

for each kernel execution so that they all approximately al-

locate equal resources. We consider modern accelerator ar-

chitectures with compute units that may host multiple work

group executions at a time if their resource requirements can

be satisfied. There are three resources that we need to con-

sider for accelerator sharing: thread number, local memory

usage and register usage.

Thread number We first have to constrain the number of

work groups each kernel i executes so that all their threads

can execute concurrently. If T is the maximum number of

threads a device can execute, and wi is the size of a work

group for each kernel i then we must constrain the number

of work groups xi for each kernel:
∑

i xiwi ≤ T .

To ensure that each kernel has roughly the same resources

we have to allocate, as possible, equal number of hardware

threads across the kernels. This is mathematically expressed

as: mini(minj(|xiwi − xjwj |)) where we try to minimise

the difference in threads number between all active kernels.

Local Memory A similar set of constraints can be built for

local memory usage. Let L be the maximum local memory

available, and mi is the memory usage of a work group then

the number of work groups yi per kernel is:
∑

i yimi ≤ L.

We ensure that each kernel has roughly the same local mem-

ory usage by minimizing the difference in memory usage

between all active kernels (mini(minj(|yimi − yjmj |))).

Registers Again a similar set of constraints can be built for

register usage. Let R be the maximum registers available,

and ri is the register usage of a work group then the number

of work groups zi per kernel is:
∑

i ziri ≤ R. We ensure

that each kernel has roughly the same register usage by

minimizing the difference in register file usage between all

the active kernels (mini(minj(|ziri − zjrj |))).

Determining Number of Work Groups Each of the three

constraints can be approximately solved as follows: xi =
T

Kwi

, yi =
L

Kmi

, zi =
R

Kri
.

Given that all constraints must hold simultaneously the

final work group size is min(xi, yi, zi). As these are Dio-

phantine equations the resulting work group sizes may be

conservative. If not all resources are used, we apply a sim-

ple greedy heuristic to incrementally increase the number of

work-groups iteratively across the kernel executions until re-

source saturation.

4. Infrastructure Overview

We provide a high level overview of the accelOS infrastruc-

ture as it is shown in figure 5. This section demonstrates how

our infrastructure is seamlessly integrated in existing sys-

tems without requiring code modifications or recompilation.

System Interface (level 0) It is the connection of accelOS

with the existing system infrastructure. We use standard

OpenCL to leverage accelerators. This way we can deploy

our work on existing systems.

accelOS (level 1) It is a background system process that

consists of a host runtime and a Just in Time (JIT) compiler.

The host runtime manages accelerator resources and sched-

ules kernel execution requests. The JIT compiler transforms

kernel codes and links them against a scheduling library to

support software work group scheduling.

Application interface (level 2) It is responsible for mon-

itoring and interacting with OpenCL applications. This is

done via a library called ProxyCL which replaces standard

OpenCL. As we have demonstrated in prior work [26] this

is done efficiently by using Interprocess Shared Memory for

negligible communication overhead.

5. Host Runtime

This section presents the host runtime of accelOS. It consists

of two components described below. The host runtime is

built exclusively in user-space and relies on standard POSIX

and OpenCL libraries.

Application Monitor This is the only component of acce-

lOS that interacts with applications via ProxyCL. It mon-

itors OpenCL requests made by applications. If these re-

quests involve new kernel code compilation or kernel exe-

cution special actions take place. The finite state machine
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core contains the host runtime and the JIT compiler.

(FSM) of figure 6 presents its operation. When an applica-

tion performs an OpenCL request three scenarios may take

place. (a) If the request creates a new OpenCL Program the

JIT compiler takes control, analyzes and transforms the ker-

nel code. The original operation is then performed with the

transformed version of the code. (b) If the request is a new

kernel execution, Kernel Scheduler takes control, which al-

ters the number of work groups in order to control resource

allocation and schedules its execution. (c) For any other re-

quest, the application continues its execution instantly and

accelOS does not intervene.

Kernel Scheduler It centrally manages the scheduling of

kernel execution requests. It leverages the resource sharing

algorithm (section 3) to select the number of work groups for

each kernel execution. For every request, it first constructs a

Virtual Kernel Execution Range which is copied to the ac-

celerator memory. It then alters the global size of the Kernel

Execution Range to match the new number of work groups.

It does not modify the work group size or the dimensions of

the computation. Finally, it launches the kernel.

Memory Management The host runtime keeps track of

the memory allocations of applications on the accelerator

memory. It makes sure that all the allocations can be served

safely. In case that the accelerator memory is not sufficient

for serving all the applications concurrently, one or more

applications may be paused.

App

Monitor JIT CompilerK. Scheduler
New clProgramNew K. Exec

Transformed Kernel CodesAltered NDRange

No changes
(a)(b)

(c)

Figure 6: Application Monitor Finite State Machine.

6. Just In Time Compilation

Our JIT compiler intervenes in the standard compilation of

OpenCL kernels. It transforms kernel codes and links them

OpenCL JIT Compiler

SPIR OpenCL C

Native Code
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Figure 7: Kernel Compilation (a) Standard OpenCL against

(b) accelOS.

statically against a runtime library that enables software

scheduling as we described in section 2.4. Its operations re-

main transparent to the application and no modifications are

required. Our compiler infrastructure is based on LLVM [23]

and we rely on vendor toolchains for target code generation.

6.1 Compilation Procedure

Figure 7a presents kernel compilation under standard OpenCL.

The application provides the kernel code either in OpenCL

C or SPIR[22]. The vendor compiler then performs a set of

optimizations and generates native code for the accelerator.

Figure 7b presents our scheme. We intercept the OpenCL

call that provides the kernel code. If the code is given in

OpenCL C we use clang to generate LLVM IR. We instan-

tiate an LLVM Pass Manager and load our compiler passes.

We transform kernel codes and statically link them against

our GPU scheduling library. Next, if the vendor compiler

supports SPIR, we generate SPIR code. Otherwise, we gen-

erate OpenCL C. Finally, we use the vendor compiler for the

target code generation.

6.2 Transformation Overview

Our compiler transformation enables software work group

scheduling on existing OpenCL kernels transparently. For

every OpenCL kernel we perform the following:

1. Convert the OpenCL kernel function to a regular compu-

tation function.

2. Extend the function interface with pointer arguments to

include the data structures of the runtime library.

3. Replace built-in work item functions of OpenCL with

runtime equivalents.

4. Create a scheduling kernel function. Its interface includes

all the arguments of the original kernel function plus

pointer arguments to the runtime data structures.

5. Generate the scheduling kernel body that atomically ac-

cesses the Virtual NDRange of the kernel execution and

calls the computation function for every virtual group.

6.2.1 Kernel Transformation Example

Consider the code of figure 8a where each work item either

adds or subtracts the input of two buffers depending on its
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1 k e r n e l void mop ( g l o b a l c o n s t f l o a t ∗ ina ,
2 g l o b a l c o n s t f l o a t ∗ inb , g l o b a l f l o a t ∗o u t )
3 {
4 s i z e t g i d = g e t g l o b a l i d ( 0 ) ;
5 s i z e t g r i d = g e t g r o u p i d ( 0 ) ;
6
7 i f ( g r i d<NConstan t )
8 o u t [ g i d ]= i n a [ g i d ] + i n b [ g i d ] ;
9 e l s e

10 o u t [ g i d ]= i n a [ g i d ] − i n b [ g i d ] ;
11
12 }

(a) Kernel Code Example.

1 void mop ( g l o b a l c o n s t f l o a t ∗ ina ,
2 g l o b a l c o n s t f l o a t ∗ inb , g l o b a l f l o a t ∗out ,
3 g l o b a l s t r u c t RT ∗ r t , l o c a l s t r u c t SD ∗sd , i n t h d l r )
4 {
5 s i z e t g i d = r t g l o b a l i d ( r t , h d l r , 0 ) ;
6 s i z e t g r i d = r t g r o u p i d ( r t , h d l r , 0 ) ;
7
8 i f ( g r i d<NConstan t )
9 o u t [ g i d ]= i n a [ g i d ] + i n b [ g i d ] ;

10 e l s e

11 o u t [ g i d ]= i n a [ g i d ] − i n b [ g i d ] ;
12 }
13
14 k e r n e l void d y n s c h e d ( g l o b a l c o n s t f l o a t ∗ ina ,
15 g l o b a l c o n s t f l o a t ∗ inb , g l o b a l f l o a t ∗out ,
16 g l o b a l s t r u c t RT ∗ r t , l o c a l s t r u c t SD ∗sd ,
17 l o c a l void ∗ l h e a p )
18 {
19 s i z e t i n d ;
20
21 i f ( r t i s m a s t e r w o r k i t e m ( ) )
22 r t e n v i n i t ( r t ,& sd ) ;
23
24 f o r ( ; ; ) {
25 i f ( r t i s m a s t e r w o r k i t e m ( ) )
26 r t s c h e d w g r o u p ( r t ,& sd ) ;
27 b a r r i e r (CLK LOCAL MEM FENCE) ;
28 i f ( sd . s t a t u s ==RUN TERMINATE)
29 break ;
30 f o r ( i n d =sd . wg base ; ind<sd . wg end ; ++ i n d )
31 mop ( ina , inb , out , r t , sd , i n d ) ;
32 }
33 }

(b) Kernel Code After Transformation.

Figure 8: Kernel Code Transformation for software work

group scheduling on accelerators. Our compiler transforms

the original kernel code. It injects runtime calls and adds

control flow for scheduling control and links against our

GPU scheduling library.

group ID. Figure 8b shows the transformed code. We con-

vert the kernel function to a regular function and replace the

built-in, work item functions of OpenCL with runtime func-

tion calls as shown in lines 5 and 6. The first parameter rt,

provides access to the Virtual Virtual NDRange, the second,

sd, to scheduling information which is local to work group.

The last, hdlr, is a runtime handler.

Function Calls An OpenCL kernel may call regular func-

tions which perform work-item function calls that we should

replace with our runtime functions. We do the replacement

and we extend their interface to access rt and sd.

Software Scheduling Control Lines 14 to 33 of figure 8b

perform the software scheduling of virtual groups. Schedul-

ing is initialized in lines 21 and 22 by a single work item,

the master of the work group. All the work items proceed to

a loop, where the master, line 26, retrieves virtual groups for

execution from the Virtual NDRange. We have an adaptive

scheduling scheme that may assign more than one virtual

groups for execution at a time. For every group we call the

computation function, line 31.

Local Data Hoisting OpenCL standard exclusively per-

mits declaration of data in local address space as part of a

kernel function body and not regular function bodies. We

convert the original kernel code to a regular function and

we need to hoist its local data declarations in the scheduling

kernel body.

6.3 Runtime Library

Our library performs the dynamic scheduling of virtual

groups provided by Virtual NDRanges. Every kernel work

group has a runtime instance performing virtual group

scheduling independently. The library provides operations

for environment control and scheduling. It also provides re-

placements for the built-in work item functions of OpenCL.

The original work groups of a kernel execution are now de-

scribed by Virtual NDRanges in accelerator memory and

our function replacements provide the appropriate values at

runtime.

6.4 Adaptive Scheduling

The runtime operations incur negligible overheads except

for the scheduling operation which has atomic semantics.

Scheduling of small kernels would expose significant over-

head. To compensate for that we support scheduling of mul-

tiple virtual groups at a time. If the number of kernel instruc-

tions in LLVM IR is less than 10, a scheduling operation

assigns 8 virtual groups to the work group at a time. Respec-

tively, 6 groups for less than 20 instructions, 4 groups if less

than 30, 2 groups if less than 40. Otherwise, the scheduling

is done by 1 group at a time. We evaluate this in section 8.5.

6.5 Register Usage

Our transformation increases register usage by 3 per work-

item. Nevertheless, after the function inlining, which is per-

formed by default in GPU compilers, this overhead accounts

to 0 or 1 registers per work-item. Our approach does not lead

to register pressure.

7. Experimental Setup

This section describes the platforms, workloads, metrics and

methodology used in our evaluation.

7.1 Evaluation Platforms

We evaluate our approach on two platforms. Both have an In-

tel i7 4770K CPU @ 3.50GHz and 16GB of DDR3 RAM at

1600Mhz. The first has an NVIDIA Tesla K20m[30] GPU;

while the second has an AMD R9 295X2[2]. Both systems
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run Linux with kernel version 3.13. We use the NVIDIA

OpenCL platform, version 331.79 and the Accelerated Par-

allel Processing framework of AMD, version 1445.5.

7.2 Workloads

We use all the kernels from the OpenCL version of the

Parboil benchmark suite [37]. The characteristics and nature

of the benchmarks have been explored extensively in prior

work [31]. We consider workloads consisting of 2, 4 or

8 parallel kernel execution requests. We first evaluate all

pairwise combinations of kernels. As there are 25 Parboil

kernels, this gives 25 × 25 = 625 in total. It is impractical

to evaluate all the available combinations for workloads of

4 and 8 requests and we evaluate a subset of them. There

are 390265 4-kernel workload combinations from which we

randomly selected 16384. There are 1.5 × 1011 8-kernel

combinations from which we randomly selected 32768. To

have robust results, each workload is executed 20 times and

the mean execution time is reported.

7.3 Comparison to Other Approaches

We present all results relative to the standard OpenCL pro-

vided by NVIDIA and AMD. To provide a broader evalu-

ation, we implemented the the Elastic Kernels [31]

approach. This work was originally aimed at CUDA and re-

quired a new implementation for OpenCL.

7.4 Metrics

We evaluate our scheme with respect to fairness and through-

put using existing metrics.

Fairness Metrics for Accelerator Sharing A heteroge-

neous system is considered fair, if the slowdowns of ker-

nel executions running concurrently on the accelerator re-

sources are the same [9][28][36]. We adopt the metrics

proposed in [9]. Given K kernels, the Individual Slow-

down ISi of a kernel execution i is: ISi = T (s)i
T (a)i

. T (s)

is the time taken sharing with other executions. T (a) is

time executing in isolation. System unfairness, U is de-

fined: U = max(IS0,IS1,...,ISK−1)
min(IS0,IS1,...,ISK−1)

. Fairness improvement

over baseline for either our scheme or Elastic Kernels is a

simple ratio: Ubaseline

UX

, where Ubaseline and UX are the sys-

tem unfairness values for standard OpenCL and either our

scheme or Elastic Kernels, respectively.

Kernel Execution Overlap The amount of time kernels co-

execute is another measure of GPU sharing. Execution over-

lap O is defined as O = T (c)
T (t) , where T (t) is the total time

the accelerator is executing at least one of the kernels and

T (c) is the amount of time all the kernels are co-executing.

Throughput Speedup Although we focus on fairness,

overall performance is also important. We report overall

throughput speedup relative to the baseline i.e. (Tbaseline

TX

)

where Tbaseline is the time for all kernels to execute on the

standard system and Tx is the time for either our approach

or the Elastic Kernels to execute all kernels.

Additional metrics To evaluate the overhead of our scheme,

we measure the time for a single kernel to execute using our

approach vs the baseline. We also report average normalized

turn around time (ANTT) and worst case ANTT to allow di-

rect comparison with [31]. We also provide STP[10] results.

8. Results

In this section, we evaluate accelOS for fairness and per-

formance on varying multi-kernel workloads and compare

against Elastic Kernels where appropriate.

8.1 Fairness in Accelerator Sharing

Here, we investigate what is the impact of accelOS on fair-

ness. We use the metrics of Unfairness and Fairness Im-

provement as described in section 7. For the Unfairness met-

ric, lower values are better while for the Fairness Improve-

ment metric, higher values are better.

(a) NVIDIA k20m.

(b) AMD R9 295X2.

Figure 9: Average System Unfairness. Standard OpenCL,

Elastic Kernels (EK) and accelOS. Lower is better. accelOS

outperforms the other approaches.

8.1.1 Result Summary

Figure 9a shows the average results on the NVIDIA plat-

form. accelOS reduces unfairness from 8.43 to 1.24 for 2

requests, from 19.65 to 1.89 for 4 requests and from 43.42

to 3.54 for 8 requests. It leads to fairness improvements of

6.8x, 10.4x and 12.27x, while the average improvement is

9.55x. accelOS outperforms Elastic Kernels (EK) approach

which delivers fairness improvements of 1.53x, 1.03x and

0.93x, respectively and an average improvement of 1.13x.
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(a) NVIDIA K20m.

(b) AMD R9 295X2.

Figure 10: Fairness Improvements delivered by accelOS and

Elastic Kernels (EK) for sets of 2, 4 and 8 kernel execution

requests relative to standard OpenCL. Higher is better.

Figure 9b shows the results on the AMD platform. Here,

the benefits of accelOS are similar to those of NVIDIA. ac-

celOS delivers 8.21x improvement for 2 execution requests,

12.97 against 1.58. In the case of 4 requests, it improves fair-

ness by 9.56x where it reduces unfairness from 31.25 to 3.27.

For 8 requests, accelOS improves by 13.66x, reducing un-

fairness from 28.57 to 2.79. accelOS, again, outperforms EK

which delivers fairness improvements of 1.63x, 0.77x and

0.85x with an average of 1.02x.

8.1.2 Individual Results

Figures 10a and 10b provide an overview of the fairness

improvement results across all the workloads we use in our

experiments. We provide individual results for workloads

of 2, 4 and 8 kernel execution requests on both NVIDIA

and AMD platforms for accelOS and EK. accelOS results

range from 0.81x to 15.84x times improvement, where less

than 2% of the workloads have a negative fairness result.

In contrast, the EK delivers negative results for 44% of

the workloads. accelOS uses dynamic resource sharing via

software managed scheduling while EK uses static resource

(a) NVIDIA k20m.

(b) AMD R9 295X2.

Figure 11: Unfairness results for some 2-kernel work-

loads. The selection has been done by pairing the available

OpenCL kernels by the alphabetical order of their names.

We provide unfairness results for standard OpenCL, Elastic

Kernels (EK) and accelOS. Lower is better.

allocation. accelOS successfully adapts to large number of

requests and fairly assigns system resources while EK fails.

8.1.3 Pairwise Results

In order to drill down to specific workloads, we present

fairness results delivered by accelOS and EK for a selec-

tion of 2-kernel workloads in figure 11. As there is insuf-

ficient space to show all 625 combinations, we pair each

benchmark with its alphabetic neighbor, i.e. bfs with cutcp,

histo final with hist inter. As there are 25 benchmarks, we

show 13 pairs. This alphabetic pairing is arbitrary and used

to prevent cherry-picking of results. accelOS steadily de-

livers the best results on both NVIDIA and AMD. There

are two cases where EK and accelOS deliver nearly the

same results. The sad-calc 16 - sgemm pair on NVIDIA

and mri-q computePhiMag - mri-q ComputeQ pair on AMD

suffer from performance degradations due to work group

imbalances that negatively affect our software scheduling

heuristics. These performance degradations in conjunction

with the execution times of these kernels make accelOS less

effective. However, accelOS delivers significant improve-

ments even for these two cases.

8.2 Concurrent Kernel Executions

Here, we examine how many kernels are actually executing

concurrently. We use the Kernel Execution Overlap metric

described in section 7. Higher is better.

Figure 12a gives the results for NVIDIA. In the case of 2

requests, we improve concurrent kernel execution from 21%

to 94%. For 4 requests, standard OpenCL delivers 3% while

we deliver 87%. Finally, for 8 requests, standard OpenCL
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(a) NVIDIA K20m.

(b) AMD R9 295X2.

Figure 12: Average Kernel Execution Overlap. Compari-

son of the kernel execution overlap (percentage) on stan-

dard OpenCL and Elastic Kernels (EK) against accelOS ap-

proach. Higher is better.

(a) NVIDIA K20m.

(b) AMD R9 295X2.

Figure 13: Average System Throughput Speedups for sets

of 2, 4 and 8 kernels. The baseline is the standard OpenCL.

Higher is better.

delivers 0%, while we enable 82%. accelOS outperforms

Elastic Kernels (EK) approach which delivers 71%, 43% and

7%, respectively.

The AMD platform behaves worse than NVIDIA. As

seen in 12b, standard OpenCL delivers 4%, 0% and 0% for

2, 4 and 8 requests, respectively. accelOS gives increased

(a) NVIDIA K20m.

(b) AMD R9 295X2.

Figure 14: System Throughput Speedups for sets of 2, 4 and

8 kernel. The baseline is the standard OpenCL. Higher is

better.

concurrency. It delivers 83%, 75% and 69% for the 3 request

sizes. accelOS again is more efficient than EK which delivers

53%, 17% and 0%, respectively.

On both NVIDIA and AMD, the execution overlap results

are lower when we scale up from 2 to 8 requests. This

happens because (a) the accelerator multi-tenancy leads to

higher resource contention between the kernel executions

and (b) the varying kernel workloads that lead to execution

time imbalances.

8.3 System Throughput

We evaluate throughput speedups delivered by accelOS and

compare against the Elastic Kernels (EK)[31]. The baseline

is the standard OpenCL.

8.3.1 Result Summary

The results for NVIDIA are shown in figure 13a. We deliver

an average speedup of 1.13x against 1.08x of EK for 2 re-

quests and 1.19x against 1.02x of EK for 4 requests. Finally,

we deliver a speedup of 1.23x against 0.91x of EK for 8 re-

90



quests. On average for all the request sizes, accelOS delivers

1.18x while EK 1.00x.

The results for AMD are shown in figure 13b. We deliver

a speedup of 1.17x against 1.07x of EK for 2 requests, 1.19x

against 0.95x of EK for 4 requests. Finally, we deliver a

speedup of 1.31x against 0.9x for 8 requests. On average for

all the request sizes, accelOS delivers 1.22x while EK 0.97x.

accelOS enables resource sharing control and dynamic

work group scheduling. This leads to significant throughput

results that increase as we scale up to larger number of

requests. In contrast, EK relies on static heuristics and static

resource allocation and fails to manage large number of

requests or adapt to dynamic system changes. Due to this

EK delivers negative results for large number of requests.

8.3.2 Individual Results

Figures 14a and 14b provide an overview of the throughput

speedup results across the workloads we use in our experi-

ments. We provide individual results for workloads of 2, 4

and 8 kernel execution requests on both NVIDIA and AMD

platforms for accelOS and EK. The throughput speedup re-

sults range from 0.52x to 4.8x. Less than 5% of the work-

loads have slowdowns for accelOS while 54% of the work-

loads have slowdowns for EK.

EK accelOS

RQSTs STP ANTT W. ANTT STP ANTT W. ANTT

2 1.13 3.57 56.7 1.15 1.12 8.2
4 0.99 4.33 72.2 1.18 1.32 14.2
8 0.93 7.57 87.59 1.25 1.78 23.1

Table 1: Additional metrics for accelOS and EK on NVIDIA.

Higher values are better for STP, while lower values are bet-

ter for ANTT. W.ANTT is the worst ANTT value reported.

EK accelOS

RQSTs STP ANTT W.ANTT STP ANTT W. ANTT

2 1.04 4.2 64.6 1.18 1.35 13.4
4 0.97 6.83 84.6 1.18 2.12 19.5
8 0.92 7.98 98.54 1.28 3.26 31.34

Table 2: Additional metrics for accelOS and EK on AMD.

Higher values are better for STP, while lower values are bet-

ter for ANTT. W. ANTT is the worst ANTT value reported.

8.4 Additional Evaluation Metrics

Prior research work has considered some additional metrics

which are STP[31][10] for system throughput evaluation

and ANTT[31] as an indirect metric for quantifying system

fairness. We provide a brief summary of the average results

for Elastic Kernels (EK) and accelOS on NVIDIA, in table 1

and on AMD, in table 2. accelOS delivers better results on

both platforms. It improves system throughput as the number

of kernels increases, while EK can only manage this for

2-kernel workloads. Its average turnaround time and worst

case time turn around time is significantly better than EK.

8.5 accelOS Performance Impact

AccelOS adds a software layer that may compromise perfor-

mance. We therefore examine single kernel execution times

delivered by accelOS against standard OpenCL. We con-

sider two versions of accelOS, the (a) naive and (b) opti-

mized versions. Optimized includes adaptive scheduling de-

scribed in section 6. Figures 15a and 15b present speedups

for the NVIDIA and AMD GPUs, respectively. Naive intro-

duces a small overhead while optimized on average actually

improves performance due to load balancing of work.

In the case of NVIDIA, shown in figure 15a, speedup

values range from 0.92x to 1.03x for naive and from 0.96x

to 1.14x for optimized. The geometric average is 0.98x for

naive and 1.07x for optimized. For the optimized version, the

one we use for our experiments, benchmark kernels sgemm

and uniformAdd of mri-gridding have the lowest values,

0.96x and 0.97x, while splitSort of mri-gridding and GPU

of mri-gridding have the highest values of 1.13x and 1.14x,

respectively.

In the case of AMD, shown in figure 15b, speedups range

from 0.91x to 1.04x for naive and from 0.95x to 1.19x for

optimized. For the optimized version, the one we use for our

experiments, kernels such as ComputePhiMag of mri-q and

calc 16 of sad have the lowest values, 0.95x and 0.96x, while

kernels lbm and splitSort of mri-gridding have the highest

values of 1.18x and 1.19x. The geometric average is 0.99x

for naive and 1.10x for optimized.

Our naive implementation leads to average slowdowns

of 2% (NVIDIA) and 1% (AMD). However our optimized

version does not just compensate the overhead but it leads to

significant performance gains. This is due to the software

scheduling which is dynamic and leads to well balanced

scheduling. As we describe in section 6.4, we consider the

overhead of our runtime for short kernels where we use

adaptive scheduling to minimize that overhead. However,

we still suffer small slowdowns for few kernels on both

platforms.

To quantify the performance of accelOS for small kernel

executions, which cannot effectively utilize all the accelera-

tor resources, we generated artificial small datasets and mod-

ified versions of bfs, spmv and tpacf. We run kernel execu-

tions with 2, 4 and 8 work groups. Our measurements show

that for such small kernels the execution times differ by less

than 3% for standard OpenCL against accelOS and that there

is significant system noise due to the driver overheads.

9. Related Work

We presented a runtime and compiler infrastructure for fair

accelerator sharing and efficient concurrent kernel execu-

tions. Our work seamlessly integrates with existing systems

while it does not require any modification of the application

or software stack. Here, we discuss prior work and we clarify

our contributions.
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(a) NVIDIA k20m.

(b) AMD R9 295X2.

Figure 15: accelOS Performance Impact. We compare accelOS against the standard OpenCL environment. We consider two

versions of accelOS, the naive and optimized. The naive leads to small average slowdowns while the optimized significantly

boosts performance. By default, we use the optimized version.

In [31][1][15], the authors propose techniques that in-

crease accelerator utilization by statically merging multiple

kernel executions. These techniques are static, require ap-

plication modifications and raise security concerns. Further-

more, they do not investigate real multi-tasking scenarios

where different number and types of applications may join

or leave a system dynamically. In contrast, our work is trans-

parent to applications and software stack, adaptive to varying

workloads and guarantees safety.

Kernelet[39] reduces GPU underutilization in shared sys-

tems. It performs kernel slicing by dividing a kernel into

multiple sub-kernels. Each kernel slice has tunable occu-

pancy to allow concurrent execution of multiple slices.

TimeGraph [20] is a real-time scheduler that enables

GPU sharing across applications and mimics preemption

behavior in the absence of hardware support. It is imple-

mented as part of the kernel driver, it is vendor specific and

its evaluation is limited to OpenGL graphics benchmarks.

In [27], the authors have modified the Linux kernel and in-

tervene in the driver operations to enable fair sharing of

NVIDIA GPUs between multiple applications. This work

aims on new driver features and it is orthogonal to our work.

PTask[34] provides a set of OS abstractions for GPUs and

enables a dataflow programming model with enhanced pro-

grammability. However, it does not consider fair sharing, a

problem solved by our work. GPES[40] combines user-level

and driver-level techniques to deliver scheduling guarantees

in real time systems.

In [12], the authors propose architecture modifications for

efficient SIMD branch execution on GPUs. In [29], the au-

thors present the large warp micro-architecture and two-level

warp scheduling for effective resource utilization. Paper [7]

presents a warp scheduling algorithm with flexible round

robin policies that delivers efficient resource utilization. A

cache-conscious scheme for warp scheduling is proposed in

[33]. Paper [16] provides the design and evaluation of var-

ious algorithms that manage thread divergence encountered

in recursive programs. OWL[19] presents wrap scheduling

techniques for reducing memory access latencies. In [25],

the authors provide improved GPU utilization via alternative

thread block scheduling algorithms.

rCUDA[8] and [4] enable access to GPUs located on

remote cluster nodes. Paper [35] presents the design of a

GPU resource abstraction for balancing CUDA requests

across cluster nodes and their accelerators. The SKMD

framework[24] performs collaborative execution of data par-

allel kernels across multiple asymmetric CPUs and GPUs.

An auto-tuning framework and runtime collaborative scheme

of different accelerator types is presented in [32]. In both

cases, however, only single applications are considered.

Concord [3] is a compiler and runtime framework that en-

ables efficient execution of kernels on integrated GPUs. It

enables seamless sharing of pointer containing data struc-

tures but again it targets just a single application. These pa-

pers present infrastructures and techniques for sharing and

exploiting multiple accelerators in parallel, however they

do not investigate accelerator resource sharing and dynamic

scheduling for multi-tenancy. Our work provides an effi-

cient, portable and transparent solution for this.
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10. Conclusion

In this paper we presented accelOS, a runtime and compiler

infrastructure that enables software work group scheduling

on accelerators. It enables fair accelerator sharing, efficient

multi-kernel executions and throughput speedups. accelOS

integrates seamlessly with the existing software stack and it

does not require any modification or recompilation of ap-

plications, libraries or drivers. We delivered fairness im-

provements ranging from 6.8x to 13.66x for multi-kernel

workloads of various sizes. Furthermore, we deliver sys-

tem throughput speedups ranging from 1.13x to 1.31x. Fu-

ture work will investigate additional techniques for software

managed scheduling on accelerators.
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