
Differentially Private K-Means Clustering

Dong Su
Purdue University

su17@cs.purdue.edu

Jianneng Cao
Institute for Infocomm

Research
caojn@i2r.a-star.edu.sg

Ninghui Li
Purdue University

ninghui@cs.purdue.edu

Elisa Bertino
Purdue University

bertino@cs.purdue.edu

Hongxia Jin
Samsung Research America

hongxia.jin@samsung.com

ABSTRACT

There are two broad approaches for differentially private data anal-
ysis. The interactive approach aims at developing customized dif-
ferentially private algorithms for various data mining tasks. The
non-interactive approach aims at developing differentially private
algorithms that can output a synopsis of the input dataset, which
can then be used to support various data mining tasks. In this pa-
per we study the effectiveness of the two approaches on differen-
tially private k-means clustering. We develop techniques to analyze
the empirical error behaviors of the existing interactive and non-
interactive approaches. Based on the analysis, we propose an im-
provement of DPLloyd which is a differentially private version of
the Lloyd algorithm. We also propose a non-interactive approach
EUGkM which publishes a differentially private synopsis for k-
means clustering. Results from extensive and systematic experi-
ments support our analysis and demonstrate the effectiveness of our
improvement on DPLloyd and the proposed EUGkM algorithm.

Keywords

Differential privacy; k-means clustering; Private data publishing

1. INTRODUCTION
In recent years, differential privacy [10] has been increasingly

adopted as the privacy notion of choice of data analysis while pre-
serving individual privacy. Several broad classes of approaches ex-
ist for developing differentially private techniques for data analy-
sis. In this paper we study differentially private k-means cluster-
ing. Clustering analysis plays an essential role in data management
tasks. Clustering under differential privacy has also been studied
in [3, 9, 19, 22, 24, 25, 34].

Our study has two goals. The first is to improve the techniques
for performing k-means clustering differentially privately. The sec-
ond is to use k-means clustering as a case study to compare sev-
eral classes of methods for private data analysis, and to identify the
strengths and weaknesses of these methods.

There are three state-of-the-art differentially private algorithms
on k-means clustering. All of them are interactive approaches. The

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’16, March 09-11, 2016, New Orleans, LA, USA

c© 2016 ACM. ISBN 978-1-4503-3935-3/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2857705.2857708

first method, which we call DPLloyd, makes the iterative Lloyd al-
gorithm [3, 22] differentially private by adding noises to each step.
The second method, which we call PGkM, uses PrivGene [34], a
framework for differentially private model fitting based on genetic
algorithms. We call them iterative interactive algorithms. The third
algorithm uses the sample and aggregation framework [25] and is
implemented in the GUPT system [24], which we call GkM.

An alternative to the interactive setting is the non-interactive set-
ting, in which the data curator releases the data in one shot, while
still preserving privacy. To the best of our knowledge, perform-
ing k-means clustering using the non-interactive approach has not
been explicitly proposed in the literature. In this paper, we propose
to combine the following non-interactive differentially private syn-
opsis algorithms with k-means clustering. The dataset is viewed
as a set of points over a d-dimensional domain, which is divided
into M equal-size cells, and a noisy count is obtained from each
cell. A key decision is to choose the parameter M . A larger M
value means lower average counts for each cell, and therefore noisy
counts are more likely to be dominated by noises. A smaller M
value means larger cells, and therefore one has less accurate in-
formation of where the points are. We propose a method that sets

M =
(
Nǫ
10

) 2d
2+d , which is derived based on extending the analysis

in [27], which aims to minimize errors when answering rectangular
range queries for 2-dimensional data, to higher dimensional case.
We call the resulting k-means algorithm EUGkM, where EUG is
for Extended Uniform Grid.

We conducted extensive experimental evaluations for these algo-
rithms on 6 external datasets and 81 datasets that we synthesized by
varying the dimension d from 2 to 10 and the number of clusters
from 2 to 10. Experimental results are quite interesting. GkM was
introduced after DPLloyd and was claimed to have accuracy advan-
tage over DPLloyd, and PGkM was introduced after and compared
GkM. However, we found that DPLloyd is the best method among
these three interactive methods. In the comparison of DPLloyd and
GkM in [24], DPLloyd was run using much larger number of itera-
tions than necessary, and thus perform poorly. In [34], PGkM was
compared only with GkM, and not with DPLloyd. More specifi-
cally, we found that GkM is by far the worst among all methods.
However, DPLloyd, the earliest method is clearly the best perform-
ing algorithm among the three interactive algorithms. Through
analysis, we found that why DPLloyd outperforms PGkM. The ge-
netic programming style PGkM needs more iterations to converge.
When making these algorithms differentially private, the privacy
budget is divided among all iterations, thus having more iterations
means more noise is added to each iteration. Therefore, the more
direct DPLloyd outperforms PGkM.

26

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2857705.2857708&domain=pdf&date_stamp=2016-03-09

The most intriguing results are those comparing DPLloyd with
EUGkM. For most datasets, EUGkM performs much better than
DPLloyd. For a few, they perform similarly, and for the rest datasets
DPLloyd outperforms EUGkM. Through further theoretical and
empirical analysis, we found that while the performance of both
algorithms are greatly affected by the two key parameters, the num-
ber of dimensions d and the number of clusters k, both of them are
affected differently by these two parameters. DPLloyd scales worse
when k increases, while EUGkM scales worse when d increases.
Again we use analysis to demonstrate why this is the case.

In this paper we advance the state-of-the-art on differentially
private data mining in several ways. First, we have introduced a
new non-interactive method, EUGkM, for differentially private k-
means clustering, which are highly effective and often outperform
the state-of-the-art interactive methods and non-interactive meth-
ods. Second, we have developed techniques to analyze the error
resulted from DPLloyd. Such kind of error analysis is missed in
most differentially private data analysis papers. Third, based on the
error analysis of DPLloyd, we proposed an improved version of
DPLloyd which significantly reduces the clustering error. Fourth,
we have extensively evaluated three interactive methods, and three
non-interactive methods, and analyzed their strengths and weak-
nesses.

The rest of the paper is organized as follows. In Section 2,
we give preliminary information about differential privacy and k-
means clustering. In Section 3, we describe the existing three in-
teractive approaches, DPLloyd, GkM, PGkM, two non-interactive
approaches UGkM and MkM, improve DPLloyd and derive a new
non-interactive approach EUGkM. In Section 4, we first show the
experimental results on the performance comparison among the in-
teractive and non-interactive approaches, and analyze their strengths
and weaknesses. In Section 5, we discuss related works. We con-
clude in Section 6.

2. BACKGROUND

2.1 Differential Privacy
Informally, differential privacy requires that the output of a data

analysis mechanism should be approximately the same, even if any
single tuple in the input database is arbitrarily added or removed.

Definition 1 (ǫ-Differential Privacy [8, 10]). A randomized mech-

anism A gives ǫ-differential privacy if for any pair of neighboring

datasets D and D′, and any S ⊆ Range(A),
Pr [A(D) ∈ S] ≤ eǫ · Pr

[
A(D′) ∈ S

]
.

In this paper we consider two datasets D and D′ to be neighbors
if and only if either D = D′ + t or D′ = D + t, where D + t
denotes the dataset resulted from adding the tuple t to the dataset
D. We use D ≃ D′ to denote this. This protects the privacy of any
single tuple, because adding or removing any single tuple results in
eǫ-multiplicative-bounded changes in the probability distribution
of the output.

Differential privacy is composable in the sense that combining
multiple mechanisms that satisfy differential privacy for ǫ1, · · · , ǫm
results in a mechanism that satisfies ǫ-differential privacy for ǫ =∑

i ǫi. Because of this, we refer to ǫ as the privacy budget of a
privacy-preserving data analysis task. When a task involves mul-
tiple steps, each step uses a portion of ǫ so that the sum of these
portions is no more than ǫ.

There are several approaches for designing mechanisms that sat-
isfy ǫ-differential privacy, including Laplace mechanism [10] and
Exponential mechanism [21]. The Laplace mechanism computes

a function g on the dataset D by adding to g(D) a random noise,
the magnitude of which depends on GSg , the global sensitivity or
the L1 sensitivity of g. Such a mechanism Ag is given below:

Ag(D) = g(D) + Lap
(

GSg

ǫ

)

where GSg = max
(D,D′):D≃D′

|g(D)− g(D′)|,
and Pr [Lap (β) = x] = 1

2β
e−|x|/β.

In the above, Lap (β) denotes a random variable sampled from
the Laplace distribution with scale parameter β.

2.2 k-means Clustering Algorithms
The k-means clustering problem is as follows: given a d-dimensional

dataset D = {x1, x2, . . . , xN}, partition data points in D into k
sets O = {O1, O2, · · · , Ok} so that the Normalized Intra-Cluster
Variance (NICV) is minimized

1

N

k∑

j=1

∑

xℓ∈Oj

||xℓ − oj ||2. (1)

The standard k-means algorithm is the Lloyd’s algorithm [18].
The algorithm starts by selecting k points as the initial choices for
the centroid. The algorithm then tries to improve these centroid
choices iteratively until no improvement can be made. In each iter-
ation, one first partitions the data points into k clusters, with each
point assigned to be in the same cluster as the nearest centroid.
Then, one updates each centroid to be the center of the data points
in the cluster.

∀i ∈ [1..d] oji ←
∑

xℓ∈Oj x
ℓ
i

|Oj | , (2)

where j = 1, 2, . . . , k, xℓ
i and oji are the i-th dimensions of xℓ and

oj , respectively. The algorithm continues by alternating between
data partition and centroid update, until it converges.

3. THE INTERACTIVE AND

NON-INTERACTIVE APPROACHES
In this section, we describe and analyze three interactive ap-

proaches and three non-interactive approaches to differentially pri-
vate k-means clustering.

3.1 DPLloyd and Proposed Improvements

3.1.1 DPLloyd

A differentially private version of the Lloyd’s algorithm was first
proposed by Blum et al. [3] and was later implemented in the PINQ
system [22], a platform for interactive privacy preserving data anal-
ysis. We call this the DPLloyd approach. DPLloyd differs from the
standard Lloyd algorithm in the following ways. First, Laplacian
noise is added to the iterative update step in the Lloyd algorithm.
Second, the number of iterations needs to be fixed in order to decide
how much noise needs to be added in each iteration.

Each iteration requires computing the total number of points in
a cluster and, for each dimension, the sum of the coordinates of
the data points in a cluster. Let t be the number of iterations, and
d be the number of dimensions. Then, each tuple is involved in
answering dt sum queries and t count queries. To bound the sen-
sitivity of the sum query to a small number r, each dimension is
normalized to [−r, r]. Therefore, the global sensitivity of DPLloyd
is (dr+1)t, and each query is answered by adding Laplacian noise

Lap
(

(dr+1)t
ǫ

)
.

27

3.1.2 Optimization Issues

The overall structure of DPLloyd is to first select initial values,
and then iteratively improve them. This same algorithmic structure
also applies to many other data analysis tasks, such as linear re-
gression, SVM, etc. When making such an interactive and iterative
algorithm differentially private, there are two important decisions
one has to make.

The first decision is how to select the initial values? In the stan-
dard, non-private setting, a purely random choice may suffice, since
one could repeat the algorithm multiple times and choose the best
result among them. With privacy constraints, however, running the
interactive algorithm multiple times results in each run can use only
a fraction of the total privacy budget, and make the results being
even less accurate.

The second decision is how many iterations one runs. A large
number of iterations causes too much noises being added. A small
number of iterations may be insufficient for the algorithm to con-
verge. Existing approaches fix a number. However, intuitively the
number of rounds would depend on the available privacy budget
ǫ. With a smaller privacy budget, one should run fewer number of
rounds, to avoid the results being overwhelmed by too much noise.

How to choose these parameters has not been carefully con-
sidered in the literature. In the implementation of DPLloyd in
PINQ [19], it is proposed to run 5 iterations, with equal privacy
budget allocation for each round. In [24], comparison of GkM with
DPLloyd was done by running DPLloyd with 20, 80, and 200 itera-
tions, resulting in incorrect claim that GkM outperforms DPLloyd.
Dwork [9] considered the possibility of running k-means cluster-
ing without knowing the number of rounds in advance, and pro-
posed to use exponentially decreasing allocation of privacy bud-
gets, i.e., ǫ

2
in the first round, ǫ

4
in the second round, and so on. This

mostly likely results in deteriorating performance when the number
of rounds increases. The main reason is that in later rounds, when
one gets closer to the optimal value, it is desirable to have a larger
privacy budget.

Below, we propose an approach to improve the selection of initial
centroids for k-means clustering, design a general framework for
deciding the number of iterations and apply it to improve DPLloyd.
The improved version of DPLloyd is called DPLloyd-Impr.

3.1.3 Selecting Initial Centroids

The quality of initial centroids greatly affects the accuracy of
DPLloyd. A poor choice of initial centroids can result in converg-
ing to a local optimum that is far from global optimum, or not con-
verging after the given number of iterations. While many meth-
ods for choosing the initial points have been developed [26], these
methods were developed without the privacy concern and need ac-
cess to the dataset. In [22], k points at uniform random from the
domain are chosen as the initial centroids. We have observed em-
pirically that this can perform poorly in some settings, since some
randomly chosen initial centroids are close together. We thus intro-
duce an improved method for choosing initial centroids that is simi-
lar to the concept of sphere packing. Given a radius a, we randomly
generate k centroids one by one such that each new centroid is of
distance at least a away from every corner of the domain [−r, r]d
and each new centroid is of distance at least 2a away from any ex-
isting centroid. When a randomly chosen point does not satisfy this
condition, we generate another point. When we have failed repeat-
edly, we conclude that the radius a is too large, and try a smaller
radius. We use a binary search to find the maximal value for a such
that it is the process of choosing k centroids succeed. This process
depends only on the shape of the overall domain and not where the
data points are, and thus does not affect privacy.

3.1.4 Optimizing Rounds and Budget Allocation

We introduce the following general approach of determining the
number of rounds and privacy budget allocation. Our approach
depends on the ability to analyze the amount of noise introduced
in each round, manifested as the mean squared error (MSE). Given
this, one also specifies a threshold for the maximum MSE. The
basic idea is to choose the number of iterations so that we try to
ensure that each iteration’s MSE is no larger than the threshold,
and use smaller number of rounds if necessary. Below we show
how to apply this idea to DPLloyd.

3.1.5 Error Study of DPLloyd

DPLloyd adds noises to each iteration of updating centroids. We
now analyze the mean squared error (MSE) between noisy cen-
troids and true centroids in one iteration.

Consider one centroid and its update in one iteration. The true
centroid’s i’th dimension should be oi =

Si

C
, where C is the num-

ber of data points in the cluster and Si is the sum of i’th dimension
coordinates of data points in the cluster. Consider the noisy cen-
troid ô; its i’th dimension is ôi =

Si+∆Si

C+∆C
, where ∆C is the noise

added to the count and ∆Si is the noise added to the Si. The MSE
is thus:

MSE (ô) = E

[
d∑

i=1

(
Si +∆Si

C +∆C
− Si

C

)2
]

(3)

Derivation based on the above formula gives the following propo-
sition.

Proposition 1. In one round of DPLloyd, the MSE is

Θ

(
(kt)2d3

(Nǫ)2

)
.

Proof. Let us first consider the MSE on the i-th dimension.

MSE (ôi) = E

[(
Si+∆Si

C+∆C
− Si

C

)2]

≈E
[(

C∆Si−Si∆C
C2

)2]

= E[(∆Si)
2]

C2 +
E[S2

i (∆C)2]

C4 + 2CSiE[∆Si∆C]

C4

= Var(∆Si)

C2 +
S2
i Var(∆C)

C4

The last step holds, because ∆Si and ∆C are independent zero-
mean Laplacian noises and the following formulas hold:






E[∆Si∆C] = 0

E[(∆Si)
2] = E[(∆Si)

2]− (E[∆Si])
2 = Var (∆Si)

E[(∆C)2] = E[(∆C)2]− (E[∆C])2 = Var (∆C) ,

where Var (∆Si) and Var (∆C) are the variances of ∆Si and ∆C,
respectively.

Suppose that on average |Si|
2r·C = ρ, where [−r, r] is the range of

the i’th dimension. That is, ρ is the normalized coordinate of i-th
dimension of the cluster’s centroid. Furthermore, suppose that each
cluster is about the same size, i.e., C ≈ N

k
. Then, MSE (ôi) can be

approximated as follows:

MSE (ôi) ≈ k2

N2

(
Var (∆Si) + (2ρr)2 · Var (∆C)

)
(4)

DPLloyd adds to each sum/count function Laplace noise Lap
(

(dr+1)t
ǫ

)
.

Therefore, both Var (∆Si) and Var (∆C) are equal to
2((dr+1)t)2

ǫ2
.

28

From Equation (4) we obtain

MSE (ôi) ≈ k2

N2

(
Var (∆Si) + (2ρr)2 · Var (∆C)

)
(5)

= 2(1 + (2ρr)2)

(
kt(dr + 1)

Nǫ

)2

. (6)

As the noise added to each dimension is independent, from Equa-
tion 3 we know that the MSE is

MSE (ô) =

d∑

i=1

MSE (ôi) ≈ 2d(1 + (2ρr)2)

(
kt(dr + 1)

Nǫ

)2

(7)

When r is a small constant, this becomes Θ
(

(kt)2d3

(Nǫ)2

)
.

Proposition 1 shows that the distortion to the centroid propor-
tional to t2k2d3, while inversely proportional to (Nǫ)2.

3.1.6 Optimizing Privacy Budget Allocation Within
Each Round

An issue specific to DPLloyd and may not be shared by all iter-
ative algorithms is that within each round of DPLloyd, the privacy
budget needs to be divided among the count and the d sum queries.
Suppose ǫ0 is allocated to the count query, and ǫi is allocated to the
sum query for the i-th dimension, for each i = 1, 2, . . . , d. While
all dimensions should be treated equally, i.e., ǫ1 = ǫ2 = . . . = ǫd,
an interesting question is what should be the right value of ǫi

ǫ0
? The

DPLloyd approach allocates the privacy budget according to the
sensitivities of different queries; thus ǫi

ǫ0
= r, assuming that each

dimension is normalized to [−r, r]. Different r values will result in
different allocations of privacy budget.

We observe that the analysis in Section 3.1.5 calls for a fixed
allocation of ǫi

ǫ0
, independent from how the data ranges are nor-

malized. Plugging Var (∆Si) = 2r2

ǫ2
i

and Var (∆C) = 2
ǫ2
0

into

Equation (5), one obtains

d∑

i=1

MSE (ôi) ≈ k2

N2

d∑

i=1

(
Var (∆Si) + (2ρr)2 · Var (∆C)

)

=
2r2k2

N2

(
d∑

i=1

1

ǫ2i
+

4dρ2

ǫ20

)

(8)

Minimization of the above subject to
∑d

i=1 ǫi + ǫ0 = z can be
solved using the method of Lagrange multipliers, where z is the
privacy budget allocated to the current round. The optimal propor-
tion is

ǫ1 : ǫ2 : · · · : ǫd : ǫ0 = 1 : 1 : · · · : 1 : 3
√

4dρ2 (9)

To compute 3
√

4dρ2, we need an estimation of ρ, the normal-
ized coordinate of i-th dimension of the cluster’s centroid. We note
that 0 ≤ ρ ≤ 0.5. If a cluster includes points perfectly balanced
between the negative side and the positive side, then ρ = 0. If
all points have r (−r) as its i-th coordinate, then ρ = 0.5. We
empirically compute ρ from 81 synthetic datasets that are not used
for purpose of evaluation. We use ρ = 0.225 in this paper, and
conjecture that it provides a good enough approximation for most
scenarios.

We note that in the DPLloyd approach, if one chooses r = 1,
i.e., normalizes each dimension to the range of [−1, 1], one would
allocate the privacy budget with a ratio of ǫi : ǫ0 = 1 : 1, which is
suboptimal in most cases.

3.1.7 Determining the Number of Rounds

Based on our analysis in Section 3.1.5, we make several observa-
tions. First, it makes no sense to run DPLloyd with a large number
of rounds. From Proposition 1, the distortion on the centroid is on

the order of Θ
(

t2

(Nǫ)2

)
. Thus, all one gets from running DPLloyd

with too many rounds results large distortion on the cluster cen-
troids. Second, one should dynamically determine the number of
rounds based on parameters such as N and ǫ, since the distortion
on the centroid is inversely proportional to (Nǫ)2.

By exploiting these observations, we propose a way to determine
the number of iterations. We first determine a minimum privacy
budget ǫm that needs to be allocated to each iteration (see below).
Then, the privacy budget allocation across the iterations is decided
by the following two cases. Case 1: ǫ ≤ 2ǫm. In this case, the
total privacy budget is inadequate. If we distribute it to more than
2 iterations, then as stated before the added noise in each round
would easily dominate the centroid improvement. Therefore, we
decide that DPLloyd runs for two iterations only, each with privacy
budget of ǫ

2
. Case 2: ǫ > 2ǫm. In this case, the total privacy budget

is able to meet the requirement of assigning minimum budget to
each iteration. We require that the total number of iterations is at
most 7. Thus, the total number of iterations t− = min{ ǫ

ǫm
, 7},

and the privacy budget allocated to each of them is ǫ
t−

.
We now come to the calculation of ǫm. The intuition is that if the

centroid improvement of one iteration is effective, then the MSE
value should not be too big. We use the heuristic that the MSE of
all the centroids improvement should be no more than 0.004 · rd.
It follows from Equation 8 that

2r2k3

N2

(
d∑

i=1

1

ǫ2i
+

4dρ2

ǫ20

)

≤ 0.004rd, (10)

where
∑d

i=0 ǫi = ǫm. According to the optimized ratio in Equa-
tion 9, the privacy budget ǫm is distributed between ǫi’s as follows:






ǫ0 =
3
√

4dρ2

d+
3
√

4dρ2
ǫm

ǫi =
1

d+
3
√

4dρ2
ǫm, for i = 1, 2, . . . , d.

Plugging the above into Inequality 10 we can find the minimal ǫm

value,

ǫm =

(
500k3

N2

(
d+ 3

√
4dρ2

)3)1/2

. (11)

For the Gowalla dataset, ǫm ≈ 0.011; for the Adult-num dataset, it
is approximately equal to 0.096.

3.2 PGkM
PrivGene [34] is a general-purpose differentially private model

fitting framework based on genetic algorithms. Given a dataset D
and a fitting-score function f(D, θ) that measures how well the pa-
rameter θ fits the dataset D, the PrivGene algorithm initializes a
candidate set of possible parameters θ and iteratively refines them
by mimicking the process of natural evolution. Specifically, in each
iteration, PrivGene uses the exponential mechanism [21] to pri-
vately select from the candidate set m′ parameters that have the
best fitting scores, and generates a new candidate set from the m′

selected parameters by crossover and mutation. Crossover regards
each parameter as an h-dimensional vector. Given two parameter
vectors, it randomly selects a number h̄ such that 0 < h̄ < h and
splits each vector into the first h̄ dimensions in the vector and the
remaining h − h̄ dimensions (the lower half). Then, it swaps the
lower halves of the two vectors to generate two child vectors. These

29

vectors are then mutated by adding a random noise to one randomly
chosen dimension.

In [34], PrivGene is applied to logistic regression, SVM, and
k-means clustering. In the case of k-means clustering, the NICV
formula in Equation 1, more precisely its non-normalized version,
is used as the fitting function f , and the set of k cluster centroids
is defined as parameter θ. Each parameter is a vector of h = k · d
dimensions. Initially, the candidate set is populated with 200 sets
of cluster centroids randomly sampled from the data space, each set
containing exactly k centroids. Then, the algorithm runs iteratively
for max{8, (xNǫ)/m′} rounds, where x and m′ are empirically
set to 1.25× 10−3 and 10, respectively, and N is the dataset size.

We call the approach of applying PrivGene to k-means cluster-
ing PGkM, which is similarly to DPLloyd in that it tries to itera-
tively improve the centroids. However, rather than maintaining and
improving a single set of k centroids, PGkM maintains a pool of
candidates, uses selection to improve their quality, and crossover
and mutation to broaden the pool.

By selecting multiple sets of centroids in each round and apply-
ing mutation, PGkM reduces the chance that the iterative process is
stuck in a suboptimal solution. At the same time, doing this invari-
ably slows down the converging process. At the same time, if one
increases the number of iterations, each iteration becomes highly
inaccurate. Thus whether PGkM is a suitable approach for a prob-
lem depends on whether the benefit of PGkM can compensate for
the slow converging speed. Our experimental results in Section 4
show that for k-means clustering, this is not the case and PGkM
performs poorly.

3.3 GkM
The k-means clustering problem was also used to motivate the

sample and aggregate framework (SAF) for satisfying differential
privacy, which was developed in [25, 31], and implemented in the
GUPT system [24].

Given a dataset D and a function f , SAF first partitions D into
ℓ blocks, then it evaluates f on each of the block, and finally it
privately aggregates results from all blocks into a single one. Since
any single tuple in D falls in one and only one block, adding one
tuple can affect at most one block’s result, limiting the sensitivity
of the aggregation step. Thus one can add less noise in the final
step to satisfy differential privacy.

As far as we know, GUPT [24] is the only implementation of
SAF. Authors of [24] implemented k-means clustering and used it
to illustrate the effectiveness of GUPT. We call this algorithm GkM.
Given a dataset D, it first partitionsD into ℓ blocks D1, D2, . . . , Dℓ.
Then, for each block Db (1 ≤ b ≤ ℓ), it calculates its k centroids
ob,1, ob,2, . . . , ob,k . Finally, it averages the centroids calculated
from all blocks and adds noise. Specifically, the i’th dimension
of the j’th aggregated centroid is

oji =
1

ℓ

ℓ∑

b=1

ob,ji + Lap

(
2(maxi −mini) · k · d

ℓ · ǫ

)
, (12)

where ob,ji is the i’th dimension of ob,j , [mini,maxi] is the esti-
mated output range of i’th dimension. One half of the total privacy
budget is used to estimate this output range, and the other half is
used for adding Laplace noise.

We have found that the implementation downloaded from [23],
which uses Equation (12), performed poorly. Analyzing the data
closely, we found that mini and maxi often fall outside of the
data range, especially for small ǫ. We slightly modified the code to
bound mini and maxi to be within the data domain. This does not

affect the privacy, was able to greatly improve the accuracy. In this
paper we use this fixed version.

Here a key parameter is the choice of ℓ. Intuitively, a larger ℓ
will result in each block being very small and unable to preserve
the cluster information in the blocks, and a smaller ℓ, on the other
hand, results in large noise added. (Note the inverse dependency on
ℓ in Equation (12). Analysis in [24] suggests to set ℓ = N0.4. Our
experimental results, however, show that the performance is quite
poor. We can analytically show why that is the case.

There are two sources of errors in GkM. The first is that the ag-
gregation from the cluster centers obtained from different subsam-
ples may not be accurate. The second is due to the added noise. The

MSE due to the added noise is on the order of k2d2

ℓ2ǫ2
. Compared with

the MSE analysis of DPLloyd, they are comparable when ℓ ≈ N

t
√

d
,

that is, when each block contains only a small number of data
points. It is unlikely that one could learn k centroids from such
small subsamples. At the same time, if one chooses ℓ = N0.4, then

MSE will be linear in k2d2

N0.8ǫ2
, which is much larger than that of the

DPLloyd method.

3.4 Non-interactive Approaches
Interactive approaches such as DPLloyd and GkM suffer from

two limitations. First, often times the purpose of conducting k-
means clustering is to visualize how the data points are partitioned
into clusters. The interactive approaches, however, output only
the centroids. In the case of DPLloyd, one could also obtain the
number of data points in each cluster; however, it cannot provide
more detailed information on what shapes data points in the clus-
ters take. The value of interactive private k-means clustering is thus
limited. Second, as the privacy budget is consumed by the interac-
tive method, one cannot perform any other analysis on the dataset;
doing so will violate differential privacy.

Non-interactive approaches, which first generate a synopsis of
a dataset using a differentially private algorithm, and then apply
k-means clustering algorithm on the synopsis, avoid these two lim-
itations. In this paper, we consider the following synopsis method.
Given a d-dimensional dataset, one partitions the domain into M
equal-width grid cells, and then releases the noisy count in each
cell, by adding Laplacian noise to each cell count.

The synopsis released is a set of cells, each of which has a rect-
angular bounding box and a (noisy) count of how many data points
are in the bounding box. The synopsis tells only how many points
are in a cell, but not the exact locations of these points. For the
purpose of clustering, We treat all points as if they are at the center
of the bounding box. In addition, these noisy counts might be neg-
ative, non-integer, or both. A straightforward solution is to round
the noisy count of a cell to be a non-negative nearest integer and
replicate the cell center as many as the rounded count. This ap-
proach, however, may introduce a significant systematic bias in the
clustering result, when many cells in the UG synopsis are empty or
close to empty and these cells are not distributed uniformly. In this
case, simply turning negative counts to zero can produce a large
number of points in those empty areas, which can pull the centroid
away from its true position. We take the approach of keeping the
noisy count unchanged and adapting the centroid update procedure
in k-means to use the cell as a whole. Specifically, given a cell with
center c and noisy count ñ, its contribution to the centroid is c× ñ.
Using this approach, in one cluster, cells who have negative noisy
count can “cancel out” the effect of other cells with positive noise.
Therefore, we can have better clustering performance.

For this method, the key parameter is M , the number of cells.
When M is large, the average count per cell is low, and the noise

30

will have more impact. When M is small, each cell covers a large
area, and treating all points as at the center may be inaccurate when
the points are not uniformly distributed. We now describe two ex-
isting methods of choosing M and extend one of them.

3.4.1 MkM

Lei [16] proposed a scheme to release differentially private syn-
opses tailored for the M-estimator. Given a d-dimensional dataset
with N tuples, statistical analysis in [16] suggests that

M =

(
N√

log(N)

) 2d
2+d

(13)

We name the approach of applying the k-means clustering on
this synopsis MkM.

3.4.2 UGkM

UG is a simple algorithm proposed in [27] for producing synop-
sis of 2-dimensional datasets that can be used to answer rectangular
range queries (i.e., how many data points there are in a rectangular
range) with high accuracy. The algorithm partitions the space into
M = m × m equal-width grid cells, and then releases the noisy
count in each cell. It is observed that for counting queries, a larger
M value results in higher errors because more noises are added,
and a smaller M value results in higher errors due to the fact that
points within cells may be distributed nonuniformly, and queries
including a portion of these cells may be answered inaccurately. To
balance these two kinds of errors, it is suggested to set

m =

√
Nǫ

10
, or equivalently,M =

Nǫ

10
(14)

It has been shown that UG performs quite well for answering rect-
angular range queries [27]. UG can be easily extended to d-dimensional
dataset by setting m = d

√
M . We use UGkM to represent the UG-

based k-means clustering scheme.

3.4.3 EUGkM

We now analyze the choice of M for higher-dimensional case.
We use mean squared error (MSE) to measure the accuracy of est
with respect to act. That is,

MSE (est) = E
[
(est− act)2

]
= Var (est) + (Bias (est))2,

where Var (est) is the variance of est and Bias (est) is its bias.
There are two error sources when computing est. First, Laplace

noises are added to cell counts to satisfy differential privacy. This
results in the variance of est. Since counting a cell size has the
sensitivity of 1, Laplace noise Lap

(
1
ǫ

)
is added. Thus, the noisy

count has the variance of 2
ǫ2

. Suppose that the given counting query
covers α portion of the total M cells in the data space. Then,
Var (est) = α 2M

ǫ2
. Second, the given counting query may not fully

contain the cells that fall on the border of the query rectangle. To
estimate the number of points in the intersection between the query
rectangle and the border cells, it assumes that data are uniformly
distributed. This results in the bias of est, which depends on the
number of tuples in the border cells. The border of the given query
consists of 2d hyper rectangles, each being (d − 1)-dimensional.
The number of cells falling on a hyper rectangle is in the order of

M
d−1

d . On average the number of tuples in these cells is in the

order of M
d−1

d · N
M

= N

M
1
d

. Therefore, we estimate the bias of est

with respect to one hyper rectangle to be β N

M
1
d

, where β ≥ 0 is

a parameter. We thus estimate (Bias (est))2 to be 2d

(
β N

M
1
d

)2

.

Summing the variance and the squared bias, it follows that

MSE (est) = α
2M

ǫ2
+ β2 2dN

2

M
2
d

.

To minimize the MSE, we set the derivative of the above equation
with respect to M to 0. This gives

M =

(
Nǫ

θ

) 2d
2+d

, (15)

where θ =
√

α
2β2 . We name the above extended approach as EUG

(extended uniform griding approach). We use EUGkM to represent
the EUG-based k-means clustering scheme.

4. PERFORMANCE AND ANALYSIS

Table 1: Descriptions of the Datasets.

Dataset # tuples # dims # clusters

S1 5,000 2 15

Gowalla 107,091 2 5

TIGER 16,281 2 2

Image 34,112 3 3

Adult-num 48,841 6 5

Lifesci 26,733 10 3

Synthe 10,000 + O [2, 10] [2, 10]

Synthe-PT 10,000 [2, 10] [2, 10]

O is # outliers and is uniformly sampled from [0, 100].

In this section, we compare and analyze the performance of the
six methods described in Section 3.

4.1 Evaluation Methodology
We experimented with six external datasets and two sets of syn-

theticly generated datasets. The first external dataset is a 2D syn-
thetic dataset S1 [12], which is a benchmark to study the perfor-
mance of clustering schemes. S1 contains 5,000 tuples and 15
Gaussian clusters. The Gowalla dataset contains the user checkin
locations from the Gowalla location-based social network whose
users share their checking-in time and locations (longitude and lat-
itude). We sample one locaiton of each user ID and obtain a 2D
dataset of 107,091 tuples. We set k = 5 for this dataset. The
third dataset is a 1-percentage sample of road dataset which was
drawn from the 2006 TIGER (Topologically Integrated Geographic
Encoding and Referencing) dataset [4]. It contains the GPS coor-
dinates of road intersections in the states of Washington and New
Mexico. The fourth is Image [12], a 3D dataset with 34,112 RGB
vectors. We set k = 3 for it. We also use the well known Adult
dataset [1]. We use its six numerical attributes, and set k = 5. The
last dataset is Lifesci. It contains 26,733 records and each of them
consists of the top 10 principal components for a chemistry or bi-
ology experiment. As previous approaches [24, 34], we set k = 3.
Table 1 summarizes the datasets. For all the datasets, we normalize
the domain of each attribute to [-1.0, 1.0].

We generate two sets of synthetic datasets. The first set of syn-
thetic datasets, which we call Synthe, is generated by using the
clusterGeneration [28] R package. It is designed for generating
cluster datasets with specified degree of separation which is a quan-
titative measure of closeness between any cluster and its nearest
neighboring cluster. Besides, the clusterGeneration package can
generate clusters with arbitrary diameters, shapes and orientations.

31

0.005

0.02

0.04

0.2

0.4

1.0

 0.01

 0.1

0.05 0.15 0.4 1.5 2.0 0.1 1

Privacy Budget ε, log scale

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

0.07

0.2

0.3

0.4
0.5

1.0

2.5

 0.1

0.05 0.15 0.4 1.5 2.0 0.1 1

Privacy Budget ε, log scale

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

(a) S1 [d = 2, k = 15] (b) Image [d = 3, k = 3]

0.015

0.04

0.07

0.1

0.15
0.2

0.4

1.0

0.05 0.15 0.4 1.5 2.0 0.1 1

Privacy Budget ε, log scale

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

0.15

0.3

0.5

1.0

2.0

3.0

6.0

0.05 0.15 0.4 1.5 2.0 0.1 1

Privacy Budget ε, log scale

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

(c) Gowalla [d = 2, k = 5] (d) Adult-num [d = 6, k = 5]

0.04

0.1

0.2

0.3

0.5

1.0

2.0

0.05 0.15 0.4 1.5 2.0 0.1 1

Privacy Budget ε, log scale

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

0.5

0.7

1.0

2.0

5.0

10.0

0.05 0.15 0.4 1.5 2.0 0.1 1

Privacy Budget ε, log scale

NoPrivacy
EUGkM
DPLloyd-Impr
UGkM
PGkM
GkM
MkM

(e) TIGER [d = 2, k = 2] (f) Lifesci [d = 10, k = 3]

Figure 1: The comparison of DPLloyd-Impr, PGkM, GkM, EUGkM, UGkM and MkM by varying the privacy budget ǫ. x-axis:

privacy budget ǫ in log-scale. y-axis: NICV in log-scale.

In this paper, we generate 81 dataset by varying k and d from 2
to 10. We fix the dataset size to 10,000 and distribute them into
k clusters with size proportional to the ratio 1 : 2 : . . . : k. We
also inject few outliers whose number is uniformly sampled from
[0, 100]. For each dataset, we randomly sample its degree of sep-
aration from [0.16, 0.26], which means from clusters with small
overlapping to separated-but-close clusters.

The second set is mainly for tuning parameters of the EUGkM
algorithm. We fix the dataset size to be 10,000, and vary k and
d from 2 to 10 respectively. For each dataset, k well separated
Gaussian clusters with equal size are generated. We call the second
set of synthetic dataset as the Synthe-PT set, where PT stands for
parameter tuning.

Implementations for DPLloyd and GkM were downloaded from
[19] and [23], respectively. The source code of PGkM [34] was
shared by the authors. We implemented EUGkM, UGkM and MkM.

Configuration. Each algorithm outputs k centroids
o = {o1, o2, · · · , ok}. The quality of the centroids o is evaluated
by the Normalized Intra-Cluster Variance (NICV) (Eq.1).

We note that since both DPLloyd, EUGkM, UGkM and MkM
use Lloyd-style iteration, they are affected by the choice of initial
centroids. In addition, all algorithms have random noises added
somewhere to satisfy differential privacy. To conduct a fair com-
parison, we need to carefully average out such randomness effects.
GkM and PGkM do not take a set of initial centroids as input. GkM
divides the input dataset into multiple blocks, and for each block in-
vokes the standard k-means implementation from the Scipy pack-

32

0.005

0.02

0.04

0.2

 0.01

 0.1

0.05 0.15 0.4 1.5 2.0 0.1 1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

0.09

0.11

0.13

0.2

 0.1

0.05 0.15 0.4 1.5 2.0 0.1 1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

(a) S1 [d = 2, k = 15] (b) Image [d = 3, k = 3]

0.02

0.025

0.03

0.04

0.05

0.06

0.07

0.05 0.15 0.4 1.5 2.0 0.1 1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

0.17

0.2

0.25

0.3

0.4

0.5

0.7

0.05 0.15 0.4 1.5 2.0 0.1 1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

(c) Gowalla [d = 2, k = 5] (d) Adult-num [d = 6, k = 5]

0.048

0.05

0.055

0.06

0.063

0.05 0.15 0.4 1.5 2.0 0.1 1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

0.65

0.7

0.8

1.0

1.1

0.05 0.15 0.4 1.5 2.0 0.1 1

NoPrivacy
EUGkM

DPLloyd-Impr
DPLloyd

UGkM

(e) TIGER [d = 2, k = 2] (f) Lifesci [d = 10, k = 3]

Figure 2: The close-up view of the comparison of DPLloyd-Impr, DPLloyd, EUGkM, and UGkM by varying the privacy budget ǫ.
x-axis: privacy budget ǫ in log-scale. y-axis: NICV in log-scale.

age [30] with a different set of initial centroids to get the result, and
finally aggregates the outputs for all the blocks. We run GkM and
PGkM 100 times and report the average result.

DPLloyd-Impr generates 30 sets of initial centroids by using
the proposed sphere packing method in Section 3.1.3. We run
DPLloyd-Impr 100 times on each set of initial centroids, and re-
port the average of the 3000 NICV values as the final evaluation of
DPLloyd-Impr. For DPLloyd, we randomly generate 30 sets of ini-
tial centroids and use the same way to compute the averaged NICV
values.

The non-interactive approach (EUGkM) has the advantage that
once a synopsis is published, one can run k-means clustering with
as many sets of initial centroids as one wants and choose the result
that has the best performance relative to the synopsis. In our experi-
ments, given a synopsis, we use the same 30 sets of initial centroids

as those generated for the DPLloyd-Impr method. For each set, we
run clustering and output a set of k centroids. Among all the 30 sets
of output centroids, we select the one that has the lowest NICV rela-
tive to the synopsis rather than to the original dataset. This process
ensures selecting the set of output centroids satisfies differential
privacy. We then compute the NICV of this selected set relative to
the original dataset, and take it as the resulting NICV with respect
to the synopsis. To deal with the randomness introduced by the
process of generating synopsis, we generate 10 different synopses
and take the average of the resulting NICV values.

For EUGkM, we set the the parameter θ = 10. We experimen-
tally compare the EUGkM’s performance on different θ choices
and find that θ = 10 for EUGkM works well in most cases. This
parameter tuning for EUGkM is performed on the Synthe-PT dataset.
Therefore, the following evaluation of EUGkM on the Synthe dataset

33

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

(a) DPLloyd (ǫ = 1.0) (b) DPLloyd-Impr (ǫ = 1.0) (c) PGkM (ǫ = 1.0)

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-

10
-1

1.0

10.0

(d) EUGkM (ǫ = 1.0) (e) MkM (ǫ = 1.0) (f) GkM (ǫ = 1.0)

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

 2
 3
 4
 5
 6
 7
 8
 9

 10

 2 3 4 5 6 7 8 9 10
k

d

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1.0

10.0

(g) EUGkM (ǫ = 0.1) (h) MkM (ǫ = 0.1) (i) UGkM (ǫ = 1.0)

Figure 3: The heatmap by varying k and d on the Synthe datasets with ǫ = 1.0 and ǫ = 0.1

strictly satisfies differential privacy, since the parameter is deter-
mined on an independent set of datasets.

As the baseline, we run standard k-means algorithm [18] over
the same 30 sets of initial centroids generated in DPLloyd-Impr
and take the minimum NICV among all the 30 runs.

Experimental Results. Figure 1 and Figure 2 report the results
for the 6 external datasets. For these, we vary ǫ from 0.05 to 2.0
and plot the NICV curve for the methods mentioned in Section 3.
This enables us to see how these algorithms perform under different
privacy budgets.

Figure 3 reports the results on the Synthe datasets. For these,
we fix ǫ = 1.0 and ǫ = 0.1 and report the difference of NICV
between each approach and the baseline. This enables us to see the
scalability of these algorithms when k and d increase.

Among interactive approaches, DPLloyd-Impr has the best per-
formance in most cases. It also outperforms DPLloyd in most
cases. For non-interactive approaches, both EUGkM and UGkM
clearly outperform MkM, especially for small ǫ values. EUGkM
and UGkM has close performance on the low dimensional datasets.
As the dimensionality increases, the advantage of EUGkM to UGkM
becomes obvious. Comparing DPLloyd-Impr and EUGkM (Fig-
ure 2), we observe that in the four low dimensional external datasets

(S1, Gowalla, TIGER and Image), EUGkM clearly outperforms
DPLloyd-Impr at small ǫ value and their gap becomes smaller as ǫ
increases. However, in the two high dimensional datasets (Adult-
num and Lifesci), DPLloyd-Impr outperforms EUGkM almost in
all given privacy budgets. The similar observations can also be
found in Figure 3.

Figure 3 also exhibits the effects of the number of clusters and
the number of dimensions. The EUGkM’s performance is more
sensitive to the increase of dimension, while DPLloyd-Impr gets
worse quickly as the number of clusters increases.

4.2 The Analysis of the GkM Approach
From Figures 1 and 3, it is clear that GkM is always much worse

than others. There are two sources of errors for GkM. One is that
GkM is aggregating centroids computed from the subsets of data,
and this aggregation may be inaccurate even without adding noise.
The other is that the noise added according to Equation (12) may
be too large. We find that setting ℓ = N0.4 in GkM, which cor-
responds to block size of N0.6, is far from optimal, as the error
GkM is dominated by that from the noise, and is much higher than
the error due to sample and aggregation. Detailed explanations are
deferred to Appendix 8.1.

34

4.3 The Analysis of the PGkM Approach
PGkM is a stochastic k-means method based on genetic algo-

rithms. A stochastic method converges to global optimum [15]. On
the contrary, DPLloyd is a gradient descent method derived from
the standard Lloyd’s algorithm [18], which may reach local opti-
mum. However, PGkM is still inferior to DPLloyd in Figure 1.

There are two possible reasons. First, a stochastic approach typ-
ically takes a ‘larger’ number of iterations to converge [15]. De-
tailed explanations are deferred to Appendix 8.2. The second rea-
son is that the low privacy budget allocated to select a parameter
(i.e., a set of k cluster centroids) from the candidate set. In each
iteration PGkM selects 10 parameters, and the total number of it-
erations is at least 8. Thus, the privacy budget allocated to select a
single parameter is at most ǫ/80. Therefore, PGkM has reasonable
performance only for big ǫ value.

4.4 The Analysis of the EUGkM, UGkM and
MkM Approaches

The difference between of the three non-interactive methods,
EUGkM, UGkM and MkM is the choice of grid size M . The

EUGkM method sets it to
(
Nǫ
10

) 2d
2+d , the UGkM method sets it to

(
Nǫ
10

)
and the MkM method sets it to

(
N√

log(N)

) 2d
2+d

. Figure 1

and Figure 3 show that the performance of UGkM and EUGkM are
superior to that of MkM. An important reason is that MkM does
not take ǫ as a factor in M . Thus, it is nonadaptive to the varia-
tion of ǫ. This explains why EUGkM and UGkM perform much
better than MkM for small ǫ values. On the other hand, although
UGkM considers the impact of the privacy budget ǫ, it does not
produce large enough grids for the high dimensional data. This ex-
plains why EUGkM performs better on high dimensional data than
UGkM.

4.5 Estimating the Number of Clusters.
In cluster analysis, an important problem is to estimate the num-

ber of clusters, which has a deterministic effect on the clustering
results. Such problem becomes more prominent in the differen-
tial privacy setting, since the data analyst cannot access the private
database as many times as she/he wants.

Our EUGkM approach can address this problem. Several heuris-
tics and statistics [29, 32] have been proposed to determine the
number of clusters k automatically. Suppose we have a list of can-
didate values of k and one statistics φ for determining the best k.
Once an EUGkM synopsis is published, we evaluate φ for each
candidate k value on this noisy synopsis. The k value with the
best φ score will be selected for the following k-means clustering.
All the operations are performed on the released EUGkM synopsis.
So the estimation process satisfies the differential privacy. This is
another advantage of the non-interactive approaches over the inter-
active approaches on the k-means clustering.

We also experimentally evaluate the above method on the six
external datasets and on six privacy budget values. This method
gives very accurate estimations on the k values under most of the
privacy budget settings. We omit the experimental results for space
reasons.

5. RELATED WORK
The notion of differential privacy was developed in a series of

papers [7, 11, 3, 10, 8]. Several primitives for answering a single
query differentially privately have been proposed. Dwork et al. [10]
introduced the method of adding Laplacian noise scaled with the

sensitivity. McSherry and Talwar [21] introduced a more general
exponential mechanism.

Blum et al. [3] proposed a sublinear query (SuLQ) database model
for interactively answering a sublinear number (in the size of the
underlying database) of count queries differential privately. The
users (e.g. machine learning algorithms) issue queries and get re-
sponses which are added laplace noises. They applied the SuLQ
framework to the k-means clustering and some other machine learn-
ing algorithms. McSherry [22] built the PINQ (Privacy INtegrated
Queries) system, a programming platform which provides several
differentially-private primitives to enable data analysts to write privacy-
preserving applications. These private primitives include noisy count,
noisy sum, noisy average, and exponential mechanism. The DPLloyd
algorithm, which we compare against in this paper, has been imple-
mented using these primitives.

Nissim et al. [25, 31] propose the sample and aggregate frame-
work (SAF), and use k-means clustering as a motivating applica-
tion for SAF. This SAF framework has been implemented in the
GUPT system [24] and is evaluated by k-means clustering. This is
the GkM algorithm that we compared with in the paper. Dwork [9]
suggested applying a geometric decreasing privacy budget alloca-
tion strategy among the iterations of k-means, whereas we use an
increasing sequence. Geometric decreasing sequence will cause
later rounds using increasingly less privacy budget, resulting in
higher and higher distortion with each new iteration. Zhang et al.
[34] proposed a general private model fitting framework based on
genetic algorithms. The PGkM approach in this paper is an instan-
tiation of the framework to k-means clustering.

Interactive methods for other data mining tasks have been pro-
posed. McSherry and Mironov [20] adapted algorithms producing
recommendations from collective user behavior to satisfy differen-
tial privacy. Friedman and Schuster [13] made the ID3 decision
tree construction algorithm differentially private. Chaudhuri and
Monteleoni [5] proposed a differentially private logistic regression
algorithm. Zhang et al. [35] introduced the functional mechanism,
which perturbs an optimization objective to satisfy differential pri-
vacy, and applied it to linear regression and logistic regression. Dif-
ferentially private frequent itemset mining has been studied in [2,
17]. The tradeoffs of interactive and non-interactive approaches in
these domains are interesting future research topics.

Most non-interactive approaches aim at developing solutions to
answer histogram or range queries accurately [10, 33, 14, 6]. Dwork
et al. [10] calculate the frequency of values and release their distri-
bution differentially privately. Such method makes the variance of
query result increase linearly with the query size. To address this
issue, Xiao et al. [33] propose a wavelet-based method, by which
the variance is polylogarithmic to the query size. Hay et al. [14]
organize the count queries in a hierarchy, and improve the accuracy
by enforcing the consistency between the noisy count value of a
parent node and those of its children. Cormode et al. [6] adapted
standard spatial indexing techniques, such as quadtree and kd-tree,
to decompose data space differential-privately. Qardaji et al. [27]
proposed the UG and AG method for publishing 2-dimensional
datasets.

6. CONCLUSION AND DISCUSSIONS
We have improved the state-of-the-art on differentially private

k-means clustering in several ways. We have introduced a non-
interactive methods for differentially private k-means clustering
and improved one interactive methods based on a systemized error
analysis. Concerning the question of non-interactive versus interac-
tive, the insights obtained from k-means clustering are as follows.
The non-interactive EUGkM has clear advantage, especially when

35

the privacy budget ǫ is small. Considering the further advantage
that non-interactive methods enable other analysis on the dataset,
we would tentatively conclude that non-interactive is the winner
in this comparison. We conjecture that this tradeoff will hold for
many other data analysis tasks. We plan to investigate whether this
holds in other analysis tasks.

7. ACKNOWLEDGMENTS
This paper is based upon work supported by the United States

National Science Foundation under Grant CNS-1116991.

8. APPENDIX

8.1 Detailed Explanations for the Analysis of
the GkM Approach

This section gives detailed explanations for the two sources of er-
rors in the GkM approach as mentioned in the Section 4.2. We use
the Figure 4 to show the effect of varying block size from around
N0.1 to N on the two sources of errors. In Figure 4, we show error
from GkM, error from using the aggregation without noise (SAG),
and error from adding noise computed by Equation 12) to the best
known centroids (Noise). From the figure, it is clear that setting
ℓ = N0.4, which corresponds to block size of N0.6 is far from op-
timal, as the error GkM is dominated by that from the noise, and is
much higher than the error due to sample and aggregation. Indeed,
we observed that as the block size decreases the error of GkM keeps
decreasing, until when the block size gets close to k. It seems that
even though many individual blocks result in poor centroids, ag-
gregating these relatively poor centroids can result in highly accu-
rate centroids. This effect is most pronounced in the Tiger dataset,
which consists of two large clusters. The two centroids computed
from each small block can be approximately viewed as choosing
one random point from each cluster. When averaging these cen-
troids, one gets very close to the true centroids.

8.2 Detailed Explanations for the Analysis of
the PGkM Approach

This section gives detailed explanations for the first reason why
PGkM is still inferior to DPLloyd as mentioned in the Section 4.3.
Generally, a stochastic approach typically takes a ‘larger’ number
of iterations to converge [15]. Figure 5 compares the Lloyd’s al-
gorithm with Gene (i.e., the non-private version of PGkM without
considering differential privacy). For Lloyd, we reuse the initial
centroids generated in Section 4.1. Given a dataset, we run Lloyd
on the 30 sets of initial centroids generated for the dataset, and
report the average NICV. Generally, Gene overtakes Lloyd as the
number of iterations increases and finally converges to the global
optimum. However, Lloyd improves its performance much faster
than Gene in the first few iterations, and converges to the global op-
timal (or local optimum) more quickly. For example, in the Image
dataset, Lloyd reaches the best baseline after three iterations, while
the Gene needs more than 10 iterations to achieve the same.

9. REFERENCES
[1] A. Asuncion and D. Newman. UCI machine learning

repository, 2010.

[2] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta.
Discovering frequent patterns in sensitive data. In KDD,
pages 503–512, 2010.

[3] A. Blum, C. Dwork, F. McSherry, and K. Nissim. Practical
privacy: The sulq framework. In PODS, pages 128–138,
2005.

[4] U. S. Census. Topologically integrated geographic encoding
and referencing.
http://www.census.gov/geo/maps-data/data/tiger.html.

[5] K. Chaudhuri and C. Monteleoni. Privacy-preserving logistic
regression. In NIPS, pages 289–296, 2008.

[6] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen, and
T. Yu. Differentially private spatial decompositions. In
ICDE, pages 20–31, 2012.

[7] I. Dinur and K. Nissim. Revealing information while
preserving privacy. In PODS, pages 202–210, 2003.

[8] C. Dwork. Differential privacy. In ICALP, pages 1–12, 2006.

[9] C. Dwork. A firm foundation for private data analysis.
Commun. ACM, 54(1):86–95, Jan. 2011.

[10] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data analysis. In
TCC, pages 265–284, 2006.

[11] C. Dwork and K. Nissim. Privacy-preserving data mining on
vertically partitioned databases. In CRYPTO, pages 528–544,
2004.

[12] P. Fränti. Clustering datasets.
http://cs.joensuu.fi/sipu/datasets/.

[13] A. Friedman and A. Schuster. Data mining with differential
privacy. In KDD, pages 493–502, 2010.

[14] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the
accuracy of differentially private histograms through
consistency. Proc. VLDB Endow., 3(1-2):1021–1032, Sept.
2010.

[15] K. Kummamuru and M. N. Murty. Genetic k-means
algorithm. IEEE Transactions on Systems, Man, and

Cybernetics, Part B, 29(3):433–439, 1999.

[16] J. Lei. Differentially private m-estimators. In NIPS, pages
361–369, 2011.

[17] N. Li, W. Qardaji, D. Su, and J. Cao. Privbasis: Frequent
itemset mining with differential privacy. Proc. VLDB

Endow., 5(11):1340–1351, July 2012.

[18] S. P. Lloyd. Least squares quantization in pcm. IEEE

Transactions on Information Theory, 28(2):129–136, 1982.

[19] F. McSherry. Privacy integrated queries (pinq) infrastructure.
http://research.microsoft.com/en-us/downloads/
73099525-fd8d-4966-9b93-574e6023147f/.

[20] F. McSherry and I. Mironov. Differentially private
recommender systems: Building privacy into the netflix prize
contenders. In KDD, pages 627–636, 2009.

[21] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In FOCS, pages 94–103, 2007.

[22] F. D. McSherry. Privacy integrated queries: An extensible
platform for privacy-preserving data analysis. In SIGMOD,
pages 19–30, 2009.

[23] P. Mohan. Gupt: a platform for privacy-preserving data
mining. https://github.com/prashmohan/GUPT.

[24] P. Mohan, A. Thakurta, E. Shi, D. Song, and D. Culler. Gupt:
Privacy preserving data analysis made easy. In SIGMOD,
pages 349–360, 2012.

[25] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In STOC,
pages 75–84, 2007.

[26] J. M. Peña, J. A. Lozano, and P. Larrañaga. An empirical
comparison of four initialization methods for the k-means
algorithm. Pattern Recogn. Lett., 20(10):1027–1040, 1999.

[27] W. H. Qardaji, W. Yang, and N. Li. Differentially private
grids for geospatial data. In ICDE, pages 757–768, 2013.

36

0.005

0.02

0.05

0.2

0.5

 0.01

 0.1

 1

0.32 0.4 3K 0.5 0.6 0.7 0.8 0.9 1.0

Baseline
SAG
GkM
Noise

0.01

0.02

0.05

0.2

0.5

 0.1

 1

0.2 3K 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline
SAG
GkM
Noise

0.05

0.2

0.5

1.0

2.0

3.0

 0.1

0.07 3K 0.3 0.4 0.5 0.6 0.7 0.8 1.0 0.1

Baseline
SAG
GkM
Noise

(a) S1 [d = 2, k = 15] (b) Gowalla [d = 2, k = 5] (c) TIGER [d = 2, k = 2]

0.2

0.5

1.0

2.0

3.0

 0.1

0.1 0.17 3K 0.26 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Baseline
SAG
GkM
Noise

0.2

0.5

1.0

2.0

6.0

0.15 0.21 3K 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Baseline
SAG
GkM
Noise

0.5

1.0

2.0

5.0

10.0

0.1 0.17 3K 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Baseline
SAG
GkM
Noise

(d) Image [d = 3, k = 3] (e) Adult-num [d = 6, k = 5] (f) Lifesci [d = 10, k = 3]

Figure 4: The analysis of the GkM Approach. x-axis: block size exponent in log-scale, y-axis: NICV in log-scale.

0.007

0.014

0.02

0.03

0.05

 0.01

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.02

0.03

0.04

0.05

0.066

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.047

0.06

0.08

0.13

 0.1

1 2 5 10 20 50

Gene
Lloyd
Baseline

(a) S1 [d = 2, k = 15] (b) Gowalla [d = 2, k = 5] (c) TIGER [d = 2, k = 2]

0.09

0.15

0.2

0.3

 0.1

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.17

0.25

0.4

0.6

0.82

1 2 5 10 20 50

Gene
Lloyd
Baseline

0.65

0.8

1.2

1.5

1.9

 1

1 2 5 10 20 50

Gene
Lloyd
Baseline

(d) Image [d = 3, k = 3] (e) Adult-num [d = 6, k = 5] (f) Lifesci [d = 10, k = 3]

Figure 5: The comparison of the convergence rate of the genetic algorithm based k-means and Lloyd algorithm. x-axis: number of

iterations in log-scale, y-axis: NICV in log-scale.

[28] W. Qiu. clustergeneration: Random cluster generation (with
specified degree of separation). http://cran.r-
project.org/web/packages/clusterGeneration/index.html.

[29] S. Ray and R. H. Turi. Determination of number of clusters
in k-means clustering and application in colour image
segmentation. In ICAPRDT’99, pages 137–143, 1999.

[30] Scipy.org. Scientific computing tools for python.
http://scipy.org/.

[31] A. Smith. Privacy-preserving statistical estimation with
optimal convergence rates. In STOC, pages 813–822, 2011.

[32] R. Tibshirani, G. Walther, and T. Hastie. Estimating the
number of clusters in a data set via the gap statistic. Journal

of the Royal Statistical Society: Series B (Statistical

Methodology), 63(2):411–423, 2001.

[33] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via
wavelet transforms. IEEE Trans. Knowl. Data Eng.,
23(8):1200–1214, 2011.

[34] J. Zhang, X. Xiao, Y. Yang, Z. Zhang, and M. Winslett.
Privgene: Differentially private model fitting using genetic
algorithms. In SIGMOD, pages 665–676, 2013.

[35] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett.
Functional mechanism: Regression analysis under
differential privacy. Proc. VLDB Endow., 5(11):1364–1375,
July 2012.

37

