
Novel Feature Extraction, Selection and Fusion for
Effective Malware Family Classification

Mansour Ahmadi
Department of Electrical and

Electronic Engineering
University of Cagliari, Italy

mansour.ahmadi@diee.
unica.it

Dmitry Ulyanov
Skolkovo Institute of Science

and Technology, Russia
dmitry.ulyanov@
skolkovotech.ru

Stanislav Semenov
National Research University
Higher School of Economics,

Russia
stasg7@gmail.com

Mikhail Trofimov
Moscow Institute of Physics

and Technology, Russia
mikhail.trofimov@phystech.

edu

Giorgio Giacinto
Department of Electrical and

Electronic Engineering
University of Cagliari, Italy
giacinto@diee.unica.it

ABSTRACT
Modern malware is designed with mutation characteristics,
namely polymorphism and metamorphism, which causes an
enormous growth in the number of variants of malware sam-
ples. Categorization of malware samples on the basis of their
behaviors is essential for the computer security community,
because they receive huge number of malware everyday, and
the signature extraction process is usually based on mali-
cious parts characterizing malware families. Microsoft re-
leased a malware classification challenge in 2015 with a huge
dataset of near 0.5 terabytes of data, containing more than
20K malware samples. The analysis of this dataset inspired
the development of a novel paradigm that is effective in cat-
egorizing malware variants into their actual family groups.
This paradigm is presented and discussed in the present pa-
per, where emphasis has been given to the phases related to
the extraction, and selection of a set of novel features for the
effective representation of malware samples. Features can
be grouped according to different characteristics of malware
behavior, and their fusion is performed according to a per-
class weighting paradigm. The proposed method achieved
a very high accuracy (≈ 0.998) on the Microsoft Malware
Challenge dataset.

Keywords
Windows Malware, Machine learning, Malware family, Com-
puter security, Classification, Microsoft Malware Classifica-
tion Challenge

1. INTRODUCTION

This version of paper has been accepted at
CODASPY ’16, March 09-11, 2016, New Orleans, LA, USA
.

In recent years, malware coders developed sophisticated
techniques to elude traditional as well as modern malware
protection mechanisms. On the other hand, developers of
anti-malware solutions need to develop counter mechanisms
for detecting and deactivating them, playing a cat-and-mouse
game. The huge number of malware families, and malware
variants inside the families, causes a major problem for anti-
malware products. For example, McAfee Lab’s antimalware
solutions reported more than 350M total unique malware
samples in Q4 of 2014, that represents a growth of 17% with
respect to the analogous data in Q3 [5]. Symantec reported
more than 44.5 million new pieces of malware created in May
2015 [6]. Analyzing the malicious intent in this vast amount
of data requires a huge effort by anti malware companies.
One of the main reasons for this high volume of malware
samples is the extensive use of polymorphic and metamor-
phic techniques by malware developers, which means that
malicious executable files belonging to the same malware
family are constantly modified and/or obfuscated. In par-
ticular, polymorphic malware has a static mutation engine
that encrypts and decrypts the code, while metamorphic
malware automatically modify the code each time it is prop-
agated.
Malware detection and classification techniques are two sep-
arate tasks, that are performed by anti-malware companies.
Firstly, an executable needs to be analyzed to detect if it
exhibits any malicious content: Then, in the case a malware
is detected, it is assigned to the most appropriate malware
family through a classification mechanism. There are vari-
ous ways for detecting malware in the wild, and detecting
a zero-day malware is still a challenging task. For example,
Kaspersky recently discovered a new variant of Duqu, Duqu
2.0, in their own internal networks in July of 2015 [3]. The
detection of this kind of advanced malware is usually car-
ried out within a sandbox environment by leveraging on a
powerful heuristic engine. After the malware detection step,
malware need to be categorized into groups, corresponding
to their families, for further analysis. As far as a very high
number of malware variants is concerned, the need for the
automation of this process is clear-cut.

ar
X

iv
:1

51
1.

04
31

7v
2 

 [
cs

.C
R

] 
 1

0 
M

ar
 2

01
6



The analysis of malicious programs is usually carried out
by static techniques [39, 48, 34] and dynamic techniques
[45, 37, 9, 46]. Analyzers extract various characteristics
from the programs’ syntax and semantic such as operation
codes [40] and function call graph [23] from the disassembled
code, or string signatures [22] and byte code n-grams [44,
2] from the hex code, or different structural characteristics
from the PE header, such as dependencies between APIs
[48] and DLLs [34]. Some other works [42] also explored
the analysis of metadata such as the number of bitmaps,
the size of import and export address tables besides the PE
header’s content. The aforementioned content-based detec-
tion systems, like those considering bytecode n-grams, APIs,
and assembly instructions, are inherently susceptible to false
detection due to the fact of polymorphism and metamor-
phism. In addition, these techniques are not appropriated
in the case of malware samples such as the one with 00yCu-

plj2VTc9ShXZDvnxz hash name, that does not contain any
APIs, and also contains a few assembly instructions because
of packing.
In this paper, we propose a learning-based system which
uses different malware characteristics to effectively assign
malware samples to their corresponding families without do-
ing any deobfuscation and unpacking process. Although un-
packing may lead to the extraction of more valuable features
if the packers are known, unpacking is a costly task, and
dealing with customized packers is even more challenging.
Hence, we aim to perform classification without the need to
unpack the sample. In addition, the system doesn’t need to
be evaluated on any packed goodware, because the problem
of malware classification already assumes all of the samples
to be malware. Finally, as this paper focuses on malware
classification, we didn’t make any analysis of evasion mech-
anisms employed to evade detection.

For each malware sample, we compute not only a set of
content-based features by relying on state-of-the-art mecha-
nisms, but also we propose the extraction of powerful com-
plementary statistical features that reflects the structure
of portable executable (PE) files. The decision of not us-
ing more complex models like n-grams, sequences, bags or
graphs, allowed us to devise a simple, yet effective, and ef-
ficient malware classification system. Moreover, we imple-
mented an algorithm, inspired by the forward stepwise fea-
ture selection algorithm [25], to combine the most relevant
feature categories to feed the classifier, and show the trade-
off between the number of features and accuracy. To better
exploit both the richness of the available information, in the
number of the malware samples for training the classifier,
and the number of features used to represent the samples,
we resorted to ensemble techniques such as bagging [29].

We evaluated our system on the data provided by Mi-
crosoft for their malware Challenge hosted at Kaggle1, and
achieved 99.77% accuracy. The source code of our method
is available online2.
In summary, the original contributions of this paper are the
following:

• The extraction and evaluation of different features based
on the content and the structure of a malware that is
performed directly on the packed executable file, and

1https://www.kaggle.com/c/malware-classification
2https://github.com/ManSoSec/Microsoft-Malware-
Challenge

doesn’t require the costly task of unpacking,

• A novel technique that extracts information on the
structural characteristics of PEs, to accurately classify
even obfuscated malware,

• The use of a limited number of features compared to
other state-of-the-art systems, so that the method is
apt to be used in large-scale malware categorization
tasks,

• An algorithm for feature fusion that outputs the most
effective concatenation of features categories, each cat-
egory being related to different aspects of the malware,
thus avoiding the combination of all the possible fea-
ture categories, and providing a trade-off between ac-
curacy and the number of features,

• The assessment of the performances of the proposed
malware classification on a dataset recently released
by Microsoft, that can be considered one of the most
updated and reliable testbeds for the task at hand.

The rest of the paper is organized as follows: a survey on
the related work is presented in section 2; section 3 presents
the details of the proposed method. Results of the experi-
ments are discussed in section 4, and conclusions and future
work will wrap up the paper.

2. RELATED WORK
Prior to the development of signatures for anti-malware

products, the two main tasks that have to be carried out
within the scope of malware analysis are malware detection,
and malware classification. While the goal of malware de-
tection mechanisms is to catch the malware in the wild, mal-
ware classification systems assign each sample to the correct
malware family. These systems can be roughly divided into
two groups, based, respectively, on dynamic or static analy-
sis.
Dynamic analysis. Researchers have put a lot of effort in
proposing behaviour-based malware detection methods that
capture the behavior of the program at runtime. One way
to observe the behavior of a program is to monitor the inter-
actions of the program with the operating system through
the analysis of the API calls [45, 37]. In order to devise
an effective and more robust system, some approaches con-
sidered additional semantic information like the sequence
of the API calls [9], and the use of graph representations
[27, 20, 26]. These approaches monitor the program’s be-
haviour by analyzing the temporal order of the API calls,
and the effect of API calls on registers [21], or by extract-
ing a behavioural graph based on the dependency between
API call parameters. Additionally, in contrast to the above
program-centric detection approaches, some proposals ad-
dress the issue by a global, system-wide approach. For ex-
ample, Lanzi et al. [30] proposed an access activity model
that captures the generalized interactions of benign appli-
cations with operating system resources, such as files and
the registry, and then detects the malware with very a very
low false positive rate. A recent survey on 36 research pa-
pers on dynamic analysis techniques [38] pointed out that
the common shortcomings of dynamic analysis techniques
are the problematic and somewhat obscure assumptions re-
garding the use of execution-driven datasets, and the lack of



details and motivation on the security precautions that have
been taken during the experimental phase. Moreover, recent
malware is shipped with dynamic anti-analysis defenses that
hide the malicious behaviour in the case a dynamic analysis
environment is detected [36] and the lack of code coverage,
as dynamic analysis is not designed to explore all or, at least,
multiple execution paths of an executable [32].
Static analysis. On the other hand, static approaches per-
form the analysis without actually executing the program.
The research literature exhibits a large variety of static anal-
ysis methods. SAFE [17] and SAVE [43] have been among
the most influential approaches in heuristic static malware
detection, as these works inspired many researchers in this
area. The above two works proposed the use of different
patterns to detect the presence of malicious content in exe-
cutable files. Since that time, a large variety of techniques
have been explored based on different malware attributes,
such as the header of the PE, the body of the PE, or both of
them. Analysis is further carried out either directly on the
bytecode [44, 2], or by disassembling the code and extracting
opcodes and other relevant detailed information on the con-
tent of the program [40]. The main issue in static analysis
is coping with packing and obfuscation. Recently, some pa-
per addressed this issue by proposing a generic approach for
the automatic deobfuscation of obfuscated programs with-
out making any assumption about the obfuscation technique
[47]. Static techniques have been also employed to assess if
a malware detected in the wild is similar to a previously-
seen variant, without actually performing the costly task of
unpacking [24, 34].
All of the malware detection and malware classification sys-
tems rely on the extraction of either static or dynamic fea-
tures. So, basically, the same features used for malware
detection are used for malware classification purposes. As
this paper focuses on malware classification based on the
extraction of static features, Table 1 summarize the promi-
nent static techniques tailored to both the detection and
the classification of PE malware designed for MS Windows
systems. As far as the experiments reported in the litera-
ture have been performed on different datasets, we haven’t
reported the related performances, as a comparison of the
attained accuracy would have not been fair. Table 1 shows,
in the type column, if the paper is related to malware de-
tection or classification. The column feature shows if the
features are extracted from the PE header or from the PE
body. Finally, the structure column reports on the ex-
traction of any complex features, related, for example, to a
relationship or a dependency among PE elements.

3. SYSTEM ARCHITECTURE
As this paper focuses on malware classification, the most

relevant issue is related to the choice of the features that will
be used to represent each malware sample for the classifica-
tion task. Our approach was guided by the rationale that to
attain accurate and fast classification results, so we should
integrate different types of features, such as content-based
features as well as structural features.

3.1 Malware representation
Before entering into the details of the features that we

extracted for the classification task, we will briefly review
the different ways in which a malware sample can be rep-
resented. Two common representations of a malware sam-

Table 1: Static analysis techniques on Windows malware.

Year Authors
Type Features

Structure
Det Class Header Body

2008 Ye et al. [48] X API − Itemset
2009 PE-Miner [42] X STC STC −
2009 Tabish et al. [44] X BYT BYT N-gram
2009 Griffin et al. [22] X BYT BYT Sequence
2009 Hu et al. [23] X − FC Graph
2010 Sami et al. [39] X API − Itemset
2011 Nataraj et al. [35] X BYT BYT −
2012 Jacob et al. [24] X STC BYT N-gram
2013 Santos et al. [40] X − OP Sequence
2014 Nissim et al. [2] X BYT BYT N-gram
2015 DLLMiner [34] X X DLL − Tree

API: Application Programming Interface
BYT: Byte code, FC: Function Call
STC: Structural features, OP: Operation code

ple are by the hex view, and the assembly view. The hex
view represents the machine code as a sequence of hexadeci-
mal digits, which is the accumulation of consecutive 16-bytes
words, like in the following representation:

004010D0 8D 15 A8 80 63 00 BF 55 70 00 00 52 FF 72 7C 53

The first value represents the starting address of these ma-
chine codes in the memory, and each value (byte) bears a
meaningful element for the PE, like instruction codes or
data.
The task of disassembling a binary executable into its se-
quence of assembly instructions can be performed by two
main techniques, namely by the linear sweep algorithm, and
the recursive traversal algorithm [41]. Although neither ap-
proach is absolutely precise, the recursive approach is usu-
ally far less susceptible to mistakes than the linear sweep
algorithm because the code is disassembled according to the
jump and branch instructions. The Interactive Disassembler
(IDA) [1] tool is one of the most popular recursive traver-
sal disassembler, which performs automatic code analysis
on binary files using cross-references between code sections,
knowledge of parameters of API calls, and other informa-
tion. For example, IDA interprets the aforementioned byte
sequence as shown in Figure 1.

.text:00635CD0 8D 15 A8 80 63 00 lea edx, unk 6380A8

.text:00635CD6 BF 55 70 00 00 mov edi, 7055h

.text:00635CDB 52 push edx

.text:00635CDC FF 72 7C push dword ptr [edx+7Ch]

.text:00635CDF 53 push ebx

Figure 1: Assembly view.

3.2 Features
For accurate and fast classification, we propose to extract

features both from the hex view, and from the assembly view
to exploit complementary information brought by these two
representations. These complementary information are usu-
ally related to the essence of maliciousness, like obfuscation,
and the experimental results will show how the combination
of information from the two views can help improving the
effectiveness of the whole system. In the following subsec-



tions we provide details on each feature that has been used
and the reasoning of selecting them.
It is worth to point out the reason why we are not consider-
ing features extracted from the PE header. While it is well
known that the PE header can be a rich source of informa-
tion, the task at hand is more challenging as the PE header
is not available, according to the rules of the Microsoft chal-
lenge that provided the dataset used in this paper.

3.2.1 Hex dump-based features

1. N-gram:

A N-gram is a contiguous sequence of n items from a
given sequence. N-gram is intensively used for char-
acterizing sequences in different areas, e.g. computa-
tional linguistics, and DNA sequencing. The represen-
tation of a malware sample as a sequence of hex values
can be effectively described through n-gram analysis to
capture beneficial information about the type of mal-
ware. Each element in a byte sequence can take one
out of 257 different values, i.e., the 256 byte range,
plus the special ?? symbol. The “??” symbol indi-
cates that the corresponding byte has no mapping in
the executable file, namely the contents of those ad-
dresses are uninitialized within the file. This value
can be discarded as, from an experimental point of
view, it turned out that better results are achieved
by taking into account just the 256 symbols. Exam-
ples of N-gram analysis include 1-gram (1G) features,
which represent just the byte frequency, and thus are
described with a 256-dimensional vector, and 2-gram
features, which measure the frequency of all 2-byte
combinations, thus having dimension of 2562. As far
as low computational complexity is concerned in our
assumption, 1-gram is just considered in the experi-
ments.

2. Metadata:

We extract the following metadata features (MD1),
namely, the size of the file, and the address of the first
bytes sequence. The address is an hexadecimal num-
ber, and we converted it to the corresponding decimal
value for homogeneity with the other features values.

3. Entropy:

Entropy (ENT) is a measure of the amount of disor-
der, and can be used to detect the possible presence
of obfuscation [31, 10]. Entropy is computed on the
byte-level representation of each malware sample and
the goal is to measure the disorder of the distribution
of bytes in the bytecode as a value between 0 (Order)
and 8 (Randomness). First, we apply the sliding win-
dow method to represent the malware as a series of
entropy measures E = ei : i = 1, ..., N , where ei is the
entropy measured in each window, and N is the number
of windows, and then the entropy is calculated using
the Shannon’s formula:

ei = −
m∑

j=1

p (j) log2 p (j) (1)

where p(j) is the frequency of byte j within window i,
and m is a number of distinct bytes in the window.

Then, we consider statistics of entropy sequences ob-
tained using the sliding window method, that is, we
calculate the entropy for each window of 10000 bytes
and then we consider a number of statistical measures
like quantiles, percentiles, mean, and variance of the
obtained distribution. In addition, we compute the
entropy of all the bytes in a malware.

4. Image representation:

An original way to represent a malware sample is to
visualize the byte code by interpreting each byte as the
gray-level of one pixel in an image [35]. As shown in
Figure 2, the resulting images have very fine texture
patterns (e.g. see Figure 2a, and Figure 2b), that can
be used as visual signatures for each malware family.
Although matching visual patterns need a huge pro-
cessing time, some features that describe the textures
in an image [4] such as the Haralick features (IMG1),
or the Local Binary Patterns features (IMG2) can be
efficient and quite effective for the malware classifica-
tion task. The representation of malware as images
may sometimes cause problems, as in the case shown
in Figure 2c, where the texture patterns of the two im-
ages are almost similar, even if the two malware sam-
ples that are represented belong to different classes.
In addition, we have to take into account the case in
which the resources (.rsrc) section of a PE file con-
tains image files (e.g. see Figure 2d). As the same
image files can be used as resources for different mal-
ware families, the extracted image patterns from these
part of the malware may produce false positives. As
far as the .rsrc section may not be always in the same
position within a PE file, removing those parts from
our analysis was not an easy task. Therefore, as these
features are used in conjunction with other feature, we
consider the texture patterns computed over the whole
image.

5. String length:

We extract possible ASCII strings from each PE us-
ing its hex dump. Since this method extracts a lot of
garbage along with actual strings, the usage of string
features directly is inappropriate. Consequently, to re-
duce noise and to avoid overfitting, only histograms
related to the distribution of length of strings (STR)
is used.

3.2.2 Features extracted from disassembled files

1. Metadata:

After disassembling, we computed the size of the file,
and the number of lines in the file, and included these
features within the Metadata category (MD2).

2. Symbol:

The frequencies of the following set of symbols (SYM),
-, +, *, ], [, ?, @, are taken into account as a high fre-
quency of these characters is typical of code that has
been designed to evade detection, for example by re-
sorting to indirect calls, or dynamic library loading. In
indirect calls, the address of the callee is taken from
the memory/register. Although the implementation of
calls depends both on the architecture, and on the op-
timal decision of compiler, indirect calls may reveal



(a) Three malware samples in class 3.
(b) Three malware samples in class 2.

(c) Three almost similar images in different classes of 4, 5, 6.

(d) Some images embedded in malware.

Figure 2: Image representation of malware samples.

some information on data location obfuscation [33].
Dynamic library loading is another mechanism where
an executable file loads a library into memory at run-
time, and accesses its functions based on their address,
so that static analyzers cannot capture the name of the
imported functions.

3. Operation Code:

Operation codes (OPC) are the mnemonic represen-
tation of machine code, which symbolize assembly in-
struction. The full list of x86 instruction set is large
and complex, so we select a subset of 93 operation
codes based either on their commonness, or on their
frequent use in malicious applications [14], and mea-
sure the frequency of them in each malware sample.
While instruction replacement techniques can be used
to evade detection [18], their effects on malware clas-
sification tasks is limited, both for its rare use, and,
consequently, for its negligible contribution to the com-
putation of the statistics.

4. Register:

Most of the processor registers in x86 architecture are
used for dedicated tasks, but in some cases register re-
naming is used to make the analysis harder [18]. Con-
sequently, the frequency of use of the registers (REG)
can be a useful helper for assign a malware sample to
one family, as the experiments will show.

5. Application Programming Interface:

We also measure the frequency of use of Windows Ap-
plication Programming Interfaces (API). As far as the
total number of APIs is extremely large, considering
them all would bring little or no meaningful infor-
mation for malware classification. Consequently, we
restricted our analysis to the top 794 frequent APIs
used by malicious binaries based on an analysis on near
500K malware samples [7]. This feature category is dis-
criminative for a subset of malware samples, because
some samples might contain any API call because of
packing, while some other samples might load some
of its APIs by resorting to dynamic loading through
the LoadLibrary API. For example, the sample with
hash code 00yCuplj2VTc9ShXZDvnxz was packed with
aspack3, and it does not contain any API call, and

3http://www.aspack.com/

most of the disassembled code just contains data de-
fine instructions like db (see Figure 3) and dd (see Fig-
ure 4).

DATA:0042F259 E1 db 0E1h ; á
DATA:0042F25A 36 db 36h ; 6
DATA:0042F25B 4E db 4Eh ; N
DATA:0042F25C 12 db 12h
DATA:0042F25D 45 db 45h ; E
DATA:0042F25E 0B db 0Bh
DATA:0042F25F 4A db 4Ah ; J
DATA:0042F260 43 db 43h ; C
DATA:0042F261 6A db 6Ah ; j
DATA:0042F262 18 db 18h
DATA:0042F263 DB db 0DBh ; Û
DATA:0042F264 A7 db 0A7h ; §

Figure 3: A part of 00yCuplj2VTc9ShXZDvnxz (Packed,
Changing section name); The sample contains no API call,
and just few assembly instructions.

6. Section:

A PE consists of some predefined sections like .text,
.data, .bss, .rdata, .edata, .idata, .rsrc, .tls,
and .reloc. Because of evasion techniques like pack-
ing, the default sections can be modified, reordered,
and new sections can be created. We extract different
characteristics from sections (SEC), which are listed
in Table 2. In Section 4.2 we will point out that this
category is the one with the higher influence in the
classification performances.

7. Data Define:

As shown in Figure 3 and Figure 4, some malware
samples do not contain any API call, and just contain
few operation codes, because of packing, In particular,
they mostly contain db, dw, and dd instructions, which
are used for setting byte, word, and double word re-
spectively. Consequently, we propose to include this
novel set of features (DP) for malware classification
as it has a high discriminative power for a number of
malware families. The full list of features in this cate-
gory is presented in Table 3.

8. Miscellaneous: We extract the frequency of 95 man-
ually chosen keywords (MISC) from the disassembled
code. Some of these keywords are related to the inter-
pretation of IDA from the code, like 75 adjacent dash-
lines which show the border of blocks of PE, and count-
ing them represent the number of blocks in PE. Others



.aspack:004BFA2C 20 20 20 00 34 34 34 00 56 56 56 00 0B 0B 0B 7B+ dd 202020h, 343434h, 565656h, 7B0B0B0Bh, 0FF292929h, 0FC282828h

.aspack:004BFA2C 29 29 29 FF 28 28 28 FC 2D 2D 2D FE 2C 2B 2A FF+ dd 0FE2D2D2Dh, 0FF2A2B2Ch, 0FF060504h, 0FF824B03h, 0FFE89325h

.aspack:004BFA2C 04 05 06 FF 03 4B 82 FF 25 93 E8 FF 40 A6 F5 FF+ dd 0FFF5A640h, 0FFFAA737h, 0FFFCAC37h, 0FFFBAD2Eh, 0FFFBAC23h

.aspack:004BFA2C 37 A7 FA FF 37 AC FC FF 2E AD FB FF 23 AC FB FF+ dd 0FFFBAE1Dh, 0FFFAAD16h, 0FFFBB014h, 0FFFAB71Eh, 0FFFFBE14h

.aspack:004BFA2C 1D AE FB FF 16 AD FA FF 14 B0 FB FF 1E B7 FA FF+ dd 0FF8B6A34h, 0FF282E3Ah, 0FF363634h, 0FF323134h, 0FFDE9C14h

.aspack:004BFA2C 14 BE FF FF 34 6A 8B FF 3A 2E 28 FF 34 36 36 FF+ dd 0FFFEBC16h, 0FFF7AA10h, 0FFF9AB13h, 0FFFCB221h, 0FFFBAC21h

.aspack:004BFA2C 34 31 32 FF 14 9C DE FF 16 BC FE FF 10 AA F7 FF+ dd 0FFFAAB2Bh, 0FFFCAE36h, 0FFFBA835h, 0FFF9A941h, 0FFF19E32h

.aspack:004BFA2C 13 AB F9 FF 21 B2 FC FF 21 AC FB FF 2B AB FA FF+ dd 0FFC2720Ah, 0FF321D02h, 0FE000004h, 0FE0A0909h, 0FC080808h

.aspack:004BFA2C 36 AE FC FF 35 A8 FB FF 41 A9 F9 FF 32 9E F1 FF+ dd 0FE060606h, 0E0101010h, 181B1B1Bh, 10101h, 202020h

Figure 4: A part of 00yCuplj2VTc9ShXZDvnxz (Packed, Changing section name); The sample contains no API call, and just
few assembly instructions.

Table 2: List of features in the SEC category.

Name Description

section names .bss The total number of lines in .bss section
section names .data The total number of lines in .data section
section names .edata The total number of lines in .edata section
section names .idata The total number of lines in .idata section
section names .rdata The total number of lines in .rdata section
section names .rsrc The total number of lines in .rsrc section
section names .text The total number of lines in .text section
section names .tls The total number of lines in .tls section

section names .reloc The total number of lines in .reloc section
Num Sections The total number of sections

Unknown Sections The total number of unknown sections
Unknown Sections lines The total number of lines in unknown sections

known Sections por The proportion of known sections to the all section
Unknown Sections por The proportion of unknown sections to the all sections

Unknown Sections lines por The proportion of the amount of unknown sections to the whole file
.text por The proportion of .text section to the whole file
.data por The proportion of .data section to the whole file
.bss por The proportion of .bss section to the whole file

.rdata por The proportion of .rdata section to the whole file

.edata por The proportion of .edata section to the whole file
.idata por The proportion of .idata section to the whole file
.rsrc por The proportion of .rsrc section to the whole file
.tls por The proportion of .tls section to the whole file

.reloc por The proportion of .reloc section to the whole file

Table 3: List of features in the DP category.

Name Description

db por The proportion of db instructions in the whole file
dd por The proportion of dd instruction in the whole file
dw por The proportion of dw instruction in the whole file
dc por The proportion of all db, dd, and dw instructions in the whole file

db0 por The proportion of db instruction with 0 parameter in the whole file
dbN0 por The proportion of db instruction with not 0 parameter in the whole file
dd text The proportion of dd instruction in the text section
db text The proportion of db instruction in the text section

dd rdata The proportion of dd instruction in the rdata section
db3 rdata The proportion of db instruction with one non 0 parameter in the rdata section
db3 data The proportion of db instruction with one non 0 parameter in the data section
db3 all The proportion of db instruction with one non 0 parameter in the whole file

dd4 The proportion of dd instruction with four parameters
dd5 The proportion of dd instruction with five parameters
dd6 The proportion of dd instruction with six parameters

dd4 all The proportion of dd instruction with four parameters in the whole file
dd5 all The proportion of dd instruction with five parameters in the whole file
dd6 all The proportion of dd instruction with six parameters in the whole file

db3 idata The proportion of db instruction with one non 0 parameter in the idata section
db3 NdNt The proportion of db instruction with one non 0 parameter in unknown sections
dd4 NdNt The proportion of dd instruction with four parameters in unknown sections
dd5 NdNt The proportion of dd instruction with five parameters in unknown sections
dd6 NdNt The proportion of dd instruction with six parameters in unknown sections

db3 zero all The proportion of db instruction with 0 parameter to db instruction with non 0 parameter

are some strings like hkey_local_machine which rep-
resent the access to a specific path of the Windows
registry, and the rest are related to the code like dll

which shows the number of imported DLLs. Because
of the limitation of the pages of the paper, the full list
will be available in our online repository.

3.3 Feature fusion
The simplest way for combining feature categories is to

stack all the feature categories in a single, long feature vec-
tor, and then run a classifier on them. However, it is often in
the feature selection process that some of the features turn
out to be irrelevant for class discrimination. Including such
irrelevant features leads not only to unnecessary computa-
tional complexity, but also to the potential decrease of the
accuracy of the resulting model. Within the vast literature
on feature selection, we focused on two approaches. One
approach is the best subset selection technique [25] that can
be summarized as follows. Starting with subsets containing
just one feature, a classifier is trained, and the subsets with
the highest value of the objective function used to assess the
performance (e.g., accuracy, loss functions, etc.) is retained.
Then, the process is repeated for any subset containing f fea-
tures, where f is increased by one at each step so that, for ex-

ample, all the possible subsets of two features
(
f
2

)
= f(f−1)

2
are considered. The other technique that we considered is
the forward stepwise selection technique which starts with a
model containing no feature, and then gradually augments
the feature set by adding more features to the model, one
by one. This technique for feature selection is computation-
ally more efficient than the best subset selection technique

because the former just considers
f∑

i=1

(f − k) = f(f+1)
2

sub-

sets, while the latter considers all 2f possible models, using
a greedy approach.
Based on the above considerations, we implemented an origi-
nal version of the forward stepwise selection algorithm, where
instead of considering one feature at a time, we considered
all the subset of features belonging to a feature category at
a time. At each step, the feature set that produces the min-
imum value of logloss (see section 3.5 ) will be added to the
model. The process stops when adding more features does
not decrease the value of logloss.

3.4 Classification
As for the feature selection task, over the years a large

number of classification techniques have been proposed by
the scientific community, and the choice of the most appro-
priate classifier for a given task is often guided by previous
experience in different domains, as well as by trial&error
procedures. However, recently some researchers evaluated



the performances of about 180 classifiers arising from differ-
ent families, using various datasets, and they concluded that
random forests and SVM are the two classification mecha-
nisms that have the highest likelihood to produce good per-
formances [19]. On the other hand, most of the winners
in the very recent Kaggle competitions used the XGBoost
technique [8], which is a parallel implementation of the gra-
dient boosting tree classifier, that in most of the cases pro-
duced better performances than those produced by random
forests. The XGBoost technique is available as a library, im-
plemented as a parallel algorithm that is fast and efficient,
and whose parameters are completely tunable. The high
performance and effectiveness of XGBoost is the main mo-
tivating reason for using this library for the task at hand.
In addition, we also used bagging [15] to boost our single
model, which is simple, classifier independent, and yet an
efficient method to improve the classification quality. More
details on the classification technique will be provided in the
experimental section.

3.5 Evaluation measures
The performance in classification has been assessed by us-

ing two measures, namely, the accuracy, and the logarithmic
loss. The accuracy has been measured as the fraction of cor-
rect predictions. As classification accuracy alone is usually
not enough to assess the robustness of the prediction, we also
measured the logarithmic loss (logloss), which is a soft

measurement of accuracy that incorporates the concept of
probabilistic confidence. It is the Cross entropy between the
distribution of the true labels and the predicted probabili-
ties. As shown in equation 2, it is the negative log likelihood
of the model,

logloss = − 1

N

N∑
i=1

M∑
j=1

yij log(pij) (2)

where N is the number of observations, M is the number
of class labels, log is the natural logarithm, yij is 1 if obser-
vation i is in class j and 0 otherwise, and pij is the predicted
probability that observation i is in class j.

4. EXPERIMENTS AND RESULTS

4.1 Data
Microsoft released almost half a terabyte of data related

to 21741 malware samples, where 10868 samples are used
for training, and the rest is for testing. The ID of each mal-
ware sample is a 20 characters hash value. The files are
from nine different malware families, namely Ramnit (R),
Lollipop (L), Kelihos_ver3 (K3), Vundo (V), Simda (S),
Tracur (T), Kelihos_ver1 (K1), Obfuscator.ACY (O), Gatak
(G). The class label of each file is represented by an integer
from 1 to 9, where ’1’ represented the first malware family
in the above list, and ’9’ the last one. There are two files
for each malware sample, one containing the hex code, and
the other one containing the disassembled code (see Sec-
tion 3.1). Microsoft removed the PE header to ensure file
sterility. The distribution of data across the 9 families is
shown in Figure 5.

4.2 Feature importance
Although there is no strict consensus about the meaning

of importance, we refer to two common ways to measure

R L K3 V S T K1 O G

0

500

1,000

1,500

2,000

2,500

3,000

3,500

1
,5

4
1

2
,4

7
8

2
,9

4
2

4
7
5

4
2

7
5
1

3
9
8

1
,2

2
8

1
,0

1
3

T
o
ta

l
o
b
se

rv
a
ti

o
n

Figure 5: The distribution of data across malware families.

the importance of the features when decision tree classifiers
are used, i.e., the mean decrease accuracy, and the mean
decrease impurity [16]. These two metrics respectively mea-
sure the decrease in accuracy or the decrease in impurity4

associated with each feature. In both cases, the importance
of a given feature is proportional to the amount of decrease
in accuracy or impurity related to that feature. While in Sec-
tion 4.3 we will discuss the relationship between each feature
category and the classification accuracy based on the feature
fusion algorithm, in this section we report the importance
of the features based on the mean decrease impurity to give
a better insight on the relevance of each feature category for
the attribution of the family to a given malware sample. For
this purpose, we used the Random Forest algorithm, and the
results are reported in Figure 6. It is worth to point out that
Figure 6 shows that the two novel structural feature cate-
gories that we propose in this paper, namely SEC and DP, are
among the top important features that most contribute to
the decrease in the impurity of the classification tree.

4.3 Results
Table 4 and Table 5 respectively show the classification

performances related to each individual feature category,
and the performances related to the combination of feature
categories. In particular, Table 5 provides useful informa-
tion for data analysts to evaluate the trade-off between the
number of features used, and the significance of the increase
of the classification performances. We proceeded by leverag-
ing on the feature fusion algorithm, by adding one by one the
feature category that achieves the lowest logloss on training
data. The attained results suggest that the combination of
all the feature categories except the IMG2 category lead to
the lowest logloss on all training data, while the combina-
tion of all the feature categories leads to the lowest logloss
on training data by employing cross validation. According
to these results, we fine tuned the parameters of the XG-
Boost algorithm on these two feature configurations, as well
as for the Bagging technique (see Table 6). In particular, by

4Gini impurity is a standard decision-tree splitting metric.



MD1 SEC 1G DP MD2 IMG1 REG MISC ENT IMG2 SYM OPC STR API

0

1 · 10−3

2 · 10−3

3 · 10−3

4 · 10−3

3
.1
·1

0
−
3

1
.7

4
·1

0
−
3

1
.2

7
·1

0
−
3

1
.2

1
·1

0
−
3

1
.0

2
·1

0
−
3

9
.3

2
·1

0
−
4

9
.2

1
·1

0
−
4

8
.5

2
·1

0
−
4

7
.1

2
·1

0
−
4

6
.2

2
·1

0
−
4

4
.6

8
·1

0
−
4

4
.5

1
·1

0
−
4

2
.4

3
·1

0
−
4

1
.9

6
·1

0
−
4

Im
p

o
rt

a
n
ce

sc
o
re

Figure 6: Importance of each feature category based on the mean decrease impurity.

adding the external bagging technique, we created a training
set with eight times more samples instead of just using the
plain training set. We considered all L train samples and
sampled Alpha × L more samples with replacement, where
the best value of Alpha was found by grid search and set to
one.

The proposed methodology for the classification of mal-
ware allowed achieving a very promising accuracy on the
training set of 99.77%, as well as a very low logloss of 0.0096
on the combination of all categories, and 99.76% accuracy
and 0.0094 logloss on the combination of the best feature
categories, based on the outcome of the feature fusion al-
gorithm. The log normalized confusion matrix of the final
model is shown in Figure 7.

As far as the class labels of the test data were not pro-
vided by Microsoft, the only possible way to perform the
evaluation on test data is through the submission of the pre-
dictions of our model to the competition website. Hence, we
ran the experiments on test data and achieved a very low
logloss, which is 0.0064 on combination of best categories
and 0.0063 on combination of all categories.

4.4 Feature extraction time
We run the experiments on a laptop with a quad-core

processor (2 GHz), and 8GB RAM. Figure 8 and Figure 9
represents the required time for extracting different feature
categories. The tasks of feature extraction and classifier
training can be time consuming when the structure of the
features is complex, and the size of datasets is large. For
example, the 2-Gram category has more than 65K features,
which requires a significant amount of time for their extrac-
tion (10213 seconds in total in our experiments), for train-
ing a model, and for selecting the most relevant ones. As
3-Gram and 4-Gram features are made up of a larger num-
ber of components, the time frame required to extract those
features is excessively large.

4.5 Comparison and Discussion
To the best of our knowledge, this is the first paper based

Figure 7: The normalized confusion matrix.

on the malware dataset that was recently released by Mi-
crosoft. Consequently, the effectiveness of the proposed ap-
proach can be assessed by comparing the reported results
with the ones attained by the winner of the Microsoft mal-
ware challenge 5. The winner of the competition attained
0.9983 accuracy, and 0.0031 logloss, on 4-fold cross valida-
tion, and 0.0028 logloss on test data, thus confirming the
effectiveness of the proposed method, as the significance of
this small difference is statistically negligible. While the
performances are quite close, it is worth pointing out the
differences between the method proposed in this paper and
the one followed by the winning team. The proposed method
is characterized by a limited computational complexity com-
pared to the winning method, both in terms of the number
and type of features, and in the classification technique em-
ployed. Firstly, the winning team relied on a large set of well-

5http://blog.kaggle.com/2015/05/26/microsoft-malware-
winners-interview-1st-place-no-to-overfitting/



Table 4: List of feature categories and their evaluation with XGBoost.

Train 5-CV
Feature Category # Features Accuracy Logloss Accuracy Logloss

Hex dump file
ENT 203 0.9987 0.0155 0.9862 0.0505
1G 256 0.9948 0.0307 0.9808 0.0764

STR 116 0.9877 0.0589 0.9735 0.0993
IMG1 52 0.9718 0.1098 0.9550 0.1645
IMG2 108 0.9736 0.1230 0.9510 0.1819
MD1 2 0.8547 0.4043 0.8525 0.4279

disassembled file
MISC 95 0.9984 0.0095 0.9917 0.0306
OPC 93 0.9973 0.0146 0.9907 0.0405
SEC 25 0.9948 0.0217 0.9899 0.0420
REG 26 0.9932 0.0352 0.9833 0.0695
DP 24 0.9905 0.0391 0.9811 0.0740
API 796 0.9905 0.0400 0.9843 0.0610
SYM 8 0.9815 0.0947 0.9684 0.1372
MD2 2 0.7655 0.6290 0.75616 0.6621

Table 5: Gradual addition of feature categories based on feature fusion.

Train 5-CV
Feature Category # Features Accuracy Logloss Accuracy Logloss
C1: MISC+ENT 298 1.0 0.0037 0.9907 0.0322

C2: C1+SEC 323 1.0 0.0019 0.9920 0.0278
C3: C2+API 1117 1.0 0.0016 0.9927 0.0251
C4: C3+1G 1373 1.0 0.0015 0.9930 0.0237

C5: C4+REG 1399 1.0 0.0014 0.9933 0.0226
C6: C5+OPC 1492 1.0 0.00137 0.9935 0.0220
C7: C6+MD1 1494 1.0 0.00132 0.9937 0.0214
C8: C7+DP 1518 1.0 0.00130 0.9938 0.0210

C9: C8+STR 1634 1.0 0.00128 0.9939 0.0206
C10: C9+IMG1 1686 1.0 0.00128 0.9940 0.0203
C11: C10+MD2 1688 1.0 0.00128 0.99411 0.0201
C12: C11+SYM 1696 1.0 0.00128 0.99418 0.0199
C13: C12+IMG2 1804 1.0 0.00130 0.9942 0.0197

Table 6: Employing bagging and parameter optimization for XGBoost.

5-CV Test
Feature Category # Features Accuracy Logloss Logloss

Combination of all categories (C13) 1804 0.9977 0.0096 0.0063
Combination of best categories (C12) 1696 0.9976 0.0094 0.0064



known features, while we designed the proposed system not
only by focusing on the features in the literature that proved
to be effective, but also designing novel structural features
that could provide a gain in performance with a limited com-
putational cost. As an example, the winning team relied on
the extraction of byte code N-gram and operation code N-
gram, that require large computational resources both dur-
ing the training phase, and the testing phase. The com-
plexity of the classification step employed in the proposed
method is lower than the ones of the winning team. Both
methods rely on the ensemble paradigm, where the win-
ning team resorted to an ensemble of different classifiers in
a semi-supervised setting, while we resorted to a standard
implementation of XGBoost with bagging. Thus, we can
conclude that the proposed method exhibits a better trade-
off between computational complexity and performances.

Figure 8: The required time of feature extraction from byte
code for each app. The time in bracket shows the total time
of extraction for all training samples.

The proposed method has not yet been tested for robust-
ness against evasion attacks [11, 28] or poisoning attacks [13,
12] because these kinds of attacks are more frequent against
malware detectors rather than against malware classifiers.
Attacks against malware classifiers may be used to mislead
automatic signature extractors, that analyze malware sam-
ples belonging to a family to design effective signatures. As
the effectiveness of such attacks depends on a deep knowl-
edge of the malware classifier, as well as of the signature
extractor, and this knowledge cannot be reliably inferred
from the outside of the system without insider support, we
can conclude that these kind of attacks are highly rare. On
the other hand, an analysis of the robustness of the system
against evasion and poisoning attacks is worth to be carried
out if the proposed system is modified to act as a malware
detector.

Figure 9: The required time of feature extraction from dis-
assembled code for each app. The time in bracket shows the
total time of extraction for all training samples.

5. CONCLUSION AND FUTURE WORK
We presented a malware classification system character-

ized by a limited complexity both in feature design and in
the classification mechanism employed. To attain this goal,
we proposed a number of novel features to represent in a
compact way some discriminant characteristics between dif-
ferent families. In particular, we focused on the extraction of
novel structural features, that, if compared to content-based
features, are easier to compute, and allow the classification
of obfuscated and packed malware without the need of deob-
fuscation and unpacking processes. Reported results allowed
assessing the effectiveness of these features both with respect
to classification accuracy, and to impurity.

The main motivation behind the choice of a light system
is its suitability for an industrial use, where the trade-off
between complexity and performances can be a key issue.
Very often, the gain in performances of complex systems on
validation data is negligible compared to the performances
of less complex ones. In addition, the use of a reduced set
of features may ease the task for an analyst to understand
the classification results from the set of features related to
a given sample, as compared to complex systems. While
we haven’t addressed this issue in this paper, we believe
in its noteworthiness to gather information about the core
common characteristics of malware samples within a family.

6. REFERENCES
[1] Ida : Disassembler and debugger.

https://www.hex-rays.com/products/ida/, 2013.

[2] Novel active learning methods for enhanced {PC}
malware detection in windows {OS}. Expert Systems
with Applications, 41(13):5843 – 5857, 2014.

https://www.hex-rays.com/products/ida/


[3] Duqu is back. http://www.kaspersky.com/about/
news/virus/2015/Duqu-is-back, 2015.

[4] Mahotas features. http://mahotas.readthedocs.org/
en/latest/features.html, 2015.

[5] Mcafee labs threats report, february.
http://www.mcafee.com/us/resources/reports/

rp-quarterly-threat-q4-2014.pdf, 2015.

[6] Symantec intelligent report, may.
https://www.symantec.com/content/en/us/

enterprise/other_resources/intelligence_

report_05-2015.en-us.pdf, 2015.

[7] Top maliciously used apis. https:
//www.bnxnet.com/top-maliciously-used-apis/,
2015.

[8] Xgboost. https://github.com/dmlc/xgboost, 2015.

[9] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari.
Malware detection by behavioural sequential patterns.
Computer Fraud & Security, 2013(8):11 – 19, 2013.

[10] D. Baysa, R. Low, and M. Stamp. Structural entropy
and metamorphic malware. Journal of Computer
Virology and Hacking Techniques, 9(4):179–192, 2013.

[11] B. Biggio, I. Corona, D. Maiorca, B. Nelson,

N. ÅărndiÄĞ, P. Laskov, G. Giacinto, and F. Roli.
Evasion attacks against machine learning at test time.
In H. Blockeel, K. Kersting, S. Nijssen, and
F. Å¡eleznÃ¡, editors, Machine Learning and
Knowledge Discovery in Databases, volume 8190 of
Lecture Notes in Computer Science, pages 387–402.
Springer Berlin Heidelberg, 2013.

[12] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks
against support vector machines. In 29th Int’l Conf.
on Machine Learning (ICML). Omnipress, Omnipress,
2012.

[13] B. Biggio, K. Rieck, D. Ariu, C. Wressnegger,
I. Corona, G. Giacinto, and F. Roli. Poisoning
behavioral malware clustering. In Proceedings of the
2014 Workshop on Artificial Intelligent and Security
Workshop, AISec ’14, pages 27–36, New York, NY,
USA, 2014. ACM.

[14] D. Bilar. Statistical structures: Fingerprinting
malware for classification and analysis. In Blackhat,
2006.

[15] L. Breiman. Bagging predictors. Mach. Learn.,
24(2):123–140, Aug. 1996.

[16] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984. new edition [?]?

[17] M. Christodorescu and S. Jha. Static analysis of
executables to detect malicious patterns. In
Proceedings of the 12th Conference on USENIX
Security Symposium - Volume 12, SSYM’03, pages
12–12, Berkeley, CA, USA, 2003. USENIX
Association.

[18] M. Christodorescu, S. Jha, S. Seshia, D. Song, and
R. Bryant. Semantics-aware malware detection. In
Security and Privacy, 2005 IEEE Symposium on,
pages 32–46, May 2005.

[19] M. Fernández-Delgado, E. Cernadas, S. Barro, and
D. Amorim. Do we need hundreds of classifiers to
solve real world classification problems? J. Mach.
Learn. Res., 15(1):3133–3181, Jan. 2014.

[20] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer,
and X. Yan. Synthesizing near-optimal malware
specifications from suspicious behaviors. In
Proceedings of the 2010 IEEE Symposium on Security
and Privacy, SP ’10, pages 45–60, Washington, DC,
USA, 2010. IEEE Computer Society.

[21] M. Ghiasi, A. Sami, and Z. Salehi. Dynamic vsa: a
framework for malware detection based on register
contents. Engineering Applications of Artificial
Intelligence, 44:111 – 122, 2015.

[22] K. Griffin, S. Schneider, X. Hu, and T.-C. Chiueh.
Automatic generation of string signatures for malware
detection. In Proceedings of the 12th International
Symposium on Recent Advances in Intrusion
Detection, RAID ’09, pages 101–120, Berlin,
Heidelberg, 2009. Springer-Verlag.

[23] X. Hu, T.-c. Chiueh, and K. G. Shin. Large-scale
malware indexing using function-call graphs. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, pages
611–620, New York, NY, USA, 2009. ACM.

[24] G. Jacob, P. M. Comparetti, M. Neugschwandtner,
C. Kruegel, and G. Vigna. A static, packer-agnostic
filter to detect similar malware samples. In
Proceedings of the 9th International Conference on
Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA’12, pages 102–122,
Berlin, Heidelberg, 2013. Springer-Verlag.

[25] G. James, D. Witten, T. Hastie, and R. Tibshirani.
An Introduction to Statistical Learning: With
Applications in R. Springer Publishing Company,
Incorporated, 2014.

[26] F. Karbalaie, A. Sami, and M. Ahmadi. Semantic
malware detection by deploying graph mining.
International Journal of Computer Science Issues,
9(1), 2012.

[27] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X. Zhou, and X. Wang. Effective and efficient malware
detection at the end host. In Proceedings of the 18th
Conference on USENIX Security Symposium,
SSYM’09, pages 351–366, Berkeley, CA, USA, 2009.
USENIX Association.

[28] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and
G. Vigna. Automating mimicry attacks using static
binary analysis. In Proceedings of the 14th Conference
on USENIX Security Symposium - Volume 14,
SSYM’05, pages 11–11, Berkeley, CA, USA, 2005.
USENIX Association.

[29] L. I. Kuncheva. Ensemble Methods, pages 186–229.
John Wiley & Sons, Inc., 2014.

[30] A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda. Accessminer: Using
system-centric models for malware protection. In
Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS ’10, pages
399–412, New York, NY, USA, 2010. ACM.

[31] R. Lyda and J. Hamrock. Using entropy analysis to
find encrypted and packed malware. IEEE Security
and Privacy, 5(2):40–45, Mar. 2007.

[32] A. Moser, C. Kruegel, and E. Kirda. Exploring
multiple execution paths for malware analysis. In
Proceedings of the 2007 IEEE Symposium on Security

http://www.kaspersky.com/about/news/virus/2015/Duqu-is-back
http://www.kaspersky.com/about/news/virus/2015/Duqu-is-back
http://mahotas.readthedocs.org/en/latest/features.html
http://mahotas.readthedocs.org/en/latest/features.html
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2014.pdf
http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q4-2014.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/intelligence_report_05-2015.en-us.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/intelligence_report_05-2015.en-us.pdf
https://www.symantec.com/content/en/us/enterprise/other_resources/intelligence_report_05-2015.en-us.pdf
https://www.bnxnet.com/top-maliciously-used-apis/
https://www.bnxnet.com/top-maliciously-used-apis/
https://github.com/dmlc/xgboost


and Privacy, SP ’07, pages 231–245, Washington, DC,
USA, 2007. IEEE Computer Society.

[33] A. Moser, C. Kruegel, and E. Kirda. Limits of static
analysis for malware detection. In Computer Security
Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, pages 421–430, Dec 2007.

[34] M. Narouei, MansourAhmadi, G. Giacinto, H. Takabi,
and A. Sami. Dllminer: Structural mining for malware
detection. Security and Communication Networks,
2015.

[35] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S.
Manjunath. Malware images: Visualization and
automatic classification. In Proceedings of the 8th
International Symposium on Visualization for Cyber
Security, VizSec ’11, pages 4:1–4:7, New York, NY,
USA, 2011. ACM.

[36] J. Qiu, B. Yadegari, B. Johannesmeyer, S. Debray,
and X. Su. A framework for understanding dynamic
anti-analysis defenses. In Proceedings of the 4th
Program Protection and Reverse Engineering
Workshop, PPREW-4, pages 2:1–2:9, New York, NY,
USA, 2014. ACM.

[37] K. Rieck, T. Holz, C. Willems, P. Dussel, and
P. Laskov. Learning and classification of malware
behavior. In Proceedings of the 5th International
Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment, DIMVA ’08, pages
108–125, Berlin, Heidelberg, 2008. Springer-Verlag.

[38] C. Rossow, C. Dietrich, C. Grier, C. Kreibich,
V. Paxson, N. Pohlmann, H. Bos, and M. van Steen.
Prudent practices for designing malware experiments:
Status quo and outlook. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 65–79, May 2012.

[39] A. Sami, B. Yadegari, H. Rahimi, N. Peiravian,
S. Hashemi, and A. Hamze. Malware detection based
on mining api calls. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC ’10, pages
1020–1025, New York, NY, USA, 2010. ACM.

[40] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G.
Bringas. Opcode sequences as representation of
executables for data-mining-based unknown malware
detection. Information Sciences, 231(0):64 – 82, 2013.
Data Mining for Information Security.

[41] B. Schwarz, S. Debray, and G. Andrews. Disassembly
of executable code revisited. In Proceedings of the
Ninth Working Conference on Reverse Engineering
(WCRE’02), WCRE ’02, pages 45–, Washington, DC,
USA, 2002. IEEE Computer Society.

[42] M. Shafiq, S. Tabish, F. Mirza, and M. Farooq.
Pe-miner: Mining structural information to detect
malicious executables in realtime. In E. Kirda, S. Jha,
and D. Balzarotti, editors, Recent Advances in
Intrusion Detection, volume 5758 of Lecture Notes in
Computer Science, pages 121–141. Springer Berlin
Heidelberg, 2009.

[43] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala.
Static analyzer of vicious executables (save). In
Proceedings of the 20th Annual Computer Security
Applications Conference, ACSAC ’04, pages 326–334,
Washington, DC, USA, 2004. IEEE Computer Society.

[44] S. M. Tabish, M. Z. Shafiq, and M. Farooq. Malware
detection using statistical analysis of byte-level file
content. In Proceedings of the ACM SIGKDD
Workshop on CyberSecurity and Intelligence
Informatics, CSI-KDD ’09, pages 23–31, New York,
NY, USA, 2009. ACM.

[45] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
cwsandbox. Security Privacy, IEEE, 5(2):32–39,
March 2007.

[46] T. Wüchner, M. Ochoa, and A. Pretschner. Malware
detection with quantitative data flow graphs. In
Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security,
ASIA CCS ’14, pages 271–282, New York, NY, USA,
2014. ACM.

[47] B. Yadegari, B. Johannesmeyer, B. Whitely, and
S. Debray. A generic approach to automatic
deobfuscation of executable code. In IEEE Security
and Privacy. IEEE, 2015.

[48] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang. An
intelligent pe-malware detection system based on
association mining. Journal in Computer Virology,
4(4):323–334, 2008.


	1 Introduction
	2 Related work
	3 System architecture
	3.1 Malware representation
	3.2 Features
	3.2.1 Hex dump-based features
	3.2.2 Features extracted from disassembled files

	3.3 Feature fusion
	3.4 Classification
	3.5 Evaluation measures

	4 Experiments and results
	4.1 Data
	4.2 Feature importance
	4.3 Results
	4.4 Feature extraction time
	4.5 Comparison and Discussion

	5 Conclusion and Future work
	6 References

