
PhoenixSim: Crosslayer Design and Modeling of Silicon
Photonic Interconnects

Sébastien Rumley, Meisam Bahadori, Ke Wen, Dessislava Nikolova, Keren Bergman
Department of Electrical Engineering, Columbia University, New York, NY 10027

rumley@ee.columbia.edu

ABSTRACT
Silicon Photonics is emerging as a key technology for high-
performance computing interconnects. Yet few tools are avail-
able to investigate how to best leverage this technology in cur-
rent or future computer architectures and, furthermore, how
this technology will impact real application workloads. In this
paper, we present a multi-layer simulation and modeling soft-
ware solution – PhoenixSim. PhoenixSim enables integrated
and interactive design space exploration over the physical, net-
working and application layers. In this paper, we report its
general organization and constituting models. We show how
the different layers of the tool can be utilized to design and
analyze an optical interconnect network for supporting the
HPCG (High Performance Conjugate Gradient) benchmark.

Keywords
Silicon photonics, compact models, interconnects, software tools.

1. INTRODUCTION
Performance scaling of computing systems is increasingly

limited by data communication over distances, even short ones.
The prospect of low-cost, compact Photonic Integrated Cir-
cuits (PIC), able to provide ultra wide and dense bandwidth
links, is therefore particularly alluring for computer architects.
One of the main technologies underlying the PIC emergence
is Silicon Photonics. Most basic operations required to build
an optical interconnect have been shown realizable with Sil-
icon photonics components: modulators, filters, waveguides,
low-loss waveguide crossings and junctions, as well as photo
receivers (direct detection). Multiple private research labs
(e.g. Oracle, IBM) have progressed toward incorporating all
these elements in a single integrated transceiver chip. In addi-
tion, these nano-scale components can be mass produced using
conventional CMOS lithography processes [8], an aspect that
should enable low-cost fabrication. Finally, monolithic inte-
gration of both photonic and electronic circuits in the same
process has been shown feasible [2]. Photonic network inter-
faces might thus be directly integrated within Chip Multi-
Processors (CMPs) or System-on-chip in the future, helping
these to more efficiently communicate with memory modules
and/or among themselves.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AISTECS 2016, January 18 2016, Prague, Czech Republic
c© 2016 ACM. ISBN 978-1-4503-4084-7/16/01. . . $15.00

DOI: http://dx.doi.org/10.1145/2857058.2857061

The emerging possibility of placing photonic components
in the core of computing systems is expected to drastically
change current architectures [6]. Silicon Photonics links car-
rying 320 Gbps have been demonstrated [10], and recent pre-
dictions indicate that with fully mature components, several
Terabit/s could be attained [3]. This constitutes a ten time in-
crease compared to current electronic network interfaces and
even a 100x increase compared to the peak signaling speed
(25GHz) in use today. More generally, these numbers also
indicate that future integrated photonics-based interconnects
will be capable of a wide diversity of bandwidths: from a few
tens of Gbps to several Tbps.

Integrated photonics thus opens new horizons. They also
trigger a whole new set of questions and challenges. At the
deepest level, the size, geometries and materials of each nano-
device must be appropriately chosen to ensure proper opera-
tion of the system, and guarantee best performance in terms
of optical signal quality and integrity, and power consumption.
Several “Photonic Design Automation” (PDA) tools have been
developed to ease and accelerate this device design process.
Using FDTD or similar numerical methods, the behavior of
each component, taken separately, can be assessed. By com-
bining several of these components, an end-to-end communi-
cation system with optimized properties can be assembled.

If PDA tools are clearly required to effectively design and
develop PIC, other tools are required alongside, however. Re-
alizing a full link design within PDA tools is a time consum-
ing process. Thus, it is worth investing this time to perfect
an initial strawman design, but not to select this strawman
design among many. For example, a link design integrat-
ing 50 parallel wavelengths, each modulated at 10G, can be
finely optimized with PDA tools. However, prior to realizing
this optimization, the confidence that this transmission for-
mat (50×10G) constitutes the most effective way to obtain
500 Gbps must be attained. To this aim, building tens of
models corresponding to various products within PDA tools
is possible but likely ineffective. Other approaches should thus
be employed to rapidly prescreen and pinpoint designs of in-
terest that would later be perfected with PDA tools.

PDA tools also show limited capacity in electrical circuit
modeling. Unfortunately, electrical circuits (drivers, ampli-
fiers) attached to modulators and photo-receivers are major
performance determinants, particularly in terms of power dis-
sipation [14]. As later shown in this paper and reported in [20],
there are cases where compromises made on the optical signal
quality side can result in overall energy savings when consid-
ering the link as a whole. Therefore, hybrid EPDA (Electronic
and Photonic Design Automation) design tools incorporating
the behavior (to the least at the level of the trend or rule-
of-thumb) of both electrical and optical circuits are highly
required.

Yet will such hybrid design tools be sufficient? In our opin-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2857058.2857061&domain=pdf&date_stamp=2016-01-18

ion, they will not. In the above-mentioned example, the choice
of the ideal 500Gbps transmission format hides yet more fun-
damental questions: 1) is 500 Gbps the appropriate value? 2)
Will the resulting link, once fully optimized, fit in the target
computing system? EPDA tools, combined with prescreening
tools, may deliver sound designs of 500 Gbps (or any another
value) links. They will provide, however, no guarantee on the
practical usability of these links once inserted in the host com-
puting system. The adequacy of a photonic interconnect with
its host system is not only determined by the hardware param-
eters of its constituting devices. The presence of photonics at
the core of the system will also affect the way network elements
are controlled and arbitrated: if optical spatial switching is
leveraged, typically, circuits will be the norm as long as cred-
ible optical buffers will be unavailable. This means selecting
(and developing) appropriate circuit arbitration mechanisms
and scheduling strategies. Additional software tools – net-
work simulators in this case – are hence required to support
the system designer in this decision process as well.

Finally, the answers to these various questions found at com-
ponent and networking levels influence or even determine the
whole system architecture. Reciprocally, host level decisions,
as the number of processor cores present in one CMP, the
number of CMPs, etc., will characterize the bandwidth re-
quirements. Furthermore, optimizations made at the optical
component level may trigger changes in the system architec-
ture, which in turn may require further adaptations at both
component and networking levels. In summary, the PIC emer-
gence will shake traditional designs up, and widely novel ar-
chitectures will be required. Granted the importance of data
movement in future architectures, communication and compu-
tation facets of the full system will have to be defined jointly.
This implies the existence of software tools making that co-
design effort possible.

In summary, incorporating emerging silicon photonics links
inside computing systems involves many steps, and solely op-
timizing the devices constituting a link to optimize its optical
properties is clearly not sufficient. However, finding answers
to the various questions raised by the PIC emergence implies
exploring an extremely wide design space. Silicon photonic
device parameters (and the (E)PDA tools permitting their ex-
ploration) are part of this design space. However, other tools
are required to finely explore the other dimensions (network
level, for instance), and more importantly, to perform holistic,
crosslayer explorations.

The Lightwave Research Laboratory at Columbia University
is investigating for more than a decade now how optical tech-
nologies can be leveraged to improve the performance of large-
scale computing systems. In this context, the PhoenixSim
crosslayer modeling and simulation framework has been de-
veloped. Over the years, PhoenixSim took various shapes
and evolved significantly from its origins as lessons have been
learned in the process. Our current version 2 shares only its
name and goals with the initial version our group presented
in [4]. The initial version was C++ written and used Om-
net++ as simulation engine. Our current version, in contrast,
is 100% java written and integrates its own event driven simu-
lation engine. PhoenixSim version 2 recently reached a matu-
rity point permitting us to obtain a large set of interesting (and
sometimes intriguing) results. This paper aims at describing
our framework in its current state, and at showing the type of
optimizations and studies it now supports. The next Section
provides an overview of the framework organization and main
components. In Section 3, we focus on the hardware level

and show how PhoenixSim can be used as early design explo-
ration tool, as well as hybrid optical/electrical optimization
tool. In Section 4, we present the network simulation capa-
bilities of PhoenixSim. In Section 5, we detail how parallel
applications can be emulated on top of the network simulator.
In Section 6, we show how the different “layers” constituting
PhoenixSim can be combined. In particular, we report the de-
sign of a medium-scale distributed system organized around a
wavelength routed optical interconnect.

2. PHOENIXSIM OVERVIEW
PhoenixSim is organized around three “layers” meant to

capture respectively: 1) the behavior, consumption and per-
formance of physical devices (mainly optical ones) – physical
layer 2) the latencies experienced by the messages sent over
communications links – network layer 3) the progression of
distributed (message passing based) application – application
layer.

As shown in Figure 1, the physical layer connects to the net-
work layer. Based on the device characteristics as well as the
link or network architecture selected, bandwidth and power
consumption parameters are calculated and propagated into
the network simulation model constituting the network layer.
The application layer is similarly connected to the network
layer. As the execution of an application is emulated, mes-
sages are being emitted into the network and received from
it.

	
	
	

	
	
	
	
	
	
	
	
	
	
	

Network	
layer	

	
	
	
	
	
	

Applica0on	
layer	

	
	

“Op0cally-‐sound”	
network	 arch.	

N
etw

ork	 perform
ance/costs	 	

trade-‐offs	

Physical	
layer	

	
	

Cr
os
s-‐
la
ye
r	

ite
ra
-v
e	
op

-m
iza

-o
n	

Interfaces models
Device models
Circuit models

Key parameters
Requirements

Validated and optimized
models of optical

networks
Application needs

Application characteristics

IO	 requests	

EDA, PDA tools

Computing platforms (simulators)

Figure 1: General organization of PhoenixSim.

Each layer can also be used separately. Calculations and/or
optimizations realized at the physical layer can be performed
separately from any network simulation. In that case, the re-
sulting link or interconnect figures of merit (bandwidth and
power consumption in most cases) are simply recorded for each
studied case. Network simulation can be run over “virtual”
network architectures disconnected from any hardware real-
ity using classical random traffic generators. Finally, paral-
lel applications can be executed over an ideal communication
substrate. Being able to consider a single layer at the time
is mandatory for debugging, validation and verification pur-
poses. Single layer studies are also crucial for the user to seize
the interdependence of the performance to key parameters.
Pairs of layers (physical + network, or network + application)
can also be considered.

The graphical user interfaces (GUIs) constitute an impor-
tant feature of PhoenixSim. A first user interface lets the
user select one or more configurations to study. This GUI
is totally generic and adapts automatically to new features
added to the framework. In other terms, adding a compo-
nent to PhoenixSim (typically, a network arbitration algo-
rithm) does not signify adding a corresponding element to the
interface. The graphical interface is also progressively con-
structed, as the user takes his first decisions about the use
case to model/simulate. A second interface lets the user ex-
plore the results collected during the execution of the selected
use case(s) (Fig. 3). This interface includes a chart genera-
tion engine which lets the user select which parameter should
be assigned to the x-axis of the chart, as well as which per-
formance metric to the y-axis. A system of filters allows the
display of results corresponding to specific input, intermediate,
or output values. This “result exploration interface”allows the
user to observe very rapidly and from a variety of angles, the
results corresponding to the configured use cases.

PhoenixSim is written in Java, which guarantees portability
across computer platforms and operating systems, smooths
the installation process and make the realization of ad-hoc
visualization tools easier. The generic graphical interfaces are
also widely built on top of Java’s introspection capabilities.

It is worth noting that PhoenixSim, its current state, is not
meant to specifically design circuits and networks – it does not
produce hardware integrated circuit descriptions (GDS, LEF)
nor VHDL or Verilog definitions. It is not either meant to
carry detailed, cycle accurate simulations or to be connected to
such simulators. As emphasized in the introduction, our main
objective is to have the various aspects of computing systems
“meeting in the middle” in order to validate their adequacy,
prior to engage the huge design efforts required to finalize a
design.

Note also that PhoenixSim is mainly developed to support
the experiments conducted by our research group (e.g. [7, 17,
18]) and as such, is not made widely available. Access to the
repository can be granted upon request by email, however.

3. PHYSICAL LAYER
The PhoenixSim physical layer takes as an input a set of

optical paths described in terms of active and passive devices
and transmission format. An optical path specifies a collec-
tion of devices and the position of each device in a topology. A
transmission format simply specifies the signaling rate of each
channel and the number of channels employed in a wavelength-
division-multiplexed (WDM) link. The methodology imple-
mented in the PhoenixSim physical layer can be summarized
in several core operations: it starts by estimating the level of
signal deterioration (in terms of power penalty) corresponding
to each path and, if applicable, adapt the parameters of the
devices to minimize the end-to-end power penalty. Once this
end-to-end power penalty known, PhoenixSim identifies the
optical power level required at the laser output to guarantee a
specified quality level (reliability) of transmission (defined in
terms of bit-error-rate of the system). Finally, it derives active
and passive power consumptions of every device included in
the layout.

3.1 Power penalty estimation and optimization
To estimate the power penalty imposed by each device (or

group of devices) on the transmitted optical signals along the
network, PhoenixSim relies on a collection of compact mod-
els [3, 20]. Each device model expresses a power penalty as
a function of the device parameters and transmission format.

1298 1298.5 1299 1299.5 1300 1300.50

0.2

0.4

0.6

0.8

1

Wavelength (nm)

N
or

m
al

iz
ed

 O
pt

ic
al

 T
ra

ns
m

is
si

on

20 dB

0.5 nm

1 nm
1.3 nm

1.5 nm

Q = 20000

p+ p n n+ metal metal

insulator

V

R/2
Diode

R/2

+ -
ID

(a)
(c) i

0 1 2 3 4 5−2.5

−2

−1.5

−1

−0.5

0

Current (mA)

R
es

on
an

ce
 s

hi
ft

(n
m

) Measurement
Model

V(t)

R/2

IBias

R/2

+ -
iD(t) Cj

Cpad

(b) (c)

Figure 2: Modeling of a carrier-injection ring res-
onator. The key parameters are the DC model and
RF model (a), the resonance shift vs current (b), and
how the loss (or extinction ratio) and Q of the ring
change in accordance with the amount of the shift re-
quired (c).

This power penalty estimation takes into account all forms
of attenuations and distortions inflicted to the signals. For a
Mach-Zehnder Interferometer (MZI) modulator, for example,
the power penalty is calculated as a function of the bitrate,
the number of wavelengths, but also of the MZI arm length,
voltage required to obtain a π shift (Vπ), voltage applied to
drive the arm (peak-to-peak drive voltage), waveguide propa-
gation loss, and the loss of input and output junctions (typi-
cally MMI design). Compact models can be obtained from sets
of laboratory measurements. For conditions falling close to the
ones where a measurement has been made, power penalties
can be predicted by means of interpolations or extrapolations.
To cover exhaustively the parameter space, however, models
based on physical principles, and validated by measurements,
are required. A large portion of the efforts invested in the
physical layer thus effectively consists of constructing such an-
alytical models. In particular, we developed detailed models
corresponding to ring resonator array-based modulators and
demultiplexers, which have been the matter of a detailed publi-
cation [3]. Analytical models for crosstalk estimation, and ad-
vanced modulation formats (higher-order modulations) with
Mach-Zehnder modulators are currently under active devel-
opment. We stay also highly aware to potential new models
based on the state-of-the-art devices that would appear in the
literature. Recently, we incorporated into PhoenixSim the de-
tailed modeling of the carrier-injection silicon ring resonators
proposed by [20] (shown in Fig. 2), as well as the ring loss
model proposed in [9].

Once compact models accepting various parameters are avail-
able, specific optimization procedures can be developed on top
of them. The optimization of the Q-factor of a ring filter
present in a demultiplexer array is chosen as an illustrative
example here. The resonance profile of a ring, which eventu-
ally characterizes its frequency response, is determined by its
length, the loss factor of its waveguide, and by its coupling
coefficients. The two latter parameters are generally not sub-
ject to optimization, but so is the ring size. Thus, this lets us
the possibility to target a specific Q value, which is crucial to
optimally mitigate crosstalk effects appearing when Q tend to
be too low, and signal truncation effects, resulting from too
high Q values. Fig. 3 exemplifies this optimization.

3.2 Initial laser power requirements
Once power penalties associated to every device located

alongside an optical path have been evaluated, the end-to-end
power penalty is calculated. So far, individual power penalties
are always considered as independent from each other, which
lets us simply sum them up to obtain the end-to-end final
value. In the future, more sophisticated power penalty combi-

	
Figure 3: PhoenixSim GUI showing the Q-factor op-
timization of ring demultiplexers by minimizing the
total power penalty of the demux array.

nation techniques, typically taking into account the sequence
of devices along the link [15], might be developed.

The power penalty is one ingredient to the calculation of
the required optical input power. The other is the sensitivity
level of the receiver front-end (photodetector + TIA). Here,
we also developed a compact model to express the receiver
sensitivity as function of the bitrate (more details available in
[3]). By summing these two values, the optical power required
per wavelength is obtained. By multiplying this by the number
of channels, the total laser power is obtained. At this point,
the feasibility (in terms of optical signal quality) of the path
layout under the considered transmission format is assessed.
If the total required input power exceeds a threshold value,
provided as an input parameter and representing the power
level above which non-linear effects become noticeable, the
layout is marked as invalid and the evaluation is halted.

3.3 Power consumption
Once the required input laser power level is known, the over-

all power consumption profile can be determined. Every de-
vice deployed is interrogated for three power consumption val-
ues corresponding to three possible states: inactive, active but
no data, active with data. Pre-determined as well as optimized
parameters are included in the power calculations: typically,
the consumption of a modulator depends on the applied volt-
age, which can be subject to optimization.

Some power consumptions are based on measurements re-
ported in the literature. For thermal stabilization of ring
resonators, for instance, PhoenixSim considers a (default but
configurable) constant consumption of 1mW per ring reported
in [12], while for laser consumption, a constant wall-plug effi-
ciency factor is assumed. Other power consumptions are ob-
tained with compact models. For modulators, we consider a
“classical”approximation P ≈ 1/4CV 2×rb [11] where V is the
voltage applied to the optical modulator, C is the equivalent
RF capacitance and rb is the signaling rate. For receiver power
consumption, we leverage the predictions proposed by [13].

End-to-end power estimations delivered by PhoenixSim can
be surprising, as shown in Figure 4a (bold line). We con-
sider the consumption of a simple WDM point-to-point link
with different number of channels at a rate of 10 Gbps/λ. A
ring resonator array is used at the transmitter side, while an
array of ring resonators demultiplex the WDM signal at the
link end. We assume the channels to be equally spaced in the
1525-1575nm range (50 nm spectrum in the C-band). The
power consumption per wavelength generally increases with

0 50 1001.2

1.25

1.3

1.35

1.4

1.45

Number of channels

En
er

gy
−p

er
−b

it
(p

J)

Shift = min(2nm, λ spacing/2)

Optimized shift

0 50 1000

0.2

0.4

0.6

0.8

1

Number of channels

O
pt

im
iz

ed
 s

hi
ft

(re
la

tiv
e

to
 λ

 s
pa

ci
ng

/2
)

(a) (b)

Figure 4: Effect of ring modulator shift on energy at
a rate of 10 Gbps/λ.

bandwidth density, reflecting increasing amounts of crosstalk
(whose inflicted power penalties must be compensated by ex-
tra laser power). However, one notes a “bump” for the lowest
number of wavelengths. This bump is explained by the fact
that modulator voltage is calculated to achieve wavelength
shifts of min(2nm, 50nm / λ). The reason behind limiting
the shift of resonance to a maximum of 2 nm is clear from
Fig. 2(b). By injecting high currents (more than 3 mA),
the red-shift due to generated heat will dominate over the
desired blue-shift generated by the plasma-dispersion effect.
Such shifts guarantee ideal optical properties but at the ex-
pense of an increased power consumption (itself due to the
higher voltages at play [20]). The dotted line of Figure 4a, in
contrast, shows the power consumption corresponding to opti-
mized modulator shifts relative to the half of channel spacing
(whose value is shown on Figure 4b). This example of device
parameter selection for optimized overall power consumption
exhibits the need for modeling and optimization tools able to
realize system wide analysis.

4. NETWORK LAYER
The network layer is mainly meant to evaluate how mes-

sages sent over an interconnect are delayed, and how they in-
fluence the power consumption. The core of the network layer
is therefore composed of an event driven network simulator.
Besides the simulator core, PhoenixSim provides a collection
of standard simulation components (buffers, routers, packe-
tizers), but also simulation model “builders” which translate
simulation input parameters in a collection of simulation ob-
jects able to exchange events. Some of these builders inte-
grate physical layer calculations to determine reference data
such as link bandwidths. Builders, when initializing the sim-
ulation model, create as many traffic sources and receivers as
clients. A traffic source can be a random traffic generator, a
trace traffic generator (reproducing packet sequences recorded
in real systems or in cycle accurate simulators), or can con-
nect to the application layer. Every source records the time at
which packets enter the network. Similarly, receivers report
packet arrival times. If the application layer is used on top of
network layer, receivers also notify application threads waiting
for message arrival, if any.

Three main types of networking paradigms have been im-
plemented so far: packet oriented with random access buffers,
circuit oriented with distributed arbitration and circuit ori-
ented with centralized arbitration. The first paradigm mim-
ics the behavior of standard electrical packet switches. It is
mainly present to provide a point of comparison with tradi-
tional networking. Within the second paradigm (circuit ori-
ented with distribution arbitration), clients send request mes-
sages to their entry switch, which may or may not forward

	

Instance of successful circuit reuse
Instance of circuit hold “for nothing”

Circuit setup time

Dependency on dest 1

Dependency on dest 0

Instance of circuit rightfully hold

Figure 5: Example of circuit maintenance. Each line
represents the activity of one emitter. Shaded boxes
indicate the presence of a circuit (each destination be-
ing associated with a tone), filled boxes the presence
of a message over the circuit.

it to the next switch (or to the final destination) depend-
ing on path availability. The circuit route is determined in
the process. In case of path unavailability, request forwarding
(and routing) is interrupted and a negative acknowledgment
(NACK) is sent back. Upon NACK reception, the client may
immediately resend a request, wait some time, or send a re-
quest to another destination [18]. In the third paradigm, the
existence of a central arbiter is assumed. Here, the emphasis
is put on the management of the circuits over time. Circuits
are requested to the arbiter upon reception of a message in
the input queue, circuit setup starts as soon as granted by the
arbiter, and circuits are utilized as soon as setup is done. How-
ever, circuits may be maintained once all messages present in
the corresponding queue have been transmitted. In this way,
the circuit request and setup process can be potentially saved
for future messages destined to the same client [17]. Fig. 5 ex-
emplifies this circuit maintenance concept. Circuits may also
be prefetched in advance if the arrival of a message geared to
an unconnected yet client is predicted [19]. Predictions can
be based on history analysis, or on “hints” provided by the
network clients. Note that until now, the switch topology car-
rying the circuits is assumed strictly non-blocking. In other
terms, a circuit can always be routed between two clients as
long as these clients have available input and output ports.
Extending support to arbitrary topologies counts among our
future plans.

5. APPLICATION LAYER
In contrast to the traffic present in telecommunication links,

which tend to be vastly averaged by successive layers of aggre-
gation, interconnect traffic in (distributed) computing systems
is highly application specific. Furthermore, there is clear inter-
dependence between the network and the executed distributed
application: delayed packet may slow the application down,
and thus the emission of future packets. There is therefore a
fundamental need for capturing at least the main aspects of
the application behavior when conducting performance anal-
yses of distributed system interconnects.

To address this requirement, the application layer lets the
user create simple parallel programs (skeletons). These skele-
tons are executed concurrently to the network simulator, but
above all interact with it via calls such as send, blockingRe-
ceive, or nonBlockingReceive.

The code listed in Fig. 6 is taken as an example within
which each of the four ranks (i.e. parallel processes) i) exe-
cutes a serial task, ii) sends a message to the next rank, iii)
waits until the message from the previous rank is received,
iv) executes a second task and v) terminates. The task du-
rations and message sizes are made different for each rank.
Time representations of the execution of this example skele-

ton are depicted in Fig. 7a and 7b. A central arbitration,
circuit-oriented network is assumed. Network link bandwidth
is simply assumed to be 10Gbps, while circuit setup time of
100ns (7a) and 1µs (7b) are considered. The difference in
setup time induces different start times for the second tasks,
and thus different skeleton total execution times (also called
time-to-solution).

	

@Override
public void runImpl(ActionManager c,	 int rank,	 Time timeRef)	

throws InterruptedException {

int[]	 jobDurations	 =	 {1000,	 1200,	 820,	 400};
int[]	 packetSizes	 =	 {8000,	 2000,	 1200,	 1700};

c.doSomeJob(timeRef,	 jobDurations[rank],	 "first	 task");
c.send(timeRef,	 packetSizes[rank],	 (rank	 +	 1)%	 4);
c.blockingReadFromAny(timeRef);
c.doSomeJob(timeRef,	 1000,	 "second	 task");

this.executionEnd(rank,	 timeRef);
}

Figure 6: Example of application skeleton.

	 (a)

	 (b)

Figure 7: Timeline representation of skeleton listed in
Fig. 6 over 10 Gbps circuits with 100ns (a) and 1 µs
(b) setup time.

The application layer provides a collection of other com-
mands permitting to:

• wait for one message from a specific origin, a subset of
origins, all origins but one, or any origin.

• wait for a set of messages from a set of origins, all origins
but one (generally itself) or all origins – reduce opera-
tions.

• tentatively receive message in a non-blocking fashion (i.e.
the thread continues even if no message has arrived)

• perform broadcast operations
• define the thread state as idle for a determined amount

of time
In general, the application layer thus mimics a message-passing
based programming environment using interfaces similar to
those of MPI.

6. CROSS-LAYER MODELING EXAMPLE
PhoenixSim finally allows us to investigate how these layers

interact and to achieve multi-layer simulation data. To that
aim, we consider, as an example, the design and analysis of a
wavelength routed optical network interconnecting N compute
nodes. At the physical layer, each node is equipped with a tun-
able laser associated with an MZI modulator whose output is
coupled to an optical fiber. These N input fibers connect to
an optical multiplexer, directly followed by a wavelength de-
multiplexer, whose outputs connect to the receivers through
N output fibers. Each node is thus connected to a specific
output of the wavelength demultiplexer, and associated to a
specific wavelength. To send a message to a given destina-
tion, a transmitter tunes its laser to the corresponding wave-
length. The bandwidth made available to each node (both for

Figure 8: Time-power Pareto curve of HPCG on the
example tunable laser based system with various mod-
ulation rates. E1 to E3 in the right figure show the
normalized network energy to solution under different
modulation rates.

transmission and reception) is thus equal to the wavelength
modulation rate.

We assume this architecture to be circuit arbitrated. That
is, as the network is non-blocking, the above-presented cir-
cuit maintained paradigm applies here. Finally, the connected
compute nodes are assumed to execute in parallel an appli-
cation skeleton of the High Performance Conjugate Gradient
(HPCG) benchmark [1,5]. HPCG is a benchmark that gener-
ates and solves a synthetic 3D sparse linear system using a lo-
cal symmetric Gauss-Seidel preconditioned conjugate gradient
method. Although in practice compute nodes may integrate
multiple processors, we assume here for example purpose that
each compute node integrates a single processor capable of 100
GigaFLOPS.

We aim to find the answer to the following question in this
example experiment: what speed should the modulators oper-
ate at. Fundamentally, this speed should be maximized to de-
liver the highest performance. However, one easily notes that
the modulation speed is closely related to the power consump-
tion. Thus, the goal becomes to analyze which trade-off should
be achieved between these two dimensions. Fig. 8 shows the
execution time and network power dissipation of HPCG (nx,
ny, nz = 8) in PhoenixSim on a four-node system correspond-
ing to various modulation speeds (10, 25 and 40 Gbps). The
simulation assumes a fast tunable laser with 5ns wavelength
switching latency [16] and 5% laser wall-plug efficiency. As
expected, the execution time decreases with the modulation
speed. However, as the modulation speed increases, the power
consumption of the network increases as well. Overall, results
of this kind show that optimizing for pure performance or
rather for pure energy consumption leads to very different de-
signs. Fig. 9 shows partial timeline representation of HPCG
in the case of 10 Gbps modulation speed.

7. CONCLUSIONS
We presented PhoenixSim, a platform devoted to conduct

cross-layer analyses and designs of optical interconnects for
distributed computing systems. PhoenixSim aims at realizing
early design space explorations spanning over physical layer
devices, network layer architectures and application-layer de-
signs. It is meant to establish an iterative closed-loop be-
tween all the aspects of photonic architecture development,
from optical link optimization to photonic enabled application
designs. This holistic approach can potentially save design
cycles spent at, for example, over-optimizing a physical-layer

	 Figure 9: Partial timeline representation of HPCG
running on the example tunable laser based system
with 10 Gbps modulation rate.

parameter that provides limited benefits to the application
layer, or studying in many details a network architecture that
is unrealistic from a physical layer point of view.

Acknowledgment
This work is supported by DARPA Microsystems Technology
Office (MTO) under the COEDM (Computing with Optically
Enabled Data Movement) project, and by the Department
of Energy (DoE) ASCR project ”Data Movement Dominates”
through contract PO1426332 with Sandia National Laborato-
ries.

8. REFERENCES
[1] https://software.sandia.gov/hpcg/html/index.html.

[2] S. Assefa, et al. A 90nm CMOS integrated nano-photonics
technology for 25Gbps WDM optical communications
applications. In IEEE International Electron Devices Meeting
(IEDM), (33), 2012.

[3] M. Bahadori, et al. Comprehensive design space exploration of
silicon photonic interconnects. In IEEE Journal of Lightwave
Technology, in press, 2016.

[4] J. Chan, et al. PhoenixSim: A simulator for physical-layer
analysis of chip-scale photonic interconnection networks. DATE,
2010.

[5] J. Dongarra, et al. High-performance conjugate-gradient
benchmark: A new metric for ranking high-performance
computing systems. International Journal of High Performance
Computing Applications, 2015.

[6] M. Glick, et al. Modeling and simulation environment for
photonic interconnection networks in high performance
computing. ICTON, 2013.

[7] R. Hendry, et al. Physical layer analysis and modeling of silicon
photonic WDM bus architectures. SiPhotonics workshop @
HiPEAC, 2014.

[8] M. Hochberg and T. Baehr-Jones. Towards fabless silicon
photonics. Nature Photonics, 4(8):492–494, 2010.

[9] H. Jayatilleka, et al. Crosstalk in SOI microring resonator-based
filters. Optical Interconnects., 2015.

[10] Y. Liu, et al. Ultra-compact 320 Gb/s and 160 Gb/s WDM
transmitters based on silicon microrings. OFC, 2014.

[11] D. A. Miller. Energy consumption in optical modulators for
interconnects. Optics express, 20(102):A293–A308, 2012.

[12] K. Padmaraju, et al. Integrated thermal stabilization of a
microring modulator. Optics express, 21(12):14342–14350, 2013.

[13] R. Polster. Architecture of silicon photonic links. PhD Thesis,
Stits doctoral school, 2015.

[14] R. Polster, et al. Tia optimization for optical network receivers
for multi-core systems-in-package. PRIME conference, 2014.

[15] S. Rumley, et al. Silicon photonics for exascale systems. Journal
of Lightwave Technology, 33(3):547–562, 2015.

[16] J. E. Simsarian, et al. Less than 5-ns wavelength switching with
an SG-DBR laser. IEEE photonics technology letters,
18(1-4):565–567, 2006.

[17] K. Wen, et al. Reuse distance based circuit replacement in silicon
photonic interconnection networks for HPC. HOTI, 2014.

[18] K. Wen, et al. Reducing energy per delivered bit in silicon
photonic interconnection networks. Optical Interconnects conf.,
2014.

[19] K. Wen, et al. Latency-avoiding dynamic optical circuit
prefetching using application-specific predictors. Exacomm, 2015.

[20] R. Wu, et al. Compact modeling and system implications of
microring modulators in nanophotonic interconnects. ACM/IEEE
SLIP, 2015.

