
Architecture of a Message-Driven Processor 1

William J. Dally, Linda Chao, Andrew Chien, Soha Hamoun, Waldemar Horwat,

Jon Kaplan, Paul Song, Brian Totty, and Scott Willa

&tidcial Intelligence Laboratory ud Laboratory for Computer Science
Mssaacbussttr Institute of Technology

Cambridnc. Masmchusctts 02139
Abstract

p ,

We propole a machine architecture for a high-performaxe proceuieg
node for a mueage-pas&g, MIMD concurrent computer. The principal
mee,haaismn for attaining this goal are the direct execution and buffer-
ius of meesylee and a memory-based architecture that permit@ very fast

contut witches. Our architecture &o ineluder a aevel msmory orga-
nis&x~ that permita both indexed and aeeecikve acceuu and that
incorporates sa itwtruction buffer and me-age queer. Simulation re
mite suggest that thL architecture reduccl mauge reception overheed
by more thau an order of magnitude.

1 Introduction

1.1 Summary

The meanage-driven processor (MDP) ia a proceasing node for a

manage-panning concurrent computer. It ia designed to support
tine-grain concurrent programa by reducing the overhead and la-
tarmy amociated with receiving a meoaage, by reducing the time
necessary to perform a context switch, and by providing hardware
mpport for object-oriented concurrent progammin g systems.

Menage handling overhead is reduced by directly executing mea-
sages rather than interpreting them with azqueacea of inatruc-
titans. As shown in Figure 1, the MDP containr two control units,
the instruction unit (IU) that executea inatructionr and the mea-
rage unit (MU) that executes messages. When a message arrives
it L examined by the MU which decider whether to queue the mea-
aage or to execute the m-age by preempting the IU. Messages
are enqueued without interrupting the IU. Message execution is
accomplished by immediately vectoring the IU to the appropriate
memory addreas. Special regiatem are dedicated to the MU so no
time is wasted saving or restoring rtate when switching between
massage and instruction execution.

Context switch time is reduced by making the MDP a memory
rather than register baaed proceaaor. Each MDP instruction may
read or write one word of memory. Because the MDP memory
ie on-chip, these memory references do not alow down inrtruction
execution. Four general purpose regiatem are provided to allow

Rtmtsstott to copy wtthout fee all or part of this matcnal tb granted
provided that the coptes are not made or dtstrtbutcd for direct commerctal
advantage. the ACM copyrtght notice and the title of the publtcatiott and
its date appear. and tto~tce IS gtvcn that copytng ts by permtsston of the
Assoclatton for Compuuttg Machtnery To copy otherwtsc. or to
rcpubltsh. requuzs a kc and/or spectlic pctmtssion.

T-l Memory

Figure 1: Massage Driven Procemor Organization

inatructiona that require up to three operands to execute in a
ringh cycle. The entire atate of a context may be raved or restorad
in lam than 10 clock cycla. Two register setr are provided, one
for each of two priority levch, to allow low priority mesaage to
be preempted without raving state.

The MDP memory can be acted either by addresa or by con-
tent, aa a wtaanociative cache. Cache accem is ured to provide
addraw translation from object identifier to object location. This
trudation mechanism ia wed to clupport a global addrem space.
Object identifiers in the MDP are global. They are translated at

NII time to find the node on which the object resides and the
ad&em within thin node at which the object starb.

The arzsociative access of the MDP memory is alro used to look
up the method to be executed in reaponae to a m-age. The
cache acts ea au ITLB [3] and trana1ate.a a aelactor (from the
meauge), and clam (from the receiver) into the starting add-
of the method. Because the MDP maintains a global name space,
it L not necessary to keep a copy of the program code (and the
operating ryetern code) at each node. Each MDP keeps a method
c&e in its memory and fetches methods from a single distributed
copy of the program on cache mimer.

‘The research described in thie paper was eponrored by the De-
fence Advanced Research Project8 Agency in part under contract num-
ber NOOO14-8&C-0622 and in pert under contract number NOOO1485-
K0124.

0 1987 ACM 0084-7495/87/0600-0189gOO.75

337

http://crossmark.crossref.org/dialog/?doi=10.1145%2F285930.285993&domain=pdf&date_stamp=1998-08-01

The MDP is a tagged machine. Tags are used both to support
dynamically-typed programming languages and to support con-
current programming constructs such a~ futures 181.

The MDP is intended to support a fine-grain, object-oriented con-
current programming system m which a collection of objects in-
teract by passing messages [I]. In such a system, addresses are
object names (identifiers). Execution is invoked by sending a mes-
sage specifying a method to be performed, and possibly some ar-
guments to an object. When an object receives a message it looks
up and executes the corresponding method. Method execution
may involve modifying the object’s state, sending messages, and
creating new objects. Because the messages are short (typically
6 words), and the methods are short (typically 20 instructions) it
is critical that the overhead involved in receiving a message and
in switching tasks to execute the method be kept to a minimum.

1.2 Background

Several message-psssing concurrent computers have been built us-
ing conventional microprocessors for processing elements. Exam-
ples of this class of machines include the Cosmic Cube 1131, the In-
tel iPSC [7], and the S-NET [2]. The software overhead of menage
interpretation on these machines is about 300~s. The message is
copied into memory by a DMA controller or communication pro-
cessor. The node’s microprocessor then takes an interrupt, saves
its current state, fetches the message from memory, and interprets
the message by executing a sequence of instructions. Finally, the
message is either buffered or the method specified by the message
is executed.

This large overhead restricts programmers to using coarse-grained
concurrency. The code executed in response to each message must
run for at least a millisecond to achieve reasonable (75%) effi-
ciency. Much of the potential concurrency in an application CM-
not be exploited at this coarse grain size. For many applications
the natural grain-size is about 20 instruction times [4] (5~ on a

high-performance microprocessor). Two-hundred times as many
processing elements could be applied to a problem if we could
efficiently run programs with a granularity of 5ps rather than 1
ms.

For many of the early message-passing machines, the network
latency was several milliseconds, making the software overhead a
minor concern. However, recent developments in communication
networks for these machines [5] [6] have reduced network latency
to a few microseconds making software overhead a major concern.

The MDP is not the first processing element designed explicitly for
a message-psssing concurrent computer. The N-CUBE family of
parallel processors is built around a single chip processing element
that is used in conjunction with external memory Ill]. The Me
saic processor integrates the processor, memory, and communic~
tion unit all on one chip [lo]. Neither of these processors addresses
the issue of message reception overhead. The N-CUBE processor
uses DMA and interrupts to handle its messages, while the Mosaic
receives messages one word at a time using programmed transfers
out of receive registers. Closer in spirit to the MDP is the The
InMOS Transputer 191. The Transputer supports a static, syn-
chronous model of programming based on CSP 1121 in much the
same way that the MDP supports a dynamic asynchronous model
based on actors [I].

Some of the ideas used in the MD? have been borrowed from other
processors. Multiple register sets have been used in rnicroproces-
son such as the Zilog Z-SO [IG], and in microcoded processors
such as the XEROX Alto 1151. The Alto uses its multiple register
sets to perform micro-tasking. By switching between the register
sets. context switches can be made on microinstruction boundaries
with no state saving required. Spector (14) used micro-tasking on
the Alto to implement remote operations over an Ethernet, an
idea similar to direct method execution.

1.3 Outline

The remainder of this paper describes the MDP in detail. The
user architecture of the MDP is presented in Section 2. The ma-
chine state, message set, and instruction set are discussed. The
MDP micro architecture is the topic of Section 3. This section in-
cludes a description of our novel memory architecture. Section 4
discusses support for concurrent execution models. We show how
a programming system that combines reactive objects, dynamic
typing, fetch-and-op combining, and futures can be efficiently im-
plemented on the MDP. Performance estimates for the MDP are
discussed in Section 5.

2 User Architecture

2.1 Machine State

The programmer sees the MDP lls a 4K-word by 36-bit/word
array of read-write memory (RWM), a small read-only memory
(ROM), and a collection of registers.

The MDP registers are shown in Figure 2. The registers are di-
vided into instruction registers and messnge registers. There are
two sets of instruction registers, one for each of two priority levels.
Each set consists of four general registers RO-R3, four address reg-
isters AO-A3, and an instruction pointer IP. The general registers
are 36 bits long (32 data bits + 4 tag bits) and are used to hold
operands and results of arithmetic operations.

The 28-bit address registers are divided into l4-bit base and limit
fields that point to the base and limit addresses of an object in
the node’s local memory. Associated with each address register
is an invalid bit, and a queue bit. The invalid bit is set when
the register does not contain a valid address. The queue bit is
set when the register is used to reference the current message
queue. Address registers are not saved on a context switch since
the object they point to may be relocated. Instead, the object’s
identifier (OID) is rttranslated into the object’s base and limit
addresses when the context is restored. All address registers as
well as the queue and translation buffer registers, appear to the
programmer to have two adjacent I4-bit fields.

The instruction pointer is a 16-bit register that is used to fetch
instructions. The low order 14-bits select a word of memory, bit
14 selects one of the two instructions packed in the word, and bit
15 determines whether the IP is an absolute address, or an offset
into AO. Because instructions are prefctched, the value of the IP
may be ahead of the next instruction.

338

Priority Level 0 Priority Level 1

/%y f+j

27 0 27 0

A0 A0
Al Al

1 El
A2 A2

A3 A3

0 35 0

RO
Rl
R2
R3

Shared
2r 0
1 TB

Figure 2: MDP Registers

The small register set allows a context switch to be performed
very quickly. Only five registers must be saved and nine registers
restored. Because the on-chip memory can be accessed in a single
clock cycle, the fact that few intermediate results can be kept in
registers does not significantly degrade performance.

The message registers consist of two sets of queue registers, a
translation buffer base/mask register, and a status register. A set
of queue registers is provided for each of the two receive queues.
Each queue register set contains a 26-bit base/limit register, and
a 26-bit head/tail register. The queue baae/hmit register contains
ICbit pointers to the first and last words allocated to the queue
while the head/tail register contains 14-bit pointers to the first
and last words that hold valid data. As with the address registers
ail these I4-bit fields contain physical addresses into local memory.
Special address hardware is provided to enqueue or dequeuc a
word in a single clock cycle.

We have omitted a send queue from the MDP for two reasons.
First, analysis of the networks we plan to use (61 indicate that
the network will be able to accept messages as fast as the nodes
can generate them. Second, if network congestion does occur, the
absence of a send queue allows the congestion to act as a gov-
ernor on objects producing messages. With a send queue, these
objects would fill their respective queues before they blocked. Be-
cause both the MDP and the network support multiple priority
levels, higher priority objects wili be able to execute and clear the
congestion.

The translation buffer base/mask register is used to generate ad-
dresses when using the MDP memory as a set-associative cache.
This register contains a l4-bit bass and a 14-bit mask. As shown
in Figure 3, each bit of the the mssk, MASKi, selects between a
bit of the association key, KEYi, and a bit of the base, BASE;, to

KEY, I
4-Y

Figure 3: Translation Buffer Address Formation

generate the corresponding address bit, ADD&. The high order
ten bits of the resulting address are used to select the memory row
in which the key might be found. The operation of the memory
ss a set-associative cache is described in Section 3.2.

The status register contains a set of bits that reflect the current
execution state of the MDP including: current priority level, a
fault status bit, and an interrupt enable bit.

2.2 Message Set

The MDP controller is driven by the incoming massage stream.
The arrival of a message causes some action to be performed by
the MDP. This action may be to read or write a memory loca-
tion, execute a sequence of instructions, and/or send additional
messages. The MDP controller reacts to the arrival of a message
by scheduling the execution of a code sequence.

Bather than providing a large message set hard-wired into the
MDP, we chose to implement only a single primitive message,
!3ECUTE. This message takes as arguments a priority level <priority>
(0 or l), an opcode <opcode>, and an optional list of arguments,
<arg>. The message opcode is a physical address to the routine
that implements the message. More complex messages, such as
those that invoke a method or dereference an identifier, can be
implemented as almost M efficiently using the EXECUTE message
as they could if they were hard-wired.

ExeCUTE <priority> Copcode> Qrg> Qrg>

When a message arrives at a message-driven processor, it is buffered
until the node is either idle or executing code at lower priority
level. If the node is already executing at a lower priority, no
buffering is required. This buffering takes place without inter-
rupting the processor, by stealing memory cycles. The processor
then examines the header of the message and dispatches control
to an instruction sequence beginning at the topcode> field of the
message in physical memory. Saving state is not required as the
new message is executed in the high priority registers. Message
arguments are read under program control. The processor’s con-

trol unit rather than software, decides (1) whether to buffer or
execute the message and (2) what address to branch to when the
message is accepted.

In the MDP, all messages do result in the execution of instructions.
The key difference is that no instructions are required to receive
or buffer the message, and very few instructions are required to

locate the code to be executed in response to the message. The
MDp provides efficient mechanisms to buffer messages in memory,
to synchronize program execution with message arrival, and to
transfer control rapidly in response to a message. By performing
these functions in hardware (not microcode), their overhead is
reduced to a few clock cycles (<SCCna).

we choose not to implement complex meaaages in microcode be-
cause they will run just as fast using macrocode and implementing
them in macrocode gives us more flexibility. Since the MDP is
an experimental machine we place a high value on providing the
Rexibility to experiment with different concurrent programming
models and different message sets, and to instrument the system.
The MDP uses a small ROM to hold the code required to execute
the meaaage types listed below. The ROM code uses the macro
instruction set and lies in the same address apace bp the RWM, ao
it is very easy for the user to redefine these messages simply by
specifying a different start address in the header of the message.

REAO <base> <limit> <reply-node> <reply-sol>

VluYE <barn@ <limit> <data> . . . cd&O
READ-FIELD <obj-id> <index> <reply-id> <reply-ssl,

VRITE-FIELD <obj-id> <index, <data>
DEREFERENCE <aid> <reply-id> <reply-~1,

NEV <size+ <data> <data> <reply-id> <reply-sol>

G&L <mathod-id> <ar(l> . . . <a->
SEND <rsceaver-id> <selector> Car&a . . . <ug>
BEPLY <context-id> <index> <data>

PORVABD <control> <data> . . . <date>
CO)(BINE <obj-id> <srg> . <ug> <reply-id> <reply-sol>
cc <obj-id, <mark>

The RUD, WRITE, READ-FIELD, WRITE-FIUD, DEBEFERSNCE, and
NSW messages are used to read or write memory locations. REID
~1~ read and write blocks of physical memory. They deal only
with physical memory addresses, <bare> <limit>, and physical
node addresses, <reply-node>. The RSAD-FIELD and WRITS-FISLD
red and write a field of a named object. These messages uae logi-
cal addreaaes (object identifiers), tobj-Id>, <reply-id>, and will
work even if their target is relocated to another memory addrem,
or another node. The DEFtEFERENCE method reads the entire con-
tents of an object. NlIW creates a new object with the specified
contents (optional) and returns an identifier. The <reply-aal>
(reply-selector) field of the read messages specifies the selector to
be used in the reply message.

The CBLL and SEND messages cause a method to be executed. The
method is specified directly in the CALL message, <method-id>.

In the SEND meaaage, the method is determined at run-time &

pending on the class of the receiver.

Ths REPLY, FORWARD, COMBINE, and GC meaaagee are used to im-
plement futures, message multicaat, fetch-and-op combmmg, and
garbage collection respectively.

2.3 Instruction Set

Each MDP instruction is 17-bits in length. Two instructions are
packed into each MDP word (the INST tag is abbreviated). Each
instruction may specify at most one memory access. Regiatera or
constants supply all other operands.

As shown in Figure 4, escb instruction contains a 6bit opcode
field, two P-bit register select fields, and an ‘I-bit operand deacrip

16 11 10 9 R 7 6 0

OPCODE REG REG OPERAND

Figure 4: Instruction Format

tor field. The operand descriptor can be used to spacify: (1) a
memory location using a offset (short integer or register) from
an address register, (2) a short integer or bit-field constant, (3)
access to the message port, or (4) access to any of the proceaaor

registers.

ln addition to the usual data movement, arithmetic, logical, and
control instructions, the MDP provides instructiona to:

l Read, write, and check tag fields.

l Look up the data associated with a key using the TBM reg-

ister and set-associative features of the memory.

. Enter a key/data pair in the association table.

l ‘Dansmit a message word.

l Suspend execution of a method.

All instructions are type checked. Attempting an operation on
the wrong class of data results in a trap. ‘Dapps are also provided
for arithmetic overflow, for translation buffer miss, for illegal in-
struction, for message queue overflow, etc....

3 Micro Architecture

Figure 5 shows a block diagram of the MDP. Mwaagea arrive
at the network interface. The message unit (MU) controla the
reception of these messages, and depending on the status of the
instruction unit (IU), either signals the IU to begin execution,
or buffers the message in memory. The IU executes methods by
controlling the registers and arithmetic units in the data path,
and by performing read, write, and translate operations on the
memory. While the MU and IU are conceptually separate units,

MU ’ IU
>

L’ Jr

Network (

Interface
Data Path Memory

Figure 5: MDP Block Diagram

340

in the current implementation they are combined into a single
controller.

3.1 Data Path

As shown in Figure 6, the data path is divided into two sections.
The arithmetic section (left) consists of two copies of the general
registers, and an arithmetic unit (ALU). The ALU unit accepts
one argument from the register file, one argument from the data
bus, and returns its result to the register file.

The address section (right) consists of the address, queue, IP,

Figure 6: MDP Data Path

and TBM registers and an address arithmetic unit (AAU). Each
register in the address section holds two 14-bit fields that are
bit-interleaved so that corresponding bits of the two fields can
be easily compared. The AAU generates memory addresses, and
may modify the contents of a queue register. In a single cycle it
can (1) perform a queue insert or delete (with wraparound), (2)
insert portions of a key into a base field to perform a translate
operation, (3) compute an address aa an offset from an address
register’s base field and check the address against the limit field,
or (4) fetch an instruction word and increment the corresponding
IP.

3.2 Memory Design

A block diagram of the MDP memory is shown in Figure 7. The
memory system consists of a memory array, a row decoder, a
column multiplexor and comparators, and two row buffers (one
for instruction fetch and one for queue access). Word sizes in
thii figure are for our prototype which will have only 1K words of
RWM.

In the prototype, the memory array will be a 256-row by I44-
column array of 3 transistor DRAM cells. In an industrial version
of the chip, a 4K word memory using 1 transistor ceils would be
feasible. We wanted to provide simultaneous memory access for
data operations, instruction fetches, and queue inserts; however,
to achieve high memory density we could not alter the basic mem-
ory cell. Making a dual port memory would double the area of the
basic cell. Instead, we have provided two row buffers that cache
one memory row (4 words) each. One buffer is used to hold the
row from which instructions are being fetched. The other holds
the row in which message words are being enqueued. Address
comparators are provided for each row buffer to prevent normal
accesses to these rows from receiving stale data. We are consider-

ing using additional address comparators to provide spare mem-
ory rows that can be configured at power-up to replace defective
row*.

Queue Row Buffer
1

I

Column Row Buffer

Addr

10

1
Memory Array

!5

Column MUX 6c Comparators]

Figure ‘: MDP Memory Block Diagram

The MDP memory is used both for normal read/write operations,
and as a set-associative cache to translate object identifiers into
physical addresses and to perform method lookup. These trana-
lation operations are performed as shown in Figure 8. The TBM
register selects the range of memory rows that contain the tram+
lation table. The key being translated selects a particular row
within this range. Comparators built into the column multiplexor
compare the key with each odd word in the row. If a comparator
indicates a match, it enables the adjacent even word onto the data
bus. If no comparator matches the data a miss is signaled, and
the processor takes a trap. For clarity, Figure 8 shows the words
brought out separately. In fact, to simplify multiplexor layout,
the words in a row are bit-interleaved.

Figure 8: Associative Memory Access

341

3.3 Area Estimate

Our data paths use a pitch of 60X (X is half the minimum de-
sign rule) per bit giving a height of 2160X. We expect the data
path to be f~ 3000X wide for an area of c 6.5MXz. A 1K word
memory array built from 3T DRAM cells will have dimensions of
n 2450X x 6150A c 15MJ4’. We expect the memory peripheral
circuitry to add an additional 5MX*. We plan to use an on chip
communication unit similar to the Torus Routing Chip [5] which
will take an additional 4MA’. Allowing 8MX’ for wiring gives a

total chip area of CJ 40MX* (or a chip about 6.5mm on a side in
2~ CMOS) for our IK word prototype.

4 Execution Model

4.1 CALL and SEND

In a concurrent, object-oriented programming system, programs
operate by sending messages to objects. Each method results in
the execution of a method. The MDP supports this model of
programming with the CALL and SEND messages.

The execution sequence for a CALL message is shown in Figure 9.
The first word of the message contains the priority level (0), and

Memory

I I
Call Routine

of A3 on message arrival. Subsequent accesses through A3 read
words from the message queue. If the method faults, the message
is copied from the queue to the heap. Register A3 is set to point to
the message in the heap when the code is resumed. The argument
object identifiers are translated to physical memory base/limit
pairs using the translate instruction. If the method needs space
to store local state, it may create a context object. When the
method has finished execution, or when it needs to wait for a
reply, it executes a SUSPEND instruction passing control to the
next message.

A SEND message looks up its method based on a selector in the
meaaage, and the cha of the receiver. This method lookup is
shown in Figure 10. The receiver identifier is translated into a
base/limit pair. Using this address, the clars of the receiver is
fetched. The class is concatenated with the selector field of the
message to form a key that is used to look up the physical address
of the method in the translation table. Once the method is found,
processing proceeds as with the CALL message.

0 SEND Rcvr-ID Seieccor AwID 1
i rtr XLATE

XLATE Lrl
kthod-Addrl

Figure 10: Method Lookup

Figure 9: Processing a CALL Message 4.2 Non-Local References and Futurea

the physical address of the CALL subroutine. If the processor is
idle, in the clock cycle following receipt of this word, the first in-
struction of the call routine is fetched. The call routine then reads
the object identifier for the method. This identifier is translated
into a physical address in a single clock cycle using the transla-
tion table in memory. If the translation misses, or if the method
is not resident in memory, a trap routine performs the translation
or fetches the method from a global data structure.

Once the method code is found, the CALL routine jumps to this
code. The method code may then read in arguments from the
meesage queue. This is accomplished by setting the queue-bit

If either operand of an instruction is not of the proper type, a trap
will occur. Thi hardware support for run-time type checking not
only allows us to support dynamically-typed languages such as
LISP and Smalltalk, but also allows us to handle local and non-
local data uniformly. For example, suppose we attempt to access
an instance variable of an object using the instruction temp c-
anObject at: aField. If anOb j ect is resident on the local node
a simple memory reference is generated; however, if anobject is
resident on a different node a message send results. This uniform
handling of objects regardless of their location relieves the pro-
grammer and the compiler from keeping track of object locations.
More importantly, it facilitates dynamically moving objects from
node to node.

342

Futures are supported through the use of tags. Consider the in-
struction mentioned in the previous paragraph: temp <- anObject
at: aField. If anObj ect is not local, a message will be sent with
the Reply-To: slot of the message specifying the variable temp
in the current context, and temp will be tagged as a context
future. When the reply message arrives, as shown in Figure 11,
it looks up the context object, and overwrite8 the specified slot
with the proper value. In the meantime, execution continues until
the program attempts to use the value in temp perhaps by execut-
ing aVar <- temp + 1. If when this instruction examines temp
it is atill tagged Future, the current context is suspended until
the value of temp is available. If the at: message had already
replied with the value of temp, however, the tag of tamp would
have signified a value and the context would not be suspended.

Futures can be handled in a more general sense by creating an
object of class future to which the pending computation is to re-
ply. References to this future object may then be passed outside
of the local context. When the result of the pending computation
is available, the future object becomes this value.

111 REPLY 1 Context ID 1 SLOT 1 VALUE 1

Context Object

Figure 11: Processing A Reply Message

4.5 Multicast and Combining

In concurrent computations it is often necessary to fan data out
to many destinations, and to accumulate data from many sources
with an associative operator. In the MDP, these functions are
performed by the FORWARD and COMBINE messages respectively.

The FORWARD message contains the identifier of a control object,
and a message to be forwarded as specified in that object. The
control object is a list of destinations to which the mesraga should
be forwarded along with the header (if any) which should precede
the message. When the mesnage arrives, the control object is lo-
cated and a buffer is created in memory to hold the message. The
m-age is read into the buffer and at the same time transmitted
to the first destination in the list. The message is then transmit-
ted to the subsequent destinations on the list, and the buffer is
deallocated.

The combine message specifies the identifier of a combine object,
and a message to be combined or forwarded. The combine object
contains the destination to which combined messages are to be

forwarded, buffers for combined messages awaiting a reply, and
identifiers for the methods to be executed in response to combine
or reply messages. The combining performed is controlled entirely
by these user specified methods. The combine message is quite
similar to a CALL differing only in that the method to be executed
is implicit.

5 ’ Performance

We have constructed both instruction-level and a register-transfer
(RT) level simulators for the MDP. Using these simulators we have
evaluated the time required by the MDP to perform a number of
simple operations. These operations are tabulated in Table 1.

In this table, W specifies the number of words transferred, and
N specifies the number of destinations for the FORWARD message.
The times for CALL, SEND, and COMBINE are the time from message
reception until the first word of the appropriate method is fetched.
Ties are expressed in clock cycles. We expect the clock period
of our prototype to be 100ns.

Operation

READ
WRITE

Time ’

5fW
4+w

READ-FIELD 7
WRITE-FIELD 6
DEREFERENCE 6+W
CALL 5

SEND 8

REPLY 7
FORWARD 5+NxW
COMBINE 5

Table 1: MDP Message Execution Times (in clock cycles)

In the near future we plan to run benchmarks on a simulated
collection of MDPs to messure the hit ratios in translation buffer
and method cache (as a function of cache size), and effectiveness
of the row buffers.

6 Conclusion

The mwsags-driven processor (MDP) is able to process a set of
mesaages that support an object-oriented concurrent progam-
ming system with an overhead of less than ten clock cycles per
message. This performance, more than sn order of magnitude
improvement over existing message-passing systems, enables the
MDP to efficiently run programming systems that exploit con-
currency at a grain size of FJ 10 instructions. In contrast existing
machines operate efficiently only at a grain size of several hun-
dred instructions. We conjecture that by exploiting concurrency
at this fine grain size we will be able to achieve an order of mag-
nitude more concurrency for a given application than is possible
on existing machines.

The MDP achieves much of its performance by using a message-
driven control mechanism. The MU handles reception and buffer-
ing of arriving messages ae well as directing the operation of the
IU. The IU simply executes instructions. It never makes a deci-

343

sion concerning whether to buffer or execute an arriving message.
For each message, it is vectored to the proper entry point by the
MU. A single message type, EXECUTE, with two priority levek,
provides all the mechanism necessary to implement a concurrent
programming system.

The MDP uses a memory based instruction set and two registei
sets to implement fast context switches. The dual register sets
allow a high priority message to interrupt a lower priority message
without saving state. The memory based instruction set allows
a context to save its state in five clock cycles. Operating out of
memory is almost ss fast as operating out of registers since the
memory is implemented on chip and can be accessed in a single
clock cycle.

The MDP memory adds functionality in its peripheral circuitry
while preserving the density of a simple memory array. The mem-
ory supports both indexed and associative access by placing corn--
parators in the column multiplexor. The associative access me&
anism speeds the execution of concurrent programs by allowing
address translation and method lookup to be performed in a in-
gle clock cycle. This translation mechanism is made visible to the
programmer so it can be applied in other situations (e.g., method
lookup).

The MDP has been motivated by the development of high-performance
message-passing networks [S]. In early message passing machines,
message latency, in the milliseconds, WILY the limiting factor. Now
that the message latency has been reduced to a few microcac
ends, we can no longer ignore processor latencies in hundreds of
microseconds.

Some may argue that the MDP is unbalanced according to the rule
of thumb stating that a 1MIP pro-r should have a 1MByte
memory. The MDP is an FY 4MIP procassor and only hea a
16KByte memory (4KByte in the prototype). We argue however
that it is not the size of the memory in a single node that is im-
portant, but rather the amount of memory that can be accwsed
in a given period of time. In a 64K node machine constructed
from MDPs and using a fast routing network, a processor will be
able to access a uniform address space of 22s words (2so Bytes) in
leas than lops.

The MDP provides many of the advantages of both message-
passing multicomputers and shared-memory multiprocessors. Lie
a shared-memory machine, it providee a single global name space,
and needs to keep only a single copy of the application and oper-
ating system code. Like a massage-psdsing machine, the MDP ex-
ploits locality in object placement, uses messages to trigger events,
and gains efficiency by sending a single manage through the net
work instead of sending multiple words. While we plan to im-
plement an object-oriented programming system on the MDP, we
also see the h4DP as an emulator that can be used to experiment
with other progr arming models.

Acknowledgement

The authors thank Tom Knight, Gerry Sussman, Chuck Seitz, and BiU
Athu for their comments on the MDP architecture and the referees for
their suggestions oa how to improve this paper.

References

[l] Agha, Cul A., Actora: A Model o/ Concurrent Computation in
Distributed Syrtcms, MIT Artificial Intelligence Laboratory, Tech-
nical Report 844, June 1955.

(21 Ahuja, S.R., ‘S/Net: A High Speed Interconnect for MultC
computers,’ IEEE Jounai on Selected Anor in Commmieotionr,
November 1903, pp. 751-758.

131 Dally, William .J., and Ksjiya, James T., “An Object Oriented
Arckitecture,” Proc. 12”’ Symporwm on Computer Architecwre,
1965, pp. 154-160.

141 Dally, Wii J., A VLSI Architecture for Concurrent Data
Slructunr, Ph.D. Thee& Department of Computer Science, Cal-
ifornia Inetitute of Technology, Technical Report 5209:TR:56,
1986.

IS1

1’1

PI

PI

Dally, Wiiam J. and Seitr, Charles L., ‘The Torus Routing
Chip,” to l ppesr in 1. Dtihbu~ed Syrlemr, Vol. 1, No. 3, 1986.

Dally, William J., ‘Wiie Efficient VLSI Multiprocessor Communi.
cation Networks,” to appear in Shnford Con/erence on Advanced
Rereorch in VLSI, 1987.

Intel Scientific Computers, iPSC Uacr’a Guide, Order No. 1754SL
001, Santa Clara, CaIif.. Aug. 1985.

Hahead, R.H., ‘Psraliel Symbolic Computing,’ Computer, Vol.
19, No. 5, Aug. 1986, pp. 35-43.

inmos Limited, XMS Tl& Rejerencr Manual, Order No. 72 TRN
006 00, Bristol, United Kingdom, November 1984.

/IO] Lutr, C., et. al., ‘Design of the Messic Element,” Proc. MIT
Conference on Advanced Rereoreh in VLSI, Artech Books, 1964,
pp. l-10.

ill] Pabner, John F., ‘The NCUBE Family of Puslkl Supercomput-
en,’ Proe. IEEE Intrmalwnol Con/crr.ncr on Compulcr Design,
ICCD-86, 1986, p. 107.

[121 Iioare, C.A.R., *Communicating Sequential Processes,” CACM,
VoL 21, No. 5, August 1975, pp. 886677.

[ISI Saitr, Chulas L., ‘The Cosmic Cube,” CACM, Vol. 28, NO. 1,
Jaa. 1955, pp. 22-53.

I141 Spector, Alfred, Z. %rfonniag Remote Operatioas Efficiently on
a Local Computer Network,’ CACM, Vol. 25, No. 4, April 1952,
pp. 24U60.

1151 Thacker, C.P., et. al., ‘Alto: A Personal Computer,” in Computer
Sbuctume: Principler and Ezampler, Siewiorek, Bell, and Newell,
Ed., McGraw Hi, 1982.

ll6] c56 Product Description, Zilog Corporation, 19n.

344

