
?

Limiting Until in Ordered Tree Query Languages

MICHAEL BENEDIKT, Oxford University Computer Science
CLEMENS LEY, Oxford University Computer Science

Marx and de Rijke have shown that the navigational core of the w3c XML query language XPath is not
first-order complete – that is it cannot express every query definable in first-order logic over the naviga-
tional predicates. How can one extend XPath to get a first-order complete language? Marx has shown that
Conditional XPath – an extension of XPath with an “Until” operator – is first order complete. The com-
pleteness argument makes essential use of the presence of upward axes in Conditional XPath. We examine
whether it is possible to get “forward-only” languages that are first-order complete for Boolean queries on
ordered trees. It is easy to see that a variant of the temporal logic CTL∗ is first-order complete; the vari-
ant has path quantifiers for downward, leftward and rightward paths, while along a path one can check
arbitrary formulas of linear temporal logic (LTL). This language has two major disadvantages: it requires
path quantification in both horizontal directions (in particular, it requires looking backward at the prior
siblings of a node), and it requires the consideration of formulas of LTL of arbitrary complexity on vertical
paths. This last is in contrast with Marx’s Conditional XPath, which requires only the checking of a single
Until operator on a path. We investigate whether either of these restrictions can be eliminated. Our main
results are negative ones. We show that if we restrict our CTL∗ language by having an until operator in only
one horizontal direction, then we lose completeness. We also show that no restriction to a “small” subset of
LTL along vertical paths is sufficient for first order completeness. Smallness here means of bounded “Until
Depth”, a measure of complexity of LTL formulas defined by Etessami and Wilke. In particular, it follows
from our work that Conditional XPath with only forward axes is not expressively complete; this extends
results proved by Rabinovich and Maoz in the context of infinite unordered trees.

ACM Reference Format:
Benedikt, M. and Ley, C. 2011. Limiting Until in Ordered Tree Languages ACM Trans. Comput. Logic ?, ?,
Article ? (????), 34 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Introduction
On finite words, the relationship of first order logic to modal languages – ones with op-
erators for navigating forward and backward in a word – is well-understood. A starting
point is the language Linear Temporal Logic (LTL), which defines formulas that hold
at the beginning of a word. Formulas can be built up from atomic propositions (i.e. node
labels) via Boolean operators and the modalities U (until), X (next), and F (eventu-
ally). Indeed, it suffices to have only one modality, the “strong” variant of until (which
we use in this work)[Gabbay et al. 1980]: ϕUψ is true at the beginning of a word if
there is a proper suffix β of the word such that ψ is true at β and ϕ is true on every
suffix properly containing β. A refinement of Kamp’s Theorem [Kamp 1968] shows that
LTL is first-order complete over words – it can express every property of words that is

Author’s addresses: M. Benedikt and Clemens Ley, Oxford University Computing Laboratory, Wolfson Build-
ing, Parks Road, Oxford, OX1 3QD, UK.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© ???? ACM 1529-3785/????/-ART? $10.00
DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:2 M. Benedikt et al.

definable in first-order logic, where there are unary predicates for the word labels and
binary predicates for the ordering relation.

Is the full power of the until operator necessary? Etessami and Wilke [Etessami and
Wilke 2000] showed that it is. In particular they define a notion of “until-depth” by
restricting the number of nestings of the U operator. The main result of [Etessami
and Wilke 2000] is that the subsets UDk formed by restricting the number of nested
U operators to k form a strict hierarchy in expressiveness on words. More precisely,
they show this on infinite words, and use a variant of LTL that contains both past and
future operators – their until hierarchy thus looks at the nesting of of both the U
operator and its backward analog S (for “Since”). The result for U only follows from
their proof.

Let us turn to the situation for ordered trees. XPath [World Wide Web Consortium
1999] is the w3c standard for querying XML documents; the navigational core of XPath
is a query language on finite labeled ordered trees. XPath is a model language, analo-
gous to temporal logic with only F (eventually). Marx and de Rijke [Marx and de Rijke
2005] showed that this language is incomplete in a fundamental sense – there are
properties expressible in first-order logic over the navigational predicates that XPath
cannot express. This incompleteness manifests itself in other shortcomings of XPath.
For instance, XPath is not closed under complement of path relations; indeed, Marx
has shown [Marx 2005b] that such closure for an extension of XPath is equivalent to
first-order completeness. The incompleteness of XPath can be seen as the analog of the
result that an U operator is needed on trees.

How can one extend XPath to get a first-order complete language? One answer is
given by Marx in [Marx 2005a], who defines a first-order complete query language
Conditional XPath (CXPath). Roughly speaking, CXPath extends XPath by an “until
operator” φ U ψ: this operator holds at a node in an ordered tree iff there is a finite path
from the node that satisfies φ up to the end of the path, at which point it must satisfy
ψ. Marx considers four kinds of paths: leftward within the siblings of a given node,
rightward within the siblings, upward through the ancestors, or downward through
some chain of descendants.

CXPath may seem analogous to LTL in adding an U operator. But the analogy is
misleading, since the U operator of CXPath is combined with selection of a path. Thus
the first-order completeness is a surprising result. Still CXPath has a disadvantage
that it involves both “forward navigation” (downward and to the right) and “backward
navigation”: this makes it less amenable to one-pass evaluation. The forward-only frag-
ment of CXPath, which we denote by ForCXPath, is the variant of CXPath where the
paths allowed in the until operator are downward and rightward, with an additional
filter added to detect whether a child is the first among its siblings. Is ForCXPath com-
plete for arbitrary ordered trees? It follows from results of [Benedikt and Jeffrey 2007]
that this language is first-order complete over finite ordered trees of any fixed depth.
In this paper, we determine that ForCXPath is not first-order complete over arbitrary
ordered trees.

Another way of extending results from words to trees is by separating out path quan-
tification and node quantification into separate operators. A natural way to do this it to
consider a variant of the temporal logic CTL∗ [Emerson 1990]. CTL∗ contains path for-
mulas, which hold with respect to a path within a tree, and also state formulas, which
hold with respect to a node within a tree. Path formulas are built up from state formu-
las via the LTL operators, while state formulas are built up from atomic propositions
via Boolean operators and path quantification. CTL∗ is not complete over trees, since
it has no means of determining the number of children of a node with a certain prop-
erty. But this ability to distinguish among children is known to be the only obstacle
to completeness. For example, if we look at infinite binary trees, where a child is la-

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:3

belled as either left or right child, Hafer and Thomas have shown that CTL∗ extended
with predicates for left and right sibling is first-order complete [Hafer and Thomas
1987]. Related results on completeness up to bisimulation equivalence can be found in
[Moller and Rabinovich 1999]. To extend this to arbitrary ordered trees, we can dis-
tinguish between vertical and horizontal paths, and add a path quantifier for each.
A simple variation of the argument of Hafer and Thomas (given in Section 1) shows
that this language is first-order complete over ordered trees – this is noted in Barcelo
and Libkin’s work (Theorem 3.4 of [Barcelo 2005]). Indeed, we will consider a variant
CTL∗

◃▹ with downward paths, rightward paths, and leftward paths, where on the hori-
zontal paths we allow only simple until operators, with no nesting – this language will
turn out to be first-order complete. CTL∗

◃▹ has two disadvantages: the first is that it
requires paths in both horizontal directions, the second is that it requires all of LTL
as a sublanguage in the vertical dimension, unlike CXPath. Can we make due without
one of these two restrictions?

We give negative answers to these questions. In our first result, we show that one
cannot weaken the horizontal navigation to look only in one direction. Indeed one can-
not make due with a language that has the U operator in one horizontal direction (in
addition to F and X), but only the F and X operators in the other direction.

In our second result, we consider restricting the power in the vertical direction.
For any collection F of formulas over words (e.g. collections of LTL formulas) we let
CTL∗

◃▹(F) be the ordered tree language that restricts CTL∗
◃▹ as follows: node formulas

are built up as before from label predicates and a last child test, while being closed
under quantification of downward and rightward paths; path formulas are built up by
substituting node formulas as propositions within the formulas of F . For example, the
language ForCXPath is contained in CTL∗

◃▹(F) where F contains all formulas p U q.
Our question can now be formalised as: for which subsets F is CTL∗

◃▹(F) first-order
complete?

We show that if F is any fragment of LTL with bounded “until-depth”, then
CTL∗

◃▹(F) is not first-order complete. In fact, our results show that languages
CTL∗

◃▹(Fn) where Fn is the subset of LTL formulas of depth at most n, form a strict
hierarchy. In particular it follows from our results that ForCXPath is not first-order
complete. Furthermore, it shows that any forward-only first-order complete language
must be fairly large.

Related Work. The question of a complete first-order forward-only language was con-
sidered in the context of unordered trees by Rabinovich and Maoz [Rabinovich and
Maoz 2000]. They consider languages of the form CTL∗

(F) where F is a fragment of
first-order logic on ω-words. The main result of [Rabinovich and Maoz 2000] is that
CTL∗

(QRn) is incomplete, where QRn is the set of first-order formulas of quantifier
rank at most n. The results are proven for both finite and infinite trees. In [Rabinovich
2002] an extension is announced, stating that CTL∗

(ADn) is incomplete, where ADn

is the set of formulas of bounded quantifier-alternation depth.
There has also been work in the ordered case. Barcelo and Libkin consider several

logics on ordered trees in [Barcelo 2005]; in the first-order context, the main result is
that a variant of CTL∗ with quantifiers for vertical and horizontal paths is first-order
complete. In [Bojańczyk 2008], Bojańczyk defines a hierarchy of logics using a general
notion of a “tree operator” – a tree automaton with “holes” for lower level formula.
The result announced in [Bojańczyk 2008] is that no logic based on a finite set of such
operators can be first-order complete.

Our notion of “until-depth” is taken from Etessami and Wilke’s work [Etessami and
Wilke 2000]. They deal with infinite words, and use a variant of LTL that contains both
past and future operators. They define a hierarchy within this based on the number

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:4 M. Benedikt et al.

of nestings of the operators U and its backward analog S (for “Since”). The main
result of [Etessami and Wilke 2000] is that the subsets UDk formed by restricting the
number of nested U or S operators to k, form a strict hierarchy in expressiveness on
words.

Our first result states that the restrictions of CTL∗
◃▹ where the use of U is lim-

ited in one of the horizontal directions is incomplete. This contradicts an earlier claim
from Barcelo and Libkin ([Barcelo 2005], again Theorem 3.4: the contradiction is only
with the “Moreover” addendum). It is incomparable with the results of Bojańczyk and
those of Rabinovich and Maoz in [Rabinovich and Maoz 2000], since these works are
concerned with operators that “look downwards”.

Our second main result is that the languages CTL∗
◃▹(UDk) increase in expressive-

ness as k increases; in our case the until-depth ud is defined by bounding the number
of nestings of U in any path formula, while allowing arbitrary nestings of the tem-
poral operators X and F Our proof technique blends the techniques of Etessami and
Wilke with that of Rabinovich and Maoz. We compare this result with the prior re-
sults in the unordered case. It follows from our results that none of the languages
CTL∗

(UDk) are complete on unordered trees. This in turn implies the incompleteness
theorem of [Rabinovich and Maoz 2000], since the sets of formulas QDk they con-
sider are finite for any fixed vocabulary, and hence each is contained in some UDk.
However, Rabinovich has also shown [Rabinovich 2008] that formulas of Until-depth k
have bounded alternation-depth. Combining this with the result on incompleteness of
bounded alternation-depth claimed in [Rabinovich 2002] implies the restriction of our
result to unordered trees. When restricted to unordered trees, our results are incom-
parable to those announced by Bojańczyk in [Bojańczyk 2008], since each of our sets
CTL∗

◃▹(UDi) contains formulas of unbounded Operator Depth.
We note that the case of ordered trees does present new difficulties over the un-

ordered case. Briefly put, our separation theorems, as well as the earlier ones, rely on
the construction of families of pairs trees that are “highly indistinguishable” in the
syntactically smaller language, but which disagree on a fixed sentence within the syn-
tactically larger language. In the ordered case both the construction of these pairs and
the proofs of their equivalence are more difficult, since many properties of the depth
of the trees can be distinguished by small formulas. An explanation of the particular
difficulties arising in our second result is given in Section 4.

Our results were motivated by the goal of obtaining a natural ordered tree query
language that is first-order complete and allows “separation” – unary formulas can
be split into uni-directional components. On words, the separation theorem of Gab-
bay et. al. [Gabbay et al. 1980] shows that LTL has this property. In [Marx 2004],
Marx claimed an ordered tree anolog of this, stating that CondXPath formulas can
be split as a Boolean combination of pure future and pure past parts – In particular,
this would imply that ForCXPath is first-order complete for nodes at the root (i.e. for
Boolean queries). The argument in [Marx 2004] has a flaw, and indeed our main re-
sult disproves this claim. This flaw does not impact the main results of Marx in [Marx
2004], which are re-proven by other means in [Marx 2005a]. [Benedikt and Jeffrey
2007] shows that this separation result does hold when the depth of trees is fixed.

Notes and Acknowledgements: This paper is an extended version of the confer-
ence paper [Ley and Benedikt 2009]. We are heavily indebted to the referees of both
ICDT and TOCL for numerous suggestions corrections.

Organisation: Section 1 defines the languages we deal with formally, and states the
main results of the paper. The rest of the paper is dedicated to the proof of our main in-
completeness result. Section 2 defines the variant of Ehrenfeucht-Fraı̈ssé games used
in the arguments, along with the method of building examples trees that will wit-
ness the incompleteness of the languages. Section 3 gives our first main result, about

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:5

incompleteness of languages that restrict the use of horizontal navigation. Section 4
gives the second result, concerning incompleteness of languages restricting vertical
navigation. Section 5 gives conclusions.

1. FIRST ORDER COMPLETE QUERY LANGUAGES
1.1. Logics for Words
Linear Temporal Logic (LTL) over a set of propositions Σ has formulas built up from
the grammar:

ϕ = a ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣X ϕ ∣ F ϕ ∣ ϕ U ϕ

where a ∈ Σ.
The semantics of LTL is generally defined with respect to infinite words. We will

give a variant for finite labelled words: that is, finite sequences a1 . . . an over a finite
alphabet Σ. For a word w = a1 . . . an, we set ∣w∣ = n. For i ≤ j ≤ ∣w∣ we let w[i] = ai and
we denote by w[i, j] the infix ai . . . aj . The suffix ai . . . an of w is denoted by w[i,∗]. We
note that a word w = a1 . . . an can also be considered a structure (Dom,≤, lab()) where
Dom = {1, . . . , n}, ≤ is the usual linear order on Dom, and lab() is a labeling function
defined by lab(i) = ai for all i ≤ n.

We now define the semantics of LTL:

w ⊧ a iff a is the label of w[1].

w ⊧X ϕ iff ∣w∣ > 1 and w[2,∗] ⊧ ϕ.

w ⊧ F ϕ iff there is a j with 1 < j ≤ ∣w∣ and w[j,∗] ⊧ ϕ.

w ⊧ ϕ U ψ iff there is a j with 1 < j ≤ ∣w∣ and w[j,∗] ⊧ ψ

and for all i, if 1 < i < j then w[i,∗] ⊧ ϕ.

The semantics of LTL over infinite words is analogous.
Here we use the “strong variant” of U , in which ϕ U ψ asserts the existence of a

node satisfying ψ. It is known that the expressiveness of LTL would be unaffected if
we had replaced this by the usual notion, which asserts only that if such a node exists,
all the nodes to the right of the first satisfy ϕ [Emerson 1990]. Using this variant X
and F become redundant, but they will not be redundant when we restrict the nesting
of the U operator. Indeed, since our main negative results are expressive bounds on
the fragment where the use of U is restricted, the use of strong until will make our
negative results stronger. The use of this form of U will not impact our positive results.

We define the until-depth ud(ϕ) of an LTL formula ϕ to be the nesting depth of the
until-operator:

ud(a) = 0
ud(ϕ ∧ ψ) =max{ud(ϕ),ud(ψ)}
ud(¬ϕ) = ud(F ϕ) = ud(X ϕ) = ud(ϕ)
ud(ϕ U ψ) =max{ud(ϕ),ud(ψ)} + 1

This is precisely the definition of [Etessami and Wilke 2000], restricted to LTL for-
mulas with only future operators. Note that there are infinitely many semantically
different formulas of any fixed until-depth.

We define the next/eventually-depth ned of an LTL formula similarly:

ned(a) = 0
ned(ϕ ∧ ψ) = ned(ϕ U ψ) =max{ned(ϕ),ned(ψ)}
ned(¬ϕ) = ned(ϕ)
ned(F ϕ) = ned(X ϕ) = ned(ϕ) + 1

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:6 M. Benedikt et al.

Since X and F are redundant for full LTL, the notion of next/eventually-depth will
only be interesting when we place additional restrictions – e.g. on the until-depth.

1.2. Logics for Trees
Let Σ be a finite set of labels. An ordered tree over Σ consists of
— an acyclic parent/child relation in which every node has in-degree at most one and

there is a unique node – called root – which has in-degree 0
— a right-sibling relation which is the successor relation of a linear order on the chil-

dren of any given node
— a labeling function assigning an element of Σ to each node.
We refer to the usual derived notions on ordered trees, such as the ancestor, descen-
dant, following-sibling, and preceding-sibling relations. We do not require ordered
trees to be finite, but we will always deal with ordered trees such that there are only
finitely many ancestors of any node.

A downward path in an ordered tree is a sequence of nodes p1 . . . in which pn+1 is a
child of pn in the tree for all n such that pn and pn+1 exist. A downward fullpath is a
downward path that contains a leaf node. Similarly, a rightward path is a sequence of
nodes where p1 . . . in which pn+1 is a right sibling of pn, and a rightward fullpath is a
rightward path that contains a node with no right sibling. A leftward path and leftward
fullpath are defined analogously for left siblings. Clearly a path can be considered a
word. A rooted downward fullpath is a downward fullpath that contains the root.

CTL∗ – to be defined in a minute – is a known tree logic for unordered trees. We
define an extension CTL∗

◃▹ of CTL∗ that can also access the sibling order. For a set of
labels Σ, and k ≥ 0, we inductively define the sets Pk and Nk of CTL∗

◃▹ path formulas
and node formulas.

— Boolean combinations of symbols in Σ are the only formulas in N0.
— Any LTL formula over propositions for formulas in Nk is in Pk.
— If ϕ ∈ Pk then ∃◃ϕ, ∃▿ϕ, and ∃▹ϕ are in Nk+1.
— Both Nk and Pk, k > 0 are closed under Boolean operations.

CTL∗
◃▹ is the union over k of the formulas in Nk and Pk.

Given a tree T , a node x in T , and a paths π in T , we define the semantics of CTL∗
◃▹

by induction:

— T,x ⊧ a iff x is labelled with a in T
— T,x ⊧ ∃◃ϕ iff there is a leftward fullpath π starting at x such that T,π ⊧ ϕ.
— T,x ⊧ ∃▿ϕ iff there is a downward fullpath π starting at x such that T,π ⊧ ϕ.
— T,x ⊧ ∃▹ϕ iff there is a rightward fullpath π starting at x such that T,π ⊧ ϕ.
— T,π ⊧ ϕ, for ϕ ∈ Pk iff Nk(π) ⊧ ϕ, where Nk(π) is the labelled linear order formed by

labeling each node in π with the formulas of Nk that it satisfies in T .

For a node formula ϕ, we write T ⊧ ϕ iff T, root(T) ⊧ ϕ.
We can also consider the language CTL∗

◃▵▹ formed by allowing a quantifier ∃▵; that
is, extending the rules for node formulas to say that if ϕ ∈ Pk then ∃▵ϕ in Nk+1. The
semantics is analogous to that of CTL∗

◃▹, but the quantifier ∃▵ quantifies over upward
fullpaths, which are defined analogously to downward fullpaths (the successor of a
node in the sequence must be its parent in the tree).

For φ a path formula, let LTL(φ) be the LTL formula obtained by replacing every
node subformula by a proposition. Let PropSub(φ) be the node subformulas of φ other
than φ itself.

The downward until depth ud▿(ϕ) of a node formula is defined recursively. For a
node formula ϕ of the form ∃▿ρ is the maximum of the until depth of LTL(ρ) and

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:7

the maximum of ud▿(ϕ
′) for ϕ′ ∈ PropSub(ϕ). For all other node formulas it is the

maximum of ud▿(ϕ
′) over proper subformulas.

That is, we look at the maximal until-depth of LTL formulas that are asserted on
downward paths. The left-until-depth ud◃(ϕ) and right-until-depth ud◃(ϕ) are defined
analogously, considering only until-depth of path formulas on paths quantified within
leftward (resp. rightward) path quantifiers, while the until-depth of a node formula
considers arbitrary path formulas.

The next/eventually-depth ned(ϕ) of a CTL∗
◃▹ formula ϕ is the maximal

next/eventually-depth of LTL(ρ) where ρ ranges over path subformula of ϕ.
The down-path-depth pd▿(ϕ) is the nesting depth of ∃▿-quantifiers within ϕ. For-

mally

pd▿(a) = 0
pd▿(ϕ ∧ ψ) = pd▿(ϕ U ψ) = max{pd▿(ϕ),pd▿(ψ)}
pd▿(¬ϕ) = pd▿(F ϕ) = pd▿(X ϕ) = pd▿(ϕ)
pd▿(∃◃ϕ) = pd▿(∃▹ϕ) = pd▿(ϕ)
pd▿(∃▿ϕ) = pd▿(ϕ) + 1

The left-path-depth pd◃(ϕ) and the right-path-depth pd▹(ϕ) are defined in the obvious
way, and the path-depth considers the nesting of all path quantifiers.

For example the formula

∃▿ . a U (∃◃ . b U c).

has next/eventually depth 0, right-until-depth 0, down-until-depth 1, until-depth 1, and
path depth 2.

Let D = {pd◃,pd▿,pd▹,ud◃,ud▿,ud▹,ned}. For d1, . . . , dn ∈ D we denote by CTL∗
◃▹(d1 ≤

x1, . . . , dn ≤ xn) the set of CTL∗
◃▹ formulas ϕ with d1(ϕ) ≤ x1, . . . , dn(ϕ) ≤ xn. In addition

we use the shorthand notation CTL∗
◃▹(d1 ≤ x1, . . . , dn ≤ xn,other ≤ o) to denote the set of

CTL∗
◃▹ formulas ϕwith d1(ϕ) ≤ x1, . . . , dn(ϕ) ≤ xn, and d(ϕ) ≤ o for all d ∈D∖{d1, . . . , dn}.

We denote by CTL∗
◃▵▹(ud ≤ 1) the set of CTL∗

◃▵▹ formulas with until-depth at most 1.

Let Σ be a label alphabet for ordered trees. We consider first-order logic over a signa-
ture having unary predicates a(x) for every a ∈ Σ as well as binary predicates for the
parent/child relation, the immediate right-sibling relation, and the transitive closures
of these predicates. The syntax and semantics of first-order logic is as usual [Libkin
2004]. The quantifier depth of a first order formula ϕ is – as usual – the maximal
nesting depth of quantifiers in ϕ.

1.3. The Expressive Power of CTL∗

It has been shown by Hafer and Thomas that CTL∗ – CTL∗
◃▹ without horizontal path

quantification – is equivalent to first order logic over unordered binary trees [Hafer
and Thomas 1987]. Moller and Rabinovich show that CTL∗ is equivalent to the bisim-
ulation invariant fragment of first order logic over unordered trees [Moller and Rabi-
novich 1999]. Theorem 3.4 in [Barcelo 2005] extends this to ordered trees:

THEOREM 1.1 (BARCELO AND LIBKIN). CTL∗
◃▹ is first-order complete. That is, for

every first-order sentence ϕ there is an CTL∗
◃▹ sentence ψ such that for all ordered trees

T , T ⊧ ϕ iff T ⊧ ψ.

As noted in the introduction, Theorem 3.4 of [Barcelo 2005] actually states a much
stronger claim, which our Theorem 1.3 contradicts. We thus give a brief sketch of the
proof of Theorem 1.1. One approach is via the composition technique of Moller and
Rabinovich [Moller and Rabinovich 1999]. Indeed, this extension is implicit in the work
of Moller and Rabinovich and that of Hafer and Thomas.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:8 M. Benedikt et al.

PROOF. Fix a finite alphabet Σ. It is known that for each k and v that there are only
finitely many semantically distinct first-order formulas over Σ that have quantifier
depth at most k and at most v free variables. Let Σk be the label set consisting of a label
for each set of equivalent first-order formulas with one free variable that has quantifier
depth at most k. For a node x in a Σ-labeled tree T let subtree-typek(x) be the set of
first-order formulas of quantifier depth at most k true at x. For a path π = x1, . . . , xn we
denote by subtree-typek(π) the path subtree-typek(x1), . . . , subtree-typek(xn).

Given a vertical path π in a tree T and a non-leaf node x on π we define the following:
leftchildren(π,x) is the leftward fullpath in T that starts at the unique child of x on π;
rightchildren(π,x) is defined analogously for right siblings. For all k, l ∈ N, typek,l(x)
is the pair consisting of the set of first-order sentences of quantifier depth at most
l that hold of subtree-typek(leftchildren(π,x)) and the set of first-order sentences of
quantifier depth at most l that hold of subtree-typek(rightchildren(π,x)). We let Σk,l be
the alphabet with a label for each pair of sets of sentences of quantifier depth at most
l in the vocabulary for labelled strings over Σk, and an additional label �. typek,l(π) is
the Σk,l-labelled string expanding π by labeling each interior node x with typek,l(x),
and the leaf node of π with a special label �. Then we have:

CLAIM 1. For every first-order sentence φ, there are k and l and a first-order
sentence ψ over Σk,l-labelled strings such that: T,x ⊧ φ iff Typek,l(π) ⊧ ψ,
where π is the path from the root of T to x.

This is proved as in Theorem 3.2 of [Moller and Rabinovich 1999]. In the presence of
an ordering the assumption of “wideness” used there is not needed. Hence the result
then follows from:

CLAIM 2. For every first-order sentence φ over Σk,l-labelled strings, there is
an CTL∗

◃▹ formula ψ such that Typek,l(π) ⊧ φ iff T,x ⊧ ψ

This is proved using Kamp’s theorem, as in Lemma 4.2 of [Moller and Rabinovich
1999].

CTL∗
◃▹ is a large language, since it contains all of LTL as a sublanguage. Clearly, we

can eliminate syntactic features of LTL that do not add expressiveness: for example,
the eventually operator F ϕ and the next operator X ϕ can both be defined using our
form of the until operator [Emerson 1990], and so both are unnecessary. What about
the use of the until operator?

The following result follows directly from the work of Marx [Marx 2004; 2005a]:

THEOREM 1.2 (MARX). CTL∗
◃▵▹(ud ≤ 1) is first-order complete

PROOF. The Conditional XPath language of [Marx 2004; 2005a] has been proved
first-order complete in [Marx 2005a]. In [Libkin and Sirangelo 2008] it was shown
that there is an easy translation from Conditional XPath filters to the language Xuntil
defined in [Marx 2004]. Xuntil has quantification over partial (that is, not necessarily
ending at a leaf) paths in the downward, upward, leftward, and rightward paths fol-
lowed immediately by an until operator. This is analogous to the temporal logic CTL,
which also restricts the sequencing of path quantifiers and LTL operators. Because
the formula being checked after the quantification is an until, the partial path quan-
tification can be replaced by quantification over fullpaths, and thus can be expressed
in CTL∗

◃▵▹(ud = 1). Xuntil is a subset of CTL∗
◃▵▹(ud = 1), both are first-order complete.

We thus have two ways of getting first-order completeness: Theorem 1.1 allows ar-
bitrary LTL, downward paths and both horizontal paths, while Theorem 1.2 restricts
the use of the Until operator but also allows upward paths. Can one make use of only

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:9

one horizontal operator? Can one restrict the nesting of Until operators without intro-
ducing upward axes? Our main results give negative answers to both these questions.

1.4. Main Results
We show two incompleteness results. First, CTL∗

◃▹ becomes incomplete if the number
of ∃▹ quantifiers is restricted to some fixed p and the number of nested Us within ∃▹
quantifiers is restricted to some fixed u. Observe that despite this restriction, there still
might be arbitrary LTL formulas on the leftward and downward paths, and arbitrarily
many X and F s on rightward paths.

THEOREM 1.3 (HORIZONTAL INCOMPLETENESS). For all p, u ∈ N, CTL∗
◃▹(pd▹ ≤

p,ud▹ ≤ u) is not first-order complete on finite ordered trees. In addition, if up > u′p′

then CTL∗
◃▹(pd▹ ≤ p,ud▹ ≤ u) is more expressive than CTL∗

◃▹(pd▹ ≤ p′,ud▹ ≤ u′). The
symmetric statements hold for leftward axes.

It follows from our proof that CTL∗
◃▹(ud◃ = 0) is not first-order complete. This con-

tradicts an addendum in the statement of Theorem 3.4 of [Barcelo 2005], stating that
first-order queries can be rewritten without the use of backward operators in siblings
– this side remark is not given a full proof in the paper. The main part of Theorem
3.4. of [Barcelo 2005] stating that unrestricted CTL∗

◃▹ is first-order complete, is not
contradicted by our results. Michael: For now, I have removed the statement:
”However, it follows from [Barcelo 2005] that CTL∗

◃▹(ud◃ ≤ 1) is already first
order complete.” since I do not see how it follows.

Our second incompleteness result is concerned with downward axes. It states CTL∗
◃▹

is not first order complete if the nesting depth of U on downward paths is restricted
to u – even with an arbitrary nesting depth of all other modifiers.

THEOREM 1.4 (VERTICAL INCOMPLETENESS). On finite, ordered trees,
CTL∗

◃▹(ud▿ ≤ u) is not first-order complete for all u ∈ N. In addition, the family
CTL∗

◃▹(ud▿ ≤ u) forms a strict hierarchy in expressiveness.

We will show that this incompleteness result holds even over binary trees.

Discussion. It is known from [Etessami and Wilke 2000] that on strings, the subsets
of LTL formed by restricting the until-depth to some fixed number form a strict hier-
archy in expressiveness. This does not imply the corresponding result for a language
with path quantification on ordered trees, since path quantification coupled with LTL
operators could add more expressiveness. For example, when one restricts to trees that
consist of exactly one path, CTL∗

◃▹(ud = 1) is first-order complete: arbitrary nesting of
untils can be mimicked by putting each until in a path quantifier, since the until-depth
only counts nesting within a given path quantification. Consider also the analogous sit-
uation when LTL is extended with “past operators” S and P , which are the duals of U
and F (see [Emerson 1990] for the precise definition): Etessami and Wilke [Etessami
and Wilke 2000] have shown that the subsets of LTL extended with past operators
formed by restricting the nesting of both until and its dual S form a strict hierarchy.
But the theorem of Marx mentioned above implies that CTL∗

◃▹ based on LTL-with-past
but restricted to since/until-depth one is already sufficient for first-order completeness;
this is because upward path quantification can be replaced by past operators within a
path, using the fact that a node has a unique ancestor path.

Thus the incompleteness of query languages based on fixed until-depth when only
future operators are available is not obvious. The proofs of Theorems 1.3 are quite
involved and 1.4 are will take up the remainder of the paper.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:10 M. Benedikt et al.

2. BACKGROUND: GAMES FOR WORDS AND TREES
We now describe a game on finite labelled trees, that corresponds to CTL∗

◃▹. In the
same way as LTL is embedded into CTL∗

◃▹, there is a game on words that is embedded
into the game that corresponds to CTL∗

◃▹. This game was introduced by Etessami and
Wilke in [Etessami and Wilke 2000] where they showed that it corresponds to LTL.
Before we define the game on trees, we define this game on words.

2.1. Ehrenfeucht-Fraı̈ssé Games on Words
The LTL(ned ≤ e,ud ≤ u)-game (or LTL(e, u)-game for short) is played by two players,
a male Spoiler and a female Duplicator, on two words w, v. The goal of Spoiler is to
show that the words are different while Duplicator tries to show that they are similar.
At each stage of the game a pair wi, vj of suffixes of w, v is selected. There are different
kinds of moves – X-, F -, and U -moves – in which the players alter the selected words.

We describe the play of the LTL(e, u)-game with selected words w, v. If e = 0 and
u = 0, Duplicator wins the game if the roots of the selected words have same label and
Spoiler wins otherwise. In this case we call w, v the final position of the game.

If e > 0 Spoiler can chooses to play either an X-, or an F -move.

X-move. In an X-move neither player has any choice: the new selected
words are w2, v2. Spoiler can only choose this move if one of the words
has such a suffix. If one of w, v has such a suffix and the other does not,
Duplicator cannot move and Spoiler wins the game. Spoiler also wins the
game if the roots of the new selected words have different labels.

F -move. In an F -move Spoiler picks one of the two words, say w. He then
selects a proper suffix w[i∗] of w with i > 1. Again, Spoiler can only choose
this move if such a suffix exists. Duplicator selects a suffix v[j,∗] of v with
j > 1. Duplicator loses the game if she cannot respond with a suffix such that
the roots of w[i,∗] and v[j,∗] have the same label.

If Duplicator did not lose the game in the preceding round, the players play the
LTL(e − 1, u)-game on the newly selected words. The winner of this subgame will be
declared winner of the LTL(e, u)-game with w, v.

If u > 0 then Spoiler can also consider to play an U -move.

U -move. In an U -move Spoiler picks one of the words and we assume he
picks w. An U -move consists of two half moves. In the first half move Spoiler
selects a proper suffix w[i,∗]i of w for i > 1. The Duplicator has to reply
with a proper suffix v[j,∗] of v for some j > 1 such that the roots of w[i,∗]
and v[j,∗] have the same label. Again, Spoiler can only choose this move if
w[i,∗] exists and Duplicator looses the game if the roots of w[i,∗] and v[j,∗]
have different labels.
In the second half move Spoiler selects v[j′,∗] for some 1 < j′ ≤ j. Duplicator
has to select w[i′,∗] such that 1 < i′ ≤ i and such that the roots of w[i′,∗]
and v[j′,∗] have the same label. In the case that the Spoiler picks v[j′,∗]
such that j′ = j, Duplicator must choose i′ to be equal to i. Again, Duplicator
looses the game if she cannot select such a word.

If Duplicator survives both half rounds, the players continue playing the LTL(e, u− 1)-
game with w[i′,∗], v[j′,∗]. The winner of this game is the winner of the LTL(e, u)-game
on w, v.

Etessami and Wilke have shown the following [Etessami and Wilke 2000]:

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:11

PROPOSITION 2.1 (ETESSAMI, WILKE). Duplicator has a winning strategy in the
LTL(e, u)-game on words w, v iff w, v satisfy the same LTL(ned ≤ e,ud ≤ u) formulas.

2.2. Ehrenfeucht-Fraı̈ssé Games on Trees
For given p◃, p▿, p▹, u◃, u▿, u▹, e ∈ N we will abbreviate

CTL∗
◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿,pd▹ ≤ p▹,ud◃ ≤ u◃,ud▿ ≤ u▿,ud▹ ≤ u▹,ned ≤ e)

by CTL∗
◃▹(p◃, p▿, p▹, u◃, u▿, u▹, e) below. The CTL∗

◃▹(p◃, p▿, p▹, u◃, u▿, u▹, e)-game is played
by Spoiler and Duplicator on a pair of trees T,S. Again there are different kinds of
moves – ∃◃-, ∃▹-, and ∃▿-moves – in which the players alter a pair of selected nodes
x, y. Initially, the roots of T,S are selected. We describe the play of the game with x, y
selected. Duplicator wins the CTL∗

◃▹(p◃, p▿, p▹, u◃, u▿, u▹, e)-game on T,S if p◃+p▿+p▹ = 0
and if x and y have the same label. Otherwise Spoiler can choose one of the following
moves:

∃◃-move. Spoiler can choose an ∃◃-move if p◃ > 0. He picks one of the two
trees T,S, say T . Spoiler then picks the leftward fullpath π that is rooted at
x. Duplicator responds by picking the leftward fullpath τ that is rooted at y.
Then Spoiler and Duplicator play the LTL(e, u◃)-game on π, τ , where these
paths are considered as words. If Spoiler wins this word-game then he wins
the tree-game. In addition, at any point in the play of the LTL(e, u◃)-game
on on π, τ , Spoiler can choose to spawn a new game. Let x′, y′ be the play
of this game (below we will call these “intermediate positions” of the LTL-
game). Then the players play the CTL∗

◃▹(p◃ − 1, p▿, p▹, u◃, u▿, u▹, e)-game on
T,S with x′, y′ selected. If Spoiler wins any of these subgames, he wins, and
otherwise Duplicator wins.
∃▿-move. An ∃▿-move can be chosen by Spoiler if p▿ > 0. It is played like an
∃◃-move, just that the players pick some downward fullpaths π, τ instead
of the leftward fullpaths and the players play the LTL(e, u▿)-game on π, τ
instead of the LTL(e, u◃)-game. Again, Spoiler wins the tree game if he wins
the game in π, τ . In addition, Spoiler can choose any intermediate position
of the path game, and wins if he can win the CTL∗

◃▹(p◃, p▿−1, p▹, u◃, u▿, u▹, e)-
game from these positions.
∃▹-move. Spoiler may play an ∃▹-move if p▹ > 0. The rules are as above, just
with rightward paths on which the players play the LTL(e, u▹)-game. Again,
Spoiler can win the tree game by winning the game on π, τ , or by winning
the CTL∗

◃▹(p◃, p▿, p▹ − 1, u◃, u▿, u▹, e)-game on an intermediate position of the
word game.

A winning strategy for either player from a given initial position and set of moves
is defined as usual. The following lemma shows the correspondence between the tree
game and the logic CTL∗

◃▹.

PROPOSITION 2.2. Let T,S be finite trees. Duplicator has a winning strategy for
the CTL∗

◃▹(p◃, p▿, p▹, u◃, u▿, u▹, e)-game on T , S iff the trees T and S agree on all
CTL∗

◃▹(p◃, p▿, p▹, u◃, u▿, u▹, e) node formulas.

PROOF. (sketch) We show only the ‘if ’ direction, the other direction is similarly
straightforward. Given the hypothesis, we show that Duplicator’s winning strategy
has the property that if the position after a move is x, y at a stage with (p′◃, p

′
▿, p

′
▹)

moves to play, then (T,x) agrees with (S, y) on CTL∗
◃▹(p

′
◃, p

′
▿, p

′
▹, u◃, u▿, u▹, e) node for-

mulas. We show this by induction on p′◃ + p′▿ + p′▹. The base case of no moves remaining
is clear.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:12 M. Benedikt et al.

One inductive case is when Spoiler plays an ∃▿-move π By induction, (T,x) satis-
fies the same formulas of CTL∗

◃▹(p◃, p▿, p▹, u◃, u▿, u▹, e) as (S, y), and hence there is
a path τ rooted at y such that (T,π) and (S, τ) satisfy the same path formulas of
CTL∗

◃▹(p◃, p▿ − 1, p▹, u◃, u▿, u▹, e). Duplicator responds with such a path. Consider LTL
over the alphabet with propositions corresponding to CTL∗

◃▹(p◃, p▿ − 1, p▹, u◃, u▿, u▹, e)
node formulas, and consider the expansion of π and τ where nodes are decorated by the
formulas in the above language that they satisfy. The hypothesis on π and τ and Propo-
sition 2.1 guarantee that there is a winning strategy for Duplicator in the LTL(e, u▿)-
game over this alphabet. Duplicator uses this strategy in the remainder of the move.

The case of leftward and rightward paths is done similarly.

2.3. The Until Hierarchy on Words
We will now review a winning strategy of Duplicator for a game on words. This strategy
has been used by Etessami and Wilke to show that LTL(ud ≤ u) is not first-order
complete over finite words for all u ∈ N. As we will often reuse parts of their proof in
our proofs of Theorems 1.3 and 1.4, we reprove the result of Etessami and Wilke here.

THEOREM 2.3 ([ETESSAMI AND WILKE 2000]). LTL(ud ≤ u) is not first-order
complete over finite words for every u ≥ 0. In addition, for each u, LTL(ud ≤ u + 1) is
more expressive than LTL(ud ≤ u).

The Separating Property. To show Theorem 2.3, we define for each u ∈ N a property
Su that can be expressed in LTL(ud ≤ u) but not in LTL(ud < u) for all u ∈ N.

Definition 2.4. Let Su denote the set of words that contain a prefix satisfying the
regular expression

a(c∗a)u.

The property Su can be encoded by the LTL(ud = u) formula ψu defined recursively
as follows:

ψu = {
a if u = 0

a ∧ (c U ψu−1) if u > 0

To complete the proof of Theorem 2.3, we now show that Su cannot be expressed in
LTL(ud < u), even for arbitrary nesting depth of X and F modifiers. This follows from
Lemma 2.5 below together with Proposition 2.1. We first show the lemma for infinite
words, because it simplifies the presentation. The case for finite words will be a simple
consequence (Corollary 2.6).

LEMMA 2.5 (ETESSAMI, WILKE). For all u, e > 0 there are two infinite words ṽ and
w̃ such that (i) ṽ satisfies Su+1 but w̃ does not, and (ii) Duplicator has a winning strategy
for the LTL(ud ≤ u,ned ≤ e)-game on ṽ, w̃.

We show the lemma in the rest of this section. We fix some given ũ, ẽ ∈ N and define
the infinite words

w̃ = a((cẽa)ũcẽb)ω

ṽ = acẽ w̃

The word w̃ can be visualized as the following “staircase”.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:13

a

a

c ... c a

.
.
.

c ... c

a

c ... c

b

c ... c

u

a

c ... c a

.
.
.

c ... c

a

c ... c

b

c ... c

. . .
a

c ... c

c ... c

.
.
.

.
.
.

a

c ... c a

c ... c

a

c ... c

b

c ... c

u

a

c ... c a

c ... c

a

c ... c

b

c ... c

. . .

It is obvious that ṽ satisfies Su+1 but w̃ does not. Hence part (i) of Lemma 2.5 holds.
To prove part (ii) we show that Duplicator has a winning strategy for the LTL(ud ≤

u,ned ≤ e)-game on ṽ and w̃. The idea of the proof will be to show that Spoiler can force
the selected positions up only one step of the staircase on each U -move. As the number
of steps depends on the number of U -moves, Spoiler cannot detect that the selected
positions are on different steps of the staircase in the beginning of the game.

Duplicator’s Strategy. We first need some notations. Given two positions x, y of the
same word we denote by (x, y) the sequence of positions between x and y, excluding
x and y. We denote by righta(x) the next position to the right of x that is labelled a.
rightab(x) is the next a or b labelled position to the right of x. Intuitively, the plateau-
depth of a position x in w̃ or ṽ is the distance of x to the end of the “plateau” to the
right. Formally, plateau-depth(x) is the number of c-labelled positions in (x, rightab(x)).
The top-depth of a position x in w̃ or ṽ is the number of steps between x and the top
of the staircase, that is top-depth(x) is the number of a positions in (x, rightb(x)). The
top-depth of a substring of w̃ or ṽ is the top-depth of its root, considered within w̃
(resp. ṽ), and similarly for plateau-depth. For example the top-depth of w̃ is u and its
plateau-depth is e. Note also that

plateau-depth(w) = n if w ∈ Σ ⋅ cn ⋅Σ ∖ {c} ⋅Σω

top-depth(w) = n if w ∈ Σ ⋅ (c∗a)nc∗b ⋅Σω

The following claim implies part (ii) of Lemma 2.5 because w̃, ṽ satisfy the conditions
of Claim 1 if the whole paths are selected.

CLAIM 1. Let e ≤ ẽ and u ≤ ũ. Duplicator can win the LTL(ud ≤ u,ned ≤ e)-
game on suffixes w, v of the words w̃, ṽ, if
(1) the roots of w and v have the same label.
(2) w and v have the same plateau-depth.
(3) ∣top-depth(w) − top-depth(v)∣ ≤ 1.
(4) If w and v have different top-depths then

(a) top-depth(w) ≥ u and top-depth(v) ≥ u and
(b) if top-depth(w) = u or top-depth(v) = u

then plateau-depth(w) ≥ e (and hence plateau-depth(v) ≥ e).

Proof of Claim 1. The proof is by induction on u + e. The base case u + e = 0
holds because by Condition 1, the roots of v,w have the same label. In the
induction step, we fix e + u > 0, assume that the claim holds for every pair
e′, u′ with e′+u′ < u+e, and look to show the result for e, u. We thus fix w and v
satisfying the conditions above for e and u, and give a strategy for Duplicator
to win the LTL(ud ≤ u,ned ≤ e) game. We distinguish three cases, according
to the kind of move that Spoiler chooses first.

X-moves. Spoiler can choose anX-move only if e > 0. In this case Duplicator’s
strategy is determined by the rules of the game: the selected suffixes after
the round are v[2,∗],w[2,∗].
We prove that Duplicator can win the LTL(ud ≤ u,ned ≤ e − 1)-game on
v[2,∗],w[2,∗]. This is done by showing that the conditions of Claim 1 hold
for u and e−1. This implies that the roots of the newly-selected suffixes have

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:14 M. Benedikt et al.

x0

y0
a cccc a cccc a cccc ccccb

a cccc a cccc a cccc ccccb

Wednesday, 19 January 2011

Fig. 1. Duplicator’s strategy if the current position of the game is (x0, y0) and Spoiler skips at most ẽ + 1
positions. If Spoiler picks a position z in either w or v in his first half move, then Duplicator picks the position
z′ in the other word, such that there is a arrow from z to z′.

the same label, and hence the claim follows by induction. The only inter-
esting case is when ∣top-depth(w) − top-depth(v)∣ = 1 and top-depth(w) = u.
WLOG, we can assume top-depth(v) = u + 1. In this case plateau-depth(w) ≥ e
by Condition 4b. As by definition we have that plateau-depth(w[2,∗]) ≥

plateau-depth(w) − 1 it follows that the plateau-depth of w[2,∗] is greater
or equal to e − 1. A similar argument shows that plateau-depth(v[2,∗]) ≥

e − 1. As plateau-depth(w) ≥ e > 0 it also follows that the top-depth of
neither word has decreased, that is top-depth(w[2,∗]) = top-depth(w) = u
and top-depth(w[2,∗]) = top-depth(w[2,∗]) = u. Hence Condition 4 holds for
w[2,∗], v[2,∗]. Condition 2 is obvious.

F -moves. The strategy on F -moves is very easy for Duplicator. It relies on
the observation that as v and w are infinite and satisfy the invariant, they
have the same set of proper suffixes. Therefore, given Spoiler’s selection, Du-
plicator can select the same suffix in the other word.

U -moves. On U -moves, Duplicator cannot use the same strategy as for F -
moves in her first half move: if she did, Spoiler might play on the word with
the smaller top-depth and just move the selected suffix by one position. Then
Duplicator might skip ẽ+1 positions to the next isomorphic suffix. In the sec-
ond half move, Spoiler can pick from ẽ+2 positions (the positions that Dupli-
cator skipped and the one she selected), but Duplicator can only choose the
position that Spoiler selected. Hence, when Spoiler skips only few positions,
Duplicator will skip the same number of positions. Only when Spoiler skips
sufficiently many positions will Duplicator try to find an isomorphic suffix.
We now assume that Spoiler chooses to play on w and that he selects a suffix
w[n,∗] of w in his first half move. If Spoiler skips at most ẽ+1 positions (that
is n ≤ ẽ + 1) then Duplicator skips the same number of positions as Spoiler
did, that is, she picks v[n,∗]. Otherwise Duplicator picks the largest proper
suffix v[m,∗] of v that is isomorphic to w[n,∗] (such a suffix exists due to
Condition 4). The case where Spoiler plays on v is symmetric. See Figures 1
and 2 for a visualization of Duplicator’s strategy.
We verify that the suffixes w′, v′ chosen after the first half move sat-
isfy the conditions of Claim 1 for e, u − 1. This implies that their roots
have the same label and thus the claim follows by induction. If Duplica-
tor has chosen a suffix that is isomorphic to Spoiler’s choice, then it is
clear that the conditions of Claim 1 hold. In the other case both posi-
tions have been advanced by n ≤ ẽ + 1 positions. The interesting case is
when ∣top-depth(w) − top-depth(v)∣ = 1 and top-depth(w) = u (and hence
top-depth(v) = u + 1). Clearly plateau-depth(w[n,∗]) = plateau-depth(v[n,∗])
and hence Condition 2 holds for w[n,∗], v[n,∗]. To verify Condition 4 first
note that ∣top-depth(w[n,∗]) − top-depth(v[n,∗])∣ = 1. There are two cases:

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:15

a cccc a cccc a cccc ccccb

a cccc a cccc a cccc ccccb
x0

y0

Wednesday, 19 January 2011

Fig. 2. Duplicator’s strategy if Spoiler plays on the lower word (starting from position y0) and skips more
than ẽ + 1 positions. The meanings of the arrows are as in Figure 1.

— If the positions have not been advanced beyond the next b (formally n ≤

plateau-depth(w) + 1) then top-depth(w[n,∗]) = top-depth(w) = u > u − 1
and similarly top-depth(v′) > u − 1.

— In the other case top-depth(w[n,∗]) = u − 1 and top-depth(v[n,∗]) = u − 1,
but as n ≤ e + 1, the plateau-depth of both suffixes cannot have in-
creased. Hence plateau-depth(w[n,∗]) ≥ plateau-depth(w) > e and simi-
larly plateau-depth(v[n,∗]) > e.

Assume that the suffixes w[n,∗], v[m,∗] have been selected after the first
round. In the second half move Spoiler chooses a suffix v[m′,∗] such that
1 < m′ ≤ m. It is easy to check that Duplicator can always choose w[n′,∗]
such that n − n′ = m −m′. Michael: I do not see this: if w had smaller
top-depth then it is clear, but in the other case? Observe that if w[n′,∗]
and v[m′,∗] are not isomorphic, then n′,m′ ≤ e + 1. Hence the conditions of
Claim 1 are maintained.

How must the above construction be altered to show the result for finite words? Note
that Duplicator only exploits that the words are infinite on her strategy for F -moves.
Hence, if she only jumps to the next (ace)ubce section on each F -move, then she can
win the game provided there are at least e + 1 such sections. Thus we have:

COROLLARY 2.6 (ETESSAMI, WILKE). For all u, e ∈ N, Duplicator has a winning
strategy for the LTL(ud ≤ u,ned ≤ e)-game on the finite words

w̃fin ∶= ((ace)ubce)
e+1

ṽfin ∶= ac
e w̃fin.

We will reuse Duplicator’s winning strategy that we described in the proof from
Claim 1 in Lemma 2.5 in the proofs of Theorems 1.3 and 1.4. The game on trees will be
designed in such a way, that in at some point of this game, the players will select paths
that are isomorphic to the words w̃fin and ṽfin. Hence we will be able to use Duplicator’s
strategy of Claim 1 in Lemma 2.5 to show that Duplicator can win the word-game on
these paths.

3. THE HORIZONTAL UNTIL HIERARCHY
We now turn to the proof of Theorem 1.3, that is our horizontal incompleteness result
on trees. We start by defining a property Qi of trees for all i ∈ N. Later we will show
that CTL∗

◃▹(pd▹ ≤ p▹,ud▹ ≤ u▹) can define Qp▹u▹ but not Qp▹u▹+1 for all p▹, u▹ ∈ N.

3.1. The Separating Property
The right path of a node x in a tree is the sequence of its right siblings.

Definition 3.1 (Separating Property). Let Qi be the set of ordered trees that have a
rooted downward fullpath π ending at a leaf labelled d, such that each node on π apart

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:16 M. Benedikt et al.

from the root and the leaf has a right path with a prefix satisfying

a(c∗a)i.

If p▹ ⋅ u▹ ≥ i, then Qi can be expressed in CTL∗
◃▹(pd▹ ≤ p▹,ud▹ ≤ u▹) by the sentence

‘there is a rooted downward fullpath ending on d on which every node satisfies µi’
where µi is the formula ‘there is a rightward path satisfying a(c∗a)iΣ∗’. Formally

µi = {
a if i = 0

∃▹(λu▹,i) if i > 0

λj,i = {
µi if j = 0 or i = 0

a ∧ (c U λj−1,i−1) if j > 0 and i > 0

The following lemma shows that CTL∗
◃▹(pd▹ ≤ p▹,ud▹ ≤ u▹) cannot expressQi+1 if p▹u▹ <

i. Thus it implies Theorem 1.3.

LEMMA 3.2. For all p▹, u▹, o ∈ N, there are finite trees T̃ and S̃ such that (a) T̃
satisfies Qp▹u▹+1 but S̃ does not and (b) Duplicator has a winning strategy for the
CTL∗

◃▹(pd▹ ≤ p▹,ud▹ ≤ u▹,other ≤ o)-game on T̃ , S̃.

Before we prove Lemma 3.2, we note a consequence of it: Consider the case where
u▹ = 0. Then Lemma 3.2 states that there are finite trees T̃ , S̃ such that T̃ satisfies Q1

but S̃ does not and Duplicator wins the CTL∗
◃▹(pd▹ ≤ p▹,ud▹ = 0; other ≤ o)-game on

T̃ , S̃ for all p▹, o ∈ N. It follows that Q1 cannot be expressed in CTL∗
◃▹(pd▹ ≤ p▹,ud▹ =

0; other ≤ o) for any p▹, o ∈ N. Hence we get the following corollary, which implies that
ForCXPath is not first-order complete.

COROLLARY 3.3. CTL∗
◃▹(ud▹ = 0) is not first-order complete on finite ordered trees.

We now start with the proof of Lemma 3.2. Recall that this lemma is all we need to
complete the proof of Theorem 1.3.

PROOF OF LEMMA 3.2. The proof is quite long. We will define two trees T̃ , S̃ and
then we show that Duplicator has a winning strategy for the CTL∗

◃▹(pd▹ ≤ p▹,ud▹ ≤

u▹; other ≤ o)-game on T̃ , S̃. We will first show the lemma for “wide trees” – those
in which a node can have infinitely many left and right siblings, but where any two
siblings have only finitely many nodes between them (i.e. the sibling order has type
ω∗ + ω). Later we explain how the proof must be altered for the finite case.

3.2. The Trees
To construct T̃ and S̃, we need some way to inductively define trees. We will use the
concept of templates, defined in the following. A hedge is an ordered sequence of wide
trees, where the sequence can again be infinite in both directions. A template F is
a hedge with two sets of distinguished leaves – positive ports and negative ports –
labelled by “+” and “−” respectively. A template F and two hedges T̄ , S̄ can be combined
to form a new hedge F [T̄ , S̄] which is obtained from F by replacing each positive port
with the hedge T̄ and each negative port with the hedge S̄. In Figure 3 we see an
example of a template F and two hedges S and T and the result of applying F to S and
T .

We now fix some given p̃▹, ũ▹, õ ∈ N for the rest of the proof of Lemma 3.2. We first
define for each k ∈ N two hedges T̄ k and S̄k. These hedges will be constructed from two
templates F and G which we define first. Both F and G are hedges of infinite width.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:17

d

cba

+ -

F = T =

S =

F[T,S] = a

cb d

Fig. 3. Constructing the hedge F [T,S] from the template F and the hedges T and S.

The sequence of roots of both F and G spell out the infinite word

((cna)
m
cnb)

ω

where n = p̃▹ ⋅ õ + õ
2 and m = p̃▹ ⋅ ũ▹ + õ

2 + 2. All subtrees in F or G that have a root
labelled c are singleton trees, consisting only of a root. The subtrees that have a root
labelled a or b consist of a root with a single child that is either a positive or a negative
port. In both templates all ports but one are negative. What distinguishes F from G is
the labeling of the rightward path that starts at the unique parent of the positive port:
In F this path has a label in the language a(c∗a)p̃▹ũ▹+1 c∗bΣω; in G its label lies in the
language a(c∗a)p̃▹ũ▹c∗bΣω. Figure 4 shows F and G.

+ -

aa c cb

-

-+ -

aaa cc cb

-

-

bc c

-

bc c

G =

F =

c

c

-

a cc

c

-

a cc

-

a cc

c

c

c

c

horizontal-stem

c

c

Fig. 4. The templates F and G for p̃▹ = 1, õ = 1, and ũ▹ = 0.

We define two sequences (T̄k)k∈N and (S̄k)k∈N of hedges by induction on k: T̄0 is the
single node labelled d and S̄0 is the single node labelled c. For k > 0

T̄k ∶= F [T̄k−1, S̄k−1]

S̄k ∶= G [T̄k−1, S̄k−1]

We say that the single node T0 is positive and the single node S0 is negative. For
a tree of the form F [T̄ , S̄] which is obtained from F by replacing each positive port
with the hedge T̄ and each negative port with the hedge S̄, each copy of the root of T̄
under this replacement is said to be positive, and each copy of the root of S̄ is said to
be negative. That is, the root nodes of the substituted trees inherit the polarity of the
ports in which they were substituted. The polarity of a subtree is the polarity of its
root. Figure 5 shows a positive and a negative tree in T̄3.

Now we can define T̃ and S̃, the trees whose existence is asserted in Lemma 3.2.
These are also the trees on which Spoiler and Duplicator will play the CTL∗

◃▹-game.
Recall that we fixed õ ∈ N at the beginning of this proof.

Definition 3.4 (T̃ , S̃). Let T̃ be the unique positive tree in the hedge T̄õ+1. S̃ is some
negative tree in S̄õ+1 whose root is labelled a (note that all trees with this property are
isomorphic).

It is easy to see that T̃ satisfies Qp̃▹ũ▹+1 while S̃ does not: An inductive argument
shows that a subtree of T̄õ+1 or S̄õ+1 satisfies Qp̃▹ũ▹+1 iff it is positive. Hence part (a) of
Lemma 3.2 follows.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:18 M. Benedikt et al.

a c c c c ba

dc c

ac c c cb

c c

a

a c c c c ba

dc c

ac c c cb

c c

a ac c c c b

d c c

ac c c cb

c c

a c c c c ba

dc c

ac c c cb

c c

a c c c c ba

dc c

ac c c cb

c c

b c c a c c a c c a c c b

a c c c c ba

dc c

ac c c cb

c c

a c c c c ba

dc c

ac c c cb

c c

a ac c c c b

d c c

ac c c cb

c c

a c c c c ba

dc c

ac c c cb

c c

a c c c c ba

dc c

ac c c cb

c c

b c c a c c ac ca c c b

a

Fig. 5. A positive tree in (top) and a negative tree (bottom) in T̄3 for p̃▹ = 1, ũ▹ = 0 and õ = 0. Roots of positive
subtrees are displayed with double circles, roots of negative subtrees with single ones. In particular, the top
tree satisfies Q1, while the bottom tree does not.

3.3. Duplicator’s Strategy

We now show part (b) of Lemma 3.2 for T̃ and S̃ as defined above. In fact, we show the
following more general statement on hedges:

If x is the root of a positive tree in T̄õ+1 and y is the root of a negative tree in
S̄õ+1, then Duplicator has a winning strategy for the CTL∗

◃▹(pd▹ ≤ p̃▹,ud▹ ≤

ũ▹; other ≤ õ)-game on the hedges T̄õ+1 and S̄õ+1 starting from position x, y.

We use an extension of CTL∗
◃▹ for hedges: The node formula ∃▹φ is true at the root x

of a tree in a hedge T̄ if φ is true on the sequence of roots of T̄ to the right of x. In
a similar way, the CTL∗

◃▹-game can be extended to hedges, such that the players can
choose the sequence of roots right of the current selection in ∃▹ moves. The symmetric
definitions hold for leftward paths.

Notation. During the game on T̄õ+1 and S̄õ+1, Duplicator can maintain an invariant
on the string of siblings of the selected nodes x and y. This invariant is similar to the
invariant used in the word game from Section 2.3, but this time, Duplicator not only
has to assure that the strings to the right of the selected nodes are similar, but also
those to the left of them. We therefore define the inverse versions of top-depth and
plateau-depth. The inverse-plateau-depth of a node x is the number of c-labelled nodes
between x and the next node labelled a or b to the left of x. The bottom-depth of x is the
number of a-labelled nodes between x and the next b to the left of x. The plateau-depth
of a node x in T̄k or S̄k is the plateau-depth of x with respect to its sequence of right
siblings – or on the sequence of roots of T̄k or S̄k, if x is a root. We lift the notions of
inverse-plateau-depth, the top-depth, and the bottom-depth to trees in the same way.
In each sequence of siblings in either T̄k or S̄k we distinguish the node that is the next
b-labelled node to the right of the only positive node. We will say that a node x in S̄k
corresponds to a node y in T̄k (or vice versa) if x and y have the same distance and
direction to the distinguished node in their respective sequence of siblings.

The following claim is sufficient for part (b) of Lemma 3.2. As we have already proven
part (a) of Lemma 3.2, the proof of the following claim completes the proof of Theorem
1.3.

CLAIM 1. Let p▹ ≤ p̃▹, and p◃, p▿ ≤ õ. Duplicator can win the CTL∗
◃▹(pd◃ ≤

p◃,pd▿ ≤ p▿,pd▹ ≤ p▹,ud▹ ≤ ũ▹; other ≤ õ)-game on S̄õ+1, T̄õ+1 if the selected
positions x, y are roots of trees in S̄õ+1, T̄õ+1 and satisfy:
(1) x and y have the same label.
(2) x and y have the same plateau-depth.
(3) ∣top-depth(x) − top-depth(y)∣ ≤ 1.
(4) If x and y have different top-depths then

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:19

(a) top-depth(x) ≥ p▹ũ▹ and top-depth(y) ≥ p▹ũ▹
(b) if top-depth(x) = p▹ũ▹ or top-depth(y) = p▹ũ▹

then plateau-depth(x) ≥ p▹õ
(and hence plateau-depth(y) ≥ p▹õ).

(5) If x and y have different bottom-depths then
(a) bottom-depth(x) ≥ p◃õ and bottom-depth(y) ≥ p◃õ
(b) if bottom-depth(x) = p◃õ or bottom-depth(y) = p◃õ

then inverse-plateau-depth(x) ≥ p◃õ
(and hence inverse-plateau-depth(y) ≥ p◃õ).

Proof of Claim 1. The claim is proven by induction on p◃ + p▿ + p▹. The base
case holds as by Condition 1 the nodes x and y have the same label. Now
assume that p◃ + p▿ + p▹ > 0.

Strategy for ∃▿-moves. Assume that Spoiler picks an infinite downward full-
path π rooted at x in either T̄õ+1 or S̄õ+1. As x has a downward path rooted
at it, its label cannot be c. Since x and y have the same label, it follows that
there is also an infinite downward-fullpath rooted at y. In fact there are sev-
eral such paths, and we now describe which of these Duplicator chooses.
Let x′ be the child of x on π. We first determine the child y′ of y on the path
τ that Duplicator chooses. Duplicator’s goal is to pick y′ such that she can
win the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿ − 1,pd▹ ≤ p▹,ud▹ ≤ ũ▹; other ≤ õ)-game from
x′, y′, and to assist in this they will ensure that the trees rooted at x′ and
y′ have the same polarity: this will make “downward moves” in the game
easy to win. The easiest case is when the node that corresponds to x′ in the
other tree has (in the sense defined above) has the same polarity as x′: in
this case Duplicator will choose this node. Otherwise there are two cases:
If x′ has positive polarity, then Duplicator picks the single child of y that
has positive polarity. The remaining case is that x′ has negative polarity
and its corresponding node in the other tree has positive polarity. In this
case Duplicator picks the unique child y′ of y who’s corresponding node has
positive polarity (observe that y′ has negative polarity). In any case x′ has
the same polarity as y′. Because the polarity of children of the root of a hedge
determines what subtrees are added beneath, and because x and y are both
roots of S̄õ+1 and T̄õ+1, the subtrees rooted at x′ and y′ are isomorphic. Thus
Duplicator can choose a path τ ′ starting at y′ such that (a) the path has the
same labeling as the suffix π′ of π starting at x′ and (b) the node π′(i) has
the same polarity as the node τ ′(i) for all i ≤ ∣π′∣. As π and τ have the same
labeling, Duplicator can play isomorphically on the path game.

Maintaining the Invariant on ∃▿-moves. At the end of the path game Spoiler
will pick an intermediate position from which the tree game will continue.
Hence we verify that all possible intermediate positions of the path game are
winning positions for Duplicator for the CTL∗

◃▹-game with p▿ − 1 downward
path moves. This follows from the induction hypothesis if x and y – the roots
of π and τ – is the final position. The main concern is when the intermediate
positions are x′ and y′. Since Spoiler can play horizontal moves from these
positions, we cannot appeal isomorphism of the subtrees. For the case that
Spoiler chooses to continue to play from position x′, y′, we verify that Dupli-
cator can win the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿ − 1,pd▹ ≤ p▹,ud▹ ≤ ũ▹; other ≤ õ)-
game from x′ and y′. The interesting case is when x′ and y′ both have posi-
tive polarity – in the other cases, x′ and y′ are isomorphic within their sibling
string, and hence the invariant clearly holds. Assume that the sequence of

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:20 M. Benedikt et al.

siblings of x′ is obtained from F and that the siblings of y′ are obtained from
G. Then Condition 2 holds because both x′ and y′ have positive polarity. To
check Condition 3 recall that the right fullpath starting at x is in the lan-
guage

a(cna)p̃▹ũ▹+1cnbΣω

with n = p̃▹ ⋅ õ + õ
2, while the right fullpath starting at y′ is in the language

a(cna)p̃▹ũ▹cnbΣω.

Thus Conditions 3 and 4 are maintained. For Condition 5, observe that both
x′ and y′ are contained in a block of siblings labelled

b (cna)
m
cnb

where m = p̃▹ ⋅ ũ▹ + õ
2 +2. Hence the left path from x′ to its next b-labelled left

sibling is labelled a(cna)õ
2

cnb (from right to left) and the string from y′ to its
next b left sibling is a(cna)õ

2+1cnb (from right to left). As p◃ ≤ õ this shows
that Condition 5 is maintained.
If the position that Spoiler chooses is further down in π, τ than x′, y′, then the
selected nodes are isomorphic positions in isomorphic hedges, and therefore
winning positions for any CTL∗

◃▹-game.

∃▹-moves. Now assume that Spoiler picks a rightward fullpath π in either
hedge. Duplicator has to choose the unique rightward fullpath τ starting
at the selected node in the other tree. The players then play the LTL(ud ≤

ũ▹,ned ≤ õ) game on the selected paths. In this game, Duplicator uses the
strategy described in Section 2.3. The following claim can be shown using
the strategy described in the proof of Claim 1 in Lemma 2.5.

SUBCLAIM 1.1. Let x, y be positions that satisfy the conditions of
Claim 1 and let π̃, τ̃ be the right fullpaths starting at x, y respectively.
For all u▹ ≤ ũ▹ and o ≤ õ, Duplicator has a winning strategy for the
LTL(ud ≤ u▹,ned ≤ o)-game on suffixes π, τ of π̃, τ̃ if
(1) π and τ have the same plateau-depth.
(2) ∣top-depth(π) − top-depth(τ)∣ − 1.
(3) If π and τ have different top-depths then

(a) top-depth(π)≥(p▹ − 1)ũ▹ +u▹ and top-depth(τ)≥(p▹ − 1)ũ▹ +u▹
(b) if top-depth(π)=(p▹ − 1)ũ▹ +u▹ or top-depth(τ)=(p▹ − 1)ũ▹ +u▹

then plateau-depth(π) ≥ (p▹ − 1)õ + o
(and hence plateau-depth(τ) ≥ (p▹ − 1)õ + o).

In addition, every intermediate position of this LTL-game is a winning
position for Duplicator in the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿,pd▹ ≤ p▹ −
1,ud▹ ≤ ũ▹; other ≤ õ)-game.

It is easy to check that the conditions of Subclaim 1.1 imply the conditions of
Claim 1 for (p▹, p◃ − 1, p▿) moves left to play.

∃◃-moves. Duplicator’s strategy for leftward path moves is symmetric to her
strategy on right paths moves. The proof that this strategy maintains the
invariant follows the same lines as above. This concludes the proof of Claim
1.

This concludes the proof of Theorem 1.3 for infinite trees.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:21

3.4. The Finite Case
We now describe what needs to be changed, in order to prove Theorem 1.3 for finite
trees. Recall that roots of both F and G spell out the infinite word

((cna)
m
cnb)

ω

where n = p̃▹ ⋅ õ + õ
2 and m = p̃▹ ⋅ ũ▹ + õ

2 + 2. Consider a template F fin that is obtained
from F by pruning in such a way that the sequence of its roots spells out the word

((cna)
m
cnb)

2(õ2+õp̃▹)

and the right-path starting at the unique root with a positive child is labelled
a(cna)p̃▹ũ▹+1 cnbw2op▹ for w = (cna)m cnb. The finite template Gfin is obtained from G
in a similar way, with the right-path starting at the parent of the unique positive port
being in the language a(c∗a)p̃▹ũ▹c∗bw2op▹ . Consider the finite hedges T̄ fin

k , S̄ fin
k that are

constructed like the hedges T̄k and S̄k but from templates F fin and Gfin instead of from
the templates F and G. We argue that Duplicator can win the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤

p▿,pd▹ ≤ p▹,ud▹ ≤ ũ▹; other ≤ õ)-game on S̄ fin
õ+1 and T̄ fin

õ+1. In fact, one can show that if
the current position is x and y, then Duplicator can maintain the invariant of Claim 1
together with the additional condition:

(6) If the number of b-labelled nodes to the right x is not equal to the number of b-
labelled nodes to the right y, then there are at least 2õp̃▹ b-labelled nodes to the
right of both x and y and there are at least 2õ2 b-labelled nodes to the left of both x
and y.

On path moves, Duplicator can reuse her strategy from the infinite case. In the path
game, Duplicator can use the same strategy as in the infinite case on downward paths,
and the Etessami-Wilke strategy from Corollary 2.6 on horizontal paths. It is easy to
check that this strategy preserves the invariant. This concludes the proof of Theorem
1.3 for finite trees.

4. THE VERTICAL UNTIL HIERARCHY
We now show Theorem 1.4. The structure of the proof is similar to the structure of the
proof of Theorem 1.3: For each u▿ ∈ N we define a property Pu▿ that can be expressed
in CTL∗

◃▹(ud▿ ≤ u▿) but not in CTL∗
◃▹(ud▿ ≤ u▿ − 1). Again, we first show Theorem 1.4

for infinite trees and then we discuss what needs to be changed for the finite case.

4.1. The Separating Property
For u▿ ∈ N we define Pu▿ to be the set of ordered trees which have a fullpath π ending
at d such that each suffix of π that starts with b satisfies the regular expression

b(c∗a)u▿ Σω.

Pu▿ can be expressed in CTL∗
◃▹(ud▿ ≤ u▿) by the formula ‘there is a downward full-

path ending at d on which every node satisfies b→ µu▿ ’ where µu▿ is defined by

µi = {
true if i = 0

c U (a ∧ µi−1) if i > 0

The following lemma shows that Pu▿+1 cannot be expressed in CTL∗
◃▹(ud▿ ≤ u▿).

LEMMA 4.1. For all u▿, o ∈ N there are finite trees T̃ and S̃ such that (i) T̃ satisfies
Pu▿+1 but S̃ does not and (ii) Duplicator has a winning strategy for the CTL∗

◃▹(ud▿ ≤

u▿; other ≤ o) game on T̃ , S̃.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:22 M. Benedikt et al.

Before we prove Lemma 4.1 we show how it implies Theorem 1.4.

PROOF OF THEOREM 1.4. Assume towards a contradiction that there is a number
u▿ ∈ N such that Pu▿+1 can be expressed in CTL∗

◃▹(ud▿ ≤ u▿). Then there is a formula φ
in CTL∗

◃▹(ud▿ ≤ u▿) that expresses Pu. In particular, φ is in CTL∗
◃▹(ud▿ ≤ u▿; other ≤ o)

for some o ∈ N.
For the numbers u▿ and o there are, according to Lemma 4.1, two trees T̃ and S̃

on which Duplicator has a winning strategy for the CTL∗
◃▹(ud▿ ≤ u▿; other ≤ o)-game.

Thus, by Proposition 2.2, no CTL∗
◃▹(ud▿ ≤ u▿; other ≤ o) formula can distinguish T̃ and

S̃. Therefore φ either holds on both T̃ and S̃ or on neither of them. As T̃ satisfies Pu▿+1

but S̃ does not, it follows that φ does not define Pu▿+1. This is a contradiction of the
assumption that φ defines Pu.

The proof of Lemma 4.1 is quite involved and will take up the rest of this section. In
Section 4.2 we construct two trees T̃ and S̃ on which the CTL∗

◃▹-game will be played.
Before we define Duplicator’s strategy formally, we explain its intuition in Section 4.3.
Section 4.4 describes Duplicator’s strategy in detail, and we show that it is a winning
strategy. To simplify the presentation, Sections 4.2 – 4.4 prove the lemma for infinite
trees. Section 4.5 describes which modifications are necessary for the proof on finite
trees.

4.2. The Trees
We now fix two numbers ũ▿, õ ∈ N for the rest of the proof of Lemma 4.1. We construct
two families of infinite binary trees (Tk)k∈N and (Sk)k∈N from the templates F and G
shown in Figure 6. The only distinction between F and G lies in the node labelled “±”:
it is a positive port in F and a negative port in G. In each of the two templates, the
leftmost branch consists of the root labelled b followed by infinitely many cõa blocks.
The final c node in any cõ sequence has two children: the left child is labelled a and
the right child is a positive or negative port. In both F and G the topmost ũ▿ ports are
negative. In F the next two ports are positive, while in G only the next port is positive.
All other ports are negative.

We define the sequences (Tk)k∈N and (Sk)k∈N by induction on k. T0 consists of a single
node labelled d, while S0 consists of a single node labelled c. For k ≥ 1:

Tk ∶= F [Tk−1, Sk−1]

Sk ∶= G [Tk−1, Sk−1]

For trees T,T ′ we write T ≡ T ′ iff T and T ′ agree in all CTL∗
◃▹(ud ≤ ũ▿; other ≤ õ)

formulas. It is easy to see that ≡ is an equivalence relation. The next lemma shows
that ≡ has a finite number of equivalence classes.

LEMMA 4.2. The relation ≡ has at most O(ΣO(2
m)) equivalence classes where m =

max(õ2, ũ▿õ).

PROOF. We show that there are at most O(ΣO(2
m)), m = max(õ2, ũ▿õ) different syn-

tax trees of formulas in CTL∗
◃▹(ud ≤ ũ▿; other ≤ õ). Note that each such syntax tree is

a binary tree that has depth at most m = max(õ2, ũ▿õ). Each node is labelled by either
one of the symbols {U,X,F,∧,∨,¬} or by a predicate in Σ. As a binary tree of depth m

has at most 2(2m) nodes, it follows that there are at most (6 + ∣Σ∣)2(2m) = O(ΣO(2
m))

syntax trees of formulas in CTL∗
◃▹(ud ≤ ũ▿; other ≤ õ).

Definition 4.3 (Period). A pair of numbers (µ,λ) is a period of the sequences (Tk)k∈N
and (Sk)k∈N if for all k ≥ µ, Tk ≡ Tk+λ and Sk ≡ Sk+λ.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:23

Infinite Stem

c

c
a -

b

 !▽ many
 negative ports

 fooling node

 witness node

 fooling node

õ many
c nodes

c

c
a ±

c

c
a +

c

c
a -

c

c
a -

Fig. 6. The templates F and G

LEMMA 4.4. (Tk)k∈N and (Sk)k∈N have a period (µ,λ).

PROOF. Let Ek be the pair of ≡-classes of Tk and Sk. Since the number of equivalence
classes of ≡ is finite, there must be µ and λ such that Eµ+λ = Eµ, and we claim that this
µ and λ suffice. Note that the ≡-class of F [Tk, Sk] (and G[Tk, Sk]) depends only on the ≡-
classes of Tk and Sk for all k ∈ N. This follows by induction using the usual composition
technique for trees (see e.g. [Moller and Rabinovich 1999]). Hence from Tk ≡ Tk+λ and
Sk ≡ Sk+λ we can conclude (applying F to both equivalence classes) that Tk+1 ≡ Tk+λ+1,
and that Sk+1 ≡ Sk+λ+1 (applying G to both equivalence classes). The result now follows
by induction.

Fix a period (µ,λ) of (Tk)k∈N and (Sk)k∈N for the rest of this proof. We can now define
the trees T̃ , S̃ on which the CTL∗

◃▹-game will be played.

Definition 4.5. Let k = 3õ2λ + µ + 1. Then we define

T̃ ∶= Tk S̃ ∶= Sk

Notation. We call a b(c∗a)ω labelled path within Tk or Sk a stem. Observe that a stem
is isomorphic to F (or G) without ports. A node that is connected to the root of a stem
by a path labelled b(c∗a)ic∗b is called a witness node if i = ũ▿ + 1 and fooling node if
i = ũ▿ or i = ũ▿ + 2. A path that always departs from the stem on the witness node is
a witness path. Observe that Tk contains a single witness path that starts at the root,
and both Tk and Sk contain several witness paths that start at intermediate nodes. The
enclosing subtree of a node x in T ∈ {Tk, Sk} is the smallest subtree of T that contains
x and that is isomorphic to either Tj or Sj for some j ≤ k. A subtree T of Tk or Sk has
positive polarity if it is isomorphic to Tj for some j ≤ k and T has negative polarity
otherwise. The polarity of a node x is the polarity of its enclosing subtree.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:24 M. Benedikt et al.

We now show part (i) of Lemma 4.1.

PROPOSITION 4.6. For all k ∈ N, Tk satisfies Pũ▿+1 but Sk does not.

PROOF. The proof is by induction on k. The proposition obviously holds for the trees
T0 and S0. Now let k > 0. Note that because the witness path departs from the topmost
stem on the witness node, it starts with a sequence labelled b(c∗a)ũ▿+1c∗b. Hence the
first b is followed by sufficiently many a nodes. In addition, it departs from the topmost
stem into a subtree isomorphic to Tk−1. Since Tk−1 satisfies Pũ▿ by induction, we have
that Tk satisfies Pũ▿ .

We now show that Sk does not satisfy Pũ▿ . We know by induction that any strict
subtree S of Sk of negative polarity does not contain a path witnessing that S ∈ Pũ▿+1.
Hence a path witnessing Sk ∈ Pũ▿+1 must contain the upper fooling node of the top-
most stem. But any path that contains this node starts with a sequence labelled
b(c∗a)ũ▿c∗b.

4.3. The Strategy: Challenges for Duplicator
To prove part (ii) of Lemma 4.1 we will need to show that Duplicator has a winning
strategy for the CTL∗

◃▹(ud▿ ≤ u▿; other ≤ o) game on T̃ , S̃. We start with some intuition
about the strategy of Duplicator. The idea is that T̃ and S̃ consist of several “similar
levels” of subtrees. We will show that there is a number λ such subtrees on levels that
are λ apart and of the same polarity are winning positions for Duplicator. The game
will start on similar levels, but on trees of different polarity. As Spoiler eventually wins
on trees of non-similar levels, Duplicator must assure that the selected nodes stay on
similar levels throughout the game. Duplicator cannot force the game to a position
with both similar levels and of the same polarity, thus her strategy is to maintain the
position on similar levels regardless of the polarities. As Duplicator has to keep the
position on similar levels, Spoiler can force the game down a fixed number of levels on
each move. Thus Duplicator can only win the game on trees with very many similar
levels. Thereby she must assure that the selected nodes are high up in the tree if the
polarities of their enclosing subtrees differ.

Basically, Duplicator will have to disguise that the witness path in T̃ ends on a
d while the witness path in S̃ ends in a c. Clearly, Duplicator must have a remedy
when Spoiler plays the witness path in T̃ . In fact, Duplicator’s strategy depends on the
place where Spoiler’s path departs from the witness path. Assume Spoiler picks a path
ππ′ that departs from the witness path on the root of π′. Then Duplicator’s response
depends on the length on π.

The case where π is short is “easy” for Duplicator: she picks a path ττ ′ such that τ
is isomorphic to π. To choose τ ′, observe that there are two possibilities for path ππ′

to depart from the witness path. If ππ′ departs above the witness node then Duplica-
tor can choose the root of τ ′ such that the roots π′ and τ ′ have the same polarity. As
Duplicator maintained similar levels throughout the game the roots of π′ and τ ′ are
on similar levels and hence winning positions for Duplicator. She can use her winning
strategy to determine the rest of τ ′. If ππ′ does not depart from the witness path above
the witness node then it departs on the (a-labelled) sibling of the witness node. We will
see that in this case Duplicator has an “obvious” strategy to determine τ ′. It will be
easy to see in either of these cases that Duplicator wins the path game if the paths
are chosen in this way. There are two cases for its final position: If the final position
is in π, τ , the Duplicator has achieved her goal to keep the trees big, and therefore she
wins by induction. If the final position is in π′, τ ′ then the selected nodes are on sim-
ilar levels and of the same polarity – and Duplicator wins by the definition of similar
levels.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:25

The case that π is long is more threatening for Duplicator. If Duplicator uses the
strategy for “short” moves described above then the final position of the path game
might be in small subtrees of different polarity. In this case it is not guaranteed that
there are sufficiently many levels below the selected nodes for Duplicator to use her
strategy. Therefore Duplicator will respond to such a “long” move of Spoiler by pick-
ing a path that moves off of a stem at a different point some place down the tree –
Duplicator has some flexibility as to where to do this “fooling”, which we will exploit.

But given that Duplicator has played a fooling path, the first cause for concern is
that Spoiler may try to detect a distinction in the paths by moving to the “fooling point”
where the two paths are first distinguished – the point in which one path departs from
a stem at a different point from the other path. Note that on the witness path, the
number of c∗a blocks between the root of a stem and the departure point is u▿ + 1.
Hence Spoiler will be unable to use only until moves to force the play to this point on
the critical path, since his until moves are limited to u▿. But one must still worry that
Spoiler can try to push the play down to this point using eventually moves, which he
has in some abundance. The response of the Duplicator to these threatening eventually
moves will be to jump down to a lower stem. This is analogous to the strategy used by
the Duplicator in the linear case of the until-depth hierarchy theorem of Etessami and
Wilke ([Etessami and Wilke 2000], Theorem 2.3); there, the Duplicator responds to
eventually moves of the Spoiler by jumping to next b(c∗a)∗c∗b block in the word.

However, this “jumping response” of Duplicator cannot be done so naively in the set-
ting of ordered trees. If Duplicator jumps so that the position is only one level off from
the position of Spoiler, then the two nodes are on non-similar levels. In particular the
selected nodes are in enclosing subtrees Ti and Sj where i and j have different parities;
Spoiler can detect this difference in parity of i and j by playing paths that alternate in
the way they jump from stem to stem: e.g. by playing a path that will depart after two
a’s on even levels and after one a on odd levels. This method of detecting differences in
trees of different depths goes back to Potthoff [Potthoff 1995]. The general problem is
that two distinct depths of the tree could have cardinalities with different properties,
and this difference can be exposed by further path moves.

Duplicator will remedy this problem by making not a small jump down one stem,
but an “exaggerated jump” that moves down λ stems to a place that looks locally (on
its stem) isomorphic to the place where Duplicator has played. How do we ensure
that a locally similar place exists? Duplicator will make sure that in all cases where
Spoiler can execute this strategy, the currently-played paths below the fooling point
begin with a large segment of the witness path. Duplicator can guarantee this on path
moves because if π is not long, there is no need to perform fooling at all. On the other
hand, if π is long, Duplicator can play a path that has a long regular structure at the
top, which allows her to perform the exaggerated jump.

4.4. Duplicator’s Strategy in Detail
We now formalize Duplicator’s winning strategy in order to prove part (ii) of Lemma
4.1. We start with the notion of ‘similar levels’.

Definition 4.7. Let (µ,λ) be the period of (Tk)k∈N and (Sk)k∈N. We define ≐ ⊆ N × N
by

n ≐m iff n,m ≥ µ and n =m + λi for some i ∈ Z.

The following is an immediate consequence of the definition of ≐ and Proposition 2.2.

FACT 4.8. Duplicator has a winning strategy for the CTL∗
◃▹(ud ≤ ũ▿,other ≤ õ)-game

on Ti, Tj if i ≐ j and the roots are selected. The same holds for Si, Sj .

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:26 M. Benedikt et al.

Notation. A node x in T̃ or S̃ is on level i if its enclosing subtree is isomorphic to
either Ti or Si. Two nodes x, y in T̃ or S̃ are on similar levels if x is on level i, y is
on level j, and i ≐ j. In this case we write x ≐ y. We denote by plateau-depth(x) the
plateau-depth of x on the stem that contains x. Given a tree T , we denote by T [x] the
subtree of T rooted at x.

We noted in the previous section that Duplicator will have to maintain similar po-
sitions throughout the game. If she can, in addition, achieve a position in which the
selected nodes are locally isomorphic on their stems, and both nodes are not on the wit-
ness path then she can win the CTL∗

◃▹(ud▿ ≤ u▿; other ≤ o)-game if it proceeds strictly
downwards.

CLAIM 1. Let x and y be nodes in T̃ and S̃ respectively, that are on similar lev-
els, have the same plateau depth, the same label, and are both not on witness
paths (as defined in the paragraph below Definition 4.5) . Then Duplicator
can win the CTL∗

◃▹(ud ≤ ũ▿,other ≤ õ)-game on the subtrees T̃ [x], S̃[y] of T̃ , S̃
rooted at x, y respectively.

Proof of Claim 1. Without loss of generality we assume that x is positive
and y is negative. Hence the enclosing subtree of x is Ti for some i and the
enclosing subtree of y is Sj for some j. There is a unique node x′ in Si such
that the path from the root of Si to x′ is isomorphic to the path from the root
of Ti to x. Note that as x is not on any witness path, the subtree Si[x′] of Si
rooted at x′ is isomorphic to the subtree Ti[x] of Ti rooted at x. In addition,
Duplicator has a winning strategy for the CTL∗

◃▹(ud ≤ ũ▿,other ≤ õ) game on
Si[x

′] and Sj[y] by Fact 4.8. The result follows because CTL∗
◃▹(ud ≤ ũ▿,other ≤

õ) is closed under isomorphism.

We have seen that Duplicator has a simple winning strategy from certain positions
in T̃ and S̃. Unfortunately, if the roots of T̃ and S̃ are selected, neither Fact 4.8 nor
Claim 1 applies. The following claim is concerned with this situation – that is, it im-
plies that Duplicator has a winning strategy for the CTL∗

◃▹(ud▿ ≤ ũ▿; other ≤ õ) game
on T̃ , S̃ if the roots are selected. Hence it proves part (ii) of Lemma 4.1.

CLAIM 2. Let p◃, p▿, p▹ ≤ õ. Duplicator has a winning strategy for the
CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿,pd▹ ≤ p▹,ud▿ ≤ ũ▿; other ≤ õ)-game on T̃ , S̃ if the
selected nodes x, y satisfy
(1) x, y have the same label,
(2) x, y are on similar levels,
(3) x, y have the same plateau-depth,
(4) level(x) > k and level(y) > k where k = (λ(ũ▿ + õ) + 1)(p◃ + p▿ + p▹) + µ.

Proof of Claim 2. We prove the claim by induction on p◃ + p▿ + p▹. The base
case p◃ + p▿ + p▹ = 0 holds because x and y have the same label by Condition
1. For the induction step, we fix p◃, p▿, p▹ such that p◃ + p▿ + p▹ > 0. If Spoiler
plays a horizontal move, then Duplicator’s strategy is trivial. For downward
moves we distinguish several cases.

Case 1. Spoiler plays a downward move on T̃ . Assume that Spoiler chooses
a downward path π that is rooted at x in T̃ . As noted above, Duplicator’s
strategy depends on the length of the prefix of π that is on a witness path.
Therefore let π1, . . . , πn be a partition of π such that π1 . . . πn−1 is a maximal
prefix of π on a witness path, and for each i ≤ n − 1, πi is contained in exactly
one stem. We will call Spoiler’s move a short move if n ≤ λ(ũ▿ + õ) + 1 and a

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:27

long move otherwise. Duplicator’s strategy is different for the two kinds of
moves.

Case 1.1. Short downward move on T̃ . As described in the previous subsec-
tion, Duplicator has an easy strategy in this case. Duplicator first chooses a
prefix τ1 ⋅. . . ⋅τn−1 of the full path τ = τ1 ⋅. . . ⋅τn that she will choose in the game.
She picks this prefix such that τi has the same labeling as πi for 1 ≤ i ≤ n − 1
(note that any downward path in T̃ and S̃ is determined by its labeling). The
τi exist, because by Condition 4, there are enough levels below to accommo-
date a path of this length, and because by construction a path not ending at
a leaf in one tree can be mimiced in the other tree.
To determine τn, recall that π departs from the witness path on the root of
πn. There are two ways in which a path can depart from a witness path:
above the witness node or on the sibling of the witness node. In the first case
the root xn of πn is labelled b and in the second case xn is labelled a. In both
cases we define the root yn of τn to be the child of the leaf of τn−1 that has the
same label xn.
— If π departs from the witness path on the sibling of the witness node,

then both xn and yn are not on any witness path. Hence it follows from
Claim 1 that Duplicator wins the CTL∗

◃▹(ud▿ ≤ ũ▿; other ≤ õ)-game on
T̃ [xn], S̃[yn].

— If π departs from the witness path above the witness node, then the
subtrees rooted at xn and yn have the same polarity. As xn and yn are
on similar levels, Duplicator can win the CTL∗

◃▹(ud▿ ≤ ũ▿; other ≤ õ) on
T̃ [xn], S̃[yn] by Fact 4.8.

In both cases, Duplicator can use her winning strategy for the CTL∗
◃▹(ud▿ ≤

ũ▿; other ≤ õ)-game on T̃ [xn], S̃[yn] to determine a path τn rooted at yn such
that she has a winning strategy for the LTL(ud ≤ ũ▿,ned ≤ õ)-game on πn, τn.

The LTL-game after short downward moves on T̃ . We now describe Duplica-
tor’s strategy for the LTL game on π, τ . Duplicator can the play isomorphi-
cally on π0 . . . πn−1 and τ0 . . . τn−1 as these paths are isomorphic (that is, she
picks the n-th node whenever Spoiler picks the n-th node in the other path).
If Spoiler chooses a node in πn or τn then Duplicator can use her winning
strategy for the LTL(ud ≤ ũ▿,ned ≤ õ) on πn, τn. These strategies can be com-
posed to derive a winning strategy for π, τ . This composed strategy has the
property that if π′, τ ′ is an intermediate position of the path-game, then ei-
ther the root of π′ is in π0 ⋅ . . . ⋅ πn−1 and the root of τ ′ is in τ0 ⋅ . . . ⋅ τn−1 or the
root of π′ in πn and the root of τ ′ is in τn.

It remains to show that any intermediate position π′, τ ′ of the path-game
on π, τ is a winning position for Duplicator in the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤

p▿ − 1,pd▹ ≤ p▹,ud▿ ≤ ũ▿; other ≤ õ)-game. For positions where the root of
π′ is in π0 ⋅ . . . ⋅ πn−1 and the root of τ ′ is in τ0 ⋅ . . . ⋅ τn−1 it is easy to see
that the Conditions 2, 3 and 1 of Claim 2 are true. Condition 4 is satisfied
as π0 ⋅ . . . ⋅ πn−1 and τ0 ⋅ . . . ⋅ τn−1 are ‘short’ (that is, n ≤ λ(u▿ + o) + 1) and
hence the levels of the roots of both π′ and τ ′ are sufficiently high up in
the trees. Thus Duplicator wins on these positions by induction. The same
argument applies if the roots of πn and τn are selected as the new position.
Now consider the case that the root of π′ is a descendant of xn and the root
of τ ′ is a descendant of yn. In this case the subsequent game can never leave
the trees T̃ [xn], S̃[yn] (this is because the game can only move horizontally

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:28 M. Benedikt et al.

c
c

a
c

c

a

b

a

c
c

c
c

c
c

a

b
c

c

c
c

a

b

a

c
c

c
c

c
c

a

b

a

c
c

c
c

c
c

a

b

a

c
c

c
c

c
c

a

b

a

c
c

c
c

c
c

a

 fooling node

witness node

�

��

�

�

��

�
�

��

�

�

��

�

�

��

�

�

��

�
�

��
�

�
��

�!1

!2

!3

!m-1

!1

!2

!3

!m-1

b

a

c
c

c
c

c
c

a

�

��

�

!n-1

b
c

c
b

c
c
b

c
c

�

��

�

!n

b

a

c
c

c
c

c
c

a

b
c

c
b

c
c
b

c
c

b

b

b

b

!m

�

��

�

Fig. 7. The paths chosen by Spoiler and Duplicator in Case 1.2.

and downwards – but never upwards). Then the new position is a winning
position for Duplicator because by construction, she has a winning strategy
for the CTL∗

◃▹(ud▿ ≤ ũ▿; other ≤ õ)-game on T̃ [xn], S̃[yn].

Case 1.2. Long downward move on T̃ . Recall that in this case Spoiler chooses
a path π = π1 . . . πn in T̃ such that n > λ(u▿+o)+1 and π1 . . . πn−1 is a maximal
prefix of π on a witness path and each πi with i ≤ n−1 is contained in exactly
one stem. The idea is that Duplicator picks a path τ = τ1 . . . τm for some large
m that is smaller than n such that τ1 is isomorphic to π1, τ2 is similar to but
different from π2 – different in a way that is undetectable by Spoiler in the
game (as we show below). The path τ3 . . . τm−1 is a long sequence of segments
on the witness path that is isomorphic to π3 . . . πm−1, and τm is chosen by
induction in such a way that it is indistinguishable from the path πm . . . πn
in a suitable LTL game (see Figure 7). Formally
— τ1 is isomorphic to π1.
— τ2 is a prefix of a stem that departs from its stem on the upper fooling

node. Note that τ2 is labelled bcõ(acõ)u▿−1. This is Duplicator’s ‘fooling’
move.

— m = λ(u▿ + o) + 1.
— τi is isomorphic to πi for all 3 ≤ i ≤m − 1.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:29

The τi with i ≤m exist by Condition 4.
We still need to specify τm to complete the description of Duplicator’s path
move. Let xm be the root of πm and let ym be the child of the leaf of τm−1 that
has the same label as xm. Observe that due to Duplicator’s fooling move,
the roots of x3 and y3 of π3 and τ3 have positive polarity. As τ3 . . . τm−1 is
isomorphic to π3 . . . πm−1 it follows that xm and ym have the same polar-
ity. In addition, as the positions x, y at the beginning of the current round
were on similar levels (Condition 2) it follows that xm and ym are on simi-
lar levels. Finally, as both positions are the roots of their respective stems,
they have the same plateau depth. Hence it follows from Fact 4.8 that Du-
plicator has a winning strategy for the CTL∗

◃▹(ud▿ ≤ ũ▿; other ≤ õ)-game on
T̃ [xm], S̃[ym]. This allows Duplicator to determine a path τ ′ rooted at ym
such that (a) she wins the LTL(ud ≤ ũ▿,ned ≤ õ)-game on πm . . . πn and τ ′ and
(b) every intermediate position of the LTL-game is a winning position for the
CTL∗

◃▹(ud▿ ≤ ũ▿; other ≤ õ)-game on T̃ [xm], S̃[ym]. Duplicator chooses τm = τ ′,
which completes the description of τ = τ1 . . . τm. Figure 7 shows the paths π
and τ .

The LTL game after long downward moves on T̃ . Let π, τ be the paths chosen
in the current round as described above and let p◃, p▿, p▹ be the numbers
fixed at the beginning of the proof of Claim 2. Then the following subclaim
implies Claim 2.

SUBCLAIM 2.1. Duplicator can win the LTL(ud ≤ ũ▿,ned ≤ õ)-game on
π and τ . In addition she can play in such a way that any intermediate
position is a winning position for her in the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤

p▿ − 1,pd▹ ≤ p▹,ud▿ ≤ ũ▿; other ≤ õ)-game on T̃ , S̃.

We will prove Subclaim 2.1 by defining winning strategies for Duplicator in
three LTL(ud ≤ ũ▿,ned ≤ õ)-games: one on π1 and τ1, one on π2 . . . πm−1 and
τ2 . . . τm−1, and one on πm . . . πn and τm. All these strategies will have the
property that intermediate positions are winning positions for Duplicator in
a suitable restriction of the CTL∗

◃▹-game. As in Case 1.1. these strategies can
be combined to prove Subclaim 2.1.
The strategy for the game π1, τ1 is easy: as the paths are isomorphic, Dupli-
cator will play isomorphically (that is, if Spoiler picks the i-th node in either
path, then Duplicator will pick the i-th node in the other path). It follows
from the hypothesis of Claim 2 that any intermediate position satisfies all
the Conditions of Claim 2 for p◃, p▿ − 1, p▹, ũ▿, õ.
A suitable strategy for Duplicator in the game on πm . . . πn and τm exists by
definition of τm.
It remains to show that Duplicator has a winning strategy for the game on
π2 . . . πm−1 and τ2 . . . τm−1. Observe that the paths π2 . . . πm−1 and τ2 . . . τm−1

are ‘long’ versions of the paths used in Corollary 2.6. A stem corresponds to
a staircase, and hence the top-depth of a node corresponds to its distance to
the place where the path leaves the stem. A block of the form cõa within a
stem corresponds to a plateau, and hence the plateau-depth is the position
within such a block. Let the end-depth of a path π be the number of b labelled
nodes on π – that is, the number of stems remaining in the path.
We show that Duplicator can maintain an invariant similar to the one in
Claim 1 in the proof of Claim 2.5. There are two differences. First, the paths
π1 . . . πm and τ1 . . . τm are finite, and hence Duplicator must make sure that
Spoiler cannot exploit that the end of the paths might have different dis-

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:30 M. Benedikt et al.

tances from the selected nodes. In addition, the position at the end of the
path game must satisfy the conditions of Claim 2. In particular they must
be on similar levels. This will have an impact on Duplicator’s strategy on F -
and U -moves: if Duplicator were to play according to the strategy described
in Claim 1 in the proof of Lemma 2.5, then the positions could end up being
exactly one stem apart, and hence on non-similar levels. Therefore, Duplica-
tor will jump to the next position that is locally isomorphic and on a similar
level to the position that Spoiler chose (whereas in the proof of Claim 1 of
Lemma 2.5 it was sufficient to jump to the next locally isomorphic position).
After this ‘exaggerated jump’, Duplicator will be able to play according to a
simpler strategy. The invariant of Duplicator’s strategy is given in the fol-
lowing subclaim:

SUBCLAIM 2.1.1. [Duplicator Strategy] Let u▿ ≤ ũ▿ and o ≤ õ. Then
Duplicator has a winning strategy for the LTL(ud ≤ u▿,ned ≤ o)-game
on π2 . . . πm−1 and τ2 . . . τm−1, if the selected suffixes π̂, τ̂ satisfy:
(1) the roots of π̂ and τ̂ have the same label.
(2) π̂ and τ̂ have the same plateau-depth.
(3) ∣top-depth(π̂) − top-depth(τ̂)∣ ≤ 1.
(4) If π̂ and τ̂ have different top-depths then

(a) top-depth(π̂) ≥ u▿ and top-depth(τ̂) ≥ u▿ and
(b) if top-depth(π̂) = u▿ or top-depth(τ̂) = u▿

then plateau-depth(π̂) > o (and hence plateau-depth(τ̂) > o).
(5) π̂ and τ̂ are on similar levels.
(6) Either π̂ and τ̂ have the same end-depth or

∣end-depth(π̂) − end-depth(τ̂)∣ = λ, end-depth(π̂) ≥ λ(u▿ + o), and
end-depth(τ̂) ≥ λ(u▿ + o).

In addition, Duplicator can play in such a way that each intermediate
position is a winning position for her in the CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤

p▿ − 1,pd▹ ≤ p▹,ud▿ ≤ ũ▿; other ≤ õ)-game.

Proof of Subclaim 2.1.1. The proof is by induction on u▿ + o. The base
case u▿ + o = 0 follows from the conditions 2 and 4. We now assume
that u▿+o > 0. On X-moves and U -moves, Duplicator uses exactly the
Etessami-Wilke strategy from Claim 1 of Lemma 2.5.
Comparing the condition of Claim 1 in Lemma 2.5 and Subclaim 2.1.2
one can see that Conditions 1-4 of both claims are exactly the same.
The words in Claim 1 are prefixes of the words obtained by appending
a “b” at the beginning of the two paths being considered here – the
two paths have additional (c∗a)∗c∗b suffixes at the end.
On X- and U -moves, Duplicator uses exactly the Etessami-Wilke
strategy of Claim 1. We have shown in Claim 1 that this strategy
preserves Conditions 1-4 of Subclaim 2.1.2. Conditions 5-6 are pre-
served by X- and U -moves because if Spoiler moves his position a cer-
tain number of stems downwards Duplicator will move her position
the same number of stems downwards. On F -moves Duplicator uses
her strategy for F -moves from the finite Etessami-Wilke game, with
the modification that she jumps to the next stem on a similar level
instead of the very next stem. As Conditions 1-4 of Subclaim 2.1.2
only talk about properties within a stem, Claim 1 already proves
that these are preserved during F -moves. Condition 5 is preserved
because Duplicator jumps to a similar level, while Condition 6 is pre-
served because similar levels are at most λ ⋅ (u + o) stems apart.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:31

In order to show that all intermediate positions of the game are win-
ning for the appropriate CTL∗

◃▹ game, it suffices to show that they
satisfy the conditions of Claim 2. Conditions 1,2, and 3 of Claim 2
follow directly from the conditions in Subclaim 2.1.2. Condition 2 of
Claim 2 follows from Condition 6 of Subclaim 2.1.2 and the fact that
m=λ(u + o) + 1.

Case 2. Downward move on S̃. This case is very similar to Case 1. The only
difference is that if Spoiler plays a long move, then Duplicator’s “fooling”
move is to play a path that departs from the witness path on the lower fooling
node on the second stem.
More specifically, the strategy on short downward moves is exactly the same
as in T̃ . This works because this move involves no “fooling” - Duplicator exits
from the witness path on the same node as Spoiler does.
If Spoiler plays a long move then Duplicator is forced to perform his fooling
move. In this fooling move Duplicator can depart from the stem in a slightly
different position than Spoiler, but she must make sure that she exits from
the witness path into a subtree that has the same polarity asrthe root of the
stem on the witness path in the other tree. If Spoiler plays in (̃S), then roots
of stems on the witness paths have positive polarity - hence Duplicator uses
the upper fooling node. As roots of stems on the witness path have negative
polarity on (̃T), Duplicator must perform a fooling move that exits from the
witness path into a subtree of negative polarity. Thus she chooses the lower
fooling node (see Figure 6).

4.5. The Finite Case
Part (ii) of Lemma 4.1 can also be shown for finite trees. We define trees T̃ fin and S̃fin

to be obtained from T̃ and S̃ by pruning the stems at some point. In particular, each
stem in T̃ fin and S̃fin spells out the finite word b(c∗a)õ(ũ+õ)+ũ. The witness node and the
fooling nodes are as in T̃ and S̃.

The stem-depth of a node x is the number of a labelled nodes on a downward fullpath
rooted at x that contains no right siblings. The stem-depth of a path π is the stem-depth
of its root.

Lemma 4.1 for finite trees trees follows from the following claim. It is basically the
finite tree version of Claim 2 in the proof of Lemma 4.1.

CLAIM 3. Let p◃, p▿, p▹ ≤ õ. Duplicator has a winning strategy for the
CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿,pd▹ ≤ p▹,ud▿ ≤ ũ▿; other ≤ õ)-game on T̃ fin, S̃fin if
the selected nodes x, y satisfy
(1) x, y have the same label,
(2) x, y have the same plateau-depth,
(3) x, y are on similar levels,
(4) level(x) > k and level(y) > k where k = (λ(ũ▿ + õ) + 1)(p◃ + p▿ + p▹) + µ,
(5) stem-depth(x) ≥ p▿(ũ▿ + õ) and stem-depth(y) ≥ p▿(ũ▿ + õ).

Proof of Claim 3. Duplicator can use a similar strategy as in the infinite case.
In particular, whenever Spoiler picks a path that departs from the stem,
then Duplicator can use the strategy described in Claim 2 of Lemma 4.1 –
using this strategy she can preserve that conditions of Claim 3. But Spoiler
might try to expose that the stem depths of x and y are different. To do so,
he might select the path π that consists only only of the stem. In this case,

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:32 M. Benedikt et al.

Duplicator will also choose the path τ in the other tree that only consists of
the stem. The following Subclaim shows that in this case Duplicator can win
the LTL(ud ≤ ũ▿,ned ≤ õ)-game on π and τ , while maintaining the conditions
of Claim 3. The proof of Subclaim 1 concludes the proof of Claim 3, and hence
the proof of Theorem 1.3 for finite trees.

SUBCLAIM 1. Let u▿ ≤ ũ▿ and o ≤ õ. Duplicator can win the LTL(ud ≤

u,ned ≤ o)-game on π and τ if the selected suffixes π̃ and τ̃ of π and τ
satisfy:
(1) the roots of π̃ and τ̃ have the same label.
(2) π̃ and τ̃ have the same plateau-depth.
(3) ∣top-depth(π̃) − top-depth(τ̃)∣ ≤ 1.
(4) If π̃ and π̃ have different top-depths then

(a) top-depth(π̃)≥(p▿ − 1)ũ▿ +u▿ and top-depth(τ̃)≥(p▿ − 1)ũ▿ +u▿
(b) if top-depth(π̃)=(p▿ − 1)ũ▿ +u▿ or top-depth(τ̃)=(p▿ − 1)ũ▿ +u▿

then plateau-depth(π̃) ≥ (p▿ − 1)õ + o
(and hence plateau-depth(τ̃) ≥ (p▿ − 1)õ + o).

(5) If π̃ and π̃ have different bottom-depths then
(a) bottom-depth(π̃) ≥ (p▿ − 1)ũ▿ + u▿

and bottom-depth(τ̃) ≥ (p▿ − 1)ũ▿ + u▿
(b) if bottom-depth(π̃)=(p▿ − 1)ũ▿ + u▿

or bottom-depth(τ̃)=(p▿ − 1)ũ▿ + u▿
then inverse-plateau-depth(π̃) ≥ (p▿ − 1)õ + o
(and hence inverse-plateau-depth(τ̃) ≥ (p▿ − 1)õ + o).

(6) stem-depth(x) ≥ p▿(ũ▿ + õ) and stem-depth(y) ≥ p▿(ũ▿ + õ).
In addition every intermediate position of the LTL(ud ≤ u,ned ≤

o)-game on π and τ is a winning position for Duplicator for the
CTL∗

◃▹(pd◃ ≤ p◃,pd▿ ≤ p▿,pd▹ ≤ p▹,ud▿ ≤ ũ▿; other ≤ õ)-game on
T̃ fin, S̃fin.

Proof of Subclaim 1. The proof is similar to the proof of Claim 1 in
Lemma 2.5. We use an induction on u▿ + o. If u▿ + o = 0 then the
claim follows as by Condition 1 the roots of π̃ and τ̃ have the same
label. For the inductive case we assume that u▿ + o > 0. Duplicator’s
strategy depends on the kind of move that Spoiler plays first.

X-move. On X-moves Duplicator’s strategy is determined by the
rules of the game. We omit the calculations that show that X-moves
preserve the invariant.

F -move. Assume that Spoiler plays an F -move on π̃, in which he se-
lects a suffix π̃′ of π̃. If τ̃ contains a suffix τ̃ ′ that is isomorphic to
π̃′ then Duplicator selects τ̃ ′. Otherwise π̃′ must contain τ̃ as a suf-
fix. In this case it is Duplicator’s goal to jump the fewest number of
positions while still preserving the invariant. Hence she selects the
largest suffix τ̃ ′ of τ̃ such that π̃′ and τ̃ ′ have the same plateau-depth
and top-depth. Again it is easy to verify that the conditions of Claim
3 are preserved.

U -moves. Finally assume that Spoiler plays an U -move. In the first
half-move, Duplicator’s strategy is similar to her strategy on F -
moves. However, as in the proof of Claim 1 in Lemma 2.5, Duplicator
must worry that Spoiler plays a very small move on the path with
the smaller top-depth. If Duplicator were to use the strategy from

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

Limiting Until in Ordered Tree Query Languages ?:33

a cccc a cccc a cccc ccccb

a cccc a cccc a cccc ccccb
x0

a cccc

a cccc

y0

Fig. 8. Duplicator’s strategy if Spoiler plays an U -move. If the current position of the game is (x0, y0) and
Spoiler picks a position z in either path in his first half move, then Duplicator picks the position z′ in the
other word, such that there is a arrow from z to z′.

the F -move then she might skip more positions than Spoiler did in
his first half-move, and in the second half-move she might not have
a suitable position to jump to (see the description of Duplicator’s U -
move in Claim 1 in Lemma 2.5 for the discussion of this problem).
Hence Duplicator will skip as many positions as Spoiler did if Spoiler
skips at most õ + 1 positions. Otherwise she will follow her strategy
for F -moves in the first half-move. It is easy to see that in the second
half-move, Duplicator can always find a position, such that the con-
ditions of Claim 3 are maintained. Duplicator’s strategy is shown in
Figure 8.

This concludes the proof of Claim 3, and hence the proof of Theorem 1.3 for
finite trees.

5. CONCLUSIONS AND FUTURE WORK
In this work we have investigated what direction-restricted XML query languages can
be first-order complete. We began with the language CTL∗

◃▹ based on the whole of LTL
going downwards and sideways, and we have shown that one cannot make due either
with no untils in one of the horizontal directions or with a restriction on the number
of untils vertically.

In future work we intend to characterise the precise expressiveness of the languages
CTL∗

◃▹(ud = k), in terms of fragments of first-order logic. We also need to investigate
more thoroughly the relationship of the languages CTL∗

◃▹(ud = k) with the queries of
“bounded operator depth” mentioned by Bojańczyk [Bojańczyk 2008]. For the moment
we note the following distinction: [Bojańczyk 2008] states that the queries of bounded
operator depth cannot capture all languages of the form:

Qn ∶= ∃▿(a
nb)∗

In contrast, all these Qn are contained at the lowest level of our hierarchy.
Thérien and Wilke [Thérien and Wilke 2004] have given an algebraic characterisa-

tion of the LTL formulas of fixed until-depth on words, and have used this to show how
to decide whether a formula is of a given until-depth. We do not know whether one can
decide membership in CTL∗

◃▹(ud = k) (or in CTL∗
(ud = k)).

Acknowledgements. We thank the ICDT referees for invaluable comments on the
submission. We also thank Mikołaj Bojańczyk for many suggestions and corrections,
and for providing the construction that underlies Theorem 1.3.

Benedikt is supported in part by EPSRC EP/H017690/1 and EP/G004021/1 (the En-
gineering and Physical Sciences Research Council, UK)

We also acknowledge the financial support of the Future and Emerging Technolo-
gies (FET) programme within the Seventh Framework Programme for Research of the

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

?:34 M. Benedikt et al.

European Commission, under the FET-Open grant agreement FOX, number FP7-ICT-
233599.

REFERENCES
BARCELO, P. 2005. Temporal logics over unranked trees. In Proceedings of the 20th Annual IEEE Sympo-

sium on Logic in Computer Science. IEEE Computer Society, Washington, DC, USA, 31–40.
BENEDIKT, M. AND JEFFREY, A. 2007. Efficient and expressive tree filters. In Proceedings of the 27th inter-

national conference on Foundations of software technology and theoretical computer science. FSTTCS’07.
Springer-Verlag, Berlin, Heidelberg, 461–472.

BOJAŃCZYK, M. 2008. Effective characterizations of tree logics. In Proceedings of the twenty-seventh ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems. PODS ’08. ACM, New York,
NY, USA, 53–66.

EMERSON, E. A. 1990. Temporal and modal logic. In Handbook of theoretical computer science (vol. B), J. van
Leeuwen, Ed. MIT Press, Cambridge, MA, USA, 995–1072.

ETESSAMI, K. AND WILKE, T. 2000. An until hierarchy and other applications of an Ehrenfeucht-Fraı̈ssé
game for temporal logic. Information and Computation 160, 88–108.

GABBAY, D., PNUELI, A., SHELAH, S., AND STAVI, J. 1980. On the temporal analysis of fairness. In Proceed-
ings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. POPL ’80.
ACM, New York, NY, USA, 163–173.

HAFER, T. AND THOMAS, W. 1987. Computation tree logic CTL* and path quantifiers in the monadic theory
of the binary tree. In Proceedings of the 14th International Colloquium, on Automata, Languages and
Programming. ICALP ’87. Springer-Verlag, London, UK, 269–279.

KAMP, H. 1968. Tense logic and the theory of linear order. Ph.D. thesis, University of California, Los Ange-
les.

LEY, C. AND BENEDIKT, M. 2009. How big must complete xml query languages be? In Proceedings of the
12th International Conference on Database Theory. ICDT ’09. ACM, New York, NY, USA, 183–200.

LIBKIN, L. 2004. Elements of Finite Model Theory. Springer, Heidelberg.
LIBKIN, L. AND SIRANGELO, C. 2008. Reasoning about XML with temporal logics and automata. In Pro-

ceedings of the 15th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning. LPAR ’08. Springer-Verlag, Berlin, Heidelberg, 97–112.

MARX, M. 2004. Conditional XPath, the first-order complete XPath dialect. In Proceedings of the twenty-
third ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems. PODS ’04. ACM,
New York, NY, USA, 13–22.

MARX, M. 2005a. Conditional XPath. ACM Trans. Database Syst. 30, 929–959.
MARX, M. 2005b. First-order paths in ordered trees. In International Conference on Database Theory,

T. Eiter and L. Libkin, Eds. Vol. 3363. Springer Verlag, Heidelberg, 114–128.
MARX, M. AND DE RIJKE, M. 2005. Semantic characterizations of navigational XPath. SIGMOD Rec. 34,

41–46.
MOLLER, F. AND RABINOVICH, A. 1999. On the expressive power of ctl. In Proceedings of the 14th Annual

IEEE Symposium on Logic in Computer Science. LICS ’99. IEEE Computer Society, Washington, DC,
USA, 360–369.

POTTHOFF, A. 1995. First-order logic on finite trees. In Proceedings of the 6th International Joint Conference
CAAP/FASE on Theory and Practice of Software Development. TAPSOFT ’95. Springer-Verlag, London,
UK, 125–139.

RABINOVICH, A. 2008. Personal communciation.
RABINOVICH, A. M. 2002. Expressive power of temporal logics. In Proceedings of the 13th International

Conference on Concurrency Theory. CONCUR ’02. Springer-Verlag, London, UK, 57–75.
RABINOVICH, A. M. AND MAOZ, S. 2000. Why so many temporal logics climb up the trees? In Proceedings

of the 25th International Symposium on Mathematical Foundations of Computer Science. MFCS ’00.
Springer-Verlag, London, UK, 629–639.

THÉRIEN, D. AND WILKE, T. 2004. Nesting until and since in linear temporal logic. Theory of Computing
Systems 37, 111–131. 10.1007/s00224-003-1109-3.

WORLD WIDE WEB CONSORTIUM. 1999. XML Path Language (XPath) Recommendation.
http://www.w3c.org/tr/xpath.

ACM Transactions on Computational Logic, Vol. ?, No. ?, Article ?, Publication date: ????.

