

University of Birmingham

A nominal exploration of intuitionism
Rahli, Vincent; Bickford, Mark

DOI:
10.1145/2854065.2854077

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Rahli, V & Bickford, M 2016, A nominal exploration of intuitionism. in Proceedings of the 5th ACM SIGPLAN
Conference on Certified Programs and Proofs, CPP 2016. Association for Computing Machinery (ACM), pp.
130-141, 5th ACM SIGPLAN Conference on Certified Programs and Proofs, St. Petersburg, FL, United States,
18/01/16. https://doi.org/10.1145/2854065.2854077

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 23/07/2019

© ACM 2016. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of
Record was published in CPP 2016 Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and Proofs,
http://dx.doi.org/10.1145/2854065.2854077.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Apr. 2024

https://doi.org/10.1145/2854065.2854077
https://doi.org/10.1145/2854065.2854077
https://birmingham.elsevierpure.com/en/publications/2619eb40-ed70-42f1-8230-dc5a48533db9

A Nominal Exploration of Intuitionism

Vincent Rahli ∗

SnT, University of Luxembourg, Luxembourg

vincent.rahli@gmail.com

Mark Bickford

Cornell University, USA

markb@cs.cornell.edu

Abstract

This papers extends the Nuprl proof assistant (a system representa-
tive of the class of extensional type theories à la Martin-Löf) with
named exceptions and handlers, as well as a nominal fresh operator.
Using these new features, we prove a version of Brouwer’s Conti-
nuity Principle for numbers. We also provide a simpler proof of a
weaker version of this principle that only uses diverging terms. We
prove these two principles in Nuprl’s meta-theory using our formal-
ization of Nuprl in Coq and show how we can reflect these meta-
theoretical results in the Nuprl theory as derivation rules. We also
show that these additions preserve Nuprl’s key meta-theoretical
properties, in particular consistency and the congruence of Howe’s
computational equivalence relation. Using continuity and the fan
theorem we prove important results of Intuitionistic Mathematics:
Brouwer’s continuity theorem and bar induction on monotone bars.

Categories and Subject Descriptors D.3.1 [PROGRAMMING
LANGUAGES]: Formal Definitions and Theory; F.4.1 [MATHE-
MATICAL LOGIC AND FORMAL LANGUAGES]: Mathematical
Logic

Keywords Intuitionistic Type Theory, Nuprl, Coq, Continuity,
Nominal Type Theory, Exceptions, Squashing, Truncation

1. Introduction

Continuity. There are two principles that distinguish Brouwer’s
mathematics from other constructive mathematics, namely bar in-
duction and a continuity principle [11, 19, 37, 53, 74, 81, 82, 84,
85]. In this document we consider the following weak and strong

continuity principles on the Baire space B = N
N = N → N (Π,Σ

are the logical ∀,∃; as explained below, Σ is a truncated/squashed
existential quantifier; + in the context of types is the disjoint union
type; inl is the left injection constructor; isl checks whether a
term is a left injection; Nn is the type of natural numbers strictly
less than n; and t =T u expresses that t and u are equal in type T):

WCP = ΠF :B → N.
Πf :B.

Σn:N.Πg:B.f =NNn g → F (f) =N F (g)

∗ This work was partially supported by the SnT and the National Research
Fund Luxembourg (FNR), through PEARL grant FNR/P14/8149128.

SCP = ΠF :B → N.
ΣM :(Πn:N.NNn → (N+Unit)).

Πf :B.
Σn:N.

M n f =N+Unit inl(F (f))
∧ Πm:N.isl(M m f) → m =N n

WCP is the usual pointwise continuity principle on natural numbers,
sometimes called weak continuity principle. It says that given a
function F of type B → N and a function f of type B, F (f) can
only depend on an initial segment of f . The length of the smallest
such segment is called the modulus of continuity of F at f . Kleene

used some version of the strong continuity principle SCP1 to prove
bar induction on monotone bars from bar induction on decidable
bars [53, pp.78]. SCP says that there is a uniform way (called M in
the formula) to decide whether n is the modulus of continuity of F
at f , and if so returns the value F (f) [53, pp.70–71].

Truncation/Squashing. Escardó and Xu [39] proved in Agda [2,
17] that WCP is false when Σ is the sum type Σ of Martin-Löf’s type
theory. They also mention that this principle is consistent when Σ

is truncated at the propositional level [83, pp.117]. In Nuprl [6, 26],
propositional truncation corresponds to squashing a type down to
a single equivalence class (i.e., all inhabitants are equal) using
quotient types [28]: ⇃T = T//True. ⇃T is a proof-irrelevant type.
Its members are the members of T , and they are all equal to each
other because if x, y ∈ T then (x =T y ⇐⇒ True). In Nuprl
we often squash types in a much stronger sense by throwing away
the evidence that a type is inhabited and squashing it down to a
single inhabitant using, e.g., set types: ↓T = {Unit | T} (this
is the same definition as in [26, pp.60]). The only member of this

type is ⋆2, which is the single inhabitant of Unit, and ⋆ inhabits ↓T
if T is true/inhabited, but we do not keep the proof that it is true.
Note that ⇃T → ↓T is true because it is inhabited by λx.⋆, but we
cannot prove the converse because to prove ⇃T we have to exhibit
an inhabitant of T , which ↓T does not give us because we have
thrown away the evidence that T is inhabited (only ⋆ inhabits ↓T).
Appendix F of [72] discusses derivable inference rules that one can
use to reason about these two squashing operators.

In this paper we prove that versions of WCP and SCP are true
facts about Nuprl’s functions. We carry out these proofs in Nuprl’s
meta-theory [4, 5] using our formalization of Nuprl in Coq [13,
33], which contains among other things: (1) an implementation

1 Rathjen calls it “Strong Continuity for Numbers” [74] and names it C-N
(as in [82]). Dummett refers to it as “a stronger version of the Continuity
Principle”, names it CP∃n, and later calls it “the Continuity Principle” [37,
pp.59–60]. Troelstra [81, pp.1006] calls it CONT0. This is Kleene’s ∗27.2
principle [53, pp.73], which he calls “Brouwer’s principle (for numbers)”.
Bridges and Richman [19, pp.119] mention that SCP is equivalent to a
“principle of continuous choice”, which they divide into a continuous part,
namely WCP, and a choice part, namely the axiom of choice AC1,0 (see
Sec 5.3). Note that AC1,0 is also sometimes used to refer to SCP [45, 86].
2 The term ⋆ can be thought of as () in, e.g., OCaml, Haskell or SML.

of Nuprl’s computation system; (2) an implementation of Howe’s
computational equivalence relation [50] and a proof that it is a
congruence; (3) a definition of Nuprl’s Constructive Type Theory
(CTT), where types are defined as Partial Equivalence Relations
(PERs) on closed terms following Allen’s PER semantics [4, 5];
(4) definitions of Nuprl’s derivation rules and proofs that these rules
are valid w.r.t. Allen’s PER semantics; (5) and a proof of Nuprl’s
consistency [7, 8].

In Sec. 3 we prove WCP where Σx:T. P is defined as ↓Σx:T.P ,
and refer to this principle as WCP↓. We call WCP⇃ the version of WCP
where Σ is ⇃Σ. In Sec. 4 we prove SCP where the first (outer) Σ is
⇃Σ and the second (inner) is ↓Σ, and refer to this principle as SCP⇃.
There proofs are carried out using our Coq formalization of Nuprl.
We make these results available in Nuprl as inference rules, and
show how we can derive directly in Nuprl a proof of SCP⇃ without
the second (inner) squashing operator. Sec. 5 shows that SCP⇃ and
WCP⇃ are equivalent. Even though the implication WCP⇃ → WCP↓
is trivial, we believe our proof of WCP↓ in Sec. 3 is still valuable
because of its simplicity and because ↓ is often enough.

An important point is that we add operations sufficient to prove
these principles to the Nuprl proof assistant without breaking any
property of its type theory such as Nuprl’s consistency or the
congruence of Howe’s computational equivalence relation.

Effectful computations. Following Longley’s method [59], we
use computational effects [10], namely named exceptions, to derive
SCP⇃. The basic method to find the n such that F (f) depends only
on the first n elements of f is a program P (F, f) that works as
follows: P tests whether F applies its argument f to a number n
by running the sub-routine (written in an ML-like language):

l e t except i on e i n
(F (fun x => i f x < n then f x e l s e r a i s e e) ;
t r u e) hand le e => f a l s e

Then by testing F on increasingly larger n’s, if the continuity
principle is true, P eventually finds an n such that the test re-

turns true3. However, for extensionally equal F and G, P (F, f)
and P (G, f) could return different numbers. For example, if
P (F, f) = m and G is constructed from F by replacing an ex-
pression t occurring in F with (let := f(m + 1) in t), that
first evaluates f(m + 1) and then evaluates t, then P (G, f) is not
guaranteed to be m. This is why we only realize squashed versions
of the above mentioned continuity principles.

As Longley mentions, if F can catch the exception e then
P (F, f) will not necessarily compute F ’s modulus of continuity
at f . Therefore, we have extended Nuprl with exception handlers
that can only catch exceptions with a specific name, and we have
added the ability to generate fresh names (Sec. 7 discusses related
nominal systems).

Related proofs of continuity. This is not the first (formal) proof
that a type theory satisfies Brouwer’s continuity principle. Coquand
and Jaber [30, 31] proved the uniform continuity of a Martin-Löf-
like intensional type theory using forcing [9, 11, 24, 25, 61]. Their
method consists in adding a generic element f as a constant to the

language that stands for a Cohen real of type 2N, and defining the
forcing conditions as approximations of f, i.e., finite sub-graphs
of f. They then define a suitable computability predicate that ex-
presses when a term is a computable term of some type up to ap-
proximations given by the forcing conditions. The key steps are to
(1) first prove that f is computable and then (2) prove that well-
typed terms are computable, from which they derive uniform con-
tinuity (the uniform modulus of continuity is given by the approx-

3 See Bauer’s blog for more details: http://math.andrej.com/2006/0
3/27/sometimes-all-functions-are-continuous/.

imations). The uniform continuity principle is, where F is now a

function on the Cantor space C = 2N instead of the Baire space:
UCP = ΠF :C → N.Σn:N. Πf, g:C.f =2Nn g → F (f) =N

F (g). Escardó and Xu [39] showed that in the case of uniform con-
tinuity Σ can equivalently be Σ or ⇃Σ. In [31], Coquand and Jaber
provide a Haskell realizer that computes the uniform modulus of

continuity of a functional on the Cantor space4.
Similarly, Escardó and Xu [89] proved that the definable func-

tionals of Gödel’s system T [46] are uniformly continuous on the
Cantor space (without assuming classical logic or the Fan Theo-
rem). For that, they developed a constructive continuous model, the
C-Space category, of Gödel’s system T, and proved that C-Space
has a Fan functional that given a function F in C → N can compute
the modulus of uniform continuity of F . Relating C-Space and the
standard set-theoretical model of system T, they show that all T-
definable functions on the Cantor space are uniformly continuous.
Finally, using this model, they show how to extract computational
content from proofs in HAω extended with a uniform continuity
axiom UC, which is realized by the Fan functional.

In [42] Escardó provides a simple and elegant proof that all
T-definable functions are continuous on the Baire space and uni-
formly continuous on the Cantor space using a generic element as
in [30] but without using forcing. His method consists in provid-
ing an alternative interpretation of system T, where a number is
interpreted by a dialogue tree that “describes the computation of a

natural number relative to an unspecified oracle α : NN” [42]. Such
a computation is called a dialogue, which is a function that given
a dialogue tree, returns a function of type B → N. Escardó first
proves that dialogues are continuous. This means that a function is
continuous if it is extensionally equal to a dialogue. The key steps
are to (1) define a suitable logical relation between the standard
interpretation and the alternative one that relates numbers and dia-
logues w.r.t. a given oracle; and (2) prove that all system T terms
are related under the two interpretations. It then follows that for all
system T term t of type (ι ⇒ ι) ⇒ ι (where ι is the type of num-
bers), there is a dialogue tree d such that the standard interpretation
of t and the dialogue on d are extensionally equal functions, from
which he derives uniform continuity. The dialogue d is built using
a generic sequence that allows dialogue trees to call the oracle.

Results. Our proof method differs from the ones discussed above
in the sense that it is “mostly” computational. In Sec. 3 we use di-
verging terms to prove WCP↓, and in Sec. 4 we use computational
effects (named exceptions) to probe terms and derive SCP⇃ using
(non-strict) lock-step simulations of these effectful computations.
Sec. 5 shows that SCP⇃ and WCP⇃ are equivalent. To prove SCP⇃, we
added named exceptions as well as a fresh operator to Nuprl’s com-
putation system, and showed that these additions preserve Nuprl’s
key meta-theoretical properties, such as consistency (see Sec. 2.3
and 4.3) and the congruence of Howe’s computational equivalence
relation (see Sec. 2.2 and 4.2). As mentioned in Sec. 4.9, SCP⇃ jus-
tifies a corresponding inference rule that we added to Nuprl. Sec. 5
discusses the relation between WCP and SCP and the connection with
the axiom of choice, as well as the status of the (squashed) axiom
of choice in Nuprl. Using those continuity rules, as explained in
Sec. 6, we have proved in Nuprl (1) a fully unsquashed version of
UCP using Escardó and Xu’s method [39]; (2) that all real functions
defined on the unit interval are uniformly continuous [37, pp.87];
and (3) that bar induction on monotone bars follows from bar in-
duction on decidable bars following Kleene’s proof [53, pp.69–73].

4 See also Escardó’s tutorial http://www.cs.bham.ac.uk/~mhe/.talk
s/popl2012/ for examples on how to search the Cantor space, as well
as [40, 41, 62], which point to citations and constructions by, among others,
Gandy and Berger.

http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous/
http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous/
http://www.cs.bham.ac.uk/~mhe/.talks/popl2012/
http://www.cs.bham.ac.uk/~mhe/.talks/popl2012/

The results presented in this paper have either been formalized
in Coq and are available both at https://github.com/vrahli/Nu
prlInCoq and http://www.nuprl.org/html/Nuprl2Coq/; or they
have been formalized in Nuprl and are available at http://www.nu
prl.org/LibrarySnapshots/Published/Version1/Standard/con

tinuity/index.html for results related to continuity, at http://ww
w.nuprl.org/LibrarySnapshots/Published/Version1/Standard

/int_2/index.html for results related to the fan theorem, and at h
ttp://www.nuprl.org/LibrarySnapshots/Published/Version1/

Standard2/reals/index.html for results related to real analysis.

2. Nuprl

Nuprl is an interactive theorem prover that implements a type
theory called Constructive Type Theory (CTT) [6, 26]. Nuprl’s
CTT “mostly” differs from other similar constructive type theories
such as the ones implemented by Agda [2, 17], Coq [13, 33], or
Idris [18, 51], in the sense that CTT is an extensional type theory
(i.e., propositional and definitional equality are identified [49]) with
types of partial functions [29, 34, 80]. This section presents some
key aspects of Nuprl that will be used in the rest of this paper.

2.1 Nuprl’s Computation System

Fig. 1 presents a subset of Nuprl’s syntax and small-step opera-
tional semantics [6, 8]. Nuprl’s programming language is an un-
typed (à la Curry), lazy and applied (with pairs, injections, a fix-
point operator,. . .) λ-calculus. For efficiency, integers are primitive
and Nuprl provides operations on integers such as addition, sub-
traction,. . . , a test for equality and a “less than” operator. Nuprl also
has what we call canonical form tests [73] such as ifint, which
are used to distinguish between our different kinds of values. These
canonical form tests are especially useful when working with (non-
disjoint) union types, which are sometimes easier to work with than
disjoint unions because one does not need injections.

A term is either a variable, a value (or canonical term), or a non-
canonical term. Non-canonical terms have one or two principal
arguments (marked using boxes in Fig. 1). A principal argument
of a term t is a term that has to be evaluated to a canonical form
before checking whether t can be reduced further. For example the
application f(a) diverges if f diverges, and the canonical form test
ifaxiom(t, a, b) diverges if t diverges.

Nuprl uses a uniform syntax for terms [7, 8], and the terms
in Fig. 1 are “display forms” for some specific Nuprl terms. An
advantage of having a uniform syntax is that operations that work
uniformly on terms are easier to define—they do not have repetitive
cases as when using one constructor per operator. In Nuprl a term

is of the form θ(b), where θ is its operator, and b is a list of bound

terms. A bound term b is of the form l.t, where l is a variable
list. For example, the underlying representation of a λ-abstraction
is {lambda}(x.t). For convenience, we use the uniform syntax to,
e.g., define Howe’s computational equivalence relation below.

Fig. 1 also shows part of Nuprl’s small-step operational seman-
tics. We omit the rules that reduce principal arguments such as: if
t1 7→ t2 then t1 u 7→ t2 u. As usual, 7→∗ is the reflexive and transi-
tive closure of 7→, and t1 7→k t2 is defined inductively on k: t 7→0 t
and t1 7→k+1 t2 if there exists a t such that t1 7→ t and t 7→k t2.

We now define a few useful abstractions:

⊥ = fix(λx.x)
tt = inl(⋆)
ff = inr(⋆)

N? = N ∪ Unit
isint(t) = ifint(t, tt, ff)
isl(t) = if t then tt else ff

if t1 then t2 else t3 = case t1 of inl(x) ⇒ t1 | inr(x) ⇒ t2

We sometimes write a =T b for the type a = b ∈ T . Also, we
sometimes write b for (if b then Unit else Void), where Unit

and Void can, e.g., be defined as 0 =Z 0 and 0 =Z 1 respectively.
We define True as Unit and False as Void.

2.2 Howe’s Computational Equivalence

It turns out that Nuprl’s type system is not only closed under com-
putation but more generally under Howe’s computational equiva-
lence ∼, which he proved to be a congruence [50]. In Nuprl, in
any context C, when t ∼ t′ we can rewrite t into t′ without hav-
ing to prove anything about types. We rely on this relation to prove
equalities between programs (bisimulations) without concern for
typing [73]. Howe’s computational equivalence is defined on closed
terms as follows: t ∼ u if t 4 u ∧ u 4 t. Howe coinductively
defines the approximation (or simulation) relation 4 as the largest
relation R on closed terms such that R ⊂ [R], where [·] is the
following closure operator (also defined on closed terms): t [R] u
if whenever t computes to a value θ(b), then u also computes to

a value θ(b′) such that b R b′. To make that precise we have to
extend R to open and bound terms: see [7, 8, 50] for details. By
definition, one can derive, e.g., that ⊥ 4 t for all closed term t.

2.3 Nuprl’s Type System

Following Allen’s PER semantics, Nuprl’s types are defined as
partial equivalence relations (PERs) on closed terms [4, 5]. Allen’s
PER semantics can be seen as an inductive-recursive definition of:
(1) an inductive relation T1≡T2 that expresses type equality; and
(2) a recursive function a≡b∈T that expresses equality in a type.
We write type(T) for T≡T , and t∈T for t≡t∈T . Among other
things, it follows that the (theoretical) proposition a = b ∈ T is
true (inhabited by ⋆) iff a≡b∈T holds in the meta-theory. See [7, 8]
for more details.

Nuprl’s type system includes Martin-Löf dependent types, iden-
tity (or equality) types, a hierarchy of universes, W types, union
and intersection types, quotient types [28], set types, and partial
types [34]. The top part of Fig. 1 lists some of Nuprl’s types.
Among these, Base is the type of all closed terms of the compu-
tation system with ∼ as its equality. The type t1 � t2 is true if
the meta-theoretical statement t1 4 t2 is true, and t1 � t2 and
t3 � t4 are equal types if (t1 4 t2 ⇐⇒ t3 4 t4). Similarly the
type t1 ≃ t2 is true if t1 ∼ t2 is true, and t1 ≃ t2 and t3 ≃ t4 are
equal types if (t1 ∼ t2 ⇐⇒ t3 ∼ t4) (see [73] and [72, Appen-
dices A&B] for more details). For example, it is enough to prove
that t1 and t2 are members of Base to prove that t1 ≃ t2 is a type.
Also, it turns out that t≃ t is a true type in any context. These
types allow us, to some extent, to reason about Nuprl’s computa-
tion system directly in the theory. Nuprl has a rich type theory that
makes type checking undecidable. In practice this is mitigated by
type inference and type checking heuristics implemented as tactics.

We have implemented Nuprl’s term language, its computation
system, Howe’s ∼ relation, and Allen’s PER semantics in Coq [7,
8]. We have also showed that Nuprl is consistent by (1) proving that
Nuprl’s inference rules are valid w.r.t. Allen’s PER semantics, and
(2) proving that False is not inhabited. Using these two facts, we
derive that there cannot be a proof derivation of False, i.e., Nuprl
is consistent. (In addition to [7, 8], see also [72, Appendix A] for
more details regarding Nuprl’s consistency.)

We are using our Coq formalization to prove all the inference
rules of Nuprl, and have already verified a large number of them.
This paper presents extensions we made to Nuprl in order to prove
SCP⇃. It includes adding some nominal features such as a fresh
operator, named exceptions, and exception handlers. Using our Coq
formalization, we provide in Sec. 3 a simple proof that WCP↓ is true
w.r.t. Nuprl’s PER semantics using the fact that ⊥ diverges, and in
Sec. 4 we prove SCP⇃ using the nominal features mentioned above.

3. Weak Continuity Principle

Our proof of WCP↓ uses ⊥ and the fact that it diverges. For further
details regarding this proof conducted in our implementation of

https://github.com/vrahli/NuprlInCoq
https://github.com/vrahli/NuprlInCoq
http://www.nuprl.org/html/Nuprl2Coq/
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/int_2/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/int_2/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/int_2/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/index.html

v ∈ Value ::= vt (type) | inl(t) (left injection) | ⋆ (axiom) | λx .t (lambda)
| i (integer) | inr(t) (right injection) | 〈t1, t2〉 (pair)

vt ∈ Type ::= Z (integer) | Πx:t1.t2 (product) | Σx:t1.t2 (sum) | Base (base)
| t1 = t2 ∈ t (equality) | ∪x:t1.t2 (union) | ∩x:t1.t2 (intersection) | t1 � t2 (simulation)
| t1//t2 (quotient) | t1+t2 (disjoint union) | {x : t1 | t2} (set) | t1 ≃ t2 (bisimulation)

| Ui (universe) | t (partial) | W(x:t1.t2) (W)
t ∈ Term ::= x (variable) | let x := t1 in t2 (call-by-value) | if t1 < t2 then t3 else t4 (less than)

| v (value) | let x , y = t1 in t2 (spread) | ifint(t1 , t2, t3) (integer test)
| t1 t2 (application) | if t1 =Z t2 then t3 else t4 (integer equality) | ifaxiom(t1 , t2, t3) (axiom test)
| fix(t) (fixpoint) | case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)

(λx .F) a 7→ F [x\a]
let x , y = 〈t1, t2〉 in F 7→ F [x\t1; y\t2]
if i1 =Z i2 then t1 else t2 7→ t1, if i1 = i2
if i1 =Z i2 then t1 else t2 7→ t2, if i1 6= i2
if i1<i2 then t1 else t2 7→ t1, if i1 < i2
if i1<i2 then t1 else t2 7→ t2, if i1 6< i2

fix(v) 7→ v fix(v)
let x := v in t 7→ t [x\v]
ifint(i, t1, t2) 7→ t1
ifint(v , t1, t2) 7→ t2, if v is not an integer
ifaxiom(⋆, t1, t2) 7→ t1
ifaxiom(v , t1, t2) 7→ t2, if v is not ⋆

case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ F [x\t] case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ G[y\t]

Figure 1 Syntax (top) and operational semantics (bottom) of a subset of Nuprl

Nuprl in Coq, the interested reader is invited to look at https://g
ithub.com/vrahli/NuprlInCoq/blob/master/continuity/conti

nuity_roadmap.v. The same proof would not work for ⇃, because
using ↓ we can compute the modulus of continuity of a function in
the meta-theory (this computation does not have to be expressible
in the theory because only ⋆ inhabits ↓-squashed types), while us-
ing ⇃ we would have to come up with a Nuprl term t that does the
computation (Sec. 4 shows how to do that), i.e., such that t∈WCP⇃.

Let F ∈ Z
Z → Z and f ∈ Z

Z (we use Z here instead of N,
but we proved a slightly more general result for functions of type

T Z → Z where T is a non-empty subtype of Z, such as N or N2).

Step 1. By typing, this means that F (f) ∈ Z, i.e., F (f) computes
to an integer i.

Step 2. It might seem that in that computation f only gets applied
to integers, however, this is not necessarily true in an untyped
language such as Nuprl. To remedy this issue, let force(f) =
λx.let x := x + 0 in f x. Because f = force(f) ∈ Z

Z,
by typing again we get F (force(f)) 7→∗ i. Let us call that
computation C1. We use force to ensure that f ’s arguments are
integers. If force(f) was to be applied to a term that is not an
integer then the computation would either get stuck or diverge. We
know that this cannot happen because F (force(f)) 7→∗ i.

Step 3. Let bound(t, b) = let x := t in if |x|<b then x else⊥.
By computation we prove that there exists a number b such that
F (λx.let x := bound(x, b) in f x) 7→∗ i. We can get such a b
in the meta-theory by computing the largest number occurring in
the computation C1, i.e., if t1 = F (force(f)) 7→ t2 7→ · · · 7→
i = tn, then let b be the largest number occurring in one of the
ti. We have to squash WCP’s existential quantifier using ↓ because
this meta-theoretical computation of b is not a Nuprl term. We
prove this step using a simulation technique that we will reuse over
and over again in this paper. We prove that given a context G, if
G[x+0] computes to a value v then G[bound(x, b)] also computes
to v, assuming that b is greater that any number occurring in the
computation G[x + 0] 7→∗ v. Note that we have not yet used the
fact that ⊥ diverges. This will be used in step 5. Let us call C2 the
computation F (λx.let x := bound(x, b) in f x) 7→∗ i.

Step 4. We can now instantiate our conclusion using b. It re-

mains to prove that Πg:ZZ.f =
Z
Zb g → F (f) =Z F (g).

Because f and g agree up to b, and because the computation
C2 converges, by computation we know that F (λx.let x :=
bound(x, b) in g x) 7→∗ i. We prove this by showing that given
a context G, if G[let x := bound(x, b) in f x] computes to a
value, then G[let x := bound(x, b) in g x] computes to the same

value. We still have not used the fact that ⊥ diverges, because we
could use any number in bound’s definition instead of ⊥, such as
0, and make sure that 0 < b.

Step 5. Again by computation: F (force(g)) 7→∗ i. We prove this
by showing that given a context G, if G[bound(x, b)] computes to
a value then G[x+0] computes to the same value because the “less
than” operator in bound’s definition ensures that x is an integer,
and because we know that G[bound(x, b)] does not diverge.

Step 6. Finally, by typing, F (g) 7→∗ i, i.e., F (f) =Z F (g).

4. Strong Continuity Principle

We now prove SCP⇃ [53, pp.69–73] (Sec. 5 shows that SCP⇃ and
WCP⇃ are equivalent). We need to come up with a Nuprl term of

type Πn:N.NNn → N+Unit that checks whether we have reached
the modulus of continuity of a function. For that, we now use
exceptions as a probing mechanism to compute the modulus of
continuity of a function. Instead of SCP⇃, we prove the following
equivalent but slightly simpler statement [53, pp.71-72] (where the
T in SCPT is for Test—see below):

SCPF(F) = ⇃ΣM :(Πn:N.NNn → N?).
Πf :B.

↓Σn:N.M n f =N F (f)
∧ Πn:N.

isint(M n f) → M n f =N F (f)
SCPT = ΠF :B → N. SCPF(F)

Using our Coq formalization and making use of computations on
terms that are only possible in the meta-theory, we proved that SCPT
is true w.r.t. the PER semantics of Nuprl extended with the nominal
features mentioned above. We then proved directly in Nuprl that
SCPT and SCP⇃ are equivalent. We prove SCPT rather than SCP⇃
mainly because its realizer is simpler. Intuitively, the M part of
SCPT’s realizer is a simple test function (top), while the one for

SCP⇃ is a recursive search function of the form (bottom):5

fun t e s t n f =
l e t except i on e i n
(l e t v = F (fun x => i f x < n then f x

e l s e r a i s e e)
i n Some v) hand le e => None

5 In both functions, None means that n is less than the modulus of continuity
of F at f . In the test function, Some v means that v is F(f) and n is greater
than or equal to the modulus of continuity of F at f , while the search
function returns F(f) only when n is the modulus of continuity of F at f
(and not when n is past the modulus as in the test function).

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v

l e t fun s e a r c h n m f =
i f m <= 0 then t e s t n f
e l s e case t e s t m f of

| Some k => None
| None => s e a r c h n (m − 1) f
end

i n s e a r c h n (n − 1) f

4.1 Extension of Nuprl’s Computation System

4.1.1 Syntax

We extend Nuprl with names (or unguessable atoms [14]), named
exceptions, exception handlers, and a fresh operator as follows:

v ::= · · · | a (name value)
vt ::= . . .

| Name (name type)
| Exc(t1, t2) (exception type)

e ::= exc(t1, t2) (exception)
t ::= . . .

| e (exception)
| if t1 = t2 then t3 else t4 (name equaliy)
| νx. t (fresh)
| tryn t with x.c (try/catch)

Name is a type of names (constants) and a stands for a name. Names
were introduced in Nuprl to reason about logical foundations for
security [14]. To account for names, Allen generalized his PER
semantics [5] to a so-called supervaluation semantics that quanti-
fies over all possible implementations of the Name type [3]. Names
come with two meta-theoretical operations: a fresh operator to gen-
erate a fresh name w.r.t. a list of names, and a test for equality. As
in Pitts and Stark’s ν-calculus [68] or Odersky’s λν-calculus [63],
we add two corresponding operators to Nuprl.

Our exceptions and handlers are similar to Lebresne’s [57]. In
Nuprl, an exception e has two subterms: the first one is e’s name
and the second one is some piece of data that can be used if e is
caught. The type Exc(t1, t2) is the type of exceptions with names of
type t1 and data of type t2. In general exceptions can be named with
terms other than names. For example, if a and b are names, both
exc(a, 0) and exc(b, 0) have type Exc(Name,Z) (among others);
and exc(1, 0) has type Exc(Z,Z). We also add exception handlers
of the form tryn t with x.c, where t is the term we try to evaluate,
and c[x\d] is the code we run if we catch an exception with name
n and data d. Therefore, a handler cannot catch all exceptions. A
canonical operator is now either a value or an exception.

Let us define a few useful abstractions/abbreviations:

Namen = {x : Name | x≃n}
Excn(T) = Exc(Namen, T)
Excn = Excn(Unit)
T?n = T ∪ Excn
excn = exc(n, ⋆)
tryn t = tryn t with x.⋆

If T is not an exception type, T?n is the type of terms that either
compute to elements of type T or that compute to exceptions with
name n and data ⋆.

The type T?n is similar to Lebresne’s type A⋆∪{ǫ}, where A is a
type and ǫ is an exception [56, 57]. In addition Lebresne also intro-

duces corruption types of the form A{ǫ}. A term in A{ǫ} is a term
in A where some part has been replaced by the exception ǫ. As he
mentions, an expression of that type does not necessarily evaluates
to an exception. For example, if Nuprl had such a type, inl(exca)
could be of type (N+Unit){a}. We leave adding corruption types
to Nuprl for future work (Sacchini [75] shows that corruption in the
presence of dependent types has interesting consequences).

Exceptions are a standard programming language feature. In the
interactive theorem proving realm they are “well-adapted to pro-

gramming strategies which may be (in fact usually are) inapplica-
ble to certain goals” [48, pp.11]. However, exceptions are often not
accounted for in types. As mentioned above, Lebresne’s Fx sys-
tem [57] provides type constructors to express two different levels
of corruption. Lebresne [57] mentions that to get exceptions one
could either directly encode them in the language (e.g., using mon-
ads) or add them as primitive. We decided to add them as primi-
tives for the same reasons (e.g., compositionality) stated in his pa-
per. David and Mounier [36] introduced EX2 as an extension of
Krivine’s FA2 system [55] with exceptions. As in Nuprl, both Fx
and in EX2 implement call-by-name exceptions. Also, in all three
systems exceptions and handlers are named, and handlers can only
catch exceptions with the correct name.

4.1.2 Operational Semantics of ν

Let us now precisely define how fresh and handlers compute. A
fresh expression of the form νx.t computes differently depending
on whether t is a variable, a canonical term, or a non-canonical
term. Let us consider each of these cases.

Variable. If t is the variable x then νx.t reduces to itself and
therefore diverges. Therefore, one can prove that νx.x ∼ ⊥. This
differs both from Odersky’s [63] approach where νx.x is stuck and
from Pitts’ approach [66] where νx.x is a normal form. If t reduces
to another variable than x then the computation gets stuck because
the term is open.

Non-canonical. If t is non-canonical then

νx.t 7→ νx.u[a\x] if t[x\a] 7→ u

where a is a fresh name w.r.t. t (written a#t), and t[a\u] is a
capture avoiding substitution function on names (similar to the
usual substitution operation on variables). This ensures that fresh
names do not escape the scope of ν expressions. As expected (if
x 6= y):

νx.νy.if x=y then tt else ff 7→∗
ff

We cannot simply reduce ν as follows: νx.t 7→ t[x\a], because
Howe’s computational equivalence would not be a congruence. For
example, νx.inl(x) 7→ inl(a) and (let y := a in x) ∼ x but
νx.inl(let y := a in x) 67→∗ inl(a).

Canonical. If t is a canonical form (a value or an exception),
then we “push” ν “down” the expression as in Odersky’s λν-
calculus [60, 63] (as opposed to using, e.g., stateful dynamic alloca-
tion [60] or the notion of prevalues [52], which are values prefixed
with a list of “fresh name” binders):

νx.t 7→ ⇓x t

where ⇓ computes as follows on terms:

⇓x θ(b1; · · · ; bn) = θ(⇓x b1; · · · ;⇓x b1)

and as follows on bound terms:

⇓x (l.t) = l.νx′.t

where, in order to avoid variable capture, x′ is x if x 6∈ l, and a fresh
variable w.r.t. t otherwise. For example νx.〈1, x〉 7→ 〈νx.1,νx.x〉
and νx.λy.t 7→ λy.νx.t if x 6= y. Note that when x ∈ l, we

could have defined ⇓x (l.t) to be l.t. However, this would make
the definition less uniform and therefore harder to reason about. To
this effect, we proved νx.t ∼ t if t is closed.

4.1.3 Operational Semantics of try

Handlers of the form tryn e with x.c catch exceptions of the form
exc(n, d). For example,

try
a
(1 + exc(a, λx.x+ 1)) with f.f(2) 7→∗ 3

When its principal argument is non-canonical or a variable, a han-
dler computes exactly like the other non-canonical operators (ex-
cept ν). Let us consider the exception and value cases.

Exception. If t is an exception of the form exc(n, d) then we have
to check whether the handler has the right name as follows:

trym exc(n, d) with x.c
7→ ifm=n then c[x\d] else exc(n, d)

This computational rule also has the following effect that if m
computes to an exception e, then trym exc(n, d) with x.c 7→∗ e.
Also, if m is a name and n computes to an exception e then
trym exc(n, d) with x.c 7→∗ e.

Value. A naive way or reducing a handler when its principal
argument is a value would be to simply return the value as follows:

tryn v with x.c 7→ v

However, note that in the case where the principal argument of a
handler is an exception, we have to evaluate the “name” part of
the handler to check whether the exception has the correct name.
This means that if we were to simply return the value here and
if the “name” part was ⊥ for example, raising an exception in an
expression that is “well-behaved” could cause the expression to
diverge. For example, using the above rule: try⊥ 1 7→ 1, and if we
replace 1 by exca, then try⊥ exca diverges. This is undesirable,
especially in the context of using exceptions to probe a function,
e.g., to compute its modulus of continuity. Therefore, instead of
simply returning the value, we first check that n is something that
we can compare:

tryn v with x.c 7→ if n=n then v else ⊥

4.2 Howe’s Computational Equivalence in the Presence of ν

To prove that ∼ is a congruence, Howe first proves that 4 is a
congruence [50]. Unfortunately, this is not easy to prove directly.
Howe’s “trick” was to define another relation 4∗, which is a con-
gruence and contains 4 by definition.

Howe’s definition of 4∗ does not use types, but to account for
the fact that the binders of ν expressions are only meant to be
names (as opposed to the binders of, e.g., λ-abstractions, which can
be substituted by any term when applied), rather than turn Nuprl
into a typed language, we added “simple” type information to the
definition of 4∗. We define a function BT that, for a given operator,
returns the types of the binders of its bound terms. The type of a
binder can either be NAME or ANY. BT(ν) = [[NAME]] because ν

has one subterm (the outer brackets) that has one binder (the inner
brackets). The type of all the other binders is ANY. For example,
BT(λ) = [[ANY]] because a λ-abstraction has one subterm which
has one binder. When extending the definition of 4∗ from terms to
bound terms, BT is used to restrict what terms can be substituted for
free variables. This modification of 4∗’s definition was inspired by
Gordon’s [47] and Jeffrey and Rathke’s [52] adaptations of Howe’s
method to typed λ-calculi. It is interesting to note that until we
added the ν operator to Nuprl, there was no need to use type
information in the proof that ∼ is a congruence.

Howe defines t 4∗ u by induction on t: if t is a variable then

t 4∗ u if t 4 u; and if t is of the form τ(b) then t 4∗ u if

there exists b′ such that b 4∗ b′ and τ(b′) 4 u. To prove that 4∗

and 4 are equivalent and therefore that 4 and ∼ are congruences,
it suffices to prove that 4∗ respects computation, i.e., given that

t 4∗ u, if t computes to a value of the form θ(b) then u also

computes to a value θ(b′) such that b 4∗ b′. Howe’s Lemma 2
in [50] shows that this is true when t is a value.

Howe then defines a condition called extensionality that non-
canonical operators of lazy computation systems have to satisfy
for 4∗ to imply 4, and therefore for 4 and ∼ to be congruences.

First, we extended all these definitions to deal with the fact that
canonical forms can either be values or exceptions. Then, using our
new definition of 4∗ we were able to prove that ν is extensional
(see [72, Appendix D] for more details).

4.3 Consistency

As mentioned above, Nuprl’s consistency follows from the fact that
all its inference rules are valid w.r.t. Allen’s PER semantics and
from the fact that False is not inhabited. In addition to extending
Nuprl’s computation system, and fixing its properties including
Howe’s computational equivalence relation, we had to re-run all
the proofs that Nuprl’s inference rules are valid. Most of these
rules and proofs did not have to change. The only one that had
to change is discussed in details in [72, Appendix C] (see [72,
Appendices A&B] for details regarding the validity of rules). Let
us summarize this discussion here.

First, note that because exceptions are canonical forms as men-
tioned in Sec. 4.1.1 above, if a 7→∗ exc(t1, t2) then a 4 b if
there exists u1 and u2 such that b 7→∗ exc(u1, u2), t1 4 u1,
and t2 4 u2. Therefore, even though we cannot have a canon-
ical form test (such as ifint or ifaxiom) for exceptions that
would check whether a term computes to an exception because
we cannot catch an exception without having its name (i.e., we
have no way of catching all exceptions), we can define a propo-
sition isexc(t) that asserts that a term t computes to an exception
as follows: isexc(t) = exc⊥ � t, where exc⊥ = exc(⊥,⊥).
Similarly, the following proposition halts(t) asserts that t com-
putes to a value: halts(t) = ⋆� (let x := t in ⋆). By defini-
tion of Howe’s approximation relation, before adding exceptions,
when proving a proposition of the form t1 � t2 we could assume
halts(t1). This was captured by our old [convergence] infer-
ence rule described in [72, Appendix C]. This is no longer true
because we also have to consider the case where t2 is an excep-
tion. To that effect our new [convergence] inference rule gener-
ates (among others) two subgoals: one that assumes halts(t1) and
one that assumes isexc(t1). Alternatively, we could capture that
a term t computes to either a value or an exception using the type:
exc⊥ � (let x := t in exc⊥). We have not yet investigated the
usefulness of such a type.

4.4 Computing the Modulus of Continuity

We now have the tools in hand to compute the modulus of continu-
ity of a functional using exceptions as described above:

force(k, t) = if k<0 then ⊥ else t
bound(n, f, e, k) = force(k, if k<n then f(k) else exce)
bound(n, f, e) = λx.bound(n, f, e, x)
test(F, n, f) = νx.tryx F (bound(n, f, x))
M(F) = λn.λf.test(F, n, f)

i.e., unfolding the definitions, M(F) is

λn.λf.νx.tryx F

λy.
if y<0 then ⊥

else

(

if y<n then f(y)
else excx

)

Also, let force(f) = λx.force(x, f(x)). As in our proof of
WCP↓, we will partly use typing, partly use computation to prove
that M(F) is indeed our witness for SCPT. This is why bound starts
off by checking whether its argument x is an integer less than 0. If a
computation that uses bound converges and along the way applies
f to some term k, we will be guaranteed that k is a natural number.

4.5 Well-Typedness

To prove SCPT, we first prove that M(F) has type Πn:N.NNn →
N?. As mentioned above, this term does not respect computa-
tion, it is not functional over F∈B → N. However, given a

term F , we can still prove that M(F) has the right type. For that,
we have to prove that for all closed terms n and m such that

n≡m∈N, and for all closed terms f and g such that f≡g∈N
Nn , we

have test(F, n, f)≡test(F,m, g)∈N?. By definition, n≡m∈N

means that there exists a natural number k such that both n and
m compute to k. Therefore, let us assume f≡g∈N

Nk and let us
prove test(F, k, f)≡test(F, k, g)∈N?. Unfolding test’s defi-
nition, we have to prove

νx.tryx F (bound(k, f, x))
≡νx.tryx F (bound(k, g, x))
∈N?

As we show below in Sec. 4.6, to prove that it is enough to prove

try
a
F (bound(k, f,a))≡try

a
F (bound(k, g,a))∈N?

where a is such that a#F , a#f , and a#g. Again, it is enough to
prove

F (bound(k, f,a))≡F (bound(k, g,a))∈N?a (1)

By typing again, from f≡g∈N
Nk , we deduce that

bound(k, f,a)≡bound(k, g,a)∈(N?a)
N

(2)

A general fact about exceptions is: if F∈B → N and a#F then

Force(F)∈(N?a)
N → N?a (3)

where Force(F) = λf.F (force(f)). Is Force necessary? Can’t

we simply prove F∈(N?a)
N → N?a? In other words, can we find

a F in B → N, such that a#F , and an f in (N?a)
N such that F (f)

is not in N?a? Yes we can: take

F = λf.f(f(0))
f = λx.let z := (try

a
x with z.⊥) in exca

(Note that in f ’s definition ⊥ could be any term not in N.)
These expressions are of the right type, but F (f) computes
to f(f(0)), which computes to f(exca), which computes to
let z := ⊥ in exca, which diverges and is therefore not of type
N?a. Proving 3 is the crux of proving that M(F) is well-typed. To
prove that we use the same technique as in WCP↓’s proof. Given 3,
it is trivial to deduce that the equality 1 is true using equality 2.

Let us now prove 3. We have to prove that for all F in B → N,

and f and g such that f≡g∈(N?a)
N,

F (force(f))≡F (force(g))∈N?a

First, we define a function force0 so that the function f ′ =
λx.force0(x, f) computes as the function f0 = force(f), except
that on natural numbers, when f0 returns exca, f ′ returns 0 (this 0
could be any natural number):

force0(x, f) = if x<0 then ⊥ else try
a
f(x) with z.0

Let g0 = force(g). Note that f0≡g0∈(N?a)
N. Because f ′ is in

B, we get that F (f ′) computes to a natural number. Let us now use
again the same simulation technique as before. Let us prove that
in any context C with no occurrence of a, if C[f ′] computes to a
natural number j, then either both C[f0] and C[g0] also compute
to j or both C[f0] and C[g0] compute to exca. We prove that by
induction on the length of the reduction C[f ′] 7→∗ j. For that we
prove that if C[f ′] 7→ u and u computes to a canonical expression,
then there exists a context C′ such that u 7→∗ C′[f ′] and either both
C[f0] 7→

∗ C′[f0] and C[g0] 7→
∗ C′[g0] or both C[f0] 7→

∗ exca
and C[g0] 7→

∗ exca. This gives us that F (f0)≡F (go)∈N?a

4.6 Interlude: Reasoning About ν

In Sec. 4.1.2 we saw how ν computes. We show here how to
reason about ν. One can prove that νx.t1≡νx.t2∈T by proving
that t1[x\a]≡t2[x\a]∈T , assuming a#t1 and a#t2, and that T

is flat, meaning that its inhabitants compute to terms that have no
subterms and that are not names, such as integers or ⋆. This follows
from the way ν computes. If t[x\a] 7→∗ u such that a#t then
νv.t 7→∗

νx.u[a\x]. In the integer case, if t1[x\a] 7→∗ i then
νx.t1 7→∗

νx.i and νx.i 7→ i. We get that νx.t1 ∼ t1[x\a].
Because the union of flat types is flat, N? is flat.

We can prove similar rules for the other types. For exam-
ple, one can prove that νx.f1≡νx.f2∈Πa:A.B by proving that
Πa:A.B is a type, and that for all a1 and a2 such that a1≡a2∈A,
νx.f1(a1)≡νx.f2(a2)∈B[a\a1] (see lemma fresh in function

in https://github.com/vrahli/NuprlInCoq/blob/master/conti

nuity/stronger_continuity_props1.v).

4.7 1st Condition

The first property we prove about the function M defined above in
Sec. 4.4 is that for all f in B, ↓Σn:N.M(F) n f =N F (f). This
condition says that for all f there exists a n such that M only requires
an “initial sequence” of length n of f to compute the same result
as F (f). This n is therefore at least the modulus of continuity of F
at f .

As before, by typing we get that F (f)≡F (force(f))∈N.
Hence, there exists a natural number k such that F (force(f)) 7→∗

k. As in the proof of WCP↓, we first compute the maximum of all
the numbers occurring in that computation, and we instantiate our
conclusion with b a number which is strictly greater than this max-
imum. We now have to prove: M(F) b f =N F (f), or equivalently
test(F, b, f) =N F (force(f)). Unfolding test’s definition, we
have to prove:

νx.tryx F (bound(b, f, x))≡F (force(f))∈N

As in Sec. 4.5, because we’re trying to prove that this ν is in N and
because N is flat, it is enough to prove for some name a such that
a#F and a#f :

try
a
F (bound(b, f,a))≡F (force(f))∈N

Again, let us use the same simulation technique as before to prove
that in any context C with no occurrence of a, if C[force(f)] 7→∗

k then C[bound(b, f,a)] 7→∗ k. We prove that by induction on
the length of the reduction C[force(f)] 7→∗ k. For that we prove
that if C[force(f)] 7→ u such that u computes to a canonical
expression, and all the numbers occurring in C[force(f)] are
strictly less than b, then there exists a context C′ such that u 7→∗

C′[force(f)] and C[bound(b, f,a)] 7→∗ C′[bound(b, f,a)].
Using this result, we get that F (bound(b, f,a)) 7→∗ k, from

which we deduce that try
a
F (bound(b, f,a)) 7→∗ k, and finally

try
a
F (bound(b, f,a)) =N F (force(f)).

4.8 2nd Condition

The second property we prove about the function M defined above
in Sec. 4.4 is that for all f in B and n in N, if M(F) n f computes
to a number then M(F) n f =N F (f). In order to implement our
search function to realize SCP⇃, we need to return the smallest n,
say m, such that M(F) n f computes to a number. However, if M(F)
could return different answers for different n’s, we would not know
whether M(F) m f returns F (f) or some other value.

Let us prove that if M(F) n f ∼ k for some k ∈ N then F (f) ∼
k. As before, we can assume that try

a
F (bound(n, f,a)) ∼ k,

for some a such that a#F and a#f . By typing we get that F (f)
computes to a natural number k′. Because try

a
F (bound(n, f,a))

computes to a canonical form (the natural number k), we deduce
that F (bound(n, f,a)) also computes to a canonical form. This
canonical form is either (1) an exception or (2) a value.

(1) If F (bound(n, f,a)) computes to an exception then we
get a contradiction: either the term computes to exca and then
we obtain that try

a
F (bound(n, f,a)) 7→∗ ⋆ and ⋆ 6= k; or it

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_props1.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/stronger_continuity_props1.v

computes to an exception e with some other name than a and then
try

a
F (bound(n, f,a)) 7→∗ e and e 6= k. In both cases we get a

contradiction.
(2) We now assume that F (bound(n, f,a)) computes to a

value. If so, it has to compute to k. We now prove that k =
k′. As before, because F (f)≡F (force(f))∈N, we get that
F (force(f)) 7→∗ k′. The rest of this proof closely follows the
one in Sec. 4.7. We prove that in any context C with no occur-
rence of a, if C[force(f)] computes to the natural number k′

then C[bound(n, f,a)] computes to either k′ or exca. We prove
that by induction on the length of the reduction C[force(f)] 7→∗

k′. For that we prove that if C[force(f)] 7→ u such that u
computes to a canonical expression then there exists a context
C′ such that u 7→∗ C′[force(f)] and C[bound(b, f,a)] 7→∗

C′[bound(b, f,a)] or C[bound(b, f,a)] 7→∗ exca. We get that
either: (1) F (bound(b, f,a)) 7→∗ k′ and therefore k = k′; or (2)
F (bound(b, f,a)) 7→∗ exca and we get a contradiction because
k 6= exca.

4.9 Nuprl’s Strong Continuity Inference Rule

Using the fact that SCPT (defined at the beginning of Sec. 4) is
true in Nuprl’s meta-theory, we proved that the following infer-
ence rule, called [StrongContinuity], is true w.r.t. Allen’s PER
semantics (for further details regarding this proof conducted in our
implementation of Nuprl in Coq, the interested reader is invited to
look at https://github.com/vrahli/NuprlInCoq/blob/master/c
ontinuity/continuity_roadmap.v):

H ⊢ F ∈ (N → T) → N H ⊢ ↓T H ⊢ T ⊑ N

H ⊢ M(F) ∈ SCPF(F)

Using this inference rule, we proved a version of SCPT in Nuprl,
where the first (outer) existential quantifier is ⇃-squashed and the
second (inner) one is not squashed (this lemma can be accessed by

clicking the following hyperlink: strong-continuity2-no-inner-squash).6

We get rid of the second squash operator using the usual unbounded
search µ operator. As expected the extract of that lemma is (we use
colored parentheses for visual convenience):

λF.〈M’(F),λf.〈µ(λn.isl(test’(F, n, f))),〈⋆,λm.λi.⋆〉〉〉

where

test’(F, n, f) = let x := test(F, n, f) in
ifint(x, inl(x), inr(⋆))

M’(F) = λn.λf.test’(F, n, f)

µ(f) = fix

(

λF.λn. if f(n) then n
else letm := n+ 1 in F (m)

)

0

We then derived a version of SCP where, as mentioned in the
introduction, the first (outer) Σ is ⇃Σ and the second (inner) one is
Σ (see/click Nuprl lemma strong-continuity2-no-inner-squash-unique).
Therefore, because these versions of SCP are equivalent of SCP⇃,
we also refer to them as SCP⇃.

5. Relations Between WCP and SCP

As mentioned in Sec. 1, Bridges and Richman [19, pp.119] state
that SCP is equivalent to WCP plus some form of the axiom of
choice—some version of AC1,0. As we saw above the existential
quantifiers in these statements have to be truncated using ⇃ (see
Escardó and Xu [39]). Therefore, for that equivalence to be true,
we probably need the ⇃-truncated version of AC1,0, which is true in

6 Alternatively, the reader can search for the lemma with that name available
here: http://www.nuprl.org/LibrarySnapshots/Published/Vers
ion1/Standard/continuity/index.html, and similarly for the other
Nuprl lemmas mentioned below and highlighted in green (or gray).

Nuprl as discussed below in Sec. 5.3. Therefore, we only need to
prove that SCP⇃ and WCP⇃ are equivalent. We prove below that WCP⇃
is a trivial consequence of SCP⇃, and that SCP⇃ is a consequence
of WCP⇃ using the same “trick” as the one used by Bridges and
Richman to prove that UCP follows from the Fan Theorem and
WCP [19, pp.113] (see Sec. 6.1 below on uniform continuity).

5.1 SCP⇃ Implies WCP⇃

Let us sketch the proof that SCP⇃ → WCP⇃. For convenience, we will
write NU for N+Unit. Let F ∈ B → N and f ∈ B. We prove the
formula C = ⇃Σn:N. Πg:B.f =NNn g → F (f) =N F (g). From

SCP⇃, we get a M ∈ Πn:N.NNn → NU (we can unsquash SCP⇃’s
outer Σ because our conclusion C is squashed) and a function

A ∈ Πf :B.Σn:N. M n f =NU inl(F (f))
∧ Πm:N.isl(M m f) → m =N n

By applying A to f we get a n ∈ N such that:

• M n f =NU inl(F (f))

• and B ∈ Πm:N.isl(M m f) → m =N n.

We unsquash and instantiate with n our conclusion C, and we now
get to assume that there is a g ∈ B such that f =NNn g. It remains
to prove that F (f) =N F (g). By applying A to g we get a n′ ∈ N

such that:

• M n′ g =NU inl(F (g))

• and B′ ∈ Πm:N.isl(M m g) → m =N n′.

Because f =NNn g, we get that M n f =NU M n g. Because
M n f =NU inl(F (f)), we get isl(M n f) and therefore
also isl(M n g). Then, by applying B′ to n we get n =N n′.
Therefore, inl(F (f)) =NU inl(F (g)), and finally we get that
F (f) =N F (g).

5.2 WCP⇃ Implies SCP⇃

In this section we prove that skWCP implies SCP⇃ (see Nuprl
lemma weak-continuity-implies-strong1), where skWCP is the follow-
ing “skolemized” version of WCP⇃:

skWCP = ΠF :B → N.
⇃ΣM :B → N.

Πf, g:B.(f =NM(f)→N g) → (F (f) =N F (g))

It is easy to prove that skWCP and WCP⇃ are equivalent using our
proof that the ⇃-truncated axiom of choice AC1,X discussed below
in Sec. 5.3 is true (see Nuprl lemma axiom-choice-1X-quot).

Let us assume skWCP and let F ∈ B → N. We have to prove
the following formula C:

⇃ΣM :Πn:N.NNn → NU.
Πf :B. Σn:N.M n f =NU inl(F (f))

∧ Πn:N.isl(M m f) → M n f =NU inl(F (f))

Instantiating skWCP with F we get (because our conclusion C is
⇃-truncated, we can unsquash our hypothesis):

• a M ∈ B → N (F ’ modulus of continuity)

• and a G ∈ Πf, g:B.(f =NM(f)→N g) → (F (f) =N F (g))

Bridges and Richman’s trick is to also use the modulus of continu-
ity of M . Therefore, instantiating skWCP with M we get:

• a X ∈ B → N (M ’s modulus of continuity)

• and a K ∈ Πf, g:B.(f =NX(f)→N g) → (M(f) =N M(g))

Let us now unsquash our conclusion C and instantiate it with

B = λn.λa.ifM(an,0) ≤ n then inl(F (an,0)) else inr(⋆)

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/strong-continuity2-no-inner-squash.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/strong-continuity2-no-inner-squash-unique.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/weak-continuity-implies-strong1.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/axiom-choice-1X-quot.html

where an,k = λx.if x<n then a(x) else k (this is the infinite
sequence consisting of the first n values of a followed by k’s—an,0

is sometimes denoted a, n, e.g., in [12, 38]). If a ∈ N
Nn and k ∈ N

then an,k ∈ N → N. We now have to prove that assuming that
f ∈ B then:

Σn:N.B n f =NU inl(F (f)) (4)

Πn:N.isl(B n f) → (B n f =NU inl(F (f))) (5)

Equality 5 follows from G. We now prove 4 by instantiating
it with m = max(M(f), X(f)). We have to prove B m f =NU

inl(F (f)), i.e.,

ifM(am,0) ≤ m then inl(F (am,0)) else inr(⋆)
=NU inl(F (f))

(6)

Because f =NM(f)→N am,0, then using G we obtain: F (f) =N

F (am,0). Therefore, to prove equality 6, it remains to prove that its
conditional is true, i.e., M(am,0) ≤ m = max(M(f), X(f)). If
we instantiate K with f and am,0, we have to prove f =NX(f)→N

am,0, which is true by definition of m, and get to assume M(f) =N

M(am,0) which gives us that M(am,0) ≤ m.

5.3 Axiom of Choice

The following axiom of choice is usually trivial in constructive type
theories such as Nuprl when Σ is Σ (where A and B are types):

AC = Πa:A.Σb:B. P a b ⇒ Σf :BA.Πa:A.P a f(a)

It follows from the usual rules of the universal and existential
quantifiers. We can prove that these rules are true in our predicative
Coq model [7, 8] without assuming any axiom. In that predicative
model we can model n Nuprl universes using n+1 Coq universes.
However, in our impredicative model we have to assume some
axiom of choice, namely FunctionalChoice on (see http://coq.

inria.fr/cocorico/CoqAndAxioms), to prove some of these rules.
However, the non-squashed version of AC is not always enough

because as we saw above existential quantifiers cannot always be
interpreted as Σ but sometimes as truncated Σ’s. Therefore, we
sometimes need instances of AC where Σ is either ⇃Σ or ↓Σ.
In that case it is not obvious anymore which instances of AC are
consistent or provable in Nuprl.

Some versions of AC for particular choices of types A and B
are of particular interest. One can often find in the literature the
name ACn,m, where n,m ∈ {0, 1} [82, pp.238]: n = 0 means
that A = N and n = 1 means that A = B; similarity m = 0 means
that B = N and m = 1 means that B = B.

Using a technique similar to the one discussed in [71], we
proved the ↓-squashed version of AC0,0, where Σ is ↓Σ, once
again conducting the proof first in the meta-theory, and then reflect-
ing the meta-theoretical result in the Nuprl theory as an inference
rule: see lemma rule AC00 true in https://github.com/vrahl

i/NuprlInCoq/blob/master/axiom_choice/axiom_choice.v. We
also proved directly in Nuprl the ⇃-squashed versions of AC, where
Σ is ⇃Σ, namely AC0,X (see Nuprl lemma axiom-choice-0X-quot)
and AC1,X (see Nuprl lemma axiom-choice-1X-quot)—X here indi-
cates that the type B above could be anything. These two lemmas
are instances of the more general Nuprl lemma: axiom-choice-quot.

6. Applications

Using SCP⇃ we proved in Nuprl a ⇃-truncated version of UCP (see
Sec. 1) from the fan theorem, and then a fully unsquashed version
of this principle using Escardó and Xu’s method [39] (see Sec. 6.1).
We write UCP⇃ for the version of UCP where Σ is ⇃Σ. Using UCP⇃
we then proved that real functions defined on the unit interval are
uniformly continuous (see Sec. 6.2).

We have recently proved that Bar Induction on Decidable bars
(BID) is consistent with Nuprl using our Coq model of Nuprl [71],

and this for free choice sequences of natural numbers. Follow-
ing Kleene, given that SCP⇃ is true we can now prove Bar In-
duction on Monotone bars (BIM) [53, pp.78] (see also Dummett’s
Thm 3.8 [37, pp.64]): see Nuprl lemma monotone-bar-induction1.

We have also recently used exceptions to implement the con-
structive content of the completeness result of intuitionistic first-
order logic proved in [27]. As in the present paper, exceptions are
used to probe how a computation uses its arguments. Given a uni-
form evidence for a proposition, we construct a proof of that propo-
sition by using this probing mechanism to determine the next step
of the proof.

6.1 Uniform Continuity

6.1.1 UCP⇃ Follows From FT and SCP⇃.

Using BID we prove that the Fan Theorem (FT) is true: see Nuprl
lemma fan theorem. We then derive UCP⇃ from FT and SCP⇃: see
Nuprl lemma strong-continuity2-implies-uniform-continuity. Let us
sketch that proof. The version of FT that we have proved in Nuprl
is (if X is a bar and is decidable then it is uniform):

FT = ΠX:(Πn:N.2Nn → P).
Πf :C.↓Σn:N.X n f
→ Πn:N.Πf :2Nn .Dec(X n f)
→ Σk:N.Πf :C.Σn:Nk.X n f

We also use the following corollary of SCP⇃ for functions on the
Cantor space instead of the Baire space:

SCPB

= ΠF :C → N.
⇃ΣM :(Πn:N.2Nn → NU).

Πf :C.
Σn:N.M n f =NU inl(F (f))

∧ Πn:N.isl(M n f) → M n f =NU inl(F (f))

Let us start proving UCP⇃. Let F be in C → N. We have to prove

⇃Σn:N.Πf, g:C.f =2Nn g → F (f) =N F (g) (7)

We start by instantiating SCPB with F and we unsquash the result-
ing formula (which we can do because our conclusion is squashed),
i.e., we get to assume:

• M ∈ Πn:N.2Nn → NU and

• G ∈ Πf :C. Σn:N.M n f =NU inl(F (f))
∧ Πn:N.isl(M n f) → M n f =NU inl(F (f))

We now instantiate FT using X = λn.λf.isl(M n f). We now
have to prove (1) Πf :C.↓Σn:N.isl(M n f), which follows from

G; and (2) Πn:N.Πf :2Nn .Dec(isl(M n f)), which is trivial; and
we get a k ∈ N and A ∈ Πf :C.Σn:Nk.isl(M n f). We unsquash
and instantiate our conclusion 7 using k− 1. We have to prove that
F (f) =N F (g) assuming that f =

2Nk
g for f and g in C. From G

we get:

• G(f) ∈ Πn:N.isl(M n f) → M n f =NU inl(F (f))

• G(g) ∈ Πn:N.isl(M n g) → M n g =NU inl(F (g))

and from A (applying A to f) we get a i ∈ Nk and that isl(M i f).
Therefore, because f =

2Nk
g, we get M i f =NU M i g and

isl(M i g). Which means that (from G(f) and G(g)):

• M i f =NU inl(F (f))

• M i g =NU inl(F (g))

We conclude that F (f) =N F (g).

6.1.2 UCP⇃ Follows From FT and skWCP.

Following Bridges and Richman’s proof of their Theorem 3.2 [19,
pp.113], the following Nuprl lemma proves that UCP⇃ follows

http://coq.inria.fr/cocorico/CoqAndAxioms
http://coq.inria.fr/cocorico/CoqAndAxioms
https://github.com/vrahli/NuprlInCoq/blob/master/axiom_choice/axiom_choice.v
https://github.com/vrahli/NuprlInCoq/blob/master/axiom_choice/axiom_choice.v
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/axiom-choice-0X-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/axiom-choice-1X-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/axiom-choice-quot.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/monotone-bar-induction1.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/int_2/fan_theorem.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/strong-continuity2-implies-uniform-continuity.html

from FT and skWCP: fan+weak-continuity-implies-uniform-continuity

(as mentioned in Sec. 5, skWCP and WCP⇃ are equivalent). Their
proof is slightly more involved than the one presented above in
Sec. 6.1.1 and uses the “trick” of building a bar that uses both
the skolemized modulus of continuity M of type C → N of a func-
tional F of type C → N and the (skolemized) modulus of continuity
of M . As mentioned above skWCP is a trivial consequence of SCP⇃:
see Nuprl lemma strong-continuity2-implies-weak-skolem-cantor-nat.

6.1.3 Unsquashed UCP Follows From UCP⇃.

We can then get rid of the truncation operator ⇃ in UCP⇃ fol-
lowing exactly Escardó and Xu’s proof [39, Sec.4]: see Nuprl
lemma strong-continuity2-implies-uniform-continuity2. Their proof con-
sists in proving that (1) the existence of a uniform modulus of con-
tinuity is equivalent to (2) the existence of the smallest uniform
modulus of continuity. Because (2) is a proposition in HoTT’s
sense [83], we can “untruncate” it. Their proof goes in three
steps: Nuprl lemma uniform-continuity-pi-dec corresponds to their
Lemma 4; Nuprl lemma prop-truncation-implies corresponds to their
Lemma 5; and Nuprl lemma uniform-continuity-pi-pi-prop2 corre-
sponds to their Lemma 6.

6.2 Brouwer’s Theorem on Uniform Continuity

In Nuprl, a real number α : R is a regular sequence of integers.
This means that α : N

+ → Z and ∀n,m.|n ∗ α(m) − m ∗
α(n)| ≤ 2(n+m). This differs from, but is equivalent to, Bishop’s
definition of real numbers as regular sequences of rationals [15].
Two regular sequences α and β represent the same real number
if ∀n. |α(n) − β(n)| ≤ 4, and this is an equivalence relation,
α =r β, on regular sequences. If α(n) + 4 < β(n) for some n,
then α < β, and α#β (α is apart from β) if α < β ∨ β < α. If
∀n.α(n) ≤ β(n) + 4, then α ≤ β.

The closed interval [α, β] is the type {x : R | α ≤ x ≤ β}.
Bishop calls a member f of the type [α, β] → R an operation
on the interval [α, β], and reserves the word function for those
operations that satisfy

FUN(f, α, β) = ∀x, y : [α, β]. x =r y ⇒ f(x) =r f(y)

A stronger condition—called strong extensionality in Coq’s CoRN
library [54]—is

SFUN(f, α, β) = ∀x, y : [α, β]. f(x)#f(y) ⇒ x#y

An operation is uniformly continuous on [α, β] if

CONT(f, α, β)
= ∀ǫ > 0.

∃δ > 0. ∀x, y : [α, β]. |x− y| ≤ δ → |f(x)− f(y)| ≤ ǫ

(The Nuprl lemmas mentioned below are available at the follow-
ing addess: http://www.nuprl.org/LibrarySnapshots/Publishe
d/Version1/Standard2/reals/index.html.) Using the fact from
Sec. 6.1 that functionals of type C → Z are uniformly continuous,
we proved in Nuprl that for proper intervals [α, β] (where α < β),
we have (see Nuprl lemma real-continuity4):

CONT(f, α, β) ⇔ FUN(f, α, β)

In the proof, we construct the usual map from C onto [α, β],
using a tree of nested, decreasing intervals. However, we can not
show that this is an onto map without using the condition α < β.
Using the fact that we can decide whether a functional of type
C → Z is constant, we could extend the proof to the case of
intervals that are not necessarily proper—for which only α ≤ β—
to show that (see Nuprl lemma real-continuity3):

CONT(f, α, β) ⇔ SFUN(f, α, β)

Thus, for Bishop’s definition of real function, it is correct to say
that all functions on the unit interval [0, 1] are uniformly continuous

(Brouwer’s theorem). But it is not correct to say that functions
are uniformly continuous on all closed intervals [α, β]—only on
proper closed intervals—unless the strongly extensional definition
of real function is used. The two definitions are equivalent only
when Markov’s principle holds [15].

7. Related Work on Nominal Systems

Nominal systems. There has been a tremendous amount of work
on nominal approaches to logic and programming starting from
Gabbay and Pitts’ work on using Fraenkel-Mostowski’s permuta-
tion model of set theory to formally reason about abstract syntax
in the presence of α-equivalence and variable binding [44]. This
work then led to the design of the so-called Nominal Logic [65],
which provides primitives and axioms to reason about names,
name-swapping, freshness, and name-binding. These ideas were
then later used and implemented in programming languages and
type theories [16, 20–23, 35, 43, 64, 66, 67, 69, 70, 77–79, 88] (to
cite only a few). We know describe some of these systems.

FreshML. For example, FreshML [67, 79] is an extension of ML
with constructs for declaring and manipulating data with binding
structure that provide support for object-level α-equivalence, such
as constructs for binding names, declaring new types of bindable
names, and generating fresh names. Nuprl does not yet have such
a name-abstraction construct. Also, our paper does not try to tackle
the issue of reasoning about α-equivalence classes of terms using
names. This provides an alternative approach to, e.g., using de
Bruijn indices or HOAS in order to deal with names and binders.
These ideas were then also ported to OCaml [78]. Following this
line of work, Pure FreshML [69] is a pure (in the sense that name
generation is not an observable side effect) version of FreshML [79]
that ensures fresh atoms do not escape their scopes.

Nominal type theories. Schopp and Stark [76, 77] developed
a bunched dependent type theory for programming and reason-
ing with names, based on a categorical axiomatization of names,
and taking freshness as the central primitive instead of swapping.
Bunches are typing contexts that have a tree-like shape instead of a
list-like shape, where branching is used to model the disjointness of
names spaces. In their theory, α-equivalence classes can be either
modeled as “fresh functions” or as pairs, which are members of
“non-standard fresh” Π∗ and Σ

∗ types. It turns out that these types
are isomorphic when indexed by names, giving rise to a hidden-
name type constructor H which can either be interpreted as a sum
or a product, and which corresponds to Gabbay and Pitts freshness
quantifier N[44]. In our paper, we only focus on computational
aspects of freshness.

Cheney designed SNTT [20], which is a nominal simply-typed
λ-calculus with names as well as name-abstraction and name-
concretion operators (but no name-generation operator such as ν).
SNTT contexts are expressive enough so that one can state the
freshness constraint on name-concretions. It is also designed with
decidable typechecking in mind. Cheney extended SNTT to a de-

pendent type theory, called λΠ N[21], with dependent products (Π)
and dependent name-abstraction types (N). As for SNTT, one of his
main focus was to provide a strongly normalizing theory with de-
cidable type checking.

Westbrook’s CNIC calculus (the Calculus of Nominal Induc-
tive Constructions) [87, 88] can also be seen as an extension of
SNTT with inductive constructions, or similarly as an extension of
CIC [32] with nominal features such as name abstraction and con-
cretion operators, and pattern matching operators for names and
name abstractions.

Pitts’ Nominal System T [66] extends System T with nomi-
nal features such as a fresh operator ν à la Odersky and a name-
swapping operator. As opposed to the systems mentioned above,

http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/fan!weak-continuity-implies-uniform-continuity.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/strong-continuity2-implies-weak-skolem-cantor-nat.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/strong-continuity2-implies-uniform-continuity2.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/uniform-continuity-pi-dec.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/prop-truncation-implies.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard/continuity/uniform-continuity-pi-pi-prop2.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/index.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/real-continuity4.html
http://www.nuprl.org/LibrarySnapshots/Published/Version1/Standard2/reals/real-continuity3.html

this system has ordinary non-bunched contexts. FreshMLTT [64]
is a dependent type theory that has name-abstraction and name-
concretion operators, as well as a name-swapping operator and a
fresh operator ν à la Odersky, which allow them to derive expres-
sive name-concretion rules.

8. Conclusion and Future Work

This paper provides “mostly” computational proofs of two Brouw-
erian continuity principles that use (1) diverging terms to prove that
the modulus of continuity of a function on the Baire space exists in
the meta-theory (Sec. 3), and (2) named exceptions to exhibit it in

the theory (Sec. 4). We proved that all functions of type TN → N

are continuous, where T is a subtype of N. It is not clear how to
adapt our proof for other types than subtypes of N. This is left for
future work.

In Sec. 4.8 we used the fact that the exception exca cannot be
caught by F if a#F . This would not longer be true if our compu-
tation system was non-deterministic or if we allowed parallel com-
putations. For example, let t1 || t2 be an operator that dovetails the
computations of t1 and t2. If t1 computes to exca then this excep-
tion might get “caught” if t2 computes to a canonical expression
“before” t1. Once we add non-determinism to Nuprl, we might be
able to use non-deterministic computations to compute the modulus
of continuity of functions in a similar fashion as done by Coquand
and Jaber [31]. This is left for future work.

Finally, many more inference rules can be derived (and verified
in our Coq model) from the definitions of our new computations
and types than the ones discussed in Sec. 4. Investigating these rules
is left for future work.

Acknowledgements

We would like to thank our colleagues Robert L. Constable, Ross
Tate, Rich Eaton, Abhishek Anand, and Evan Moran for their
helpful criticism.

References

[1] LICS 2007. IEEE Computer Society, 2007.

[2] The Agda wiki. http://wiki.portal.chalmers.se/agda/pmwi
ki.php.

[3] Stuart Allen. An abstract semantics for atoms in Nuprl. Technical
report, Cornell University, 2006.

[4] Stuart F. Allen. A non-type-theoretic definition of Martin-Löf’s types.
In LICS, pages 215–221. IEEE Computer Society, 1987.

[5] Stuart F. Allen. A Non-Type-Theoretic Semantics for Type-Theoretic

Language. PhD thesis, Cornell University, 1987.

[6] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in com-
putational type theory using Nuprl. J. Applied Logic, 4(4):428–469,
2006. http://www.nuprl.org/.

[7] Abhishek Anand and Vincent Rahli. Towards a formally verified proof
assistant. In ITP 2014, volume 8558 of LNCS, pages 27–44. Springer,
2014.

[8] Abhishek Anand and Vincent Rahli. Towards a formally verified proof
assistant. Technical report, Cornell University, 2014. http://www.n
uprl.org/html/Nuprl2Coq/.

[9] Jeremy Avigad. Forcing in proof theory. Bulletin of Symbolic Logic,
10(3):305–333, 2004.

[10] Andrej Bauer and Matija Pretnar. Programming with algebraic effects
and handlers. J. Log. Algebr. Meth. Program., 84(1):108–123, 2015.

[11] Michael J. Beeson. Foundations of Constructive Mathematics.
Springer, 1985.

[12] Ulrich Berger and Paulo Oliva. Modified bar recursion. Mathematical

Structures in Computer Science, 16(2):163–183, 2006.

[13] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and

Program Development. SpringerVerlag, 2004. http://www.labri.
fr/perso/casteran/CoqArt.

[14] Mark Bickford. Unguessable atoms: A logical foundation for security.
In Verified Software: Theories, Tools, Experiments, Second Int’l Conf.,
volume 5295 of LNCS, pages 30–53. Springer, 2008.

[15] E. Bishop and D. Bridges. Constructive Analysis. Springer, 1985.

[16] Mikolaj Bojanczyk, Laurent Braud, Bartek Klin, and Slawomir La-
sota. Towards nominal computation. In POPL’12, pages 401–412.
ACM, 2012.

[17] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda - a
functional language with dependent types. In TPHOLs 2009, volume
5674 of LNCS, pages 73–78. Springer, 2009. http://wiki.portal
.chalmers.se/agda/pmwiki.php.

[18] Edwin Brady. Idris —: systems programming meets full dependent
types. In 5th ACM Workshop Programming Languages meets Program

Verification, PLPV 2011, pages 43–54. ACM, 2011.

[19] Douglas Bridges and Fred Richman. Varieties of Constructive Math-

ematics. London Mathematical Society Lecture Notes Series. Cam-
bridge University Press, 1987.

[20] James Cheney. A simple nominal type theory. Electr. Notes Theor.

Comput. Sci., 228:37–52, 2009.

[21] James Cheney. A dependent nominal type theory. Logical Methods in

Computer Science, 8(1), 2012.

[22] James Cheney and Christian Urban. alpha-prolog: A logic program-
ming language with names, binding and a-equivalence. In ICLP 2004,
volume 3132 of LNCS, pages 269–283. Springer, 2004.

[23] James Cheney and Christian Urban. Nominal logic programming.
ACM Trans. Program. Lang. Syst., 30(5), 2008.

[24] Paul J. Cohen. The independence of the continuum hypothesis.
the National Academy of Sciences of the United States of America,
50(6):1143–1148, December 1963.

[25] Paul J. Cohen. The independence of the continuum hypothesis ii.
the National Academy of Sciences of the United States of America,
51(1):105–110, January 1964.

[26] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F.
Cremer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler,
P.Panangaden, J.T. Sasaki, and S.F. Smith. Implementing mathematics

with the Nuprl proof development system. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1986.

[27] Robert Constable and Mark Bickford. Intuitionistic completeness of
first-order logic. Annals of Pure and Applied Logic, 165(1):164–198,
January 2014.

[28] Robert L. Constable. Constructive mathematics as a programming
logic I: some principles of theory. In Fundamentals of Computation

Theory, Proceedings of the 1983 International, volume 158 of LNCS,
pages 64–77. Springer, 1983.

[29] Robert L. Constable and Scott F. Smith. Computational foundations
of basic recursive function theory. Theoretical Computer Science,
121(1&2):89–112, 1993.

[30] Thierry Coquand and Guilhem Jaber. A note on forcing and type
theory. Fundam. Inform., 100(1-4):43–52, 2010.

[31] Thierry Coquand and Guilhem Jaber. A computational interpretation
of forcing in type theory. In Epistemology versus Ontology, volume 27
of Logic, Epistemology, and the Unity of Science, pages 203–213.
Springer, 2012.

[32] Thierry Coquand and Christine Paulin. Inductively defined types. In
COLOG-88, Int’l Conf. on Computer Logic, volume 417 of LNCS,
pages 50–66. Springer, 1988.

[33] The Coq Proof Assistant. http://coq.inria.fr/.

[34] Karl Crary. Type-Theoretic Methodology for Practical Programming

Languages. PhD thesis, Cornell University, Ithaca, NY, August 1998.

[35] Roy L. Crole and Frank Nebel. Nominal lambda calculus: An internal
language for fm-cartesian closed categories. Electr. Notes Theor.

Comput. Sci., 298:93–117, 2013.

[36] R. David and G. Mounier. An intuitionistic λ-calculus with excep-
tions. J. Funct. Program., 15(1):33–52, January 2005.

http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.nuprl.org/
http://www.nuprl.org/html/Nuprl2Coq/
http://www.nuprl.org/html/Nuprl2Coq/
http://www.labri.fr/perso/casteran/CoqArt
http://www.labri.fr/perso/casteran/CoqArt
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr/

[37] Michael A. E. Dummett. Elements of Intuitionism. Clarendon Press,
second edition, 2000.

[38] Martı́n Escardó and Paulo Oliva. Bar recursion and products of
selection functions. J. Symb. Log., 80(1):1–28, 2015.

[39] Martı́n Escardó and Chuangjie Xu. The inconsistency of a Brouw-
erian continuity principle with the Curry-Howard interpretation.
TLCA’2015, available at http://www.cs.bham.ac.uk/~mhe/pap
ers/escardo-xu-inconsistency-continuity.pdf, 2015.

[40] Martı́n Hötzel Escardó. Infinite sets that admit fast exhaustive search.
In LICS 2007 [1], pages 443–452.

[41] Martı́n Hötzel Escardó. Exhaustible sets in higher-type computation.
Logical Methods in Computer Science, 4(3), 2008.

[42] Martı́n Hötzel Escardó. Continuity of Gödel’s system T definable
functionals via effectful forcing. Electr. Notes Theor. Comput. Sci.,
298:119–141, 2013.

[43] Elliot Fairweather, Maribel Fernández, Nora Szasz, and Alvaro
Tasistro. Dependent types for nominal terms with atom substitutions.
In TLCA 2015, volume 38 of LIPIcs, pages 180–195. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

[44] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract
syntax involving binders. In LICS’1999 [58], pages 214–224.

[45] W. Gielen, Harrie C. M. de Swart, and Wim Veldman. The continuum
hypothesis in intuitionism. J. Symb. Log., 46(1):121–136, 1981.

[46] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types.
Cambridge University Press, 1989.

[47] Andrew D. Gordon. Bisimilarity as a theory of functional program-
ming. Electr. Notes Theor. Comput. Sci., 1:232–252, 1995.

[48] Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth.
Edinburgh LCF: A Mechanised Logic of Computation., volume 78 of
LNCS. Springer-Verlag, 1979.

[49] Martin Hofmann. Extensional concepts in intensional type theory.
PhD thesis, University of Edinburgh, 1995.

[50] Douglas J. Howe. Equality in lazy computation systems. In LICS

1989, pages 198–203. IEEE Computer Society, 1989.

[51] Idris. http://www.idris-lang.org/.

[52] Alan Jeffrey and Julian Rathke. Towards a theory of bisimulation for
local names. In LICS’1999 [58], pages 56–66.

[53] S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic Math-

ematics, especially in relation to recursive functions. North-Holland
Publishing Company, 1965.

[54] Robbert Krebbers and Bas Spitters. Type classes for efficient exact
real arithmetic in Coq. Logical Methods in Computer Science, 9(1),
2011.

[55] Jean-Louis Krivine. Lambda-calculus, types and models. Ellis Hor-
wood series in computers and their applications. Masson, 1993.

[56] Sylvain Lebresne. A system F with call-by-name exceptions. In
ICALP 2008, volume 5126 of LNCS, pages 323–335. Springer, 2008.

[57] Sylvain Lebresne. A type system for call-by-name exceptions. Logical

Methods in Computer Science, 5(4), 2009.

[58] LICS 1999. IEEE Computer Society, 1999.

[59] John Longley. When is a functional program not a functional program?
In ICFP’99, pages 1–7. ACM, 1999.

[60] Steffen Lösch and Andrew M. Pitts. Relating two semantics of locally
scoped names. In CSL 2011, volume 12 of LIPIcs, pages 396–411.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011.

[61] Gregory H. Moore. The origins of forcing. In Logic Colloquium ’86,
pages 143–173. Elsevier Science Publishers B.V. (North-Holland),
1988.

[62] Dag Normann. Computing with functionals - computability theory or
computer science? Bulletin of Symbolic Logic, 12(1):43–59, 2006.

[63] Martin Odersky. A functional theory of local names. In POPL’94,
pages 48–59. ACM Press, 1994.

[64] A. M. Pitts, J. Matthiesen, and J. Derikx. A dependent type theory
with abstractable names. In I. Mackie and M. Ayala-Rincon, editors,
Proceedings of the LSFA 2014 Workshop, volume 312 of Electronic

Notes in Theoretical Computer Science, pages 19–50. Elsevier, 2015.

[65] Andrew M. Pitts. Nominal logic: A first order theory of names and
binding. In TACS 2001, volume 2215 of LNCS, pages 219–242.
Springer, 2001.

[66] Andrew M. Pitts. Nominal system T. In POPL’10, pages 159–170.
ACM, 2010.

[67] Andrew M. Pitts and Murdoch Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In MPC 2000, volume
1837 of LNCS, pages 230–255. Springer, 2000.

[68] Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or what’s new?
In MFCS’93, volume 711 of LNCS, pages 122–141. Springer, 1993.

[69] François Pottier. Static name control for FreshML. In LICS 2007 [1],
pages 356–365.

[70] Nicolas Pouillard and François Pottier. A fresh look at programming
with names and binders. In ICFP 2010, pages 217–228. ACM, 2010.

[71] Vincent Rahli and Mark Bickford. Coq as a metatheory for Nuprl with
bar induction. Presented at CCC 2015, available at http://www.nup
rl.org/html/Nuprl2Coq/barind.pdf, 2015.

[72] Vincent Rahli and Mark Bickford. A nominal exploration of intuition-
ism. Extended version avaible at http://www.nuprl.org/html/N
uprl2Coq/continuity-long.pdf, 2015.

[73] Vincent Rahli, Mark Bickford, and Abhishek Anand. Formal program
optimization in Nuprl using computational equivalence and partial
types. In ITP’13, volume 7998 of LNCS, pages 261–278. Springer,
2013.

[74] Michael Rathjen. Constructive set theory and brouwerian principles.
J. UCS, 11(12):2008–2033, 2005.

[75] Jorge Luis Sacchini. Exceptions in dependent type theory. Presented
at TYPES’14 (http://www.pps.univ-paris-diderot.fr/type
s2014/abstract-18.pdf), 2014.

[76] Ulrich Schöpp. Names and Binding in Type Theory. PhD thesis,
University of Edinburgh, 2006.

[77] Ulrich Schöpp and Ian Stark. A dependent type theory with names
and binding. In CSL 2004, volume 3210 of LNCS, pages 235–249.
Springer, 2004.

[78] Mark R. Shinwell. Fresh O’Caml: Nominal abstract syntax for the
masses. Electr. Notes Theor. Comput. Sci., 148(2):53–77, 2006.

[79] Mark R. Shinwell, Andrew M. Pitts, and Murdoch James Gabbay.
FreshML: programming with binders made simple. SIGPLAN Notices,
38(9):263–274, 2003.

[80] Scott F. Smith. Partial Objects in Type Theory. PhD thesis, Cornell
University, Ithaca, NY, 1989.

[81] A.S. Troelstra. Aspects of constructive mathematics. In Handbook

of Mathematical Logic, pages 973–1052. North-Holland Publishing
Company, 1977.

[82] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics An

Introduction, volume 121 of Studies in Logic and the Foundations of

Mathematics. Elsevier, 1988.

[83] The Univalent Foundations Program. Homotopy Type Theory: Univa-

lent Foundations of Mathematics. http://homotopytypetheory.
org/book, Institute for Advanced Study, 2013.

[84] Mark van Atten and Dirk van Dalen. Arguments for the continuity
principle. Bulletin of Symbolic Logic, 8(3):329–347, 2002.

[85] Wim Veldman. Understanding and using Brouwers continuity princi-
ple. In Reuniting the Antipodes Constructive and Nonstandard Views

of the Continuum, volume 306 of Synthese Library, pages 285–302.
Springer Netherlands, 2001.

[86] Frank Waaldijk. On the foundations of constructive mathematics – es-
pecially in relation to the theory of continuous functions. Foundations

of Science, 10(3):249–324, 2005.

[87] Edwin M. Westbrook. Higher-Order Encodings with Constructors.
PhD thesis, Washington University, Saint Louis, Missouri, 2008.

[88] Edwin M. Westbrook, Aaron Stump, and Evan Austin. The calculus of
nominal inductive constructions: an intensional approach to encoding
name-bindings. In LFMTP ’09, pages 74–83. ACM, 2009.

[89] Chuangjie Xu and Martı́n Hötzel Escardó. A constructive model of
uniform continuity. In TLCA 2013, volume 7941 of LNCS, pages 236–
249. Springer, 2013.

http://www.cs.bham.ac.uk/~mhe/papers/escardo-xu-inconsistency-continuity.pdf
http://www.cs.bham.ac.uk/~mhe/papers/escardo-xu-inconsistency-continuity.pdf
http://www.idris-lang.org/
http://www.nuprl.org/html/Nuprl2Coq/barind.pdf
http://www.nuprl.org/html/Nuprl2Coq/barind.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.pps.univ-paris-diderot.fr/types2014/abstract-18.pdf
http://www.pps.univ-paris-diderot.fr/types2014/abstract-18.pdf
http://homotopytypetheory.org/book
http://homotopytypetheory.org/book

	Introduction
	Nuprl
	Nuprl's Computation System
	Howe's Computational Equivalence
	Nuprl's Type System

	Weak Continuity Principle
	Strong Continuity Principle
	Extension of Nuprl's Computation System
	Syntax
	Operational Semantics of bold0mu mumu *
	Operational Semantics of try

	Howe's Computational Equivalence in the Presence of bold0mu mumu *
	Consistency
	Computing the Modulus of Continuity
	Well-Typedness
	Interlude: Reasoning About bold0mu mumu *
	1st Condition
	2nd Condition
	Nuprl's Strong Continuity Inference Rule

	Relations Between WCP and SCP
	SCP Implies WCP
	WCP Implies SCP
	Axiom of Choice

	Applications
	Uniform Continuity
	UCP Follows From FT and SCP.
	UCP Follows From FT and skWCP.
	Unsquashed UCP Follows From UCP.

	Brouwer's Theorem on Uniform Continuity

	Related Work on Nominal Systems
	Conclusion and Future Work

