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1. INTRODUCTION AND MATHEMATICAL THEORY
The software package SLEDGE [Fulton et al. 1999; Pruess and Fulton
1993; Pruess et al. 1991; 1995] is capable of computing eigenvalues,
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eigenfunctions, and spectral density functions for regular Sturm-Liouville
problems and for a wide class of singular ones; the Fortran code is
currently available over NETLIB. In this article we describe the theory and
implementation of that part of the SLEDGE package which computes
spectral density functions for problems having continuous spectra, and
analyze the performance of the code on selected problems. The test prob-
lems for this article come from the SLEDGE test set [Pruess et al. 1991] of
over 200 problems. The choice of test problems was made to exhibit a wide
variety of asymptotic behaviors for the spectral density function near
infinity. To provide an independent check on the accuracy we have also
restricted the test problems to those for which the spectral density function
is known in closed form and therefore independently computable.

We consider the general Sturm-Liouville problem on ~a,`!, assuming
that the left endpoint x 5 a is either (1) regular, or (2) nonoscillatory for
all real l and a regular singular point. We also assume that x 5 ` falls in
Weyl’s limit point case, and generates some continuous spectrum. Under
these assumptions the problems considered are

2~p~x!u9!9 1 q~x!u 5 lr~x!u, a , x , ` (1.1)

with the boundary conditions:

(1) When x 5 a is a regular endpoint,

a1u~a! 2 a2~pu9!~a! 5 l~a91u~a! 2 a92~pu9!~a!!, (1.2)

with either a91 5 a92 5 0, and a1, a2 not both zero, or a 5 a91a2 2
a92a1 . 0 (l-dependent boundary condition). In this case we make
the standard assumptions that p, q, and r are locally L1 functions in
~a,`!, 1/p, q, and r are absolutely integrable near x 5 a and
p~x! . 0, r~x! . 0 almost everywhere.

(2) When x 5 a is a singular endpoint and nonoscillatory for all real l,

lim
x3a

p~x!Wx~u~z ,l!, v! 5 lim
x3a

p~x!~u~x, l!v9~x! 2 u9~x, l!v~x!! 5 0, (1.3)

where v is the principal solution of Eq. (1.1) for any fixed real value of
l. This is the Friedrichs boundary condition which is automatically
satisfied for all real and complex l by the square integrable solution
near x 5 a in the limit point case, and which fixes the Friedrichs
extension in the limit circle case. In this case we make the assumptions
that p, q, and r are locally L1 functions in ~a,`! and p~x! . 0, r~x!
. 0 almost everywhere.

Here we give a brief description of the standard real variable approach of
Levitan [1950] and Levinson [1951], on which SLEDGE is based, in the
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case when x 5 a is regular and a91 5 a92 5 0. To define the singular
spectral function associated with the problem (1.1)–(1.2), this approach
considers a regular self-adjoint Sturm-Liouville problem on the finite
interval @a,b# where b { ~a,`!, and then passes b 3 `. The current
implementation of SLEDGE makes use of the Dirichlet boundary condition

u~b! 5 0. (1.4)

Let f~x,t! (t [ l in Eq. (1.1)) be the unique solution for all complex t of
(1.1) defined by the initial conditions

S f~a,t!
p~a!f9~a,t! D 5 S a2

a1
D. (1.5)

Then f~ z ,t! satisfies the boundary condition (1.2) with a91 5 a92 5 0 for all
t 5 l { C, where C is the set of complex numbers. Let the eigenvalues and
eigenfunctions of the regular problem (1.1)–(1.2), (1.4) be denoted by ln,b

and f~x,ln,b!, n 5 0,1,2, . . . , where the eigenvalues are ordered by

l0, b , l1, b , l2, b , · · ·.

Here ln,b is characterized as the nth real solution of the equation
f~b,l! 5 0. Let H1 5 L2~~a,b!;r! denote the Hilbert space with norm

??f??2 5 E
a

b

?f?2r~x! dx,

where r~x! is the weight function from (1.1). Each f { H has an expansion
in eigenfunctions of the regular problem (1.1)–(1.2), (1.4) of the form

f~x! 5 O
n50

`

cnf~x,ln,b!, (1.6)

where

cn 5

E
a

b

f~x!f~x,ln,b!r~x! dx

??f~z ,ln,b!??
2

,

and convergence is in the norm of the Hilbert space. This expansion may
also be written in the equivalent form of a Riemann-Stieltjes integral,

f 5 E
2`

`

Tb~f!~t!f~x,t! drb~t!, (1.7)
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where

Tb~f! 5 E
a

b

f~x!f~x,t!r~x! dx,

and rb~t! is the step function integrator defined for all real t by

rb~t! 5 O
ln,b#t

rn,b 5 O
ln,b#t

??f~z ,ln,b!??
22. (1.8)

The step spectral function rb~ z! for the finite interval problem on @a,b# is
monotone increasing and right-continuous at the eigenvalues. It is clear
that the magnitude of the jumps in rb at the eigenvalues is fixed by the
normalization of f from the initial conditions (1.5) at x 5 a; multiplying a1

and a2 by a positive constant, for example, results in a division of rb~ z! by
the square of the constant. The normalizations of f~ z ,t! and rb~t! are thus
interconnected in such a way that the right-hand side of (1.7) is unaffected
by a change of normalization.

To write the eigenfunction expansion for the singular problem (1.1)–(1.2)
on the half line @a,`! assuming that the limit point case occurs at `, we
first define the singular spectral density function as the pointwise limit

r~t! 5 lim
b3`

rb~t! (1.9)

for all t where r~t! is continuous, and at points of discontinuity so as to
make r right-continuous. The eigenfunction expansion associated with the
singular Sturm-Liouville problem (1.1)–(1.2) on the half line @a,`! may be
derived from Eq. (1.7) by letting b 3 `. Without going into the detail of the
associated real variable theory, the end result is the expansion

f 5 E
2`

`

T~f!~t!f~x,t! dr~t!, (1.10)

where

T~f! 5 E
a

`

f~x!f~x,t!r~x! dx,

and r~t! is the singular spectral function defined in (1.9). This expansion is
valid in the usual sense of norm convergence for all functions f in the
Hilbert space H2 5 L2~~a,`!;r! with norm

??f??2 5 E
a

`

?f?2r~x! dx.
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When the eigenfunction expansion (1.10) (or (1.7)) is written using the
solution f defined by the initial conditions (1.5) we say that the corre-
sponding spectral function r (or rb) is normalized relative to f. The
normalizations of f and r are necessarily interconnected; some observa-
tions on this matter have been given in Fulton [1980, pp. 28–30].

The above analysis was generalized to the problem when l is in the
boundary condition at the left endpoint in Fulton [1980]. In this case the
Hilbert space for the finite interval problem (1.1)–(1.2), (1.4) is

H3 5 HF 5 S f1~x!

f2
Df1 { L2~~a,b!;r!, f2 { CJ

with inner product

~F, G! 5 E
a

b

f1 g# 1r~x! dx 1
1

a
f2 g# 2

where a 5 a91a2 2 a1a92 . 0. Similarly, the Hilbert space for the half line
@a,`! is

H4 5 HF 5 S f1~x!

f2
Df1 { L2~~a,`!;r!, f2 { CJ

with inner product

~F, G! 5 E
a

`

f1 g# 1r~x! dx 1
1

a
f2 g# 2.

For problems with eigenparameter in the boundary conditions, the solution
f used in the associated eigenfunction expansion is normalized by the
initial conditions

S f~a,t!
p~a!f9~a,t! D 5 S a2 2 a92t

a1 2 a91t
D, (1.11)

and the associated step spectral function for the regular problem (1.1)–
(1.2), (1.4) is defined by

rb~t! 5 O
ln,b#t

rn,b 5 O
ln,b#t

UUS f~z ,ln,b!

a
DUU22

. (1.12)

Using this step spectral function, the singular spectral density function,
r~ z!, for the singular problem on the half line @a,`! is defined as before in
(1.9). The associated eigenfunction expansion for an arbitrary F { H4 using
this singular r has two components and is given in Fulton [1980, Eq. (6.16)
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with regular left endpoint]. The spectral functions rb and r have (in
contrast to the case a91 5 a92 5 0) total variation (for all b) over ~2`,`!
equal to 1/a. For further details see Fulton [1980].

The above analysis also generalizes to the case when x 5 a is a singular
endpoint which is nonoscillatory for all real l. If the boundary condition
(1.3) is imposed at x 5 a in the case of the doubly singular interval
~a,`!, then one has to select a solution f of the Eq. (1.1) which satisfies the
following requirements:

(1) f~ z ,t! satisfies the Friedrichs boundary condition (1.3) for all t { C.

(2) f~x,t! and f9~x,t! are continuous for ~x,t! { ~a,`! 3 C and entire in t
for each x { ~a,`!.

If x 5 a is in the limit circle case then this is possible by transforming Eq.
(1.1) to a first-order system and letting f~ z ,t! be defined by “end condi-
tions” as in Fulton [1977, Eq. (2.5)]. For example, taking in (1.3) v to be a
principal solution for t 5 l 5 0 and choosing w to be any nonprincipal
solution for t 5 0 with p~x!Wx~w,v! 5 1, a solution f~ z ,t! satisfying (1.3)
which has the properties (1) and (2) is defined for all t { C by

lim
x3a

S p~x!Wx~f~z ,t!, v!

2p~x!Wx~f~z ,t!, w! D 5 S 0
1 D.

The solution f~ z ,t! so defined is a principal solution for all real values of t,
and its normalization is fixed by the choice of w. In the limit circle case the
fact that the self-adjoint operator T on ~a,`! associated with (1.1) and the
boundary condition (1.3) has spectral multiplicity one follows from Dunford
and Schwartz [1963, Theorem 4 and Corollary 5, pp. 1336–1337]; a solution
f~ z ,t! satisfying (1.3) for all t { C and normalized so as to satisfy the
above requirements (1) and (2) serves, in this case, as a “determining set
for the operator T on t { ~2`,`!” in the sense of Dunford and Schwartz
[1963, p. 1374]. If x 5 a is in the limit point case and nonoscillatory for all
real t, then near x 5 a there exists a solution f~ z ,t! { L2~~a,a 1 e!;r!, e

. 0, for all real and complex t, and it can be normalized to satisfy the
above properties (1) and (2); moreover, it is necessarily the principal
solution for all real values of t. Letting f be a solution normalized to satisfy
properties (1) and (2) in both the limit circle and limit point cases, the
discrete eigenfunction expansion for the problem (1.1), (1.3)–(1.4) on ~a,b#
may be written in the form (1.7) using this “singular” choice of f, where rb

is defined as in (1.8). Here ln,b, n 5 0,1,2, . . . , are the eigenvalues of the
singular (limit circle or limit point) problem on ~a,b# (known to be bounded
below by the nonoscillatory assumption) and rn,b are the squares of the
norm reciprocals of the eigenfunctions f~ z ,ln,b!. Letting b 3 ` then yields
the singular eigenfunction expansion for the problem (1.1), (1.3) on ~a,`! in

112 • C. T. Fulton and S. Pruess

ACM Transactions on Mathematical Software, Vol. 24, No. 1, March 1998.



the form (1.10) where the singular spectral density function is defined as in
(1.9). For the doubly singular interval ~a,`! the normalizations of f and r

are, as before, interdependent, and we say that r is normalized relative to
f. When the left endpoint is singular the initial-value problem for (1.1) is
not well posed at x 5 a, so the choice of normalization of f is more
problematic, and one can expect a wider variety of admissible normaliza-
tions depending on what assumptions are placed on the coefficient func-
tions.

In addition to the mathematical problem of defining a suitable normal-
ization of f under assumptions which guarantee that (1.1) is nonoscillatory
at x 5 a for all real l, there is the very real practical problem of
implementing a given normalization numerically. Currently SLEDGE is
only capable of handling the special case when x 5 a is a regular singular
point of (1.1) which is nonoscillatory for all real l. In this case (which may
be limit circle or limit point) a solution f which satisfies the above two
properties may be uniquely defined for all t { C by requiring the normal-
ization

f~x,t! 5 ~x 2 a!r1~1 1 c1~x 2 a! 1 · · ·!, (1.13)

where r1 is the largest real root of the indicial equation (the indicial roots
necessarily being real by the nonoscillatory assumption) in the Frobenius
theory. The normalization can be implemented numerically (see Section 3),
since the Frobenius exponent is computable.

In general, when x 5 a is not a regular singular point but satisfies the
requirement of being nonoscillatory for all real l, a normalization of the
principal solution f which can be easily implemented numerically is not
known. In a special case which is nonoscillatory and limit circle with p 5
r 5 1 and with further assumptions on q, it is shown in Atkinson and
Fulton [1999] that there is a principal solution which satisfies f~x,t! 5
x z ~1 1 o~1!!, as x 3 0 for all real t. It may be possible to extend the
definition of this solution to complex t in such a way that the requirements
(1) and (2) are met. But it remains to devise a numerical implementation of
such a normalization. In general, problems with two singular endpoints
and simple spectrum remain a challenge both mathematically and numer-
ically. The interdependence of the normalizations of f and r is more
dramatic when x 5 a is a singular endpoint, and there is still much work
to be done to establish mathematical theorems for normalizations of the
principal solution f under various assumptions on the coefficient functions,
and to find numerical implementations of them. As we shall see in the case
of Bessel’s equation of order n (Example 3) the above choice of normaliza-
tion (1.13) for f allows a wide range of possible asymptotic behaviors for
the singular spectral function r defined by (1.9).

In the remainder of this article we shall adopt the endpoint classification
terminology of Fulton et al. [1999] (see also Pryce [1993]). It is well known
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that for each singular endpoint x 5 e of Eq. (1.1) one and only one of the
following cases occurs:

(1) (OSC) Eq. (1.1) is oscillatory at x 5 e for all real l.

(2) (NONOSC) Eq. (1.1) is nonoscillatory at x 5 e for all real l.

(3) (O-NO) There exists a real number L such that (1.1) is nonoscillatory at
x 5 e for all l { ~2`,L! and oscillatory at x 5 e for l { ~L,`!. The
cutoff value L may be either oscillatory or nonoscillatory.

This classification is mutually exclusive and depends only on the coefficient
functions p, q, and r. Accordingly we shall call a singular endpoint OSC,
NONOSC, or “O-NO with cutoff L,” according as it belongs to the above
cases (1), (2), or (3). All possible combinations of the LP/LC and OSC/
NONOSC/O-NO classifications can occur at a singular endpoint except that
it is not possible to be both LC and “O-NO with cutoff L.” The five mutually
exclusive classifications which may occur at a singular endpoint are there-
fore LP/OSC, LP/NONOSC, LP/O-NO, LC/OSC, and LC/NONOSC. In the
present article we assume that the endpoint x 5 a is either LP/NONOSC
or LC/NONOSC (cases which do not generate any continuous spectrum)
and that the endpoint x 5 ` is LP/O-NO, which ensures that the problem
has some continuous spectrum in the interval ~L,`! and has spectrum
bounded below.

The numerical computation of r~t! at user selected points $ti% using
SLEDGE is based on the definition (1.8) (and (1.12) when a . 0), and
approximating rb~ti! for sufficiently large b. A justification for using (1.9)
computationally is the following theorem which establishes that the conver-
gence in (1.9) is not just pointwise, but uniform on compact t-intervals on
which r~t! is continuous.

THEOREM 1. Assume (1) the endpoint x 5 a is regular with boundary
condition (1.2) or it is a singular endpoint of NONOSC type with Friedrichs
boundary condition (1.3), and (2) r~t! is continuous in @T0,T1#. Then the
convergence of rb to r in (1.9) is uniform over @T0,T1#.

PROOF. For any e . 0, since r~t! is uniformly continuous on @T0,T1#,
there exists d . 0 such that for all t,t9 { @T0,T1#

?t 2 t9? , d implies ?r~t! 2 r~t9!? , e /2.

The set of open sets

S 5 $ItIt 5 ~t 2 d /2, t 1 d /2!%

is an open covering of @T0,T1#, so compactness implies there exists a finite
subcover $Itii 5 1, . . . , n% such that

114 • C. T. Fulton and S. Pruess

ACM Transactions on Mathematical Software, Vol. 24, No. 1, March 1998.



@T0,T1# , ø
i51

n
~ti 2 d/2, ti 1 d/2!,

where T0 # t1 , t2 , · · · , tn # T1. It follows that 0 , ti 2 ti21 , d for
all i, and therefore, by the uniform continuity of r~t!,

0 # r~ti! 2 r~ti21! , e /2 for all i 5 1, . . . , n. (1.14)

By the pointwise convergence at ti in (1.9) we have existence, for each i, of
bi . 0 such that ?rb~ti! 2 r~ti!? , e / 2 whenever b $ bi. Taking B 5
maxi bi we have

2e /2 , rb~ti! 2 r~ti! , e /2 for all i 5 1, . . . , n (1.15)

whenever b . B. We can now make use of (1.14) and (1.15) and the
monotonicity of rb and r to complete the proof. Let t { @T0,T1# be a fixed
generic point, and let i be the unique index for which ti21 # t , ti. Then
from (1.14) we have

r~ti21! # r~t! # r~ti! , r~ti21! 1 e /2

and

2r~ti21! $ 2r~t! $ 2r~ti! $ 2r~ti! 2e /2,

while from (1.15) we have

r~ti21! 2 e /2 , rb~ti21! # rb~t! # rb~ti! , r~ti! 1 e /2.

Combining these inequalities readily yields

2e , rb~t! 2 r~t! , e

whenever b . B. e

For the case of the problem (1.1) and (1.2) with l in the boundary
condition and a . 0, the spectral functions rb and r are both of bounded
variation over the whole real t-axis with the same total variation; it
therefore becomes possible to extend the theorem to an infinite or semi-
infinite interval. In this case we have the following theorem:

THEOREM 2. For the problems (1.1) and (1.2) on @a,`! assume a 5 a91a2

2 a1a92 . 0. If r~t! is continuous in ~2`,`!, or @T0,`!, then the conver-
gence of rb to r in (1.9) is uniform over ~2`,`!, or @T0,`!, respectively.

The proof follows by taking advantage of the fact that rb~2`! 5 r~2`!
5 0, and rb~1`! 5 r~1`! 5 1/a [Fulton 1980, Eq. (5.12)] for all b {

~a,`! to truncate the interval near the infinite endpoints, and then
applying the same argument as in Theorem 1.
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In view of the fact that the underlying assumptions for the present
article arise partly from mathematical considerations and partly from
software considerations, a few remarks may help to set the perspective. It
is not always the case that one attempts to run a software package like
SLEDGE only on those problems for which the p, q, and r functions satisfy
every assumption of every theorem that was employed in deriving the
methods of approximation on which the code is based; for it is often the case
that at run time when certain tests are not passed, the code automatically
elects not to implement a given method and to use instead a backup method
which may not require the same assumptions on p, q, and r. Also, the
mathematical theory associated with eigenfunction expansions generally
holds under much weaker conditions than the code can handle. A few
remarks along these lines are in order:

(1) The underlying method of approximation in SLEDGE replaces the
coefficient functions p, q, and r by piecewise constant step functions p̂,
q̂, r̂ on each mesh interval, and performs repeated bisections of the
initial mesh, to generate a sequence of numerical approximations to the
eigenvalues, the eigenfunction norm reciprocals, and the step spectral
function rb~ti! at the desired output points ti. Sufficient conditions for
the second-order convergence of these step spectral functions over the
sequence of meshes (needed for the application of a Richardson’s
extrapolation) are p, q, r { C4@a,b#. For more details see Pruess and
Fulton [1996]. When the numerics do not justify the use of the Richard-
son’s extrapolation the code employs Aitken extrapolation as a backup
method.

(2) When x 5 a is a singular endpoint, the assumption that it is also a
regular singular point is needed to implement the normalization (1.13),
so it suffices to assume that p, q, and r satisfy the assumptions for a
RSP in a small neighborhood of x 5 a.

(3) When x 5 a is a regular endpoint SLEDGE automatically switches to
the use of asymptotic formulas for ln,b and rn,b for use in the formulas
for rb in (1.8) and (1.12) when n is large. Sufficient conditions for the
validity of the asymptotic formulas utilized are that Eq. (1.1) should be
convertible to Liouville Normal Form and that the LNF potential Q
should be of bounded variation over @a,b#. See Fulton and Pruess [1994,
Eq. (2.9) and Theorem 2]. However, in case the computed values of ln,b

and rn,b do not come close enough to the asymptotic formulas as n
increases, the code does not make use of the asymptotics.

(4) The numerical scheme used in SLEDGE to automatically generate
output for the LP/LC and OSC/NONOSC/O-NO classifications and the
heuristics for selecting the initial mesh require that the coefficient
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functions p, q, and r must behave like powers of x near the singular
endpoints. For further details see Fulton et al. [1999]. When the code is
run on problems not satisfying these assumptions it generally returns
an error flag to indicate no decision on these classifications; in such
cases the user must obtain the classification information from known
mathematical theory.

2. IMPLEMENTATION OF THE SPECTRAL FUNCTION CALCULATION

The code SLEDGE requires the user to specify a finite set $ti% i51
NUMT of points

where output for r~ti! is desired, and a tolerance TOL for the desired
accuracy. The routine then chooses a b-value and estimates the eigenvalues
ln,b, and reciprocals of the eigenfunction norms rn,b, for 0 # n #

MAXNEV, where lMAXNEV,b . tNUMT so that (1.8), or (1.12), can be used to
compute rb at the given t-values. For details on the algorithm for comput-
ing the eigenvalues and eigenfunctions see Pruess and Fulton [1993] and
Pruess et al. [1995]. Given ti . L, let k be the eigenvalue index for which
lk21,b # ti , lk,b; then linear interpolation between the midpoints of suc-
cessive steps is given by

r#b~t! :5 rb~lk,b! 1 Srb~lk11,b! 2 rb~lk,b!

zk11 2 zk
D~t 2 zk! (2.1)

for t { @zk,zk11# where zk 5 ~lk,b 1 lk11,b!/ 2.
Consider the example 2u99 5 lu,u9~0! 5 0, on @0,`! which gives rise

to the Fourier cosine integral with spectral function r~t! 5 2 Ît/p. When
the approximating regular problem on @0,b# has the Neumann boundary
condition at x 5 b, u9~b! 5 0, the associated regular eigenvalues are
~np/b!2, the eigenfunction norm reciprocals are 2/b for all n, and the
expansion on @0,b# is the Fourier Cos Series. It is clear from the graphs of
r and rb that

max
t{@0,`!

?r~t! 2 rb~t!? # 2/b (2.2)

and that the bound is sharp. Thus, with no interpolation, a tolerance
request of 1023 would require b 5 2000, 1024 would require b 5 20,000,
etc., hence, the need for interpolation. Unfortunately, sharp mathematical
error bounds of the form

max
t{@0,tNUMT#

?r#b~t! 2 r~t!? , e~b! (2.3)

are not, in general, known. Of course we may expect Theorem 1 to hold
with rb replaced by r# b in (1.9), but this supplies no information on the size
of e~b!. Our experience with SLEDGE over a wide variety of test problems
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is that e~b! is significantly smaller than the 2/b bound in (2.2). This is due
to the smoothing effect of the interpolation. In the simplest case of
2u99 5 lu there are explicit formulas for ln,b and rn,b, and it is possible to
obtain an analytic bound of the form e~b! 5 0~1/b2!. For this analysis and
a discussion of alternative interpolation schemes we refer to Pruess and
Fulton [1996].

SLEDGE makes use of heuristics based on available information, partic-
ularly the coefficient functions p, q, and r, and the requested tolerances, to
generate a sequence of increasing b-values for which r# b is believed to
converge to r at a reasonable rate. The initial b-value depends on (1) the
asymptotic behavior of the coefficient functions (see Fulton et al. [1999])
and (2) the user’s requested tolerance. This classification information also
determines the number and distribution of mesh points used throughout
the computation. Subsequent values of b are functions of the density of
eigenvalues (number per unit t of rb~t!) for the previous choice of b. Too low
a density means that rb is likely to be a poor approximation to r so the next
b must be much greater. Too high a density means the code is working too
hard, so b should be increased only modestly. Based on these decisions the
code either takes bn 5 2bn21 or bn 5 ~1.4!bn21 as the next increment for
b. The exit criterion is that the difference of output r# b-approximations for
two successive choices of b-values must be within the user’s requested
tolerance over the finite set of output points, ti, that is,

max
1#i#NUMT

?r#bn~ti! 2 r#bn21~ti!? # TOL, (2.4)

where TOL is the user-requested accuracy. This is a very crude measure,
but the current state of theoretical knowledge concerning the behavior of
r~t! 2 r# b~t! precludes anything more sophisticated. There is a maximum
limit (determined by internal heuristics) to the number of b-values at-
tempted; when the number of b-values permitted by SLEDGE is exceeded
without achieving user-requested accuracy SLEDGE exits with IFLAG 5
23.

3. IMPLEMENTATION OF THE f-NORMALIZATION

The routines which compute estimates for the eigenfunctions automatically
normalize any eigenfunction U to have unit L2 norm, i.e.,

E
a

b

U2~x,ln,b!r~x! dx 5 1. (3.1)

At a regular endpoint, instead of (1.5), the normalization actually chosen by
SLEDGE is
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S f~a,t!
p~a!f9~a,t! D 5 S a2 /Îa1

2 1 a2
2

a1 /Îa1
2 1 a2

2 D (3.2)

when a91 5 a92 5 0, and instead of (1.11)

S f~a,t!
p~a!f9~a,t! D 5 S ~a2 2 a92t! /Îa

~a1 2 a91t! /Îa
D (3.3)

when a . 0. The first normalization corresponds to the manner in which
Titchmarsh [1962] normalizes f~x,t!. The second, for problems with l in
the boundary condition, renormalizes a in the theory given by Fulton
[1980]; consequently, SLEDGE renormalizes the boundary condition con-
stants in (1.2) and (1.11) to make a 5 1.

Since U~x,ln,b! and f~x,ln,b! differ only by a constant multiple, say
U~x,ln,b! 5 Kf~x,ln,b!, it follows that

K 5
1

??f??2

5
U~a!

f~a!
5

p~a!U9~a!

p~a!f9~a!

5
Îa1

2 1 a2
2

?a2?
?U~a!? 5

Îa1
2 1 a2

2

?a1?
?p~a!U9~a!?. (3.4)

Since U~a! and p~a!U9~a! are computable quantities, (3.4) provides two
formulas for computing the norm reciprocals in (1.8); the actual choice
depends on whether a2 Þ 0 or a1 Þ 0. Similar formulas apply to the
implementation of the normalization (3.3) for problems with l in the
boundary condition.

To implement the normalization (1.13) at a regular singular point is more
difficult, and we must be content with an approximate normalization based
on asymptotics. If SLEDGE’s eigenfunction approximation U~x,ln,b! satis-
fies (3.1), and the desired eigenfunction f~x,ln,b! satisfies the normaliza-
tion (1.13), then as for the regular case, U~x! 5 Kf~x! for some constant
K. Moreover,

K 5
1

ifi2

5
U~a 1 e!

f~a 1 e!
5

p~a 1 e!U9~a 1 e!

p~a 1 e!f9~a 1 e!
for any 0 , e , b 2 a.

From the approximations (1.13) near the regular singular point we have
that

f~x! 5 ~x 2 a!r1~1 1 O~x 2 a!!

and

f9~x! 5 r1~x 2 a!r121~1 1 O~x 2 a!!.
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From the assumed power behavior of p~x! near x 5 a we also have that

p~x! 5 cp~x 2 a!Ep~1 1 O~~x 2 a! p#!!, for some p# . 0.

Two versions for the scaling factor K are therefore

K 5
1

??f~x!??2

5
U~a 1 e!

er1~1 1 O~er111!!
'

U~a 1 e!

er1
(3.5)

and

K 5
1

??f~x!??2

5
~pU9!~a 1 e!

cpr1e
Ep1r121~1 1 O~er111! 1 O~e p#!!

'
~pU9!~a 1 e!

cpr1e
Ep1r121

. (3.6)

In these formulas SLEDGE takes e to be the length of the first mesh
interval in the initial mesh. In theory either of (3.5) or (3.6) can be used; in
practice, the code selects (3.5) whenever ?U~a 1 e!? $ ?~pU9!~a 1 e!?;
otherwise (3.6) is used. Exceptions occur when r1 5 0 or Ep 1 r1 2 1 5 0
in which case the code reverts to using one of the formulas in (3.4).

4. THE TEST EXAMPLES

Example 1 (Bessel Equation of Order Zero on @1,`! with Dirichlet
Boundary Condition at the Regular Endpoint). The general Fourier-Bessel
Integral on @a,`!, a . 0, associated with the Bessel equation of order 0 in
Liouville Normal Form,

2u99 2
1

4x2
u 5 tu a # x , ` (4.1)

with Dirichlet boundary condition u~a! 5 0, is given by Titchmarsh [1962,
Eq. (4.10.3)]. For a 5 1, imposing the normalization (1.5) with a1 5 1 and
a2 5 0 gives the eigenfunction expansion in the form (1.10) where

f~x,t! 5
p

2
Îx@2J0~xÎt!Y0~Ît! 1 Y0~xÎt!J0~Ît!#,

r~t! 5 5
0, t # 0

E
0

t 1

ps1~j!
dj, t . 0,

and

s1~j! 5
p

2
@J0

2~Îj! 1 Y0
2~Îj!#.
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Example 2 (Bessel Equation of Order Zero with l in the Boundary
Conditions). If we impose the l-dependent boundary condition

2u9~a! 5 tu~a!

at a 5 1, the solution of the Bessel equation (4.1) normalized by (1.11) is

f~x,t! 5
p

2St 1
1

2DÎx@J0~xÎt!Y0~aÎt! 2 Y0~xÎt!J0~aÎt!#

1
p

2
Îtx@J1~aÎt!Y0~xÎt! 2 Y1~aÎt!J0~xÎt!#.

For this example there is one eigenvalue l0 below the cutoff L 5 0,

r~t! 5 5
0 t , l0

r0 5 1/SE
1

`

?f~x,l0!?
2 dx 1 1D l0 , t , 0

r0 1 E
0

t 1

ps3~j!
dj 0 , t , `,

l0 5 2s0
2 where s0 is the positive zero of the equation

~2s2 1 1/2!K0~s! 2 sK1~s! 5 0,

r0 5
2K0~s0!

2
3

4
K0~s0! 2

1

s0
S2

s0
2

2
1

3

4DK1~s0! 1
1

4
K2~s0!

,

and

s3~j! 5
p

2
@~~j 1 1/2!J0~Îj! 2 ÎjJ1~Îj!!2

1~~j 1 1/2!Y0~Îj! 2 ÎjY1~Îj!!2#.

For Examples 1 and 2, the continuous part of the r~t! function over
t { ~0,`! was obtained by two different methods: (1) the “m~l!-function”
approach of Weyl [1910] and Titchmarsh [1962] and (2) the real variable
method of Atkinson [1985].
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Example 3 (Fourier Bessel Integral of Order n on (0,`)). This differen-
tial equation in Liouville normal form is

2u99 1
n2 2 1/4

x2
u 5 tu 0 , x , `, 0 # n , `. (4.2)

Imposing the normalization (1.13) (via SLEDGE’s approximate formulas
(3.5) or (3.6)), the ordinary Fourier Bessel integral of order n on ~0,`!
[Titchmarsh 1962, p. 88] can be written in the form (1.10) where

f~x,t! 5 t2n/ 22nG~n 1 1!ÎxJn~xÎt!

5 xn 1 O~xn12! for all t { C

and

r~t! 5 5 0, t , 0
1

22n11G2~n 1 1!
S tn11

n 1 1D, t $ 0.
(4.3)

This problem is singular and NONOSC at the endpoint x 5 0; it is limit
point for n { @1,`! and limit circle for n { @0,1!. The Friedrichs boundary
condition (1.3) selects the above principal solution f for all real t and all
n { @0,`!; other requirements on u, which also select this same solution,
may be regarded as equivalent to the limiting wronskian form (1.3) of the
Friedrichs boundary condition. In particular, SLEDGE automatically gen-
erates a regular boundary condition at an LC/NONOSC or LP/NONOSC
endpoint, which selects the principal solution (necessarily the L2 solution
for real l at an LP/NONOSC endpoint). For Example 3, SLEDGE’s output
for this “regular” characterization of the Friedrichs boundary condition is
u~0! 5 0 for all n { @0,`!. The cutoff is L 5 0, and there are no eigenval-
ues below L.

Using

??f~x,lnb!??
2 5 lnb

2n22nG2~n 1 1!b2Jn11
2 ~ann!/2, (4.4)

where lnb are the eigenvalues of (4.2), (1.3), (1.4), and standard asymptotic
expansions for Jn and its nth zero, ann, we have the asymptotics for
Example 3 on ~0,b#, for n 5 1,2, . . . ,

ln21,b 5
1

b2HFSn 1
n

2
2

1

4DpG2

2
4n2 2 1

4 J 1 OS 1

n2D, (4.5)

and
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rn21,b 5

pFSn 1
n

2
2

1

4DpG2n11

22nG2~n 1 1!b2n12 H1 1 OS 1

n2DJ. (4.6)

Example 4 (Coulomb Potential for the Hydrogen Atom with Zero Angular
Momentum). The differential equation in Liouville normal form is

2u99 2
1

x
u 5 tu, 0 , x , `. (4.7)

The endpoint x 5 0 is singular, limit circle, and NONOSC. SLEDGE
output for the “regular” form of the Friedrichs boundary condition is
u~0! 5 0. Imposing the normalization (1.13) via SLEDGE’s approximate
formulas (3.5) or (3.6) the eigenfunction expansion may be written in the
form (1.10) where

f~x,t! 5
21

2iÎt
Mb,1/ 2~22ixÎt!, b 5

i

2Ît
5 x 1 O~x2! for all t { C,

where Mb,1/ 2 is the first Frobenius solution of the Whittaker equation, and
where

r~t! 5 5
O

ln,t

1

2~n 1 1!3
, t # 0

1

2
z~3! 5 0.6010284516, t 5 0

r~0! 1 E
0

t 1

1 2 exp~2p/Îs!
ds, t . 0.

(4.8)

Here z is the Riemann zeta function. Compare Titchmarsh [1962, Section
4.17].

5. PERFORMANCE OF SLEDGE

SLEDGE was used to estimate the spectral density at various t points for
each of the examples in the previous section. For the first two, which are
regular at x 5 a, we sought 27 r~t! values for t { @0,50000# with re-
quested tolerances (TOL) varying from 1023 down to 1025 (the 27 t-values
used were the same as in Table V). Statistics for these runs are given in
Table I. The code returned IFLAG equal zero in all cases. The third column
of the table lists the maximum b-value chosen by SLEDGE; the fourth
column is the number of b-values tried. The next column contains the total
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number of lnb and rnb computed by the code for all the b-values. The
computer times in Table I were measured in seconds on a Cray Y/MP; the
timing data given are averages for three separate runs at each tolerance.
The third column from the right lists those t-values, out of the set of 27,
where the code failed to achieve the requested tolerance (by greater than a
factor of 1.9). The column labeled “max error” lists the maximum over the
27 points of

max$absolute error, r~t! * relative error%.

Note that even when SLEDGE’s output had errors exceeding the requested
tolerance, it was still within a factor of 2 of TOL.

Inspection of the data in Table I shows that the computing time per
eigenvalue and eigenfunction norm is remarkably low. This is due mainly
to that fact that SLEDGE makes use of known asymptotic formulas
whenever possible. These formulas, from Fulton and Pruess [1994, Eqs.
(4.11)2, (4.13)2, (4.15)2, (4.18)2, (6.8)2–(6.11)2] and Fulton [1982, Eq. (2.4)2],
require only a few flops for each $ln,b; rn,b% pair and are used as soon as
they are as accurate as those produced by the usual numerical method. In
particular, for Example 1 when TOL 5 1023 the standard shooting algo-
rithm was used for only 19 eigenvalues at the first b and 34 at the second.
The remaining 12,973 were found by the asymptotic formulas. Similarly,
the shooting algorithm was used for 138 eigenfunction norms at the first b
and 289 at the second, while the remaining 12,599 were found by asymp-
totic formulas. For the same example when TOL 5 1025, all but 934 of the
153,954 eigenvalues were found using asymptotic formulas. In contrast,
40,126 of the rn,b had to be computed by the much slower shooting
algorithm, and only the remaining 113,828 were found with the asymptotic
formulas. Generally, the switchover to the asymptotic eigenvalue formulas
occurs much sooner than the switchover to the asymptotic rn,b formulas.

For problems with x 5 a regular and r 5 p 5 1, standard asymptotic
formulas for r~t! as t 3 ` are well known (see Levitan [1952; 1953; 1955]
or Atkinson [1982], and for Example 1 under the normalization (3.2) we
have

Table I. SLEDGE Performance Statistics for Problems Regular at x 5 a

Example TOL Last b
Number

of b ’s
Number

of lnb

Time (in
seconds)

Inaccurate
at t 5

Max
Error IFLAG

1 10-3 42 2 13026 1.76 none 0.001 0
1 10-4 172 2 54663 17.59 10 0.0002 0
1 10-5 482 2 153954 124.48 5 0.00002 0
2 10-3 84 3 13035 4.32 none 0.001 0
2 10-4 172 2 54669 106.61 none 0.0005 0
2 10-5 482 2 205280 1914.56 none 0.00001 0
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r~t! 5
2t3/ 2

3p
1 o~1!.

The utility of r-asymptotics is, however, limited. As an illustration, we
have listed in Table II the asymptotic approximation 2t3/ 2/3p for Example
1 together with the exact r~t! values, and the relative error in this
asymptotic approximation. As is seen the latter is less than 1023 starting
at t 5 500, less than 1024 starting at t 5 5,000, and less than 1025

starting at t 5 50,000. If the r-asymptotics were stronger, say with
higher-order terms in descending powers of 1/ Ît, they might make a
switchover to asymptotics for r worthwhile; but the above r-formula is
clearly too weak to be worthwhile. Some results in this direction have been
obtained by Harris [1985, Theorem 1] and Harris [1987, Theorem 3]. These
theorems apply only for the case of the Neumann boundary condition at
x 5 0 when r 5 p 5 1, but an extension to the Dirichlet boundary condi-
tion may be possible and could be useful for Example 1. Further testing on
r-asymptotics of this type would be desirable. We also mention that a
number of asymptotic results for r and the Weyl-Titchmarsh m-function in
special cases (and not necessarily in Liouville Normal Form) are given by
Bennewitz [1989].

Examples 3 and 4 are singular at the left endpoint x 5 a. For these cases
asymptotic formulas lnb and rnb are not known in any generality so
SLEDGE has to work much harder, expecially for large t-values requiring
large numbers of eigenvalues and eigenfunction norms. We requested
accuracies of 1023 and 1024 over 18 t-points in [0,20]. The output is
summarized in Table III; the computer times were measured in seconds on
a CRAY Y/MP, and the data given are averages over three separate runs at
each tolerance.

The warning flag of 2 on Example 3 when n 5 1 indicates that SLEDGE
was unsure of the classifications for this problem (since it is on the
borderline between LP and LC at x 5 0).

When SLEDGE was asked to return estimates for r~t! for larger t-values,
it did not perform as well. As an illustration, in Table IV is displayed the

Table II. Asymptotic Approximation of the Spectral Function for Example 1

t Exact r~t! r~t! 5 2t3/2/3p Relative Error

50.0 0.75481080E12 0.75026360E12 0.006024
100.0 0.21288959E13 0.21220659E13 0.003208
200.0 0.60121999E13 0.60021088E13 0.001678
500.0 0.23742018E14 0.23725418E14 0.000699

1000.0 0.67129570E14 0.67105616E14 0.000356
2000.0 0.18983771E15 0.18980334E15 0.000181
5000.0 0.75031863E15 0.75026360E15 0.000073

10000.0 0.21221442E16 0.21220659E16 0.000037
50000.0 0.23725595E17 0.23725418E17 0.000007
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output for Example 3 ~n 5 1! with TOL 5 0.001 at larger t-values. While
SLEDGE only needed two b-values to produce the data in Table III (out to
t 5 20), it required four values of b to get to t 5 50000. The data shown
in the Table IV came from the last b-value, b 5 160, and had IFLAG equal
to 23, indicating that SLEDGE performed the four iterations allowed
without satisfying the exit criterion (2.4).

By way of comparison, Example 3 ~n 5 1! was run with use of the
explicit asymptotic formulas (4.5) and (4.6) in place of the usual asymptotic
routines. In Table V is displayed the output with TOL 5 0.001 for all 27
output points in [0,50000]. The “error” listed in the third column is absolute
when “exact” r , 1, and relative otherwise. The error was well below the
tolerance level at all 27 points, and the exit criterion was satisfied after
three values of b. The data shown in the table came from
b 5 80. In Table VI is displayed performance statistics for the Example 3
~n 5 1! similar to those in Table I for the problems with regular left
endpoint. This data clearly demonstrates that when good asymptotic for-
mulas are available, the code can achieve user-requested accuracy over a
large range of t-values; in fact, the accuracy gets better for larger t because
of the switchovers to the asymptotic formulas. For the Bessel equation the
asymptotic formula (4.5) is close enough to the actual eigenvalues that the
code switches to the asymptotic eigenvalue formula for n 5 1 or 2 at
almost every level of every iteration. Most of the time is spent computing
the rnb until the switchover to the asymptotic rnb occurs. For tolerance 10–3

Table III. SLEDGE Performance Statistics for Problems Singular at x 5 a

Example TOL Last b
Number

of b ’s
Number

of lnb

Time (in
seconds)

Inaccurate
at t 5 Max Error IFLAG

3~n 5 1! 1023 40 2 340 3.51 none 0.0007 2
3~n 5 1! 1024 128 2 1510 28.20 10 0.0002 2
3~n 5 4! 1023 40 2 410 6.26 none 0.0006 0
3~n 5 4! 1024 127.5 2 1794 51.39 none 0.00001 0
4 1023 160 4 354 3.87 none 0.001 0
4 1024 286.875 4 1084 12.54 0.1,0.2,0.3 0.0002 0

Table IV. Behavior of Example 3 (n 5 1 and b 5 160) without Asymptotics

t Exact r~t! SLEDGE Estimate Relative Error

50.0 0.15625000E13 0.15567413E13 0.00369
100.0 0.62500000E13 0.62029617E13 0.00753
200.0 0.25000000E14 0.24621913E14 0.01512
500.0 0.15625000E15 0.15033952E15 0.03783

1000.0 0.62500000E15 0.57834473E15 0.07465
2000.0 0.25000000E16 0.21381308E16 0.14475
5000.0 0.15625000E17 0.10478064E17 0.32940

10000.0 0.62500000E17 0.27293153E17 0.56331
50000.0 0.15625000E19 0.17922281E18 0.88530
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at the deepest level of the third iteration, 5694 eigenvalue/eigenfunction
norm pairs were required, all of which were computed by the asymptotic
formulas except for 2 eigenvalues and 4 rnb’s; the same was true at the
tolerance levels 1024 and 1025 where, respectively, 24,200 and 34,164
eigenvalues were required in the last iteration.

6. CONCLUSIONS

For spectral function computations, SLEDGE generally performs better
with respect to both accuracy and timing on problems with x 5 a regular
than when x 5 a is singular. This is due to the incorporation of asymptotic
formulas for the eigenvalues and eigenfunction norm reciprocals. The

Table VI. SLEDGE Performance Statistics for Example 3 (n 5 1) with Asymptotics

Example TOL Last b
Number

of b ’s
Number

of lnb

Time (in
seconds)

Inaccurate at
t 5

Max
Error IFLAG

3 10-3 80 3 38432 29.49 none 0.00007 2
3 10-4 340 3 157300 274.24 none 0.000003 2
3 10-5 480 3 187902 104.62 none 0.000004 2

Table V. Behavior of Example 3 (n 5 1) with Asymptotics

t Exact r~t! SLEDGE Estimate Error

0.0 0.00000000E100 0.00000000E100 10.00E100
0.1 0.62500000E-03 0.62485176E-03 -0.15E-06
0.2 0.25000000E-02 0.25012566E-02 10.13E-05
0.3 0.56250000E-02 0.56186354E-02 -0.64E-05
0.4 0.10000000E-01 0.10002562E–01 10.26E-05
0.5 0.15625000E-01 0.15620775E-01 -0.42E-05
0.6 0.22500000E-01 0.22457294E-01 -0.43E-04
0.7 0.30625000E-01 0.30634228E-01 10.92E-05
0.8 0.40000000E-01 0.39941439E-01 -0.59E-04
0.9 0.50625000E-01 0.50635190E-01 10.10E-04
1.0 0.62500000E-01 0.62496618E-01 -0.34E-05
1.1 0.75625000E-01 0.75553094E-01 -0.72E-04
1.2 0.90000000E-01 0.89958926E-01 -0.41E-04
1.5 0.14062500E100 0.14064468E100 10.20E-04
2.0 0.25000000E100 0.24998581E100 -0.14E-04
5.0 0.15625000E101 0.15623888E101 -0.71E-04

10.0 0.62500000E101 0.62498511E101 -0.24E-04
20.0 0.25000000E102 0.24999247E102 -0.30E-04
50.0 0.15625000E103 0.15625006E103 10.39E-06

100.0 0.62500000E103 0.62499537E103 -0.74E-05
200.0 0.25000000E104 0.25000018E104 10.70E-06
500.0 0.15625000E105 0.15625002E105 10.15E-06

1000.0 0.62500000E105 0.62500015E105 10.23E-06
2000.0 0.25000000E106 0.24999989E106 -0.45E-06
5000.0 0.15625000E107 0.15624998E107 -0.13E-06

10000.0 0.62500000E107 0.62499999E107 -0.89E-08
50000.0 0.15625000E109 0.15625000E109 10.19E-08
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asymptotic formulas become more accurate approximations the larger n is;
this is the main reason why the errors in Tables I, V, and VI remain small
for large t while those in Table IV become worse with increasing t.
Accordingly, further work would be desirable on asymptotics for eigenval-
ues and eigenfunction norm reciprocals on ~0,b# when x 5 0 is singular
and NONOSC, for various classes of coefficient functions. This is a difficult
area where little work has been done. For a special case which is LC and
NONOSC at x 5 0, Atkinson and Fulton [1984] have given eigenvalue
asymptotics depending on q when r 5 p 5 1; but no eigenfunction or
eigenfunction norm asymptotics are available. Until such time that more
general asymptotic formulas are available, further numerical work on the
tolerance testing and heuristics for the lnb, rnb, and r# ~t!-approximations
for large t will be required. To this end further theoretical work on the
interpolation error in (2.3) would be desirable.
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