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The tea-leaf reader CRC algorithms are error-detection algorithms that use a 
look-ahead table to increase execution speed. 

THE TEA-LEAF READER ALGORlTlfM: 
AN EFFICIEUT lMPl.ElWENTATlON 
OF CRC-16 AND CRC-32 

GEORGIA GRIFFITHS and G. CARLYLE STONES 

We present a method for computing a CRC (Cyclical 
Redundancy Check), for either a CRC-16 or CRC-32, 
that is easy to implement in software and takes much 
less CPU time than conventional methods. Borrowing 
from cryptological techniques, we provide evidence 
that CRC computations can be more efficiently handled 
by a bytewise method other than the standard bitwise 
approach (up to 16 times faster!). 

The CRC algorithms are an error-detecting checksum 
technique for data packages, which yield a low proba- 
bility of undetected errors. This undetected-error rate 
may be as low as 1 undetected error in 10 to the 17th 
bit. We assume that the reader has a working knowl- 
edge of the CRC algorithms. For an explanation of the 
CRC algorithms and their maximally generating primi- 
tive polynomial lists, trade-offs, and error-detection 
probability predictions, see [l] and [2]. 

Our method is mathematically equivalent to the 
existing methods and can therefore be implemented 
on any computer with any existing interface currently 
using a CRC. There are personal computers using the 
CRC that are CPU bound during I/O, which must 
therefore slow down the BAUD rate of the interface. 
This algorithm will help to eliminate the CPU timing 
problems associated with I/O. 

The tea-leaf reader CRC algorithm is so named be- 
cause it uses a look-ahead table to determine the effect 
of the next 8 bits on the CRC value. The trade-off is 
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between memory space and execution speed. The tea- 
leaf reader method performs calculations “off-line” and 
stores them in a table, whereas the bitwise algorithm 
performs calculations upon each input bit. The imple- 
mentation of the algorithm actually requires the devel- 
opment of two software programs: the first an on-line 
CRC table lookup algorithm, and the second an off-line 
table builder. We take a close look at both programs in 
the colored boxes starting on the next page. 

The on-line CRC-32 table lookup algorithm uses five 
256-byte tables to calculate the next 8 CRC bits. The 
4 parity bytes are used as indexes into the four lookup 
tables. The four results are exclusive or’ed (XOR’ed) 
together. This result is XOR’ed with the next input 
byte, and the result is used as an index into the tea- 
leaf table to create the next high-order CRC byte (see 
Figure 1, next page). This algorithm requires only five 
table look-ups, five XOR’s, and four shifts per input 
byte. For a CRC-16, there are only two parity byte look- 
ups instead of the four for the CRC-32. 

The off-line CRC-32 table-builder algorithm deter- 
mines how the taps (terms of the polynomial) will affect 
the next eight bit shifts through the CRC parity. The 
outputs of the table builder are five assembly-language 
tables that are assembled and linked with the on-line 
CRC-32 algorithm. For a CRC-16 algorithm, only three 
tables are needed: two CRC-16 parity byte lookup 
tables and the next input byte tea-leaf table. To explain 
the table-builder program, an example of a CRC-16 is 
shown in the first box (next page). 

]uly 1987 Volume 30 Number 7 Communications of the ACM 617 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28569.28572&domain=pdf&date_stamp=1987-07-01


Computing Practices 

CRC-32 bit parity 
(4 bytes-initialized to zero) 

P4 P3 P2 Pl 

- I I I Table 1 

* 

Table 2 

* Result Rl 

* 

Table 3 

> Result R2 

> w Result R3 

Table 4 

) Result R4 

Result R = Rl & R2 & R3 & R4 

Input to CRC (bytes) 

I l(n) . l(i + 2) I(i + 1) 16) 

Tea-leaf table 

FIGURE 1. (& = XOR function) 

CRC-16 Example (a= XOR function) 

First the conventional bitwise method of calculating the 
CRC-16 is presented, and then the tea-leaf reader method. 
This example demonstrates by construction the equivalency 
of the two algorithms. 

The polynomial to be used is as follows: 

CRC-16 polynomial: 
x?~+x’5+x’~+x8+x~+x~+x+1. 

The conventional method is a bit-by-bit algorithm: 

For first bit of INPUT 
16&15813&686&381&Q 

Shift right into bit 15. 

This requires eight XORs for each input bit. 

Input bits CRC-16 bits 

t t t tt 
23 23 21 20 19 18 17 16 15 14 13 12 11 10 9 8 
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Now for the tea-leaf reader algorithm: 

Visualize the & relation being shifted left instead of the bits 
being shifted right; thus 

forfirstbii 16& 158 138, 68 68 3&1&O #l 
fornextbit 17&#1& 14& 9& 78 4&2&l #2 

la&iv28 158108 a8 58382 #3 
19&#3&#1&11& 98 6&4&3 #4 
20&#4&#2&12&10& 78584 #5 
21 &#5&#3&13&11 & 6&6&5 #6 
22&#6&#4814&12& 9&7&6 #7 

untilfinally 23&#78#5&15813&10&6&7 #6 

‘M” = 12 8 10 by #5 
‘N” = 13isll8 a by #6 
‘0” = 14 & 12 & 9 by #7 
‘p” = 15813&10&a byiva 

As in the first table, the information content decreases as the 
relation progresses to higher order bits that are not available 
in the 6-l 5-bit input, but increases as the lower order bits 
become available in the progression of the relations. 

By XORing the outputs of the first two tables bit by bit, we 
have a resultant byte R (bits RO-R7). 

To implement this with tables, there must be three tables: 
two panty lookup tables and the “tea-leaf” table. The input to 
the first table is the O-7 byte of the CRC-l 6 register (the bit 
pattern in the rightmost eight positions). The output of this 
first table will be determined by relations #l-#i3. 

Result Rl (6 bits): 

R(O)=A&l =(15&13& 6) &(6&3&l &O) 
R(1) = B 8 J = (14 IL 9) &(7&4&2&l) 
R(2)=C&K =(15&10& 6) 8 (5 84 3 & 2) 
R(3)=D&L =(ll & 9) 8 (6 8 4 & 3) 
R(4) = E & M = (12 & 10) & (7 & 5 & 4) 
R(5)=F LN =(13&11 & 6) 8 (6 8 5) 
R(6)=G&O=(14&12& 9) & (7 8, 6) 
R(7) = H 8, P = (15 8 13 8. 10 & 6) & (7) 

HGFEDCBA XORing the resultant byte with the input byte (16-23) 
gives us an input byte to the “tea-leaf” table (bits TO-T7) at 
the bottom of this page. 

Since the input consists of bits O-7, we obtain an output With TO-T7 as input, the remaining task for the tea-leaf 

bit in position “A” by examining the significant bits of table is to complete relations #Rl-#R6, but #l is already 

relation #l complete in TO; thus 

Thus “A” =683&l 80 by#l 
similarly “B”=7&4&2&1 by#2 

‘C” = 5a3&2 by#3 
‘D” = 68483 by#4 
‘E” = 78584 by#5 
‘F” = 6 & 5 by #6 
‘G” = 7 8 6 by #7 

until finally “H” = 7 by #6 

The infomlation content decreases as the relations progress 
to higher order bits that are not available in the 0-7-bit input. 

For the second table, we have as input the byte containing 
6-l 5 bits. Again the input is determined by the relations 
#l-#6. 

Result #2 (6 bits) 

H’ G’ F’ E’ D’ C’ B’ A’ 

A’ =TO =#l =newbit16 
6’ = Tl 8 A’ = #2 = new bit 17 
C’ = T2 8 B’ = #3 = new bit 16 
D’=T3&C’&A’ =#4=newbit19 
E’ =T4&D’&B’ =#5=newbit20 
F’ =T5&E’&C’ =#6=newbit21 
G’=T6&F’ 8D’ =#7=newbit22 
H’=T7&G’&E’ =#6=newbit23 

Result R2 (6 bits) 
Now a right byte shift will cause the following: 

P 0 NMLK J I 

As in the first table, we again examine the significant bits 
available for relations #l -#6. 

ai* = 15813& a 
‘J” = 148 9 
‘K” = 15&108 a 
‘L” = ll& 9 

by #l 
by #2 
by #3 
by #4 

a+0 and A’+ 6 andnextmessagebyte-*23... 16 
941 and B’+ 9 

lo-2 and C’+lO 
11+3 and D’-+ll 
12-+4 and E’+12 
13+5 and F’ -13 
14+6 and G’+14 
15-7 and H’+15 

And that’s it! 

TablebIta Refatieaal etfufvafseces REL-missfng sew bits 

TO=R(O)&16=16&15&13& 6&683&l &O=#l 
Tl =R(1)&17=17&14& 9& 7&4&2&l = #2 - bit #l 
T2=R(2)&16=16&158108 a&583&2 = #3 - bit #2 
T3=R(3)&19=19&11 8 9& 68483 = #4 - bits (#3 a #l) 
T4=R(4)&20=20&12&10& 78584 = #5 - bits (#4 8 #2) 
T5=R(5)&21 =21 813811 & 6&6&5 = #6 - bits (#5 & #3) 
T6=R(6)822=22&14&12& 987&6 = #7 - bits (#6 & #4) 
T7 = R(7) 8 23 = 23 8 15 8 13 & 10 8 6 & 7 = #6 - bits (#7 & #5) 
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TABLE I. Timing Comparison 

Number of taps 
and CRC result ler@h - 
17 taps CRC-32 
15 taps CRC-32 
11 taps CRC-32 
7 taps CRC-l 6 
5 taps CRC-16 

Miiroseconds Microseconds 
per byte for per byte for 
bit method byte method 

1312 68 
1184 66 
928 68 
608 44 
480 44 

Milliseconds Miilliseconds 
for MO-character for 400charscter 

bit method byte method 

524 27 
473 27 
371 27 
243 17 
192 17 

As the example shows, the CRC algorithm executed 
without a table lookup is extremely time consuming. 
For a CRC-32 with a 17-tap polynomial, there are 
17 extractions, 17 XORs, and five shifts for each bit of 
input. This is 312 instructions per byte. With the table 
lookup method, there are no extractions, five table 
lookups, 5 XORs, and five shifts, which is 15 instruc- 
tions per byte. The looping (cycling through the data 
input) also takes more instructions for the bit method 
versus the byte method. The bit method requires at 
least two instructions per bit; the byte method, two 
instructions per byte. Table I shows the timing trade- 
offs between the two methods. The timing estimate as- 
sumes an assembly-language address accessing instruc- 
tion cycle time of 4 microseconds. The comparison also 
assumes the availability of an X0& and masking in- 
structions, and no clever register manipulation that 
could improve CPU time. 

In conclusion, the CRC-32 algorithm can help to 
solve I/O throughput problems. Previous design trade- 
offs were between the accuracy of the error-detection 
algorithm and the execution speed of the I/O routine. 
If the CPU was too slow or the I/O transmission speed 
too fast, a weaker, more expedient error-detection rou- 
tine (CRC-16, LRC, or checksum) would be imple- 
mented. With the tea-leaf reader algorithm, this error- 
detection strength-speed penalty will no longer be a 

limitation to system designs. By using the CRC-32, CPU 
utilization will increase, thereby improving the com- 
puter system, and possibly the network, performance. 
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