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Abstract 

p , 

We propole a machine architecture for a high-performaxe proceuieg 
node for a mueage-pas&g, MIMD concurrent computer. The principal 
mee,haaismn for attaining this goal are the direct execution and buffer- 
ius of meesylee and a memory-based architecture that permit@ very fast 

contut witches. Our architecture &o ineluder a aevel msmory orga- 
nis&x~ that permita both indexed and aeeecikve acceuu and that 
incorporates sa itwtruction buffer and me-age queer. Simulation re 
mite suggest that thL architecture reduccl mauge reception overheed 
by more thau an order of magnitude. 

1 Introduction 

1.1 Summary 

The meanage-driven processor (MDP) ia a proceasing node for a 

manage-panning concurrent computer. It ia designed to support 
tine-grain concurrent programa by reducing the overhead and la- 
tarmy amociated with receiving a meoaage, by reducing the time 
necessary to perform a context switch, and by providing hardware 
mpport for object-oriented concurrent progammin g systems. 

Menage handling overhead is reduced by directly executing mea- 
sages rather than interpreting them with azqueacea of inatruc- 
titans. As shown in Figure 1, the MDP containr two control units, 
the instruction unit (IU) that executea inatructionr and the mea- 
rage unit (MU) that executes messages. When a message arrives 
it L examined by the MU which decider whether to queue the mea- 
aage or to execute the m-age by preempting the IU. Messages 
are enqueued without interrupting the IU. Message execution is 
accomplished by immediately vectoring the IU to the appropriate 
memory addreas. Special regiatem are dedicated to the MU so no 
time is wasted saving or restoring rtate when switching between 
massage and instruction execution. 

Context switch time is reduced by making the MDP a memory 
rather than register baaed proceaaor. Each MDP instruction may 
read or write one word of memory. Because the MDP memory 
ie on-chip, these memory references do not alow down inrtruction 
execution. Four general purpose regiatem are provided to allow 
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Figure 1: Massage Driven Procemor Organization 

inatructiona that require up to three operands to execute in a 
ringh cycle. The entire atate of a context may be raved or restorad 
in lam than 10 clock cycla. Two register setr are provided, one 
for each of two priority levch, to allow low priority mesaage to 
be preempted without raving state. 

The MDP memory can be acted either by addresa or by con- 
tent, aa a wtaanociative cache. Cache accem is ured to provide 
addraw translation from object identifier to object location. This 
trudation mechanism ia wed to clupport a global addrem space. 
Object identifiers in the MDP are global. They are translated at 

NII time to find the node on which the object resides and the 
ad&em within thin node at which the object starb. 

The arzsociative access of the MDP memory is alro used to look 
up the method to be executed in reaponae to a m-age. The 
cache acts ea au ITLB [3] and trana1ate.a a aelactor (from the 
meauge), and clam (from the receiver) into the starting add- 
of the method. Because the MDP maintains a global name space, 
it L not necessary to keep a copy of the program code (and the 
operating ryetern code) at each node. Each MDP keeps a method 
c&e in its memory and fetches methods from a single distributed 
copy of the program on cache mimer. 

‘The research described in thie paper was eponrored by the De- 
fence Advanced Research Project8 Agency in part under contract num- 
ber NOOO14-8&C-0622 and in pert under contract number NOOO1485- 
K0124. 
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The MDP is a tagged machine. Tags are used both to support 
dynamically-typed programming languages and to support con- 
current programming constructs such a~ futures 181. 

The MDP is intended to support a fine-grain, object-oriented con- 
current programming system m which a collection of objects in- 
teract by passing messages [I]. In such a system, addresses are 
object names (identifiers). Execution is invoked by sending a mes- 
sage specifying a method to be performed, and possibly some ar- 
guments to an object. When an object receives a message it looks 
up and executes the corresponding method. Method execution 
may involve modifying the object’s state, sending messages, and 
creating new objects. Because the messages are short (typically 
6 words), and the methods are short (typically 20 instructions) it 
is critical that the overhead involved in receiving a message and 
in switching tasks to execute the method be kept to a minimum. 

1.2 Background 

Several message-psssing concurrent computers have been built us- 
ing conventional microprocessors for processing elements. Exam- 
ples of this class of machines include the Cosmic Cube 1131, the In- 
tel iPSC [7], and the S-NET [2]. The software overhead of menage 
interpretation on these machines is about 300~s. The message is 
copied into memory by a DMA controller or communication pro- 
cessor. The node’s microprocessor then takes an interrupt, saves 
its current state, fetches the message from memory, and interprets 
the message by executing a sequence of instructions. Finally, the 
message is either buffered or the method specified by the message 
is executed. 

This large overhead restricts programmers to using coarse-grained 
concurrency. The code executed in response to each message must 
run for at least a millisecond to achieve reasonable (75%) effi- 
ciency. Much of the potential concurrency in an application CM- 
not be exploited at this coarse grain size. For many applications 
the natural grain-size is about 20 instruction times [4] (5~ on a 

high-performance microprocessor). Two-hundred times as many 
processing elements could be applied to a problem if we could 
efficiently run programs with a granularity of 5ps rather than 1 
ms. 

For many of the early message-passing machines, the network 
latency was several milliseconds, making the software overhead a 
minor concern. However, recent developments in communication 
networks for these machines [5] [6] have reduced network latency 
to a few microseconds making software overhead a major concern. 

The MDP is not the first processing element designed explicitly for 
a message-psssing concurrent computer. The N-CUBE family of 
parallel processors is built around a single chip processing element 
that is used in conjunction with external memory Ill]. The Me 
saic processor integrates the processor, memory, and communic~ 
tion unit all on one chip [lo]. Neither of these processors addresses 
the issue of message reception overhead. The N-CUBE processor 
uses DMA and interrupts to handle its messages, while the Mosaic 
receives messages one word at a time using programmed transfers 
out of receive registers. Closer in spirit to the MDP is the The 
InMOS Transputer 191. The Transputer supports a static, syn- 
chronous model of programming based on CSP 1121 in much the 
same way that the MDP supports a dynamic asynchronous model 
based on actors [I]. 

Some of the ideas used in the MD? have been borrowed from other 
processors. Multiple register sets have been used in rnicroproces- 
son such as the Zilog Z-SO [IG], and in microcoded processors 
such as the XEROX Alto 1151. The Alto uses its multiple register 
sets to perform micro-tasking. By switching between the register 
sets. context switches can be made on microinstruction boundaries 
with no state saving required. Spector (14) used micro-tasking on 
the Alto to implement remote operations over an Ethernet, an 
idea similar to direct method execution. 

1.3 Outline 

The remainder of this paper describes the MDP in detail. The 
user architecture of the MDP is presented in Section 2. The ma- 
chine state, message set, and instruction set are discussed. The 
MDP micro architecture is the topic of Section 3. This section in- 
cludes a description of our novel memory architecture. Section 4 
discusses support for concurrent execution models. We show how 
a programming system that combines reactive objects, dynamic 
typing, fetch-and-op combining, and futures can be efficiently im- 
plemented on the MDP. Performance estimates for the MDP are 
discussed in Section 5. 

2 User Architecture 

2.1 Machine State 

The programmer sees the MDP lls a 4K-word by 36-bit/word 
array of read-write memory (RWM), a small read-only memory 
(ROM), and a collection of registers. 

The MDP registers are shown in Figure 2. The registers are di- 
vided into instruction registers and messnge registers. There are 
two sets of instruction registers, one for each of two priority levels. 
Each set consists of four general registers RO-R3, four address reg- 
isters AO-A3, and an instruction pointer IP. The general registers 
are 36 bits long (32 data bits + 4 tag bits) and are used to hold 
operands and results of arithmetic operations. 

The 28-bit address registers are divided into l4-bit base and limit 
fields that point to the base and limit addresses of an object in 
the node’s local memory. Associated with each address register 
is an invalid bit, and a queue bit. The invalid bit is set when 
the register does not contain a valid address. The queue bit is 
set when the register is used to reference the current message 
queue. Address registers are not saved on a context switch since 
the object they point to may be relocated. Instead, the object’s 
identifier (OID) is rttranslated into the object’s base and limit 
addresses when the context is restored. All address registers as 
well as the queue and translation buffer registers, appear to the 
programmer to have two adjacent I4-bit fields. 

The instruction pointer is a 16-bit register that is used to fetch 
instructions. The low order 14-bits select a word of memory, bit 
14 selects one of the two instructions packed in the word, and bit 
15 determines whether the IP is an absolute address, or an offset 
into AO. Because instructions are prefctched, the value of the IP 
may be ahead of the next instruction. 

338 



Priority Level 0 Priority Level 1 

/%y f+j 

27 0 27 0 

A0 A0 
Al Al 

1 El 
A2 A2 

A3 A3 

0 35 0 

RO 
Rl 
R2 
R3 

Shared 
2r 0 
1 TB 

Figure 2: MDP Registers 

The small register set allows a context switch to be performed 
very quickly. Only five registers must be saved and nine registers 
restored. Because the on-chip memory can be accessed in a single 
clock cycle, the fact that few intermediate results can be kept in 
registers does not significantly degrade performance. 

The message registers consist of two sets of queue registers, a 
translation buffer base/mask register, and a status register. A set 
of queue registers is provided for each of the two receive queues. 
Each queue register set contains a 26-bit base/limit register, and 
a 26-bit head/tail register. The queue baae/hmit register contains 
ICbit pointers to the first and last words allocated to the queue 
while the head/tail register contains 14-bit pointers to the first 
and last words that hold valid data. As with the address registers 
ail these I4-bit fields contain physical addresses into local memory. 
Special address hardware is provided to enqueue or dequeuc a 
word in a single clock cycle. 

We have omitted a send queue from the MDP for two reasons. 
First, analysis of the networks we plan to use (61 indicate that 
the network will be able to accept messages as fast as the nodes 
can generate them. Second, if network congestion does occur, the 
absence of a send queue allows the congestion to act as a gov- 
ernor on objects producing messages. With a send queue, these 
objects would fill their respective queues before they blocked. Be- 
cause both the MDP and the network support multiple priority 
levels, higher priority objects wili be able to execute and clear the 
congestion. 

The translation buffer base/mask register is used to generate ad- 
dresses when using the MDP memory as a set-associative cache. 
This register contains a l4-bit bass and a 14-bit mask. As shown 
in Figure 3, each bit of the the mssk, MASKi, selects between a 
bit of the association key, KEYi, and a bit of the base, BASE;, to 

KEY, I 
4-Y 

Figure 3: Translation Buffer Address Formation 

generate the corresponding address bit, ADD&. The high order 
ten bits of the resulting address are used to select the memory row 
in which the key might be found. The operation of the memory 
ss a set-associative cache is described in Section 3.2. 

The status register contains a set of bits that reflect the current 
execution state of the MDP including: current priority level, a 
fault status bit, and an interrupt enable bit. 

2.2 Message Set 

The MDP controller is driven by the incoming massage stream. 
The arrival of a message causes some action to be performed by 
the MDP. This action may be to read or write a memory loca- 
tion, execute a sequence of instructions, and/or send additional 
messages. The MDP controller reacts to the arrival of a message 
by scheduling the execution of a code sequence. 

Bather than providing a large message set hard-wired into the 
MDP, we chose to implement only a single primitive message, 
!3ECUTE. This message takes as arguments a priority level <priority> 
(0 or l), an opcode <opcode>, and an optional list of arguments, 
<arg>. The message opcode is a physical address to the routine 
that implements the message. More complex messages, such as 
those that invoke a method or dereference an identifier, can be 
implemented as almost M efficiently using the EXECUTE message 
as they could if they were hard-wired. 

ExeCUTE <priority> Copcode> Qrg> Qrg> 

When a message arrives at a message-driven processor, it is buffered 
until the node is either idle or executing code at lower priority 
level. If the node is already executing at a lower priority, no 
buffering is required. This buffering takes place without inter- 
rupting the processor, by stealing memory cycles. The processor 
then examines the header of the message and dispatches control 
to an instruction sequence beginning at the topcode> field of the 
message in physical memory. Saving state is not required as the 
new message is executed in the high priority registers. Message 
arguments are read under program control. The processor’s con- 

trol unit rather than software, decides (1) whether to buffer or 
execute the message and (2) what address to branch to when the 
message is accepted. 

In the MDP, all messages do result in the execution of instructions. 
The key difference is that no instructions are required to receive 
or buffer the message, and very few instructions are required to 



locate the code to be executed in response to the message. The 
MDp provides efficient mechanisms to buffer messages in memory, 
to synchronize program execution with message arrival, and to 
transfer control rapidly in response to a message. By performing 
these functions in hardware (not microcode), their overhead is 
reduced to a few clock cycles (<SCCna). 

we choose not to implement complex meaaages in microcode be- 
cause they will run just as fast using macrocode and implementing 
them in macrocode gives us more flexibility. Since the MDP is 
an experimental machine we place a high value on providing the 
Rexibility to experiment with different concurrent programming 
models and different message sets, and to instrument the system. 
The MDP uses a small ROM to hold the code required to execute 
the meaaage types listed below. The ROM code uses the macro 
instruction set and lies in the same address apace bp the RWM, ao 
it is very easy for the user to redefine these messages simply by 
specifying a different start address in the header of the message. 

REAO <base> <limit> <reply-node> <reply-sol> 

VluYE <barn@ <limit> <data> . . . cd&O 
READ-FIELD <obj-id> <index> <reply-id> <reply-ssl, 

VRITE-FIELD <obj-id> <index, <data> 
DEREFERENCE <aid> <reply-id> <reply-~1, 

NEV <size+ <data> <data> <reply-id> <reply-sol> 

G&L <mathod-id> <ar(l> . . . <a-> 
SEND <rsceaver-id> <selector> Car&a . . . <ug> 
BEPLY <context-id> <index> <data> 

PORVABD <control> <data> . . . <date> 
CO)(BINE <obj-id> <srg> . <ug> <reply-id> <reply-sol> 
cc <obj-id, <mark> 

The RUD, WRITE, READ-FIELD, WRITE-FIUD, DEBEFERSNCE, and 
NSW messages are used to read or write memory locations. REID 
~1~ read and write blocks of physical memory. They deal only 
with physical memory addresses, <bare> <limit>, and physical 
node addresses, <reply-node>. The RSAD-FIELD and WRITS-FISLD 
red and write a field of a named object. These messages uae logi- 
cal addreaaes (object identifiers), tobj-Id>, <reply-id>, and will 
work even if their target is relocated to another memory addrem, 
or another node. The DEFtEFERENCE method reads the entire con- 
tents of an object. NlIW creates a new object with the specified 
contents (optional) and returns an identifier. The <reply-aal> 
(reply-selector) field of the read messages specifies the selector to 
be used in the reply message. 

The CBLL and SEND messages cause a method to be executed. The 
method is specified directly in the CALL message, <method-id>. 

In the SEND meaaage, the method is determined at run-time & 

pending on the class of the receiver. 

Ths REPLY, FORWARD, COMBINE, and GC meaaagee are used to im- 
plement futures, message multicaat, fetch-and-op combmmg, and 
garbage collection respectively. 

2.3 Instruction Set 

Each MDP instruction is 17-bits in length. Two instructions are 
packed into each MDP word (the INST tag is abbreviated). Each 
instruction may specify at most one memory access. Regiatera or 
constants supply all other operands. 

As shown in Figure 4, escb instruction contains a 6bit opcode 
field, two P-bit register select fields, and an ‘I-bit operand deacrip 

16 11 10 9 R 7 6 0 

OPCODE REG REG OPERAND 

Figure 4: Instruction Format 

tor field. The operand descriptor can be used to spacify: (1) a 
memory location using a offset (short integer or register) from 
an address register, (2) a short integer or bit-field constant, (3) 
access to the message port, or (4) access to any of the proceaaor 

registers. 

ln addition to the usual data movement, arithmetic, logical, and 
control instructions, the MDP provides instructiona to: 

l Read, write, and check tag fields. 

l Look up the data associated with a key using the TBM reg- 

ister and set-associative features of the memory. 

. Enter a key/data pair in the association table. 

l ‘Dansmit a message word. 

l Suspend execution of a method. 

All instructions are type checked. Attempting an operation on 
the wrong class of data results in a trap. ‘Dapps are also provided 
for arithmetic overflow, for translation buffer miss, for illegal in- 
struction, for message queue overflow, etc.... 

3 Micro Architecture 

Figure 5 shows a block diagram of the MDP. Mwaagea arrive 
at the network interface. The message unit (MU) controla the 
reception of these messages, and depending on the status of the 
instruction unit (IU), either signals the IU to begin execution, 
or buffers the message in memory. The IU executes methods by 
controlling the registers and arithmetic units in the data path, 
and by performing read, write, and translate operations on the 
memory. While the MU and IU are conceptually separate units, 

MU ’ IU 
> 

L’ Jr 

Network ( 

Interface 
Data Path Memory 

Figure 5: MDP Block Diagram 
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in the current implementation they are combined into a single 
controller. 

3.1 Data Path 

As shown in Figure 6, the data path is divided into two sections. 
The arithmetic section (left) consists of two copies of the general 
registers, and an arithmetic unit (ALU). The ALU unit accepts 
one argument from the register file, one argument from the data 
bus, and returns its result to the register file. 

The address section (right) consists of the address, queue, IP, 

Figure 6: MDP Data Path 

and TBM registers and an address arithmetic unit (AAU). Each 
register in the address section holds two 14-bit fields that are 
bit-interleaved so that corresponding bits of the two fields can 
be easily compared. The AAU generates memory addresses, and 
may modify the contents of a queue register. In a single cycle it 
can (1) perform a queue insert or delete (with wraparound), (2) 
insert portions of a key into a base field to perform a translate 
operation, (3) compute an address aa an offset from an address 
register’s base field and check the address against the limit field, 
or (4) fetch an instruction word and increment the corresponding 
IP. 

3.2 Memory Design 

A block diagram of the MDP memory is shown in Figure 7. The 
memory system consists of a memory array, a row decoder, a 
column multiplexor and comparators, and two row buffers (one 
for instruction fetch and one for queue access). Word sizes in 
thii figure are for our prototype which will have only 1K words of 
RWM. 

In the prototype, the memory array will be a 256-row by I44- 
column array of 3 transistor DRAM cells. In an industrial version 
of the chip, a 4K word memory using 1 transistor ceils would be 
feasible. We wanted to provide simultaneous memory access for 
data operations, instruction fetches, and queue inserts; however, 
to achieve high memory density we could not alter the basic mem- 
ory cell. Making a dual port memory would double the area of the 
basic cell. Instead, we have provided two row buffers that cache 
one memory row (4 words) each. One buffer is used to hold the 
row from which instructions are being fetched. The other holds 
the row in which message words are being enqueued. Address 
comparators are provided for each row buffer to prevent normal 
accesses to these rows from receiving stale data. We are consider- 

ing using additional address comparators to provide spare mem- 
ory rows that can be configured at power-up to replace defective 
row*. 

Queue Row Buffer 
1 

I 

Column Row Buffer 

Addr 

10 

1 
Memory Array 

!5 

Column MUX 6c Comparators ] 

Figure ‘: MDP Memory Block Diagram 

The MDP memory is used both for normal read/write operations, 
and as a set-associative cache to translate object identifiers into 
physical addresses and to perform method lookup. These trana- 
lation operations are performed as shown in Figure 8. The TBM 
register selects the range of memory rows that contain the tram+ 
lation table. The key being translated selects a particular row 
within this range. Comparators built into the column multiplexor 
compare the key with each odd word in the row. If a comparator 
indicates a match, it enables the adjacent even word onto the data 
bus. If no comparator matches the data a miss is signaled, and 
the processor takes a trap. For clarity, Figure 8 shows the words 
brought out separately. In fact, to simplify multiplexor layout, 
the words in a row are bit-interleaved. 

Figure 8: Associative Memory Access 
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3.3 Area Estimate 

Our data paths use a pitch of 60X (X is half the minimum de- 
sign rule) per bit giving a height of 2160X. We expect the data 
path to be f~ 3000X wide for an area of c 6.5MXz. A 1K word 
memory array built from 3T DRAM cells will have dimensions of 
n 2450X x 6150A c 15MJ4’. We expect the memory peripheral 
circuitry to add an additional 5MX*. We plan to use an on chip 
communication unit similar to the Torus Routing Chip [5] which 
will take an additional 4MA’. Allowing 8MX’ for wiring gives a 

total chip area of CJ 40MX* (or a chip about 6.5mm on a side in 
2~ CMOS) for our IK word prototype. 

4 Execution Model 

4.1 CALL and SEND 

In a concurrent, object-oriented programming system, programs 
operate by sending messages to objects. Each method results in 
the execution of a method. The MDP supports this model of 
programming with the CALL and SEND messages. 

The execution sequence for a CALL message is shown in Figure 9. 
The first word of the message contains the priority level (0), and 

Memory 

I I 
Call Routine 

of A3 on message arrival. Subsequent accesses through A3 read 
words from the message queue. If the method faults, the message 
is copied from the queue to the heap. Register A3 is set to point to 
the message in the heap when the code is resumed. The argument 
object identifiers are translated to physical memory base/limit 
pairs using the translate instruction. If the method needs space 
to store local state, it may create a context object. When the 
method has finished execution, or when it needs to wait for a 
reply, it executes a SUSPEND instruction passing control to the 
next message. 

A SEND message looks up its method based on a selector in the 
meaaage, and the cha of the receiver. This method lookup is 
shown in Figure 10. The receiver identifier is translated into a 
base/limit pair. Using this address, the clars of the receiver is 
fetched. The class is concatenated with the selector field of the 
message to form a key that is used to look up the physical address 
of the method in the translation table. Once the method is found, 
processing proceeds as with the CALL message. 

0 SEND Rcvr-ID Seieccor AwID 1 
i rtr XLATE 

XLATE Lrl 
kthod-Addrl 

Figure 10: Method Lookup 

Figure 9: Processing a CALL Message 4.2 Non-Local References and Futurea 

the physical address of the CALL subroutine. If the processor is 
idle, in the clock cycle following receipt of this word, the first in- 
struction of the call routine is fetched. The call routine then reads 
the object identifier for the method. This identifier is translated 
into a physical address in a single clock cycle using the transla- 
tion table in memory. If the translation misses, or if the method 
is not resident in memory, a trap routine performs the translation 
or fetches the method from a global data structure. 

Once the method code is found, the CALL routine jumps to this 
code. The method code may then read in arguments from the 
meesage queue. This is accomplished by setting the queue-bit 

If either operand of an instruction is not of the proper type, a trap 
will occur. Thi hardware support for run-time type checking not 
only allows us to support dynamically-typed languages such as 
LISP and Smalltalk, but also allows us to handle local and non- 
local data uniformly. For example, suppose we attempt to access 
an instance variable of an object using the instruction temp c- 
anObject at: aField. If anOb j ect is resident on the local node 
a simple memory reference is generated; however, if anobject is 
resident on a different node a message send results. This uniform 
handling of objects regardless of their location relieves the pro- 
grammer and the compiler from keeping track of object locations. 
More importantly, it facilitates dynamically moving objects from 
node to node. 
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Futures are supported through the use of tags. Consider the in- 
struction mentioned in the previous paragraph: temp <- anObject 
at: aField. If anObj ect is not local, a message will be sent with 
the Reply-To: slot of the message specifying the variable temp 
in the current context, and temp will be tagged as a context 
future. When the reply message arrives, as shown in Figure 11, 
it looks up the context object, and overwrite8 the specified slot 
with the proper value. In the meantime, execution continues until 
the program attempts to use the value in temp perhaps by execut- 
ing aVar <- temp + 1. If when this instruction examines temp 
it is atill tagged Future, the current context is suspended until 
the value of temp is available. If the at: message had already 
replied with the value of temp, however, the tag of tamp would 
have signified a value and the context would not be suspended. 

Futures can be handled in a more general sense by creating an 
object of class future to which the pending computation is to re- 
ply. References to this future object may then be passed outside 
of the local context. When the result of the pending computation 
is available, the future object becomes this value. 

111 REPLY 1 Context ID 1 SLOT 1 VALUE 1 

Context Object 

Figure 11: Processing A Reply Message 

4.5 Multicast and Combining 

In concurrent computations it is often necessary to fan data out 
to many destinations, and to accumulate data from many sources 
with an associative operator. In the MDP, these functions are 
performed by the FORWARD and COMBINE messages respectively. 

The FORWARD message contains the identifier of a control object, 
and a message to be forwarded as specified in that object. The 
control object is a list of destinations to which the mesraga should 
be forwarded along with the header (if any) which should precede 
the message. When the mesnage arrives, the control object is lo- 
cated and a buffer is created in memory to hold the message. The 
m-age is read into the buffer and at the same time transmitted 
to the first destination in the list. The message is then transmit- 
ted to the subsequent destinations on the list, and the buffer is 
deallocated. 

The combine message specifies the identifier of a combine object, 
and a message to be combined or forwarded. The combine object 
contains the destination to which combined messages are to be 

forwarded, buffers for combined messages awaiting a reply, and 
identifiers for the methods to be executed in response to combine 
or reply messages. The combining performed is controlled entirely 
by these user specified methods. The combine message is quite 
similar to a CALL differing only in that the method to be executed 
is implicit. 

5 ’ Performance 

We have constructed both instruction-level and a register-transfer 
(RT) level simulators for the MDP. Using these simulators we have 
evaluated the time required by the MDP to perform a number of 
simple operations. These operations are tabulated in Table 1. 

In this table, W specifies the number of words transferred, and 
N specifies the number of destinations for the FORWARD message. 
The times for CALL, SEND, and COMBINE are the time from message 
reception until the first word of the appropriate method is fetched. 
Ties are expressed in clock cycles. We expect the clock period 
of our prototype to be 100ns. 

Operation 

READ 
WRITE 

Time ’ 

5fW 
4+w 

READ-FIELD 7 
WRITE-FIELD 6 
DEREFERENCE 6+W 
CALL 5 

SEND 8 

REPLY 7 
FORWARD 5+NxW 
COMBINE 5 

Table 1: MDP Message Execution Times (in clock cycles) 

In the near future we plan to run benchmarks on a simulated 
collection of MDPs to messure the hit ratios in translation buffer 
and method cache (as a function of cache size), and effectiveness 
of the row buffers. 

6 Conclusion 

The mwsags-driven processor (MDP) is able to process a set of 
mesaages that support an object-oriented concurrent progam- 
ming system with an overhead of less than ten clock cycles per 
message. This performance, more than sn order of magnitude 
improvement over existing message-passing systems, enables the 
MDP to efficiently run programming systems that exploit con- 
currency at a grain size of FJ 10 instructions. In contrast existing 
machines operate efficiently only at a grain size of several hun- 
dred instructions. We conjecture that by exploiting concurrency 
at this fine grain size we will be able to achieve an order of mag- 
nitude more concurrency for a given application than is possible 
on existing machines. 

The MDP achieves much of its performance by using a message- 
driven control mechanism. The MU handles reception and buffer- 
ing of arriving messages ae well as directing the operation of the 
IU. The IU simply executes instructions. It never makes a deci- 
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sion concerning whether to buffer or execute an arriving message. 
For each message, it is vectored to the proper entry point by the 
MU. A single message type, EXECUTE, with two priority levek, 
provides all the mechanism necessary to implement a concurrent 
programming system. 

The MDP uses a memory based instruction set and two registei 
sets to implement fast context switches. The dual register sets 
allow a high priority message to interrupt a lower priority message 
without saving state. The memory based instruction set allows 
a context to save its state in five clock cycles. Operating out of 
memory is almost ss fast as operating out of registers since the 
memory is implemented on chip and can be accessed in a single 
clock cycle. 

The MDP memory adds functionality in its peripheral circuitry 
while preserving the density of a simple memory array. The mem- 
ory supports both indexed and associative access by placing corn-- 
parators in the column multiplexor. The associative access me& 
anism speeds the execution of concurrent programs by allowing 
address translation and method lookup to be performed in a in- 
gle clock cycle. This translation mechanism is made visible to the 
programmer so it can be applied in other situations (e.g., method 
lookup). 

The MDP has been motivated by the development of high-performance 
message-passing networks [S]. In early message passing machines, 
message latency, in the milliseconds, WILY the limiting factor. Now 
that the message latency has been reduced to a few microcac 
ends, we can no longer ignore processor latencies in hundreds of 
microseconds. 

Some may argue that the MDP is unbalanced according to the rule 
of thumb stating that a 1MIP pro-r should have a 1MByte 
memory. The MDP is an FY 4MIP procassor and only hea a 
16KByte memory (4KByte in the prototype). We argue however 
that it is not the size of the memory in a single node that is im- 
portant, but rather the amount of memory that can be accwsed 
in a given period of time. In a 64K node machine constructed 
from MDPs and using a fast routing network, a processor will be 
able to access a uniform address space of 22s words (2so Bytes) in 
leas than lops. 

The MDP provides many of the advantages of both message- 
passing multicomputers and shared-memory multiprocessors. Lie 
a shared-memory machine, it providee a single global name space, 
and needs to keep only a single copy of the application and oper- 
ating system code. Like a massage-psdsing machine, the MDP ex- 
ploits locality in object placement, uses messages to trigger events, 
and gains efficiency by sending a single manage through the net 
work instead of sending multiple words. While we plan to im- 
plement an object-oriented programming system on the MDP, we 
also see the h4DP as an emulator that can be used to experiment 
with other progr arming models. 
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