
ANÁLISE SIMBÓLICA DE INTERVALOS DE

PONTEIROS

VITOR MENDES PAISANTE

ANÁLISE SIMBÓLICA DE INTERVALOS DE

PONTEIROS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Coorientador: Leonardo Barbosa e Oliveria

Belo Horizonte

Julho de 2016

VITOR MENDES PAISANTE

SYMBOLIC RANGE ANALYSIS OF POINTERS

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Fernando Magno Quintão Pereira

Co-Advisor: Leonardo Barbosa e Oliveria

Belo Horizonte

July 2016

© 2016, Vitor Mendes Paisante.
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

 Paisante,Vitor Mendes.

P149s Symbolic range analysis of pointers. / Vitor Mendes

 Paisante. – Belo Horizonte, 2016.

 xxiv, 42 f.: il.; 29 cm.

 Dissertação (Mestrado) - Universidade Federal de

 Minas Gerais – Departamento de Ciência da Computação.

 Orientador: Fernando Magno Quintão Pereira.

 Coorientador: Leonardo Barbosa Oliveira.

 1. Computação - Teses. 2. Compiladores (Computadores)

 3. Análise estática. I. Orientador. II. Coorientador. III.

 Título.

CDU 519.6*32(043)

I dedicate this work to everyone that helped in any capacity, to my family and to

my friends.

ix

Acknowledgments

This project was supported by the Brazilian Ministry of Science and Technology

through CNPq, the Intel Corporation (the ISRA eCoSoC project) and the INRIA-

FAPEMIG cooperation grant (The Prospiel project).

We'd like to thank Maroua Maalej and Laure Gonnord for their collaboration in

our CGO16 article and this work. They handled the theoretical proofs of our analyses.

And we also thank all other members of our research project.

Our acknowledgments also go to the Federal University of Minas Gerais Computer

Sciences Department and the Laboratoire de l'Informatique du Parallelisme (LIP) for

providing the help and infrastructure necessary for this research.

xi

�'Are we nearly there?' Alice managed to pant out at last.

'Nearly there!' the Queen repeated. 'Why, we passed it ten minutes ago! Faster!� '

(Lewis Carroll)

xiii

Resumo

Análise de ponteiros é uma das técnicas mais fundamentais que compiladores utilizam

para otimizar linguagens imperativas, especialmente linguagens orientadas a objetos.

No entanto, mesmo com toda a atenção que este tópico já recebeu, as propostas do

estado da arte atual presentes em compiladores ainda lidam com desa�os em relação

à precisão e velocidade. Em particular, aritmética de ponteiros, um fator chave de

linguagens como C e C++, ainda precisa de soluções satisfatórias neste campo. Este

trabalho apresenta um novo algoritmo para análise de ponteiros para resolver esse

problema. O ponto chave da nossa proposta é combinar análise de ponteiros com

análise simbólica de largura de inteiros. Tal combinação nos permite desambiguar

campos dentro de vetores e estruturas de dados, de maneira efetiva obtendo maior

precisão do que algoritmos tradicionais. Para validar nossa técnica, implementamos

nosso algoritmo no compilador LLVM. Testes em uma vasta gama de benchmarks nos

mostraram que podemos desambiguar vários tipos de estruturas em C que as análises

atuais do estado da arte não conseguem lidar. Em particular, podemos desambiguar

1.35x mais comparações do que as análises de ponteiros presentes no LLVM. Além

disso, nossa análise é rápida: podemos lidar com um milhão de instruções em assembly

em 10 segundos.

Palavras-chave: Análise de Ponteiros, Análise Estática, Compiladores.

xv

Abstract

Alias analysis is one of the most fundamental techniques that compilers use to opti-

mize languages with pointers. However, in spite of all the attention that this topic has

received, the current state-of-the-art approaches inside compilers still face challenges

regarding precision and speed. In particular, pointer arithmetic, a key feature in C

and C++, is yet to be handled satisfactorily. This work presents a new alias anal-

ysis algorithm to solve this problem. The key insight of our approach is to combine

alias analysis with symbolic range analysis. This combination lets us disambiguate

�elds within arrays and structs, e�ectively achieving more precision than traditional

algorithms. To validate our technique, we have implemented it on top of the LLVM

compiler. Tests on a vast suite of benchmarks show that we can disambiguate several

kinds of C idioms that current state-of-the-art analyses cannot deal with. In particular,

we can disambiguate 1.35x more queries than the alias analysis currently available in

LLVM. Furthermore, our analysis is very fast: we can go over one million assembly

instructions in 10 seconds.

Keywords: Alias Analysis, Static Analysis, Compilers.

xvii

List of Figures

1.1 Example that state-of-the-art pointer analyses handle unsatisfactorily. . . . 2

2.1 Example of a lattice of integer divisors of 60. 5

2.2 Example where the SSA form can improve on the value numbering opti-

mization. 7

2.3 Example showing the Extended Static Single Assignment form transforma-

tion by inserting σ-functions. 8

3.1 Example of program that builds up messages as sequences of serialized bytes.

We are interested in disambiguating the locations accessed at lines 6 and 10. 14

3.2 Array p in the routine prepare seen in Fig.3.1. Lines 6 and 10 represent

the di�erent stores in the �gure. 14

3.3 Program that shows the need to assign common names to addresses that

spring from the same base pointer. 15

3.4 Program from Figure 3.3, after pointer is renamed within loop. 15

3.5 Overview of our pointer analysis. 16

3.6 Interprocedural control �ow graph of program seen in Figure 3.1 17

3.7 The concrete semantics of GR(p) = {loc1 + [3, 5], loc3 + [3, 8]}. Dark grey

cells denote possible (concrete) values of p. 21

3.8 Constraint generation for GR with GR(p) = (p0, . . . , pn−1) given p in the

right hand side of rules . 22

3.9 Example that illustrates imprecision of global analysis due to lack of path-

sensitiveness. 25

3.10 Constraint generation for LR . 25

xix

3.11 Abstract interpretation of interprocedural CFG seen in Figure 3.6 (program

in Figure 3.1). For GR, we associate loc0 with the malloc at line 17 and

loc1 with the malloc at line 18 (of the program). Only changes in GR and

LR are rewritten after the growing and descending iterations. We let k =

N+strlen(m0). 28

4.1 Runtime of our analysis for the 50 largest benchmarks in the LLVM test

suite. Each point on the X-axis represents a di�erent benchmark. Bench-

marks are ordered by size. This experiment took less than 10 seconds. . . . 32

5.1 Example of our �rst described limitation. Even though we cannot prove

that the symbolic ranges of σa and σb do not overlap, it is obvious that σa
is aways di�erent from σb because of the if condition. 36

5.2 Example of our second described limitation. Even though we cannot prove

that the ranges of i and j do not overlap, it is obvious that j is aways

di�erent from i because it is aways greater. 36

xx

List of Tables

3.1 The syntax of our language of pointers. 17

4.1 Comparison between three di�erent alias analyses. We let r + b be the

combination of our technique and the basic alias analysis of LLVM. Numbers

in scev, basic, rbaa and r+b show percentage of queries that answer �no-

alias". 30

4.2 Number of queries solved with the global test of Section 3.2.4. Column

noalias gives the number of queries that we have been able to disambiguate,

and column global shows how many queries were solved with the global test. 31

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1

1.1 Context . 1

1.2 Problem . 1

1.3 Solution . 2

1.4 Summary of experimental results . 3

1.5 Summary of publications . 3

1.6 Next Chapters . 4

2 Background 5

2.1 Lattice . 5

2.2 SSA form . 6

2.3 LLVM . 8

2.4 Points-to Analysis . 9

2.5 Range Analysis . 10

2.6 Pointer Disambiguation for Parallelization 11

2.7 Points-to with Range Analyses . 12

3 A New Points-to Analysis 13

3.1 Overview . 13

3.2 Combining Range and Pointer Analyses 16

xxiii

3.2.1 A Core Language . 16

3.2.2 Program Locations. 18

3.2.3 Symbolic Range Analysis. 18

3.2.4 Global Range Analysis of Pointers 20

3.2.5 Answering GR Queries . 24

3.2.6 Local Range Analysis of Pointers 24

3.2.7 Answering LR Queries . 26

3.2.8 Complexity . 26

3.2.9 A wrap-up Example . 27

4 Experiments 29

5 Final Thoughts 35

5.1 Limitations . 35

5.2 Future Work . 36

5.3 Final Conclusions . 37

Bibliography 39

xxiv

Chapter 1

Introduction

1.1 Context

Pointer analysis is one of the most fundamental compiler technologies. This analysis

lets the compiler distinguish one memory location from others; hence, it provides the

necessary information to transform code that manipulates memory. Given this impor-

tance, it comes as no surprise that pointer analysis has been one of the most researched

topics within the �eld of compiler construction [Hind, 2001]. This research has con-

tributed to make the present algorithms more precise [Hardekopf and Lin, 2007; Zhang

et al., 2014], and faster [Hardekopf and Lin, 2011; Shang et al., 2012]. Nevertheless,

one particular feature of imperative programming languages remains to be handled

satisfactorily by the current state-of-the-art approaches: the disambiguation of pointer

intervals.

1.2 Problem

Mainstream compilers still struggle to distinguish intervals within the same array. In

other words, state-of-the-art pointer analyses often fail to disambiguate regions ad-

dressed from a common base pointer via di�erent o�sets, as explained by Yong and

Horwitz [Yong and Horwitz, 2004]. Figure 1.1 shows an example that state-of-the-art

pointer analyses tend not to deal with satisfactorily. In the example, both stores on

the r array posses di�erent o�sets and they do not alias. To �gure out that such o�sets

are disjoint it is necessary to verify their ranges and add a new layer of analysis to the

current pointer analyses available.

Field-sensitive pointer analysis, provide a partial solution to this problem. These

1

2 Chapter 1. Introduction

1 1 : char∗ dup l i c a t e (int s i z e , char∗ v) {
2 2 : i f (s i z e > 0) {
3 3 : char∗ r = mal loc (s i z e ∗2) ;
4 4 : int i ;
5 5 : for (i = 0 ; i < s i z e ; i++) {
6 6 : r [i] = v [i] ;
7 7 : r [i+s i z e] = v [i] ;
8 8 : }
9 9 : }
10 10 : else return NULL;
11 11 : }

Figure 1.1. Example that state-of-the-art pointer analyses handle unsatisfacto-

rily.

analyses can distinguish di�erent �elds within a record, such as a struct in C [Pearce

et al., 2004], or a class in Java [Yan et al., 2011]. However, they rely on syntax that is

usually absent in the low level program representations adopted by compilers. Shape

analyses [Jones and Muchnick, 1982; Sagiv et al., 1998] can disambiguate subparts of

data-structures such as arrays, yet their scalability remains an issue to be solved. Con-

sequently, many compiler optimizations, such as loop transformations, tiling, �ssion,

skewing and interchanging [Wolfe, 1996, Ch.09], are very limited in practice. Therefore,

we claim that, to reach their full potential, compilers need to be provided with more

e�ective alias analyses.

1.3 Solution

This work describes such an analysis. We introduce an abstract domain that associates

pointers with symbolic ranges. In other words, for each pointer p we conservatively

estimate the range of memory slots that can be addressed as an o�set of p. We let GR(p)

be the global abstract address set associated with pointer p, such that if loci + [l, u] ∈
GR(p), then p may dereference any address from @(loci) + l to @(loci) + u, where

loci is a program site that contains a memory allocation call, and @(loci) is the actual

return address of the malloc at runtime. We let {l, u} be two symbols de�ned within

the program code. Like the vast majority of pointer analyses available in the compiler

literature, from Andersen's work [Andersen, 1994] to the more recent technique of

Zhang et al. [Zhang et al., 2014], our method is correct if the underlying program is

also correct. In other words, our results are sound with respect to the semantics of the

1.4. Summary of experimental results 3

program if this program has no unde�ned behavior, such as out-of-bounds accesses.

The key insight of our research is the combination of pointer analysis with

range analysis on the symbolic interval lattice. In a symbolic range analysis, ranges are

de�ned as expressions of the program's symbols, a symbol being either a constant or

the name of a variable. There exist many approaches to symbolic range analyses in the

literature [Blume and Eigenmann, 1994; Nazaré et al., 2014; Rugina and Rinard, 2005].

The algorithms that we present in this work do not depend on any particular imple-

mentation. Nevertheless, the more precise the range analysis that we use, the more

precise the analysis facts that we produce. In this work we have adopted the symbolic

range analysis proposed in 1994 by William Blume and Rudolf Eigenmann [Blume and

Eigenmann, 1994].

1.4 Summary of experimental results

To validate our ideas, we have implemented them in the LLVM compilation infra-

structure [Lattner and Adve, 2004]. We have tested our pointer analysis onto

three di�erent benchmarks used in previous work related to pointer disambiguation:

Prolangs [Ryder et al., 2001], PtrDist [Zhao et al., 2005] and MallocBench [Grunwald

et al., 1993]. As we show in Chapter 4, our analysis is linear on the size of programs.

It can go over one-million assembly instructions in approximately 10 seconds. Fur-

thermore, we can disambiguate 1.35x more queries than the alias analysis currently

available in LLVM.

1.5 Summary of publications

The analysis described here was published on the International Symposium on Code

Generation and Optimization (CGO) of 2016 held in Barcelona, Spain [Paisante et al.,

2016].

The technology behind it is also present on two other publications [Paisante et al.,

2014; Saggioro et al., 2015]. In these papers, the algorithm presented here was used

to infer the layout and the content of bu�ers transfered through the network. This

was useful for verifying, in a safe communication line, if the information transfered

between two programs through a network should be considered potentially dangerous

or not. If proven not dangerous, guards for checking integer over�ows may not be

necessary. These articles proposed methods for such veri�cation to be used on the

internet of things (IoT), where simple devices could run signi�cantly faster with a

4 Chapter 1. Introduction

reduced number of integer over�ow checks. The layout and content inference analysis

used in these papers di�ered from our current approach by using a numerical range

analysis, since a symbolic approach would not be of relevance for such application.

1.6 Next Chapters

This work is divided in the following structure:

• Chapter 1 presented an introduction describing the context of points-to analysis,

the problem faced by this work, our solution of adding a layer of symbolic range

analysis to points-to analysis, and our publications.

• Chapter 2 presents the background behind our work, the concepts and other

related works. It also does a literature review of other related publications. The

topics and concepts it covers are the SSA form, the LLVM compiler framework,

points-to analysis, range analysis, the use of pointer disambiguation for automatic

parallelization of code and the merging of points-to analysis with range analysis.

• Chapter 3 describes our points-to analysis. It gives an overview of our algorithm,

shows how we combine the symbolic range analysis with pointer analysis, de-

scribes the local and global parts of our work, discusses about the algorithm's

complexity and end with an example.

• Chapter 4 shows our experiments and results.

• Chapter 5 concludes this dissertation. It shows the limitations of our work,

discusses future work to be done and issues �nal conclusions.

Chapter 2

Background

2.1 Lattice

A lattice is an algebraic structure that consists of a partially ordered set in which

every two elements have a unique least upper bound (or join) and a unique greatest

lower bound (or meet) [Nation, 2016]. An example is given by the natural numbers,

partially ordered by divisibility, for which the unique least upper bound is the least

common multiple and the unique greatest lower bound is the greatest common divisor.

An example can be seen in the �gure below.

Figure 2.1. Example of a lattice of integer divisors of 60.

If L = (S,≤,∨,∧,⊥,>) is a complete lattice, and e1 ∈ S and e2 ∈ S, then we

let elub = (e1 ∨ e1) ∈ S be the least upper bound of the set {e1, e2}. The least upper
bound elub has the following properties:

• e1 ≤ elub and e2 ≤ elub

5

6 Chapter 2. Background

• For any element e′ ∈ S, if e1 ≤ e′ and e2 ≤ e′, then elub ≤ e′

In the same way, we let eglb = (e1 ∧ e1) ∈ S be the greatest lower bound of the

set {e1, e2}. The greatest lower bound eglb has the following properties:

• eglb ≤ e1 and eglb ≤ e2

• For any element e′ ∈ S, if e′ ≤ e1 and e′ ≤ e2, then e′ ≤ eglb

While the symbols ∨ and ∧ correspond to the join and meet operators respectively.

⊥ and > correspond to bottom and top respectively. Bottom (⊥) is the multiplicative
one for the join operator and the multiplicative zero for the meet operator. Top (>)
is the multiplicative one for the meet operator and the multiplicative zero for the join

operator:

• ∀x ∈ S, (⊥ ∨ x) = x

• ∀x ∈ S, (> ∨ x) = >

• ∀x ∈ S, (> ∧ x) = x

• ∀x ∈ S, (⊥ ∧ x) = ⊥

If a lattice is well-de�ned for only one of these operators, it is called a semilattice.

Most data�ow analyses require only the semilattice structure to work. The meet op-

erator (or the join operator) in a semilattice de�nes a partial order. The partial order

is re�exive, antisymmetric and transitive. An example of partial order is the natural

order on N, where 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 etc.

2.2 SSA form

Data structure choices directly in�uence in the power and e�ciency of program opti-

mizations in our current optimizing compilers. Choosing poorly which data structures

to use can inhibit program optimization to a point where advanced techniques can

become undesirable. The static single assignment form (SSA) makes a useful class

of optimizations more e�cient and powerful. It was initially proposed in the 80s to,

among other uses, verify the equality of variables in a program [Alpern et al., 1988].

Consider the program slice in �gure 2.2. Could it be said that I and J are

equivalent? Such answer will depend on which program point the execution is currently.

In the end of the if-then-else the answer will depend, dynamically, on the value of Q,

2.2. SSA form 7

1: if Q then
2: I ← 5
3: J ← 5
4: ...
5: else
6: I ← 6
7: J ← 7
8: ...
9: end if

10: ...

Figure 2.2. Example where the SSA form can improve on the value numbering

optimization.

or no answer can be de�ned in a conservative static approach. However, in program

point 4, these variables are equal even on the static view. To allow the detection

of such equivalences without taking into account di�erent points in the program, it's

necessary to add several new variables for each variable in the original program. So, in

the example, it is necessary to break I into three distinct variables. One in the then

clause, one in the else clause and a last one in the end of the if-then-else. The same

is done for J and now it's possible to verify, statically, that the I and J from inside

the then clause are equivalent.

The process of transforming a program into the SSA form requires two steps

[Cytron et al., 1989]. The �rst step consists in inserting φ-functions into certain

points on the program. Such functions are special assignment states in the form

U ← φ(V,W, ...), where U, V,W, ... are variables and the number of operands V,W, ...

is the number of control �ow predecessors of the program point where the φ-function

is inserted. Such control �ow predecessors are listed in order where the jth operand is

associated with the jth predecessor. If the program execution reaches the φ-function

from its jth predecessor, then U is assigned the value of the jth operand. Each exe-

cution of a φ statement uses only one operand and which operand to be used depends

on the �ow of execution. A φ-function can be trivially placed for each variable V int

the form V ← φ(V, V, ...) at the entrance to any CFG node in the program without

changing semantics.

The second step consists in giving new names for each variable V in the form Vi

for various integers i. Each mention of V in the program is replaced by a mention of

ones of these new names of V . Each new name Vi for V is the target of exactly one

assignment statement in the program text. And along any control �ow path, if you

consider any use of a new name Vi for V and the corresponding use of V in the original

8 Chapter 2. Background

Figure 2.3. Example showing the Extended Static Single Assignment form

transformation by inserting σ-functions.

program, V and Vi will have the same value.

A program is in minimalSSA form if it is in SSA form and if the number of

φ-functions inserted is as small as possible [Rosen et al., 1988]. Extra φ-functions

(more than the minimalSSA form) might inhibit optimizations by hiding useful facts.

They also add unnecessary overhead to the process of optimization. Thus it is very

important to place φ-functions only where they are required to maintain the SSA form.

After a program has been transformed into the static single assignment form

(SSA), it has two useful properties. First, each use of a variable is reached by exactly

one assignment to that variable. Secondly, the programs contains φ-functions that

distinguish values of variables obtained through distinct incoming control �ow paths.

The Extended Static Single Assignment form is a cheaply computable extension

of SSA [Bodik et al., 2000]. This extension di�ers from the minimalSSA form by

introducing σ-functions that rede�ne the program's variables in points of interest, such

as branches and switches. The main advantage of this σ-functions are inserted, for

each variable appearing in the conditional expression, into the CFP out-edges of the

conditional branch. Because of these assignments, each outcome of the conditional is

associated with a distinct variable name, which allows for splitting the ranges of the

conditional variables in range analysis, for example, with each of its σ-assignments tak-

ing distinct pieces of their range. The σ-functions are usually placed at the beginning

of the basic blocks targeted by the branch.

2.3 LLVM

LLVM (Low-Level Virtual Machine) [Lattner and Adve, 2004] is a compiler framework

that aims to make program analyses and transformations available for any piece of

2.4. Points-to Analysis 9

software in a transparent way for the programmers. It has two main characteristics

are a code representation with several features that serve as common a representation

for analyses and transformations and machine code translation, and a compiler design

that exploits its representation to provide a multitude of capabilities.

The LLVM code representation uses a RISC-like instruction set allied to higher

level information to describe programs in a useful way for analyses and transforma-

tions. This higher level information includes type information, explicit control �ow

graphs and an explicit data-�ow representation using an in�nite, typed register set

in the SSA form. This code representation has several features, such as a low-level

language independent type system that can be used to implement data-types and op-

erations from higher-level languages, instructions for performing type conversions and

address arithmetic, and two low-level exceptions-handling instructions for implement-

ing exception semantics from languages who have it. The LLVM representation is

independent from the source code language and it utilizes a low-level instruction set

and memory model that are only slightly richer than common assembly languages. Its

type system does not prevent representing code with very little type information and

it does not impose any particular runtime requirement on programs.

The LLVM compiler framework exploits its code representation to provide a com-

bination of �ve capabilities: persistent program information, o�ine code generation,

user-based pro�ling and optimization, transparent runtime model and uniform, whole-

program compilation. Over the last ten years, LLVM has somewhat altered this land-

scape and it is now used as a common infrastructure to implement a broad variety of

statically and runtime compiled languages. We've used it to implement the analysis

present in this work.

2.4 Points-to Analysis

The contribution of this work is a new representation of pointers, based on the

SymbRanges lattice, and an algorithm to reach a �xed point in this lattice, based on

abstract interpretation. This contribution complements classic work on pointer analy-

sis. In other words, our representation of pointers can be used to enhance the precision

of algorithms such as Steensgard's [Steensgaard, 1996], Andersen's [Andersen, 1994],

or even the state-of-the-art technique of Hardekopf and Lin [Hardekopf and Lin, 2011].

These techniques map pointers to sets of locations, but they could be augmented to

map pointers to sets of locations plus ranges. Furthermore, the use of our approach

does not prevent the employment of acceleration techniques such as lazy cycle detec-

10 Chapter 2. Background

tion [Hardekopf and Lin, 2007], or wave propagation [Pereira and Berlin, 2009].

Another analysis technique, originally investigated by Reynolds [Reynolds, 1968]

for a Lisp-like language, is shape-analysis and it aims to give, for each program point

a �nite characterization of the possible "shapes" that the program's heap-allocated

data structures can have at that point. Shapes characterize data structures. A shape

descriptor could indicate whether the heap contains a singly linked list, potentially

with a cycle, a doubly linked list, a binary tree, and so on. Shape Analysis is a static

code analysis that discovers and veri�es properties of linked, dynamically allocated

data structures in computer programs. It is a form of pointer analysis, although it is

more precise than typical pointer analysis. It has been applied to a variety of problems,

such as memory safety and �nding memory leaks, dereferences of dangling pointers,

and discovering cases where a block of memory is freed more than once, �nding array

out-of-bounds errors, checking type-state properties, and verifying that a sort method

is correct.

2.5 Range Analysis

Range Analysis is a compiler technique that aims to to �nd, statically, minimum and

maximum values that each program variable might assume during the program execu-

tion. This analysis is important for enabling several compiler optimizations, such as

dead and redundant code elimination. These are the removal of array bounds checks

[Logozzo and Fahndrich, 2008] and over�ow [Souza et al., 2011] checks for example.

It can also be used for bitwidth aware register allocation [Barik et al., 2006], branch

prediction [Patterson, 1995] and synthesis of hardware for speci�c applications [Cong

et al., 2005].

The approach of simply having integer values as minimums and maximums may

enable several compiler optimizations, but it is not e�ective do validate memory ac-

cesses or handle pointers. We adopt in this work a symbolic range analysis [Nazaré

et al., 2014]. The analysis we use adopts symbolic ranges and a symbolic kernel, which

is a set formed by either constants known statically or variables de�ned as input values,

such as formal parameters of functions, reads and loads. An abstract interpretation

framework generates invariants as symbolic ranges over the program's symbolic ker-

nel, extracts a set of interval constraints from the program and performs a �x-point

algorithm until convergence.

The symbolic range analysis uses symbolic expressions for the lower and upper

bounds of ranges. E is a symbolic expression, if and only if, E is de�ned by the

2.6. Pointer Disambiguation for Parallelization 11

grammar below. In this grammar s is a symbol and n ∈ N.

E ::= n | s | min(E,E) | max(E,E) | E − E | E + E | E/E | EmodE | E ∗ E
Even though there is a natural lattice between integer values coupled with both

positive and negative in�nities, there is no ordering between two distinct elements of

the symbolic kernel of a program. The analysis provides a way to de�ne such ordering

with a valuation of symbolic expressions.

2.6 Pointer Disambiguation for Parallelization

There exist previous work that used similar lattices as ours, albeit di�erent resolution

algorithms. For instance, much of the work on automatic parallelization has some way

to associate symbolic o�sets, usually loop bounds, with pointers. Michael Wolfe [Wolfe,

1996, Ch.7] and Aho et al. [Aho et al., 2006, Ch.11] have entire chapters devoted to this

issue. The key di�erence between our work and this line of research is the algorithm

to solve pointer relations: they resort to integer linear programming (ILP) or the

Greatest Common Divisor test to solve diophantine equations, whereas we do abstract

interpretation.

We believe that the state-of-the-art approach in the �eld today is Rugina and

Rinard [Rugina and Rinard, 2005]. Their paper presents a novel framework for the

symbolic bounds analysis of pointers, array indexes, and accessed memory regions.

Instead of using traditional �xed-point algorithms, it formulates each analysis problem

as a system of inequality constraints between symbolic bound polynomials. It then

reduces the constraint system to a linear program. The solution to the linear program

provides symbolic lower and upper bounds for the values of pointer and array index

variables and for the regions of memory that each statement and procedure accesses.

Their technique was applied to divide and conquer programs that access disjoint regions

of dynamically allocated arrays. Experimental results showed that their algorithm can

verify the absence of data races in benchmark parallel programs, detect the available

parallelism in benchmark serial programs, and verify that both sets of benchmark

programs do not violate their array bounds.

We speculate that the ILP approach is too expensive to be used in large programs;

hence, concessions must be made for the sake of speed. For instance, whereas the

previous literature that we know restrict their work to pointers within loops, we can

analyze programs with over one million assembly instructions in a few seconds.

12 Chapter 2. Background

2.7 Points-to with Range Analyses

There exists work that, like ours, also associates intervals with pointers, and solves

static analysis via abstract interpretation techniques. However, to the best of our

knowledge, these approaches have a fundamental di�erence to our work: they use

integer intervals a là Cousot [Cousot and Cousot, 1977], whereas we use symbolic

intervals.

The inspiration for much of this work springs from Balakrishnan and Reps notion

of Value Set Analysis [Balakrishnan and Reps, 2004]. It is a static analysis for tracking

the values of data objects. Value Set Analysis uses an abstract domain for representing

the set of values that each data object can hold at each program point. The algorithm

tracks memory addresses and integers values simultaneously. So it determines an over-

approximation of the possible values that each variable of each type can hold at each

program point. It tracks these values using a set of abstract data objects called abstract

locations. The idea behind such abstraction is to exploit the fact that accesses on the

variables of a program written in a high-level language appear as either static addresses

(for globals) or static stack-frame o�sets (for locals). The data object in the original

source-code program that corresponds to a given abstract location can be one or more

scalar, struct or array variables, but can also consist of just a segment of a scalar, struct

or array variable.

Integer intervals have also being used by Yong et al. [Yong and Horwitz, 2004] and,

more recently, by Oh et al. [Oh et al., 2014]. In the latter case, Oh et al. use pointer

disambiguation incidentally, to demonstrate their ability to implement e�ciently static

analyses in a context-sensitive way. Even though integer ranges �t well the need of

machine code, as demonstrated by Balakrishnan and Reps, we believe that further

precision requires more expressive lattices. We have not implemented value set analysis,

but we have tried a simple experiment: we counted the number of pointers that have

integer ranges, and compared this number against the quantity of pointers that have

symbolic ranges. We found out that 20.47% of the pointers in our three benchmark

suites have exclusively symbolic ranges. Classic range analysis would not be able

to distinguish them. Notice that numeric ranges are more common among pointer

variables than among integer, because �elds within structs � a very common construct

in C � are indexed through integers. Finally, the fact that we use Bodik's e-SSA

form [Bodik et al., 2000] distinguish our abstract interpretation algorithm from previous

work. This representation lets us solve our analysis sparsely, whereas Balakrishnan's

algorithm works on a dense representation that associates facts with pairs formed by

variables and program points.

Chapter 3

A New Points-to Analysis

The goal of this chapter is twofold. First, we want to illustrate our novel points-to

analysis with an example. Section 3.1 presents this example, and introduces the reader

to a few insights that came out of this work. After that, we discuss the technical details

of our contribution. To this end, Section 3.2 introduces the SymbRanges lattice, and

explains how to build this structure. This lattice will gives us, later, a way to answer

the question: �do pointers p1 and p2 alias each other?�

3.1 Overview

We have two di�erent ways to answer the following question: �do pointers tmpi and

tmpj alias?" These tests are called global and local. In this section, we will use two

di�erent examples to illustrate situations in which each query is more e�ective. These

distinct strategies are complementary: one is not a superset of the other.

Global pointer disambiguation. Figure 3.1 illustrates our �rst approach to dis-

ambiguate pointers. The �gure shows a pattern typically found in distributed systems

implemented in C. Messages are represented as arrays of bytes. In this particular ex-

ample, messages have two parts: an identi�er, which is stored in the beginning of the

array, and a payload, which is stored right after. The loops in lines 5-8 and 9-12 �ll up

each of these parts with data. If a compiler can prove that the stores at lines 6 and 10

are always independent, then it can perform optimizations that would not be possible

otherwise. For instance, it can parallelize the loops, or switch them, or merge them

into a single body.

No alias analysis currently available in either gcc or LLVM is able to disambiguate

the stores at lines 6 and 10. These analyses are limited because they do not contain

range information. The range interval [l, u] associated with a variable i is an estimate

13

14 Chapter 3. A New Points-to Analysis

#include <stdlib.h>

void prepare(char* p, int N, char* m) {
 char *i, *e, *f;
 for (i = p, e = p + N; i < e; i += 2) {
 *i = 0;
 *(i + 1) = 0xFF;
 }
 for (f = e + strlen(m); i < f; i++) {
 *i = *m;
 m++;
 }
}

int main(int argc, char** argv) {
 int Z = atoi(argv[1]);
 char* b = (char*)malloc(Z);
 char* s = (char*)malloc(strlen(argv[2]));
 strcpy(s, argv[2]);
 prepare(b, Z, s);
 ...
 return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure 3.1. Example of program that builds up messages as sequences of serial-

ized bytes. We are interested in disambiguating the locations accessed at lines 6

and 10.

i
... ...

i+Ni+N − 1
i+N + strlen(m)− 1

line 6 line 10

Figure 3.2. Array p in the routine prepare seen in Fig.3.1. Lines 6 and 10

represent the di�erent stores in the �gure.

of the lowest (l) and highest (u) values that i can assume throughout the execution

of the program. In this work, we propose an alias analysis that solves this problem.

To achieve this goal, we couple this alias analysis with range analysis on symbolic

intervals [Blume and Eigenmann, 1994]. Thus, we will say that the store at line 6

might modify any address from p+ 0 to p+ N− 1, and that the store at line 10 might

write on any address from p + N to p + N + strlen(m)− 1. For this purpose, we

will use an abstract address that encodes the actual value(s) of p inside the prepare

function. These memory addresses are depicted in Figure 3.2, where each � represents

a memory slot.

Whole program analysis reveals that there are two candidate locations that any

pointer in the program may refer to. These locations have been created at lines 17 and

18 of Figure 3.1, and we represent them abstractly as loc17 and loc18. These names

3.1. Overview 15

void accelerate
(float* p, float X, float Y, int N) {
 int i = 0;
 while (i < N) {
 p[i] += X;
 p[i + 1] += Y;
 i += 2;
 }
}

1
2
3
4
5
6
7
8

// float* tmp0 = p + i; *tmp0 = ...;
// float* tmp1 = p + i + 1;
// *tmp1 = ...;

9

Figure 3.3. Program that shows the need to assign common names to addresses

that spring from the same base pointer.

void accelerate
(float* p, float X, float Y, int N) {
 int i = 0;
 while (i < N) {
 float* newp = p+i;

 newp[0] += X;

 newp[1] += Y;

 i += 2;
 }
}

1
2
3
4
5
6
7
8

// LR(newp) = locnew + [0, 0]
// float* tmp2 = newp; *tmp2 = ...;
// float* tmp3 = newp + 1; *tmp3 = ...;

9
10

Figure 3.4. Program from Figure 3.3, after pointer is renamed within loop.

are unique across the entire program. After running our analysis, we �nd out that

the abstract state (GR) of i at line 6 is GR(i`n.6) = {loc17 + [0, N − 1], and that the

abstract state of i at line 10 is GR(i`n.10) = {loc17 + [N, N+ strlen(m) − 1]}. Given
that these two abstract ranges do not intersect, we know that the two stores update

always di�erent locations. We call this check the global disambiguation criterion.

Local pointer disambiguation. Figure 3.3 shows a program in which the

simple intersection of ranges would not let us disambiguate pointers tmp0 and tmp1.

After solving global range analysis for that program, we have that GR(tmp0) = {loc0+
[0, N + 1]} and that GR(tmp1) = {loc0 + [1, N + 2]}, where loc0 de�nes the abstract

address of the function parameter p. The intersection of these ranges is non-empty

for N ≥ 1. Thus, the global check that we have used to disambiguate locations in

Figure 3.1 does not work in Figure 3.3. Notwithstanding this fact, we know that tmp0

and tmp1 will never point to a common location. In fact, these pointers constitute

di�erent o�sets from the same base address. To deal with this imprecision of the

global check, we will be also discussing a local disambiguation criterion. In this case,

we rename every pointer p that is alive at the beginning of a single entry region to a

fresh name newp. Whereas we use the global test for pointers in di�erent regions, the

local test is applied onto pointers within the same single entry region. After renaming,

we update the table of pointer pairs, so that LR(newp) = locnew + [0, 0], regardless of

16 Chapter 3. A New Points-to Analysis

Original
program

bootstrap: blobal
symbolic range

analysis on integers

Renamed
program

Rename locs
at ɸ-functions

Local Test

Global symbolic range
analysis on pointers

Global Test

Local symbolic range
analysis on pointers

(p0, p1)

{may/no}
alias

may?

no
alias

Figure 3.5. Overview of our pointer analysis.

the old ranges assigned to the original pointer p. In Figure 3.4 we would have that

LR(tmp2) = locnew + [0, 0] and LR(tmp3) = locnew + [1, 1], where tmp2 is the name of

the address new p[0], and tmp3 is the name of the address new p[1]. This new binding of

intervals to pointers gives us empty intersections between similar locations in LR(tmp2)

and LR(tmp3). Consequently, the local check is able to distinguish addresses referenced

by tmp2 and tmp3.

3.2 Combining Range and Pointer Analyses

We perform our pointer analysis in several steps. Figure 3.5 shows how each of these

phases relates to each other. Our �nal product is a function that, given two pointers,

p0 and p1, tells if they may point to overlapping areas or not. An invocation of this

function is called a query. We use an o�-the-shelf symbolic range analysis, e.g., à la

Blume [Blume and Eigenmann, 1994], to bootstrap our pointer analysis. By inferring

the symbolic ranges of pointers, we have two alias tests: the global and the local

approach. In the rest of this section we describe each one of these contributions.

3.2.1 A Core Language

We solve range analysis through abstract interpretation. To explain how we abstract

each instruction in our intermediate representation, we shall use the language seen in

Figure 3.1; henceforth, we shall call this syntax our core language. We shall be working

on programs in Extended Static Single Assignment (e-SSA) form [Bodik et al., 2000].

E-SSA form is a �avor of Static Single Assignment (SSA) [Cytron et al., 1991] form,

3.2. Combining Range and Pointer Analyses 17

Integer constants ::= {c1, c2, . . .}
Integer variables ::= {i1, i2, . . .}
Pointer variables ::= {p1, p2, . . .}
Instructions (I) ::=
� Allocate memory | p0 = malloc(i0)
� Free memory | p0 = free(p1)
� Pointer plus int | p0 = p1 + i0
� Pointer plus const | p0 = p1 + c0
� Bound intersection | p0 = p1 ∩ [l, u]
� Load into pointer | p0 = ∗p1
� Store from pointer | ∗p0 = p1
� φ-function | p0 = φ(p1 : `1, p2 : `2)
� Branch if not zero | bnz(v, `)
� Unconditional jump | jump(`)

Table 3.1. The syntax of our language of pointers.

Z = atoi(...)

b = malloc(Z) "loc0"
s = malloc(...) "loc1"p = b

N = Z
m0 = s

i0 = p

e = p + N

i1 = ϕ(i0, i3)

(i1 < e)?

i2 = i1 ∩ [−∞, e − 1]

*i2 = 0

t0 = i2 + 1

*t0 = 0xFF

i3 = i2 + 1

i4 = i1 ∩ [e, +∞]

f = e + strlen(m0)

i5 = ϕ(i4, i7)

m1 = ϕ(m0, m2)

(i5 < f)?

i6 = i5 ∩ [−∞, f − 1]

*i6 = *m1

m2 = m1 + 1

i7 = i6 + 1

Figure 3.6. Interprocedural control �ow graph of program seen in Figure 3.1

with variable renaming after inequalities. Thus, our core language contains φ-functions

to ensure the single de�nition (SSA) property, and intersections to rename variables

after conditionals. We assume that φ-functions have only two arguments. Generalizing

this notation to n-ary functions is immediate.

Figure 3.6 shows the interprocedural control �ow graph of the program seen in

Figure 3.1. It is equivalent to a normal control �ow graph with its functions inlined.

The implementation of the analysis that we shall present in this work is interproce-

dural, albeit not context-sensitive. To achieve interprocedurality, we associate actual

parameters with formal parameters of functions. In the example of Figure 3.1, pointer

b � an actual parameter � is linked with p � a formal parameter � through a φ-function.

The e-SSA format lets us implement our analysis sparsely, e.g,. we can assign

18 Chapter 3. A New Points-to Analysis

information directly to variables, instead of pairs of variables and program points.

As demonstrated by Choi et al. [Choi et al., 1991], the main advantage of a sparse

analysis is e�ciency: the product of the analysis - the information that is bound to

each variable - requires O(N) space, where N is the number of variable names in the

program. Furthermore, as we shall explain in the rest of this section, our analysis can

be computed in O(N) time.

Key to these good properties is the fact that we create new variable names at each

program point where our analysis can infer new information. This knowledge appears

due to memory allocation (malloc), deallocation (free), pointer arithmetic, intersections

and φ-functions. Each of these instructions de�nes new variables, whose names are

associated with information. For instance, the instruction p0 = free(p1) copies p1 to

p0, and binds p0 to a memory chunk of size 0. As we will show in Section 3.2.4, our

abstract interpreter associates with p0 a new abstract state which indicates that p0 is

not a valid reference to any location.

3.2.2 Program Locations.

Our analysis binds variable names to sets of locations and ranges. We denote the set

of locations in a program by Loc = {loc0, loc1 . . . , locn−1} where n is the number of

allocation sites. In our representation, i.e., Figure 3.1, new locations are created by

malloc operations.

Example 1 Figure 3.6 shows the interprocedural control �ow graph of the program

seen in Figure 3.1. The two allocations at lines 17 and 18 are associated respectively

with loc0 and loc1.

3.2.3 Symbolic Range Analysis.

We start our pointer analysis by running an o�-the-shelf range analysis parameterized

on symbols. For the sake of completeness, we shall revisit the main notions associated

with range analysis, which we borrow from Nazaré et al. [Nazaré et al., 2014]. We say

that E is a symbolic expression, if and only if, E is de�ned by the grammar below. In

this de�nition, s is a symbol and n ∈ N. The set of symbols s in a program form its

symbolic kernel. The symbolic kernel is formed by names that cannot be represented as

function of other names in the program text. Concretely, this set contains the names

3.2. Combining Range and Pointer Analyses 19

of global variables and variables assigned with values returned from library functions.

E ::= n | s | min(E,E) | max(E,E) | E − E
| E + E | E/E | E mod E | E × E

We shall be performing arithmetic operations over the partially ordered set S = SE ∪
{−∞,+∞}, where SE is the set of symbolic expressions. The partial ordering is given

by −∞ < . . . < −2 < −1 < 0 < 1 < 2 < . . . +∞. There exists no ordering between

two distinct elements of the symbolic kernel of a program. For instance, N < N+1 but

there is no relationship between an expression containing N and another expression

containing M .

A symbolic interval is a pair R = [l, u], where l and u are symbolic expressions.

We denote by R↓ the lower bound l and R↑ the upper bound u. We de�ne the partially

ordered set of (symbolic) intervals S2 = (S × S,v), where the ordering operator is

de�ned as:

[l0, u0] v [l1, u1], if l1 ≤ l0 ∧ u1 ≥ u0

From the previous de�nitions, we de�ne the semi-lattice SymbRanges of symbolic

intervals as (S2,v,t, ∅, [−∞,+∞]), where the join operator �t" is de�ned as:

[a1, a2] t [b1, b2] = [min(a1, b1),max(a2, b2)]

Our lattice has a least element ∅, such that:

∅ t [l, u] = [l, u] t ∅ = [l, u]

and a greatest element [−∞,+∞], such that:

[−∞,+∞] t [l, u] = [l, u] t [−∞,+∞] = [−∞,+∞]

For sake of clarity, we also de�ne the intersection operator �u":

[a1, a2] u [b1, b2] =

∅, if a2 < b1 or b2 < a1

[max(a1, b1),min(a2, b2)], otherwise

[−∞,+∞] is absorbant and ∅ is neutral for u.
The result of range analysis is a function R : V 7→ S2, that maps each integer

variable i in a program to an interval [l, u], l ≤ u, e.g., R(i) = [l, u]. The more

precise the technique we use to produce this result, the more precise our results will

20 Chapter 3. A New Points-to Analysis

be. Nevertheless, the exact implementation of the range analysis is immaterial for the

formalization that follows. In this work, we are using the following widening operator

on SymbRanges :

[l, u]∇[l′, u′] =

[l, u] if l = l′ and u = u′

[l,+∞] if l = l′ and u′ > u

[−∞, u] if l′ < l and u′ = u

[−∞,+∞] if l′ < l and u′ > u

The only requirement that we impose on the implementation of range analysis is

that it exists over SymbRanges , our lattice of symbolic intervals.

We denote by (αSymbRanges, γSymbRanges) the underlying galois connection.

Example 2 A range analysis such as Nazaré et al.'s [Nazaré et al., 2014], if applied

onto the program seen in Figure 3.3, will gives us that R(i〈line 3〉) = [0, 0], R(i`n.5) =

[0, N − 1], R(i`n.7) = [0, N + 1].

3.2.4 Global Range Analysis of Pointers

As we have mentioned in Section 3.1 we use two di�erent strategies to disambiguate

pointers: the global and the local test. Our global pointer analysis goes over the entire

code of the program, associating variables that have the pointer type with elements of

an abstract domain that we will de�ne soon. The local analysis, on the other hand,

works only for small regions of the program text. We shall discuss the local test

in Section 3.2.6. In this section, we focus on the global test, which is an abstract-

interpretation based algorithm.

An Abstract Domain of Pointer Locations. We associate pointers with tuples of

size n: (SymbRanges ·∪ ⊥)n; n being the number of program sites where memory is

allocated (the cardinal of Loc) and ·∪ is the disjoint union.

Let @(loci) denotes the actual address value returned by the ith malloc of the

program. By construction, all actual addresses are supposed to be o�sets of a given

@(loci). The abstract value GR(p) = (p0, . . . , pn−1) represents (an abstract version)

of the set of memory locations that pointer variable p can address throughout the

execution of a program:

De�nition 1 (Abstraction) A set of actual addresses, S = {s | ∃i ∈ N, d ∈ Z, s =

@(loci) + d} is abstracted by α(S) = (p0, p1 . . . , pn−1) where :

3.2. Combining Range and Pointer Analyses 21

loc0

loc1 + l1 loc1 + u1

loc1 loc2 loc3

loc3 + l3 loc3 + u3

Figure 3.7. The concrete semantics of GR(p) = {loc1+[3, 5], loc3+[3, 8]}. Dark
grey cells denote possible (concrete) values of p.

• pi = ⊥ if there is no adress in S which is an o�set of @(loci)

• pi = αSymbRanges ({d ∈ Z | s = @(loci) + d ∈ S}), otherwise. The o�sets from

a given pointer are abstracted alltogether in the SymbRanges lattice.

The goal of our GR analysis is to compute such an abstract value for each pointer

of the program. Some elements in a tuple GR(p) are bound to the unde�ned location,

e.g., ⊥. These elements are not interesting to us, as they do not encode any useful

information. Thus, to avoid keeping track of them, we rely on the concept of support,

which we state in De�nition 2.

De�nition 2 (Support) We denote by suppGR(p) the set of indexes for which pi is

not ⊥ :

suppGR(p) = {i | pi 6=⊥}.

For sake of readability, let us denote for instance GR(p) =

(⊥, [l1, u1],⊥, [l3, u3],⊥), by the set GR(p) = {loc1 + [l1, u1], loc3 + [l3, u3]}. In

the concrete world, this notation will mean that pointer p can address any memory

location from @(loc1) + l1 to @(loc1) + u1, and from @(loc3) + l3 to @(loc3) + u3.

For instance, consider that l1 = 3, u1 = 5, l3 = 3 and u3 = 8. GR(p) = {loc1 +
[3, 5], loc3 + [3, 8]} is then depicted in Figure 3.7.

Now for the abstract operations: (⊥, . . . ,⊥) is the least element of our lattice,

and ([−∞,∞], . . . , [−∞,∞]) the greatest one.

Given the two abstract values GR(p1) = (p10, . . . p
1
n−1) and GR(p

2) = (p20, . . . p
2
n−1),

the union GR(p1) tGR(p2) is the tuple (q0, . . . , qn−1) where:

qi =

 ⊥ if p1i = p2i = ⊥
p1 t p2 else

and GR(p1) v GR(p2) if an only if all involved (symbolic) intervals of p1 are included

in the ones of p2: ∀i ∈ [0..(n− 1)], p1i v p2i (considering ⊥ v R and ⊥ t R = R for all

non-empty intervals R). We call this structure, formed by (SymbRanges ·∪⊥)n plus its

partial ordering the lattice MemLocs .

22 Chapter 3. A New Points-to Analysis

Example 3 For the example depicted in Figure 3.6 where we only have two malloc

sites denoted by loc0 and loc1, we will obtain the following results: GR(p) = GR(b) =

{loc0 + [0, 0]}, GR(m0) = GR(s) = {loc1 + [0, 0]}, GR(e) = loc0 + [N,N], GR(m1) =

loc1+[1,+∞], GR(i7) = loc0+[N+strlen(m0), N+strlen(m0)+1]. How this mapping

is found is discussed in the rest of this section.

Abstract semantics for GR, and concretisation. The abstract semantics of each

instruction in our core language is given by Figure 3.8. Figure 3.8 de�nes a sys-

tem of equations whose �xed point gives us an approximation on the locations that

each pointer may dereference. We remind the reader of our notation: [l, u]↓ = l, and

[l, u]↑ = u. In Figure 3.8, this notation surfaces in the semantics of intersections.

The abstract interpretation of the pointer-related instructions in Figure 3.6 yields the

results discussed in Example 3.

j : p = malloc (v)

with v scalar
⇒ GR(p) = (⊥, . . . , [0, 0]︸︷︷︸

jthcomponent

, . . .)

p = free (v)

with v scalar
⇒ GR(p) = (⊥, . . . , ⊥)

v = v1 ⇒ GR(v) = GR(v1)

q = p+ c

with c scalar variable
⇒

GR(q) = (q0, . . . , qn−1) with

qi =

{
⊥ if pi = ⊥
pi +R(c) else

q = φ(p1, p2) ⇒ GR(q) = GR(p1) tGR(p2)

q = p1 ∩ [−∞, p2] ⇒

GR(q) = (q0, . . . , qn−1) with

qi =

{
⊥ if (p1i = ⊥ or p2i =⊥)
p1i u [−∞, p2i ↑] else

q = p1 ∩ [p2,+∞] ⇒

GR(q) = (q0, . . . , qn−1) with

qi =

{
⊥ if (p1i = ⊥ or p2i = ⊥)

p1i u [p2i ↓,+∞] else

q = ∗p ⇒ GR(q) = ([−∞,∞], . . . , [−∞,∞])

∗q = p ⇒ Nothing

Figure 3.8. Constraint generation for GR with GR(p) = (p0, . . . , pn−1) given p
in the right hand side of rules

There remains to de�ne how the abstract states will be concretised (@(loci) is

the actual address returned by the ith malloc):

3.2. Combining Range and Pointer Analyses 23

De�nition 3 (Concretisation) Given GR(p) an abstract value (a set of �abstract

addresses for p�), denoted by GR(p) = (p0, . . . , pn−1) then we de�ne its concretisation

as follows:

γ(GR(p)) =
⋃

i∈suppGR(p)

{@(loci) + o, o ∈ pi}

The concretisation function of this abstract value is thus a set of (concrete) addresses,

obtained by shifting a set of base addresses by a certain value in SymbRanges 1.

Proposition 1 (α, γ) is a Galois connection.

Proof 1 Immediate since (αSymbRanges , γSymbRanges) is a galois connection.

Solving the abstract system of contraints Following the abstract interpretation

framework, we solve our system of constraints by computing for each pointer a growing

set of abstract values until convergence.

However, as the underlying lattice SymbRanges has in�nite height, widening is

necessary to ensure that these sequence of iterations actually terminate. Our widening

operation on pointers generalizes the widening operation on ranges. It is de�ned as

follows:

De�nition 4 Given GR(p) and GR(p′) with GR(p) v GR(p′), we de�ne the widening

operator:

GR(p)∇GR(p′) = (p0∇p′0, . . . , pn−1∇p′n−1),

where ∇ denotes the widening on SymbRanges , extended with ⊥∇⊥ = ⊥ and

⊥∇[l, u] = [l, u].

As usual, we only apply the widening operator on a cut set of the control �ow

graphs (here, only on φ functions).

Widening may lead our interpreter to produce very imprecise results. To recover

part of this imprecision, we use a descending sequence of �nite size: after convergence,

we redo a step of symbolic evaluation of the program, starting from the value obtained

after convergence. One example of analysis will be detailed later, in Section 3.2.9.

1While speaking about symbolic ranges, we also have to concretize the values involved in the
bounds of pi, that is we shall use the actual values between S(pi↓) and S(pi↑).

24 Chapter 3. A New Points-to Analysis

The abstract interpretation of loads and stores. In Figure 3.8, we chose not to

track precisely the intervals associated with pointers stored in memory. In other words,

when interpreting stores, e.g., q = ∗p, we assign the top value of our lattice to q. This

decision is pragmatic. As we shall explain in Chapter 4, a typical compilation infra-

structure already contains analyses that are able to track the propagation of pointer

information throughout memory. Our goal is not to solve this problem. We want to

deliver a fast analysis that is precise enough to handle C-style pointer arithmetic.

3.2.5 Answering GR Queries

Our queries are based on the following result, that is an immediate consequence of the

fact our analysis is an abstract interpretation:

Proposition 2 (Correctness) Let p and p′ be two pointers in a given program then :

if suppGR(p) ∩ suppGR(p
′) = ∅

or ∀i ∈ suppGR(p) ∩ suppGR(p
′), pi u p′i = ∅

then γ(GR(p)) ∩ γ(GR(p′)) = ∅.

In other words, if the abstract values of two di�erent pointers of the program have a

null intersection, then the two concrete pointers do not alias. This result is directly

implied by the abstract interpretation framework. Thanks to this result, we implement

the query QGR(p, p′) as :

• If GR(p) and GR(p′) have an empty intersection, then �they do not alias�.

• Else �they may alias�.

3.2.6 Local Range Analysis of Pointers

The global pointer analysis is not path sensitive. As a consequence, this analysis

cannot, for instance, distinguish the e�ects of di�erent iterations of a loop upon the

actual value of a pointer, or the e�ects of di�erent branches of a conditional test on

that very pointer. The program in Figure 3.9 illustrates this issue. Pointers a4 and a5
clearly must not alias. Yet, their abstract states have non-empty intersections for loc1.

Therefore, the query mechanism of Section 3.2.5 would return a �may-alias" result in

this case.

To solve this problem, we have developed a local version of our pointer analysis.

We call it local because it creates new locations for every φ-function. Our local range

3.2. Combining Range and Pointer Analyses 25

a1 = malloc(2)

a2 = a1 + 1

a3 = ɸ(a1, a2)
a4 = a3 + 1
a5 = a3 + 2

GR(a1) = {loc1 + [0, 0]}

GR(a2) = {loc1 + [1, 1]}

GR(a3) = {loc1 + [0, 1]}

GR(a4) = {loc1 + [1, 2]}

GR(a5) = {loc1 + [2, 3]}

LR(a1) = loc1 + [0, 0]

LR(a2) = loc1 + [1, 1]

LR(a3) = loc2 + [0, 0]

LR(a4) = loc2 + [1, 1]

LR(a5) = loc2 + [2, 2]

Global Analysis Local Analsys

Figure 3.9. Example that illustrates imprecision of global analysis due to lack

of path-sensitiveness.

p = malloc (v)

with v scalar
⇒ LR(p) = N ewLocs() + [0, 0]

v = v1 ⇒ LR(v) = LR(v1)

q = p+ c

with c scalar variable and

LR(q) = loci + [l, u]

⇒ LR(q) = loci + ([l, u] +R(c))

j : q = φ(p1, p2) ⇒ LR(q) = N ewLocs() + [0, 0]

q = p1 ∩ [−∞, p2]
q = p1 ∩ [p2,+∞]

⇒ LR(q) = LR(p1)

q = ∗p1 ⇒ LR(q) = N ewLocs() + [0, 0]

∗q = p1 ⇒ Nothing

Figure 3.10. Constraint generation for LR

analysis is simpler than its global counterpart. We solve it in a single iteration of ab-

stract interpretation applied on the instructions of our core language. Instructions are

evaluated abstractly in the order given by the program's dominance tree. Figure 3.10

gives the abstract semantics of each instruction. The abstract value LR(p) exists in

(Loc∪N ewLocs)× SymbRanges where N ewlocs denotes a set of �fresh location vari-

ables�, that are computed by invocation of the function N ewLocs(). As before, we

write loc + R instead of (loc, R). Similarly to γGR, γLR denotes the set of abstract

addresses from @(loc) +R↓ to @(loc) +R↑.

To �nd a solution to the local analysis, we solve the system provided by the

abstract rules seen in Figure 3.10. This resolution process involves computing an

26 Chapter 3. A New Points-to Analysis

increasing sequence of abstract values for each pointer p of the program. Contrary

to the global analysis, this analysis is based on a �nite lattice, we do not need any

widening operator. Figure 3.9 (Right) shows the result of the local analysis. Contrary

to the global analysis, we have a new location bound to variable a3, which is de�ned

by a φ operator. The range of this new location is [0, 0]. The other variables that are

functions of a3, e.g., a4 and a5, have now non-intersection ranges associated with this

new memory name.

3.2.7 Answering LR Queries

The correction for the local analysis is stated by the following proposition:

Proposition 3 (Correctness) Let p and p′ be two pointers in a given program, and

γLR be the concretization of the abstract map LR, which we state like in De�ni-

tion 3. If LR(p) = loc + R and LR(p′) = loc′ + R′, then if loc = loc′ and R u R′ =
∅ then γ(LR(p)) ∩ γ(LR(p′) = ∅. In other words, p and p′ never alias.

Thanks to this result, we implement the query QLR(p, p′):

• If LR(p) and LR(p′) have a common base pointer with ranges that do not inter-

sect, then �they do not alias�.

• Else �they may alias�.

3.2.8 Complexity

The e-SSA representation ensures that we can implement our analysis sparsely. Sparsity

is possible because the e-SSA form renames variables at each program point where

new abstract information, e.g., ranges of integers and pointers, arises. According to

Tavares et al. [Tavares et al., 2014], this property � single information � is su�cient

to enable sparse implementation of non-relational static analyses [Tavares et al., 2014].

Therefore, the abstract state of each variable is invariant along the entire live range of

that variable. Consequently, the space complexity of our static analysis is O(|V | × I),
where V is the set of names of variables in the program in e-SSA form, and I is a

measure of the size of the information that can be bound to each variable.

We apply widening after one iteration of abstract interpretation. Thus, we let

the state of a variable to change �rst from [⊥,⊥] to [sl, su], where sl 6= −∞, and su 6=
+∞. From there, we can reach either [−∞, su] or [sl,+∞]. And, �nally, this abstract

state can jump to [−∞,+∞]. Hence, our time complexity is O(3 × |V |) = O(|V |).
This observation also prevents our algorithm from generating expressions with very

3.2. Combining Range and Pointer Analyses 27

long chains of �min� and �max� expressions. Therefore, I, the amount of information

associate with a variable, can be represented with O(1) space. As a consequence of

this frugality, our static analysis runs in O(|V |) time, and requires O(|V |) space.

3.2.9 A wrap-up Example

Example 4 shows how our analysis works on the program seen in Figure 3.1.

Example 4 Figure 3.6 shows the interprocedural control �ow graph (CFG) of the pro-

gram in Figure 3.1. Our graph is in e-SSA form [Bodik et al., 2000]. Figure 3.11 shows

the result of widening ranges after one round of abstract interpretation (stabilization

achieved), and a descending sequence of size two. Our system stabilizes after each in-

struction is visited four times. The �rst visit does initialization, the second widening

(and stabilization check), and the last two build the descending sequence.

This example illustrates the need of widening to ensure termination. Our pro-

gram has a cycle of dependencies between pointers i1, i2 and i3. If not for widening,

pointer i3, incremented in line 5 of Figure 3.1 would grow forever. Thus, as in Abstract

Interpretation, we must break the cyclic dependences between our pointers under anal-

ysis, by means of insertion of widening points (identify points in the CFG where to

apply widening to insure convergence).

Returning to our example of Figure 3.1, we are interested in knowing, for instance,

that the memory access at line 6 is independent on the accesses that happen at line

10. To achieve this goal, we must bound the memory regions covered by pointers i3
and i7. A cyclic dependence happens at the operation i++, because in this case, we

have a pointer being used as both, source and destination of the update. Thus, we

should have inserted a widening point at stores and load instructions. However, in the

Abstract Interpreter depicted in Figure 3.8, it was su�cient to insert widening points

at φ functions (as we already said before) because :

• heads of loops are φ functions (thus dependencies between variables of di�erent

iteration of loops are broken).

• we are working on (e-)SSA form programs; thus, the only inter-loop dependencies

are successive stores to the same variable : *q=..., *q=.... The value GR(q)

is the union of all information gathered inside the loop. (In essence, memory

addresses are not in static single assignment form, i.e., we could have the same

address being used as the target of a store multiple times). This information

might grow forever; hence, we would have inserted a widening point on the last

28 Chapter 3. A New Points-to Analysis

Var GR LR
b, p, i0 ([0, 0],⊥) loc0 + [0, 0]
m0, s (⊥, [0, 0]) loc1 + [0, 0]
i1 ([0, 0],⊥) loc2 + [0, 0]
i2 ([0, 0],⊥) loc2 + [0, 0]
t0 ([1, 1],⊥) loc2 + [1, 1]
e ([N,N],⊥) loc0 + [N,N]

Starting i3 ([1, 1],⊥) loc2 + [1, 1]
state i4 (⊥,⊥) loc2 + [0, 0]

f ([k, k],⊥) loc0 + [k, k]
m1 (⊥, [0, 0]) loc3 + [0, 0]
m2 (⊥, [1, 1]) loc3 + [1, 1]
i5 (⊥,⊥) loc4 + [0, 0]
i6 (⊥,⊥) loc4 + [0, 0]
i7 (⊥,⊥) loc4 + [1, 1]
i1 ([0,+∞],⊥)
i2 ([0,+∞],⊥)
t0 ([1,+∞],⊥)

Growing i3 ([1,+∞],⊥)
iterations i4 ([N,+∞],⊥)
+ widening m1 (⊥, [0,+∞])

m2 (⊥, [1,+∞])
i5 ([N,+∞],⊥)
i6 ([N, k − 1],⊥)
i7 ([N + 1, k],⊥)
i2 ([0, N − 1],⊥)
t0 ([1, N],⊥)

After one i3 ([1, N],⊥)
descending m1 (⊥, [0,+∞])

step m2 (⊥, [1,+∞])
i1 ([0, N],⊥)

After two i3 ([1, N],⊥)
descending i4 ([N,N],⊥)

steps i5 ([N, k],⊥)
i6 ([k − 1, k],⊥)
i7 ([k, k + 1],⊥)

Figure 3.11. Abstract interpretation of interprocedural CFG seen in Figure 3.6

(program in Figure 3.1). For GR, we associate loc0 with the malloc at line 17 and

loc1 with the malloc at line 18 (of the program). Only changes in GR and LR are

rewritten after the growing and descending iterations. We let k = N+strlen(m0).

write. In our case, the information we store is already the top of our lattice;

hence, there is no need for widening.

Chapter 4

Experiments

We have implemented our range analysis in the LLVM compiler, version 3.5. In this

section, we show a few numbers that we have obtained with this implementation. All

our experiments have been performed on an Intel i7-4770K, with 8GB of memory,

running Ubuntu 14.04.2. Our goal with these experiments is to show: (i) that our alias

analysis is more precise than other alternatives of practical runtime; and (ii) that it

scales up to large programs.

On the Precision of our Analysis. In this section, we compare our analysis against

the other pointer analyses that are available in LLVM 3.5, namely basic and SCEV.

The �rst of them, although called �basic", is currently the most e�ective alias analysis

in LLVM, and is the default choice at the -O3 optimization level. It relies on a number

of heuristics to disambiguate pointers1:

• Distinct globals, stack allocations, and heap allocations can never alias.

• Globals, stack allocations, and heap allocations never alias the null pointer.

• Di�erent �elds of a structure do not alias.

• Indexes into arrays with statically di�ering subscripts cannot alias.

• Many common standard C library functions never access memory or only read

memory.

• Function calls cannot reference stack allocations which never escape from the

function that allocates them

As we see from the above list, the basic alias analysis has some of the capabilities of

the technique that we present in this work, namely the ability to distinguish �elds and

indices within aggregate types. In this case, such disambiguation is only possible when

1This list has been taken from the LLVM documentation, available at
http://llvm.org/docs/AliasAnalysis.html in September of 2015

29

30 Chapter 4. Experiments

Program #Queries %scev %basic %rbaa %(r + b)

cfrac 89,255 0.87 9.70 16.65 21.03

espresso 787,223 2.39 12.62 28.16 33.04

gs 608,374 15.56 40.67 56.18 59.99

allroots 974 16.32 64.37 79.77 79.88

archie 159,051 0.98 20.57 16.44 28.04

assembler 35,474 2.16 40.31 47.86 55.61

bison 114,025 0.74 10.95 9.56 14.74

cdecl 301,817 13.74 24.80 49.72 50.73

compiler 9,515 0.49 67.27 67.27 69.20

�xoutput 3,778 0.11 88.30 83.17 90.37

football 495,119 3.58 59.20 60.08 65.08

gnugo 13,519 9.23 60.89 78.21 79.29

loader 13,782 2.32 29.55 36.47 46.09

plot2�g 27,372 2.90 24.09 46.45 49.54

simulator 25,591 3.56 46.32 41.25 52.27

unix-smail 61,246 1.22 37.36 42.92 48.95

unix-tbl 85,339 7.30 44.38 33.92 48.83

anagram 3,114 2.18 32.85 53.31 59.54

bc 198,674 14.14 30.95 47.86 50.01

ft 7,660 2.73 5.23 24.65 25.91

ks 14,377 0.61 22.98 21.60 27.70

yacr2 38,262 0.20 7.22 12.83 14.48

Total 3,093,541 6.97 30.83 41.73 46.53

Table 4.1. Comparison between three di�erent alias analyses. We let r + b be

the combination of our technique and the basic alias analysis of LLVM. Numbers

in scev, basic, rbaa and r+b show percentage of queries that answer �no-alias".

the aggregates are indexed with constants known at compilation time. For situations

when these indices are symbols, LLVM relies on a second kind of analysis to perform

the disambiguation: the �scalar-evolution-based" (SCEV) alias analysis. This analysis

tries to infer closed-form expressions to the induction variables used in loops. For each

loop such as:

for (i = B; i < N; i += S) { ... a[i] ... }

this analysis associates variable i with the expression i = B+ iter × S, i ≤ N. The pa-

rameter iter represents the current iteration of the loop. With this information, SCEV

can track the ranges of indices which dereference array a within the loop. Contrary

to our analysis, SCEV is only e�ective to disambiguate pointers accessed within loops

and indexed by variables in the expected closed-form.

Figure 4.1 shows how the three di�erent analyses fare when applied on larger

benchmarks. For this experiment we have chosen three benchmarks that have been

31

used in previous work that compares pointer analyses: Prolangs [Ryder et al., 2001],

PtrDist [Zhao et al., 2005] and MallocBench [Grunwald et al., 1993]. We �rst notice

that in general all the pointer analyses in LLVM disambiguate a relatively low number

of pointers. This happens because many pointers are passed as arguments of functions,

and, not knowing if these functions will be called from outside the program, the analyses

must, conservatively, assume that these parameters may alias. Second, we notice that

our pointer analysis is one order of magnitude more precise than the scalar-evolution

based implementation available in LLVM. Finally, we notice that we are able to disam-

biguate more queries than the basic analysis. Furthermore, our results complements it

in non-trivial ways. In total, we tried to disambiguate 3.093 million pairs of pointers.

Our analysis found out that 1.29 million pairs reference non-overlapping regions. The

basic analysis has been able to distinguish 953 thousand pairs. By combining these two

analyses, we extended this number to 1.439 thousand pairs of pointers. SCEV could

not increase this number any further.

Figure 4.2 shows the proportion of queries that we have been able to disambiguate

with the global test of Section 3.2.4. The two columns noalias of Figure 4.2 correspond

to the percentage in column %rbaa applied on the column #Queries of Figure 4.1.

Overall, the global test has given us 239,008, out of 1,290,457 �no-alias� answers. This

corresponds to 18.52% of all the pairs of pointers that we have disambiguated. We did

not show the local test in this table because these two tests are not directly comparable.

The global test disambiguate pointers, and the local test disambiguate the addresses

used in instructions such as loads and stores. These instructions can use pointers that

might dereference overlapping regions; however, not at the same moment during the

Prog noalias global Prog noalias global

cfrac 14,865 1,102 gnugo 10,573 1,851

espresso 221,416 20,791 loader 5,026 433

gs 341,532 106,859 plot2�g 12,713 861

allroots 777 182 simulator 10,557 1,092

archie 26,142 2,034 unix-smail 26,289 771

assembler 16,977 905 unix-tbl 28,948 1,136

mybison 10,905 1,417 anagram 1,660 88

cdecl 150,050 43,619 bc 95,091 32,498

compiler 6,401 156 ft 1,888 452

�xoutput 3,142 4 ks 3,105 218

football 297,491 22,052 yacr2 4,909 487

Table 4.2. Number of queries solved with the global test of Section 3.2.4. Column

noalias gives the number of queries that we have been able to disambiguate, and

column global shows how many queries were solved with the global test.

32 Chapter 4. Experiments

1.E+01	

1.E+02	

1.E+03	

1.E+04	

1.E+05	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	

#Instruc3ons	 #Pointers	 Run3me	 (ms)	

Figure 4.1. Runtime of our analysis for the 50 largest benchmarks in the LLVM

test suite. Each point on the X-axis represents a di�erent benchmark. Bench-

marks are ordered by size. This experiment took less than 10 seconds.

execution of the program. The local test has been able to disambiguate 6.55% of all

the addresses used in our benchmarks. The rest of the disambiguation was obtained

by comparing o�-sets from di�erent locations.

On the Scalability of our Analysis. The chart in Figure 4.1 shows how our anal-

ysis scales when applied on programs of di�erent sizes. We have used the 50 largest

programs in the LLVM benchmark suite. These programs gave us a total of 800,720

instructions in the LLVM intermediate representation, and a total of 241,658 di�erent

pointer variables. We analyzed all these 50 programs in 8.36 seconds. We can � e�ec-

tively � analyze 100,000 instructions in about one second. In this case, we are counting

only the time to map variables to values in SymbRanges . We do not count the time

to query each pair of pointers, because usually compiler optimizations perform these

queries selectively, for instance, only for pairs of pointers within a loop. Also, we do not

count the time to run the out-of-the-box implementation of range analysis mentioned

in Section 3.2.3, because our version of it is not implemented within LLVM. It runs

only once, and we query it afterwards, never having to re-execute it.

The chart in Figure 4.1 provides strong visual indication of the linear behavior of

our algorithm. We have found, indeed, cogent evidence pointing in this direction. The

linear correlation coe�cient (R) indicates how strong is a linear relationship between

33

two variables. The closer to one, the more linear is the correlation. The linear corre-

lation between time and number of instructions for the programs seen in Figure 4.1 is

0.982, and the correlation between time and number of pointers is 0.975.

Chapter 5

Final Thoughts

5.1 Limitations

Using the symbolic range analysis for comparing o�sets is inherently imprecise. Issues

lie on comparing two symbolic expressions and its di�culties, especially on comparing

lower bounds with upper bounds from two di�erent variables, and on local relationships

of variables with overlapping ranges.

Figure 5.1 shows the �rst issue. Analyzing this algorithm, the symbolic range

analysis returns the following ranges: R(σa) = [a, b−1], R(σb) = [a+1, b]. This hinders

the disambiguation of the two array accesses, V [σa] and V [σb], since it is impossible to

prove that the ranges of σa and σb do not overlap. To do so, it would be necessary for

the valuation of symbolic expressions to be able to say that b−1 < a+1 or that b < a,

which it cannot do. So in this example, even though it is obvious that the two array

accesses cannot alias to the same location since their o�sets are obligatorily di�erent

by the if condition, we cannot disambiguate them.

Figure 5.2 shows the second issue. It again shows two array accesses that are

obviously disjoint that our analysis cannot disambiguate. Analyzing this algorithm,

the symbolic range analysis returns the following ranges: R(i) = [0, 9], R(j) = [1, 10].

It's clear that these ranges overlap and that our analysis could not say that they are

disjoint even though, at the array accesses, j is aways di�erent and greater than i.

These examples show two very interesting limitations of our analysis. They both

can disable optimizations such as automatic parallelization of code and loop invariant

code motion on some cases in which these optimizations might be desirable. It is clear

that simply verifying if two o�set ranges are disjoint is not enough to achieve ideal

precision, since they can hide relationships between variables that are aways true when

the two variables are alive and that can help in disambiguating two pointers, even if

35

36 Chapter 5. Final Thoughts

1: ...
2: if a < b then
3: σa = σ(a)
4: σb = σ(b)
5: V [σa]← •
6: V [σb]← •
7: ...
8: end if
9: ...

Figure 5.1. Example of our �rst described limitation. Even though we cannot

prove that the symbolic ranges of σa and σb do not overlap, it is obvious that σa
is aways di�erent from σb because of the if condition.

1: ...
2: i = 0
3: while i < 10 do
4: j = i+ 1
5: V [i]← •
6: V [j]← •
7: ...
8: i++
9: end while

10: ...

Figure 5.2. Example of our second described limitation. Even though we cannot

prove that the ranges of i and j do not overlap, it is obvious that j is aways

di�erent from i because it is aways greater.

there is a relationship between these pointers or between the o�sets that constitute

such pointers.

5.2 Future Work

The reason for the limitations exposed before lays on the fact that our analysis use

range intervals to disambiguate pointers. In the examples of �gure 5.1 and �gure 5.2,

the ranges of integer variables might either overlap or aren't comparable. But, in the

examples, variables do have relationships between them that allow for disambiguation

in the form of inequalities (a < b and i < j). To take advantage of such relationships

we intend to use a lattice similar to Pentagons.

Pentagons is an abstract domain invented by Logozzo and Fähndrich to infer

symbolic bounds to the integer variables used in programs [Logozzo and Fahndrich,

5.3. Final Conclusions 37

2008; Logozzo and Fähndrich, 2010]. This abstract domain is formed by the combina-

tion of two lattices. The �rst lattice is the integer interval domain [Cousot and Cousot,

1977], which maps integer variables to ranges [l, u] of numeric lower (l) and upper (u)

bounds. The second lattice is the strict upper bound, which maps each variable v to a

set L< of other variables, so that if u ∈ L<(v), at a given program point p, then u < v

at p.

Since their debut [Logozzo and Fahndrich, 2008], Pentagons have been used in

several di�erent ways. For instance, Logozzo and Fähndrich have employed this domain

to eliminate array bound checks in strongly typed programming languages [Logozzo

and Fähndrich, 2010], and to ensure absence of division by zero or integer over�ows

in programs. Moreover, Nazaré et al. [Nazaré et al., 2014] have used Pentagons to

reduce the overhead imposed by AddressSanitizer [Serebryany et al., 2012] to guard

C against out-of-bounds memory accesses. The appeal of pentagons comes from two

facts. First, this abstract domain can be computed e�ciently � in quadratic time on

the number of program variables. Second, as an enabler of compiler optimizations,

Pentagons have been proven to be substantially more e�ective than other forms of

abstract interpretation of similar runtime [Logozzo and Fahndrich, 2008].

Our initial and recent use of pentagons for such purpose has been successful. It is

able to handle programs as large as SPEC's gcc in a few minutes and go through SPEC

CPU 2006 [Henning, 2006] in able time. It has proven very useful in some cases, such

as SPEC 470.lbm. In future work, we plan to investigate better splitting strategies

and other more expressive lattices to improve the global precision of our analyses.

5.3 Final Conclusions

In this work we have presented a new alias analysis technique that handles, within the

same theoretical framework, the subtleties of pointer arithmetic and memory indexa-

tion. Our technique can disambiguate regions within arrays and C-like structs using

the same abstract interpreter. We have achieved precision in our algorithm by combin-

ing alias analysis with classic range analysis on the symbolic domain. Our analysis is

fast, and handles cases that the implementations of pointer analyses currently available

in LLVM cannot deal with.

Apart from this contribution, there is plenty to study on the area of pointer

analysis, and the area of pointer arithmetics still needs quite a bit of research. Their

dire needs are very e�cient static analyses that run fast on very big programs, and

very lean dynamic analyses. Our focus has been on the static analysis side. Lazy

38 Chapter 5. Final Thoughts

implementations, where main computations are made on the query moment, seem

to be a very promising take on alias analyses and can expedite runtime. Focus on

integrating new proposals to bigger compilation frameworks and existing optimizations

should also be explored by the community on an e�ort of making new technology more

usable across researchers and projects. There is still a lot of work to be done and we

hope that our contribution can be only a building block of a much bigger e�ort from

many more scientists.

Bibliography

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006). Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison Wesley.

Alpern, B., Wegman, M. N., and Zadeck, F. K. (1988). Detecting equality of variables

in programs. In In POPL, pages 1--11. ACM.

Andersen, L. O. (1994). Program Analysis and Specialization for the C Programming

Language. PhD thesis, DIKU, University of Copenhagen.

Balakrishnan, G. and Reps, T. (2004). Analyzing memory accesses in x86 executables.

In In CC, pages 5--23. Springer.

Barik, R., Grotho�, C., Gupta, R., Pandit, V., and Udupa, R. (2006). Optimal bitwise

register allocation using integer linear programming. In In LCPC, volume 4382 of

Lecture Notes in Computer Science, pages 267�282. Springer.

Blume, W. and Eigenmann, R. (1994). Symbolic range propagation. In In IPPS, pages

357--363.

Bodik, R., Gupta, R., and Sarkar, V. (2000). ABCD: eliminating array bounds checks

on demand. In In PLDI, pages 321�333. ACM.

Choi, J.-D., Cytron, R., and Ferrante, J. (1991). Automatic construction of sparse

data �ow evaluation graphs. In In POPL, pages 55�66. ACM.

Cong, J., Fan, Y., Han, G., Lin, Y., Xu, J., Zhang, Z., and Cheng, X. (18-21 Jan. 2005).

Bitwidth-aware scheduling and binding in high-level synthesis. Design Automation

Conference, 2005. Proceedings of the ASP-DAC 2005. Asia and South Paci�c, 2:856�

861.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: a uni�ed lattice model

for static analysis of programs by construction or approximation of �xpoints. In In

POPL, pages 238--252. ACM.

39

40 Bibliography

Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, K. (1991). E�-

ciently computing static single assignment form and the control dependence graph.

TOPLAS, 13(4):451�490.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1989).

An e�cient method of computing static single assignment form. In In POPL, pages

25�35.

Grunwald, D., Zorn, B., and Henderson, R. (1993). Improving the cache locality of

memory allocation. In In PLDI, pages 177--186. ACM.

Hardekopf, B. and Lin, C. (2007). The ant and the grasshopper: fast and accurate

pointer analysis for millions of lines of code. In In PLDI, pages 290�299. ACM.

Hardekopf, B. and Lin, C. (2011). Flow-sensitive pointer analysis for millions of lines

of code. In In CGO, pages 265�280.

Henning, J. L. (2006). Spec cpu2006 benchmark descriptions. SIGARCH Comput.

Archit. News, 34(4):1--17.

Hind, M. (2001). Pointer analysis: Haven't we solved this problem yet? In In PASTE,

pages 54--61. ACM.

Jones, N. D. and Muchnick, S. S. (1982). A �exible approach to interprocedural data

�ow analysis and programs with recursive data structures. In In POPL, pages 66--74.

ACM.

Lattner, C. and Adve, V. S. (2004). LLVM: A compilation framework for lifelong

program analysis & transformation. In CGO, pages 75�88. IEEE.

Logozzo, F. and Fahndrich, M. (2008). Pentagons: a weakly relational abstract domain

for the e�cient validation of array accesses. In In SAC, pages 184--188. ACM.

Logozzo, F. and Fähndrich, M. (2010). Pentagons: A weakly relational abstract domain

for the e�cient validation of array accesses. Sci. Comput. Program., 75(9):796�807.

Nation, J. B. (2016). Notes on lattice theory. University of Hawaii.

Nazaré, H., Ma�ra, I., Santos, W., Barbosa, L., Gonnord, L., and Pereira, F. M. Q.

(2014). Validation of memory accesses through symbolic analyses. In In OOPSLA,

pages 791--809. ACM.

Bibliography 41

Oh, H., Lee, W., Heo, K., Yang, H., and Yi, K. (2014). Selective context-sensitivity

guided by impact pre-analysis. In In PLDI, pages 475--484. ACM.

Paisante, V., Maleej, M., Gonnord, L., Barbosa, L., and Pereira, F. M. Q. (2016).

Symbolic range analysis of pointer. In CGO. ACM.

Paisante, V. M., Rodrigues, R. E., Saggioro, L. F. Z., e Oliveria, L. B., and Pereira,

F. M. Q. (2014). Prevencao de ataques em sistemas distribuidos via analise de

intervalos. In Anais do SBSeg, page 209.

Patterson, J. R. C. (1995). Accurate static branch prediction by value range propaga-

tion. In In PLDI, pages 67--78. ACM.

Pearce, D. J., Kelly, P. H. J., and Hankin, C. (2004). E�cient �eld-sensitive pointer

analysis for C. In In PASTE, pages 37�42.

Pereira, F. M. Q. and Berlin, D. (2009). Wave propagation and deep propagation for

pointer analysis. In In CGO, pages 126�135. IEEE.

Reynolds, J. C. (1968). Automatic computation of data set de�nitions. In Proceedings

of the IFIP Congress. North-Holland.

Rosen, B. K., Zadeck, F. K., and Wegman, M. N. (1988). Global value numbers and

redundant computations. In In POPL, pages 12�27. ACM Press.

Rugina, R. and Rinard, M. C. (2005). Symbolic bounds analysis of pointers, array

indices, and accessed memory regions. TOPLAS, 27(2):185--235.

Ryder, B. G., Landi, W. A., Stocks, P. A., Zhang, S., and Altucher, R. (2001). A

schema for interprocedural modi�cation side-e�ect analysis with pointer aliasing.

ACM Trans. Program. Lang. Syst., 23(2):105--186.

Saggioro, L. F. Z., Paisante, V. M., Rodrigues, R. E., e Oliveria, L. B., and Pereira,

F. M. Q. (2015). Cruzando dados distribuÃdos para detectar estouro de inteiro.

volume 13. IEEE.

Sagiv, M., Reps, T., and Wilhelm, R. (1998). Solving shape-analysis problems in

languages with destructive updating. TOPLAS, 20(1):1--50.

Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. (2012). Addresssani-

tizer: a fast address sanity checker. In In USENIX ATC, pages 28--28. USENIX

Association.

42 Bibliography

Shang, L., Xie, X., and Xue, J. (2012). On-demand dynamic symmary-based points-to

analysis. In In CGO, pages 264--274. ACM.

Souza, M. R. S., Guillon, C., Pereira, F. M. Q., and da Silva Bigonha, M. A. (2011).

Dynamic elimination of over�ow tests in a trace compiler. In In CC, pages 2--21.

Steensgaard, B. (1996). Points-to analysis in almost linear time. In In POPL, pages

32�41.

Tavares, A. L. C., Boissinot, B., Pereira, F. M. Q., and Rastello, F. (2014). Parame-

terized construction of program representations for sparse data�ow analyses. In In

Compiler Construction, pages 2--21. Springer.

Wolfe, M. (1996). High Performance Compilers for Parallel Computing. Adison-Wesley,

1st edition.

Yan, D., Xu, G., and Rountev, A. (2011). Demand-driven context-sensitive alias anal-

ysis for java. In In ISSTA, pages 155--165. ACM.

Yong, S. H. and Horwitz, S. (2004). Pointer-range analysis. In In SAS, pages 133--148.

Springer.

Zhang, Q., Xiao, X., Zhang, C., Yuan, H., and Su, Z. (2014). E�cient subcubic alias

analysis for C. In In OOPSLA, pages 829--845. ACM.

Zhao, Q., Rabbah, R., and Wong, W.-F. (2005). Dynamic memory optimization using

pool allocation and prefetching. SIGARCH Comput. Archit. News, 33(5):27--32.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem
	1.3 Solution
	1.4 Summary of experimental results
	1.5 Summary of publications
	1.6 Next Chapters

	2 Background
	2.1 Lattice
	2.2 SSA form
	2.3 LLVM
	2.4 Points-to Analysis
	2.5 Range Analysis
	2.6 Pointer Disambiguation for Parallelization
	2.7 Points-to with Range Analyses

	3 A New Points-to Analysis
	3.1 Overview
	3.2 Combining Range and Pointer Analyses
	3.2.1 A Core Language
	3.2.2 Program Locations.
	3.2.3 Symbolic Range Analysis.
	3.2.4 Global Range Analysis of Pointers
	3.2.5 Answering GR Queries
	3.2.6 Local Range Analysis of Pointers
	3.2.7 Answering LR Queries
	3.2.8 Complexity
	3.2.9 A wrap-up Example

	4 Experiments
	5 Final Thoughts
	5.1 Limitations
	5.2 Future Work
	5.3 Final Conclusions

	Bibliography

