
Edgar H. Sibley
Panel Editor

The tea-leaf reader CRC algorithms are error-detection algorithms that use a
look-ahead table to increase execution speed.

THE TEA-LEAF READER ALGORlTlfM:
AN EFFICIEUT lMPl.ElWENTATlON
OF CRC-16 AND CRC-32

GEORGIA GRIFFITHS and G. CARLYLE STONES

We present a method for computing a CRC (Cyclical
Redundancy Check), for either a CRC-16 or CRC-32,
that is easy to implement in software and takes much
less CPU time than conventional methods. Borrowing
from cryptological techniques, we provide evidence
that CRC computations can be more efficiently handled
by a bytewise method other than the standard bitwise
approach (up to 16 times faster!).

The CRC algorithms are an error-detecting checksum
technique for data packages, which yield a low proba-
bility of undetected errors. This undetected-error rate
may be as low as 1 undetected error in 10 to the 17th
bit. We assume that the reader has a working knowl-
edge of the CRC algorithms. For an explanation of the
CRC algorithms and their maximally generating primi-
tive polynomial lists, trade-offs, and error-detection
probability predictions, see [l] and [2].

Our method is mathematically equivalent to the
existing methods and can therefore be implemented
on any computer with any existing interface currently
using a CRC. There are personal computers using the
CRC that are CPU bound during I/O, which must
therefore slow down the BAUD rate of the interface.
This algorithm will help to eliminate the CPU timing
problems associated with I/O.

The tea-leaf reader CRC algorithm is so named be-
cause it uses a look-ahead table to determine the effect
of the next 8 bits on the CRC value. The trade-off is

01987 ACM OOOl-0782/87/0700-0617 $1.50

between memory space and execution speed. The tea-
leaf reader method performs calculations “off-line” and
stores them in a table, whereas the bitwise algorithm
performs calculations upon each input bit. The imple-
mentation of the algorithm actually requires the devel-
opment of two software programs: the first an on-line
CRC table lookup algorithm, and the second an off-line
table builder. We take a close look at both programs in
the colored boxes starting on the next page.

The on-line CRC-32 table lookup algorithm uses five
256-byte tables to calculate the next 8 CRC bits. The
4 parity bytes are used as indexes into the four lookup
tables. The four results are exclusive or’ed (XOR’ed)
together. This result is XOR’ed with the next input
byte, and the result is used as an index into the tea-
leaf table to create the next high-order CRC byte (see
Figure 1, next page). This algorithm requires only five
table look-ups, five XOR’s, and four shifts per input
byte. For a CRC-16, there are only two parity byte look-
ups instead of the four for the CRC-32.

The off-line CRC-32 table-builder algorithm deter-
mines how the taps (terms of the polynomial) will affect
the next eight bit shifts through the CRC parity. The
outputs of the table builder are five assembly-language
tables that are assembled and linked with the on-line
CRC-32 algorithm. For a CRC-16 algorithm, only three
tables are needed: two CRC-16 parity byte lookup
tables and the next input byte tea-leaf table. To explain
the table-builder program, an example of a CRC-16 is
shown in the first box (next page).

]uly 1987 Volume 30 Number 7 Communications of the ACM 617

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28569.28572&domain=pdf&date_stamp=1987-07-01

Computing Practices

CRC-32 bit parity
(4 bytes-initialized to zero)

P4 P3 P2 Pl

- I I I Table 1

*

Table 2

* Result Rl

*

Table 3

> Result R2

> w Result R3

Table 4

) Result R4

Result R = Rl & R2 & R3 & R4

Input to CRC (bytes)

I l(n) . l(i + 2) I(i + 1) 16)

Tea-leaf table

FIGURE 1. (& = XOR function)

CRC-16 Example (a= XOR function)

First the conventional bitwise method of calculating the
CRC-16 is presented, and then the tea-leaf reader method.
This example demonstrates by construction the equivalency
of the two algorithms.

The polynomial to be used is as follows:

CRC-16 polynomial:
x?~+x’5+x’~+x8+x~+x~+x+1.

The conventional method is a bit-by-bit algorithm:

For first bit of INPUT
16&15813&686&381&Q

Shift right into bit 15.

This requires eight XORs for each input bit.

Input bits CRC-16 bits

t t t tt
23 23 21 20 19 18 17 16 15 14 13 12 11 10 9 8

618 Communications of the ACM July 1987 Volume 30 Number 7

Computing Practices

Now for the tea-leaf reader algorithm:

Visualize the & relation being shifted left instead of the bits
being shifted right; thus

forfirstbii 16& 158 138, 68 68 3&1&O #l
fornextbit 17& 14& 9& 78 4&2&l #2

la&iv28 158108 a8 58382 #3
19&11& 98 6&4&3 #4
20&12&10& 78584 #5
21 &13&11 & 6&6&5 #6
22ዎ&12& 9&7&6 #7

untilfinally 23N#5&15813&10&6&7 #6

‘M” = 12 8 10 by #5
‘N” = 13isll8 a by #6
‘0” = 14 & 12 & 9 by #7
‘p” = 15813&10&a byiva

As in the first table, the information content decreases as the
relation progresses to higher order bits that are not available
in the 6-l 5-bit input, but increases as the lower order bits
become available in the progression of the relations.

By XORing the outputs of the first two tables bit by bit, we
have a resultant byte R (bits RO-R7).

To implement this with tables, there must be three tables:
two panty lookup tables and the “tea-leaf” table. The input to
the first table is the O-7 byte of the CRC-l 6 register (the bit
pattern in the rightmost eight positions). The output of this
first table will be determined by relations #l-#i3.

Result Rl (6 bits):

R(O)=A&l =(15&13& 6) &(6&3&l &O)
R(1) = B 8 J = (14 IL 9) &(7&4&2&l)
R(2)=C&K =(15&10& 6) 8 (5 84 3 & 2)
R(3)=D&L =(ll & 9) 8 (6 8 4 & 3)
R(4) = E & M = (12 & 10) & (7 & 5 & 4)
R(5)=F LN =(13&11 & 6) 8 (6 8 5)
R(6)=G&O=(14&12& 9) & (7 8, 6)
R(7) = H 8, P = (15 8 13 8. 10 & 6) & (7)

HGFEDCBA XORing the resultant byte with the input byte (16-23)
gives us an input byte to the “tea-leaf” table (bits TO-T7) at
the bottom of this page.

Since the input consists of bits O-7, we obtain an output With TO-T7 as input, the remaining task for the tea-leaf

bit in position “A” by examining the significant bits of table is to complete relations #Rl-#R6, but #l is already

relation #l complete in TO; thus

Thus “A” =683&l 80 by#l
similarly “B”=7&4&2&1 by#2

‘C” = 5a3&2 by#3
‘D” = 68483 by#4
‘E” = 78584 by#5
‘F” = 6 & 5 by #6
‘G” = 7 8 6 by #7

until finally “H” = 7 by #6

The infomlation content decreases as the relations progress
to higher order bits that are not available in the 0-7-bit input.

For the second table, we have as input the byte containing
6-l 5 bits. Again the input is determined by the relations
#l-#6.

Result #2 (6 bits)

H’ G’ F’ E’ D’ C’ B’ A’

A’ =TO =#l =newbit16
6’ = Tl 8 A’ = #2 = new bit 17
C’ = T2 8 B’ = #3 = new bit 16
D’=T3&C’&A’ =#4=newbit19
E’ =T4&D’&B’ =#5=newbit20
F’ =T5&E’&C’ =#6=newbit21
G’=T6&F’ 8D’ =#7=newbit22
H’=T7&G’&E’ =#6=newbit23

Result R2 (6 bits)
Now a right byte shift will cause the following:

P 0 NMLK J I

As in the first table, we again examine the significant bits
available for relations #l -#6.

ai* = 15813& a
‘J” = 148 9
‘K” = 15&108 a
‘L” = ll& 9

by #l
by #2
by #3
by #4

a+0 and A’+ 6 andnextmessagebyte-*23... 16
941 and B’+ 9

lo-2 and C’+lO
11+3 and D’-+ll
12-+4 and E’+12
13+5 and F’ -13
14+6 and G’+14
15-7 and H’+15

And that’s it!

TablebIta Refatieaal etfufvafseces REL-missfng sew bits

TO=R(O)&16=16&15&13& 6&683&l &O=#l
Tl =R(1)&17=17&14& 9& 7&4&2&l = #2 - bit #l
T2=R(2)&16=16&158108 a&583&2 = #3 - bit #2
T3=R(3)&19=19&11 8 9& 68483 = #4 - bits (#3 a #l)
T4=R(4)&20=20&12&10& 78584 = #5 - bits (#4 8 #2)
T5=R(5)&21 =21 813811 & 6&6&5 = #6 - bits (#5 & #3)
T6=R(6)822=22&14&12& 987&6 = #7 - bits (#6 & #4)
T7 = R(7) 8 23 = 23 8 15 8 13 & 10 8 6 & 7 = #6 - bits (#7 & #5)

July 1987 Volume 30 Number 7 Communications of the ACM 619

Computing Practices

TABLE I. Timing Comparison

Number of taps
and CRC result ler@h -
17 taps CRC-32
15 taps CRC-32
11 taps CRC-32
7 taps CRC-l 6
5 taps CRC-16

Miiroseconds Microseconds
per byte for per byte for
bit method byte method

1312 68
1184 66
928 68
608 44
480 44

Milliseconds Miilliseconds
for MO-character for 400charscter

bit method byte method

524 27
473 27
371 27
243 17
192 17

As the example shows, the CRC algorithm executed
without a table lookup is extremely time consuming.
For a CRC-32 with a 17-tap polynomial, there are
17 extractions, 17 XORs, and five shifts for each bit of
input. This is 312 instructions per byte. With the table
lookup method, there are no extractions, five table
lookups, 5 XORs, and five shifts, which is 15 instruc-
tions per byte. The looping (cycling through the data
input) also takes more instructions for the bit method
versus the byte method. The bit method requires at
least two instructions per bit; the byte method, two
instructions per byte. Table I shows the timing trade-
offs between the two methods. The timing estimate as-
sumes an assembly-language address accessing instruc-
tion cycle time of 4 microseconds. The comparison also
assumes the availability of an X0& and masking in-
structions, and no clever register manipulation that
could improve CPU time.

In conclusion, the CRC-32 algorithm can help to
solve I/O throughput problems. Previous design trade-
offs were between the accuracy of the error-detection
algorithm and the execution speed of the I/O routine.
If the CPU was too slow or the I/O transmission speed
too fast, a weaker, more expedient error-detection rou-
tine (CRC-16, LRC, or checksum) would be imple-
mented. With the tea-leaf reader algorithm, this error-
detection strength-speed penalty will no longer be a

limitation to system designs. By using the CRC-32, CPU
utilization will increase, thereby improving the com-
puter system, and possibly the network, performance.

REFERENCES
1. Marlin, J. Security, Accuracy, and Privacy in Computer Systems.

Prentice-Hall, Englewood Cliffs, N.J., 1973.
2. Peterson and Weldon. Error Correcting Codes. MIT Press, Cambridge,

Mass.. 1972.

CR Categories and Subject Descriptors: D.1.m [Programming Tech-
niques]: Miscellaneous; D.2.3 [Software Engineering]: Coding; D.2.m
[Software Engineering]: Miscellaneous

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: CRC algorithms, tea-leaf reader

algorithm

Authors’ Present Address: Georgia Griffiths and G. Carlyle Stones,
COmpnsec, Inc., 5333 Mission Center Road, Suite 100, San Diego, CA
92108-1302.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

COMPUTER SCIENCE CONFERENCE”
FEBRUARY 23-25

ATLANTA, GEORGIA

n Quality Technical Program
n Educational Exhibits
n CSC Employment Register
n National Scholastic Programming Contest
n SIGCSE Technical Symposium

ce 8r Exhibits Information: Conference Cochairs:
ACM CSC ‘88, Conference Dept. A Lucia Chiaraviglio

11 West 42nd Street, New York, NY 10036 Fred A. Massey
212-869-7440

620 Communications of the ACM]uly 1987 Volume 317 Number 7

