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ABSTRACT 

We study here declarative and dynamic aspectS of non­
monotonic reasoning in the context of deductive databases. 
More precisely, we consider here maintenance of a special class 
of indefinite deductive databases, called stratified databases, 
introduced in Apt, Blair and Walker [ABW] and Van Gelder 
[VG] in which recursion "through" negation is disallowed. 

A stratified database has a natural model associated with it 
which is selected as its intended meaning. The maintenance 
problem for these databases is complicated because insertions 
can lead to deletions and vice versa. 

To solve this problem we make use of the ideas present in 
the works of Doyle [DJ and de Kleer [dK] on belief revision 
systems. We offer here a number of solutions which differ in 
the amount of static and dynamic information used and the form 
of support introduced. We also discuss the implementation 
issues and the trade-offs involved. 

t. INTRODUCTION 

Use of incomplete information, for example in the case of 
hypothetical reasoning or in real time applications in which 
missing data has to be faced with, leads to non-monotonic 
reasoning. Depending on the application domain differents 
solutions to non-monotonic reasoning may arise and be needed. 
The framework in which we carry out our investigations is that 
of deductive databases, or more generally rule based 
programming. 
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A natural representation for handling incomplete 
information is the one in which negative hypotheses are allowed 
in rules. A negative hypothesis, say , A, should then be 
interpreted as "if so far A cannot be confirmed" which models 
the hypothetical character of reasoning. 
These and other aspects of negation were intensely studied in 
the framework of logic programming. Use of negation 
increases the expressiveness of the syntax (see Chandra and 
Hare! [CH]) but leads to several fundamental difficulties (see 
e.g Shepherdson [S l, S2] and Gallaire, Minker and Nicolas 
[GMN]. In particular, it is not clear what is the intended 
declarative meaning of the program. Recently, Apt, Blair and 
Walker [ABW] and independently Van Gelder [VG] proposed a 
simple solution to the latter problem obtained by imposing a 
restriction on the syntax, namely by disallowing recursion 
"through" negation. This class of programs, called stratified 
~ admits a simple declarative semantics in the form of 
a particular minimal model, which enjoys several natural 
propenies (see [ABW], [VG], Lifschitz [L] and Przymusinski 
[Pr]). 

Dynamic aspects of non-monotonic reasoning were 
studied by Doyle [DJ, de Kleer [dK] and others in the form of 
Truth Maintenance or Belief Revision Systems • a class of A.I 
programs which maintain consistency by manipulating a set of 
supports used in conditional proofs -. In [DJ when an 
inconsistency is detected a special mechanism is invoked to 
alter the supports associated with the conditionally derived 
facts. In [dK] in case of detection of inconsistency, the 
inconsistent part of the system (set of assumptions) is identified 
and associated contexts are removed. 

In this paper we combine the declarative and dynamic 
aspects of non-monotonic reasoning by studying the 
maintenance of stratified databases, i.e deductive databases 
which when seen as a logic program are stratified. As their 
intended meaning we choose the above mentioned model. 

The non-monotonicity is reflected by the fact that 
insertions can lead to deletions and vice versa. To handle this 
problem we track dependencies between facts present in the 
model and relations used in their derivations. These 
dependencies can be either statically derived from the 
dependency graph or dynamically computed during the 
construction and subsequent modifications of the model. 
Depending which form of dependencies is used we obtain a 
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different solution to the maintenance problem. We offer here 
various solutions which rely successively on more dynamic 
information. We also study lhe implementation issues 
concluding on a version which admits a simple and efficient 
implementation. Finally we point out the trade-offs involved. 

While the idea of using supports attached to facts present 
in the model directly relates to the work of [DJ and [dK] the 
difference lies in the way they are constructed and used. In fact, 
in the context of deductive databases the issue is maintenance of 
the intended declarative meaning and not maintenance of 
consistency. This leads to differents considerations and different 
solutions. 

2.STRATIFIED PROGRAMS-AN OVERVIEW 

We recall here briefly the results of Apt, Blair and Walker 
[ABW] which form a basis for this work. 

Given a logic program P we define its dependency graph 
Op by putting (r,q) belongs to Op iff there is a clause in P using 
r in a conclusion and q in a hypothesis. To an arc (r,q) which 
belongs to Op we attach an information whether a reference of r 
to q is positive (i.e q occurs positively in the hypotheses) or 
negative (i.e q occurs negatively in the hypotheses). In the first 
case we speak of a positive arc, and in the second case of a 
l}egative arc. An arc can be both positive and negative because a 
reference of r to q can be both positive and negative (not 
necessarily in the same rule). 

Now, following [ABW], a logic program is called 
stratified if no cycle in its dependency graph contains a negative 
arc (intuitively : there is no recursion "passing through" a 
negation). Equivalently, a program P is stratified if there is a 
partition (where Pi can be empty) P = Pt U ... U Pn called a 
stratification of P such that for i = !, ... , n 

a) if a relation symbol occurs positively in a clause in Pi 
then its definition is contained in U Pj for j.:;; i. 

b) if a relation symbol occurs negatively in a clause in Pi 
then its definition is conttained in U Pj for j < i. 

Recall that a definition of a relation symbol is the set of 
clauses using it in its conclusion. Given a logic program Panda 
set of ground atoms (or facts) M, we denote by SAT(P,M) - the 
~aturation of M by P - the set of ground atoms obtained by 
closing the set M under the rules of P. Given a stratification P1 
U ... UP n of P we put : 

and call M(P) the standard model of the program P. 

In general, SA T(P ,M) depends on the order of rule 
application, but this is not the case here. The actual 
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implementation of the saturation process is discussed in detail 
in section 5. Also, in general there is more than one way to 
stratify a program. A stratification Pi U ... U Pn of P is 
maximal if no stratum in it can be further decomposed into 
different strata. 

Let M be a Herbrand model of a program P. Mis called 
minimal if no proper subset of it is a model of P. M is called 
filWQQrled if for every element A of it there exists an 
explanation for it in the form of an instance of a clause of P 
whose body is true in M and whose conclusion is A. Recall that 
Bp denotes the set of ground atoms in the language of the 
program P, i.e the Herbrand base associated with P. 

Using some general results on fupoints of non-monotonic 
operators on complete lattices the following properties of the 
model M(P) were proved in [ABW]. 

THEOREM: 

Let P be a stratified program. Then 

i) M(P) does not depend on the stratification of P, 

ii) M(P) is a minimal model of P, 

iii) M(P) is a supported model of P, 

iv) there is an equivalent definition of M(P) which makes 
use iteratively smallest models as follows : 

M1 =n(M: M isa supported model of P1J. 

M2 =n{M: Mis a supported model of P2 and MflBp1 =Mi}. 

Mn =()[M: Mis a supported model of Pn and Mf1sp1 u ... u Pn-

1 "'Mn-tJ. 

v) M(P) is a model of comp(P), Clark's [CJ completion 
ofP, 

vi) there is a backchaining interpreter for P using the 
negation as failure rule and loop checking (but working only 
with fully instantiated clauses) which tests for membership in 
M(P) when P is function-free. 

This and a recent result of Lifschitz [L] showing !hat M(P) 
can be also defined using the circumscription method of 
McCarthy [MC] provide an ample evidence that M(P) is a 
natural model for a stratified program P. Other properties of 
M(P) were proved in Van Gelder [VG] and Przyrnusinski [Pr). 



3. STRATIFIED PROGRAMS AND THE 
MAINTENANCE PROBLEM 

A stratified database is a function-free stratified logic 
program augmented by the usual particularization axioms (see 
Gallaire et al. [GMN]) defining uniquely its domain and the 
equality predicate. P is divided into 

i) a set of ground atoms defining extensional relations 
(Extensional Database). 

ii) a set of clauses defining intentional relations, all of 
them different from extensional relations ·(Intentional 
Database). 

In addition a database contains a set of integrity 
constraints. As the issue of integrity constraints checking for 
stratified databases was already studied in Lloyd and al. [LST], 
we do not consider them in our framework. 

A stratified database P has as its intended meaning the 
standard model M(P). When maintaning P two representation 
possibilities arise : 

i) implicit representation consisting just of P, 

ii) expliciwairesentation consisting of P and M(P). 

Which alternative is more attractive depends on the 
application. For example ii) is more interesting in case of 
frequent queries and infrequent updates. Moreover, alternative 
i) leads to difficult problems concerning an efficient 
implementation of queries which only recently have been 
solved in a satisfactory way for the case of definite deductive 
databases (i.e those in which use of negation in the clauses is 
disallowed) - see Rohmer et al. [RLK] and Bancilhon et al. 
[BMSU]. Consequently, we choose, similarly as Nicolas and 
Yazdanian [NY] for the case of definite deductive databases, 
the explicit representation. 

As we shall soon see we shall actually maintain an 
enrichment of M(P) in which each fact from M(P) is tagged 
with some additional information. 

The maintenance problem can be viewed as a task of 
processing supplementary information. In the case of a 
stratified database P it can be formulated as follows : given P' 
obtained by a fact or rule insertion or deletion compute its 
intended meaning M(P') making use of the already existing 
model M(P) of P. The computation of M(P') making use of 
M(P) is closely related to the issue of dependency-directed 
backtracking discussed in [SS]. In general, M(P') will be 
neither a superset or subset of M(P). 

Consider for example the stratified database 

PODS = [submitted(!), ... , submitted(!), accepted(nl), ... , 
accepted(nk), rejccted(x) <- 1 accepted(x)} 

where k,I ~ I and for i = I, ... , k 1 .s; ni.~ I holds. 

Its model M(PODS) consists of all facts already present in 
PODS together with the set of facts rejected(i) for i € Failure 

{1, ... ,1) \ {nl, ... , nlc}. 

Now an insertion of the fact accepted(m) where m € 
Failure leads to a new database PODS' with the following 
associated model 
M(PODS ') = M(PODS) \ f rejected(m)) U { accepted(m)}. 

Similarly, a deletion of the fact accepted(nj) where l ~ j ~ 
k leads to a new database PODS" with the following 
associated model 
M(PODS")= M(PODS)\ {accepted(nj)} U {rejected(nj)). 

Thus to compute the new model M(P'), it is in general 
necessary to remove some facts from M(P) and also add some 
other facts. 

To compare solutions to the maintenance problem we 
concentrate on the issue of a mighition of facts - a phenomenon 
consisting of an erroneous removal of a fact from the model. Jn 
such case, this fact has to be added back to .the model. Different 
solutions to the maintenance problem can be compared in terms 
of the amount of migration caused. 

While searching for good solutions to the maintenance 
problem it makes sense to strike a balance between the 
minimization of migration and the cost of bookkeeping 
involved. We think that the solution proposed in the last section 
achieves this compromise. The bookkeeping consists of a 
maintenance of supports attached to the facts present in the 
model. These supports will allow us to detect which facts 
should be removed from the model after an insertion or 
deletion. 

4. CHOICE OF SUPPORTS 

We now present various solutions to the maintenance 
problem. They differ in the form of supports chosen. As we 
analyze exclusively stratified databases, we require that, in the 
case of a rule insertion, the resulting program remains 
stratified. This can be simply checked by testing that each new 
arc obtained from the rule does not create in the dependency 
graph a cycle containing a negative arc. Also, we allow 
deletions only for the relations defined in the extensional part. 

Let now P be a given stratified database. We assume a 
given maximal stratification say P 1 U ... U P n of P with the 
corresponding sequence of models M1, .. ., Mn= M(P). 

4.1 STATIC SOLUTION USING THE 
DEPENDENCY GRAPH 

This is perhaps the simplest solution and usually the most 
inefficient one, but its presentation facilitates understanding of 
the subsequent, improved versions. In this solution no suppons 
are attached to the facts in the model. Instead, the dependency 
graph is used. For each relation p of P, let Pos(p) stand for the 
set of relations of P from which p depends through an even 
number of negations and Neg(p) stand for the set of relations of 
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P from which p depends through an odd number of negations. 
Thus, 

Pos(p) = { q : there exist relations Pt = p, ... , Pn = q, such 
that for all i < n CJ>i,pi+t) belongs to Op and the number of 
negative arcs among them is even), 

Neg(p) = ( q : there exist relations Pt = p, ...• Pn = q, such that 
for all i < n (p;,pi+t) belongs to Op, and the number of negative 
arcs among them is odd). 

Note that Pos(p) and Neg(p) need not be disjoint; Pos(p) 
U Neg(p) is the set of all relations inP from which p depends. 

We use here the notations Pos and Neg to indicate the 
nature of dependencies between the meaning of relations in the 
model. If r depends on p then a modification of p through an 
update can influence the meaning of r in the new model. The 
form of this influence implies the type of dependency of r on p. 
Suppose that an increase of p leads to some decrease of r. Then 
p belongs to Neg(r). Suppose that a decrease of p leads to some 
decrease of r. Then p belongs to Pos(r). 

The following lemma fonnalizes this observation. 

Let [PlM stands here for the meaning of relation pin the model 
.1'1. 

i) let P' =PU {p(r)]. 

If not([r]M(P)~[r]M(P')) then p belongs to Neg(r). 

ii) letP'=P\{pU}). 

If not([r]M(P) ~(r]M(P')) then p belongs to Pos(r). 

Proof idea By an induction on the index of the siratum 
which contains the definition of the relation r. 

Thus in the case of an insertion of a fact about p only 
relations r for which p belongs to Neg(r) can decrease and in 
the case of a deletion of a fact about p only relations r for 
which p belongs to Pos(r) can decrease. We use these 
observations in the procedures below. 

FACT INSERTION: 

INSERT(p(f)) 

1) remove from M(P) all facts r(S) such that p belongs to 
Neg(r) ; these facts all belong to M(P) \Mi-I ; 

2) add p(i) and call the resulting set of facts M ; 

3) compute the sequence 

M'j = SAT(P;,M), 

M'n= SAT(Pn.M'n-t) 
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and put M(P') = M' n· 

RULE INSERTION : 

INSERT(p(X) <-Lt & .•• &Lie) 

1) add this rule to the stratum P; ; 

2) recompute the sets Pos(r) and Neg(r) for r; p and all 
relations which depend on p; 

3) perform step (1) of the fact insertion. Call the result M; 

4) perform Step (3) of the fact insertion. 

FACT DELETION : 

DELETE(p(t)) 

1) remove from M(P) all facts r(S) such that p belongs to 
Pos(r); 

2) remove p(lJ and call the resulting sets of facts M ; 

3) perform step (3) of the fact insertion. 

RULE DELETION : 

DELETE(p(X) <- L1 & ... & Lk) 

1) remove this rule from the stratum Pi ; 

2) recompute the sets Pos(r) and Neg(r) for r: p and all 
relations r which depend on p ; 

3) perform step (1) of the fact deletion and call the 
resulting set of facts M ; 

4) perform step (3) of the fact insertion. 

In all four procedures during the removal phase we take a 
"pessimistic" view and delete facts taking into account 
exclusively the dependencies recorded in the dependency graph. 
Clearly certain facts will then be subject to migration. 

Example 1 

Let CONF = {submitted(l), .. ., submitted(!), late(l+l), 
accepted(x) <- submitted(x} & 1rejected(x), accepted(l+l)) 
where I ;i:. l. 

Then M(CONF) consists of all facts already present in 
CONF together with the following facts : accepted(l), 
... ,accepted(!). 

However, after the insertion of the fact rejected(!+ 1) in 
CONF we should not remove the fact accepted(!+ I) from the 
model. ln this case the static solution leads to a migration of the 
fact accepted(l+ 1 ). 

Thus the static analysis can provide dependencies which 
are not used during the construction of the model. This problem 



can be overcome by consuucting the dependencies in a 
dynamic fashion. 

Note : The presence of facts in a given program like 
accepted(!+ 1) in CONF above cannot be discovered through the 
analysis of the dependency graph of the program but it still can 
be viewed as a part of a static analysis. This idea might "save" 
certain facts like acccpted(l+l) from migration. However, this 
solution falls down when some trivial derivations for each fact 
arc used instead of asserting them. 

4.LJ}X!!M!JJ;_,~QWTJON USING Pas AND NEG SETS 

We now maintain M(P) by computing the Pos and Neg 
scL5 dynamically during the construction of the model, i.e 
during the saturation process iterated through the strata. This 
leads to a better solution because the Pos and Neg sets are 
computed taking into account the dependencies actually used 
and not the l)illential ones. However, the use of negative literals 
complicates the issue. Each fact in the model M(P) has a new 
support in the fonn of Pos and Neg sets attached to it. Their 
actual form depends on the way the saturation process is 
implemented. 

We are interested in keeping the Pos and Neg sets small. 
In such a way less facts will be deleted during the removal 
phase in each of the above four procedures. To this purpose for 
each fact we just record the dependencies found during a 
deduction of this fact. These Pos and Neg sets should not be 
changed unless a smaller pair of them is found during another 
deduction of the fact This idea leads to the following 
construction. 

Suppose that during the model construction a fact p(f) is 
deduced by an application of a rule p(X) <- L1 & ... & Lk with 
some substitution making every literal L; ground. Among those 
ground literals, let Q1(Si), ... , Qi\sD be the positive ones and 

lr1(fi) ..... lrj([j) the negative ones. As the positive ground 
literals Q1\Si), ...• Qi(S;) already belong to the constructed part of 
M(P), they have attached to them the corresponding sets Pos1, 
.... POSj and Neg1 •...• Negj. 

We form the Pos and Neg sets attached to p(ij as follows : 

Pos = Pos1 U ... U Posi U (q1, ... , q;) 

Neg= Neg1 U ... U Neg; U (ri, ... , rj}. 

If p{i} is already present in the model, we keep its old pair 
of Pos and Neg sets unless the new pair is pairwise smaller 
than the old one. In that case the new pair is preferable in view 
of the previous remark. 

Insertions and deletions are performed analogously as in 
4.1 but now using the above Pos and Neg sets attached to all 
facts of the model. As before the Pos and Neg sets need not be 
disjoint 

F~r example, in step (!) of the fact insertion concerning 
p(i) we now remove from M(P) all facts r(s') whose Neg set 
contains the relation p and then add p(l) with a suppon 
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cons1sung of empty Pos and Neg sets. Unfortunately this 
solution is incorrect 

Example2 

Let P = {p1 <".'Jpo, P2 <:-Jp1. P3 <lP2l ; 

Then M(P)= (p1,PJ). 

After an insertion of the fact Po we get a new database P' 
with a model M(P') = {po, P2l. However, the removal of the 
fact P3 from M(P) is not captured by the solution proposed 
above. 

Indeed, the Neg set attached to p3 in the model M(P) 
equals {P2} and the crucial (negative) dependency of p3 from 
Po is not recorded. Similarly a det~tion of the fact po from P' 
leads to the model M(P) = (pi. p:j). However, the removal of 
the fact P'2 from M(P') is not captured by the proposed solution. 
In this example, all constructed Pos sets are empty. 

To resolve these difficulties in the case of negative hypotheses 
we keep uack of their static dependencies, as well. The actual 
construction and fonn of these supports remains almost the 
same. What changes is their use during the updates. Given the 
above mentioned deduction of p(l) we fonn the Pos and Neg 
sets attached to it by putting 

Pos = Pos1 u ... u POSi u (q1 •... , q;) u (- r1, ...• - rj}, 

Neg= Neg1 U ... U Negi U (+ ri .... , +rj). 

During the updates we compute the actual form of the 
supports by interpreting the signed relations as follows : 

Pos' = (q: q belongs to Pos) U Neg(r1) U ... U Neg(rj) where 
for k = I, .... j - l'Jc ( Pos, 

Neg'= (q: q belongs to Neg) U Pos(ri) U ... U Pos(IJ) U {f! • 
... ,rj) where fork= l, ... ,j +n£Neg. 

Neg(r) and Pos(r) refer here of course to the sets defined in 
section 4.1, i.e to the static dependencies. The remaining details 
of the insert and delete procedures are the same as before. The 
above modification restores correctness of this solution. The 
following lemma states the relevant propeny of the Pos' and 
Neg' sets. 

i)LetP' =PU {pli}). 



:>uppose that r(S) belongs to [r]M(P) \ [r]M(P'), i.e that r(S) 
was re;noved from the model M(P). Then p belongs to Neg' 
where Neg' is associated with r(S) in the model M(P). 

ii) Let P' = P\ (p(i)J. 

Suppose that r(s) belongs to [r]M(P) \ [r]M(P'). i.e that r(S) 
was removed from the model M(P). Then p belongs to Pos' 
where Pos' is associated with r{S) in the model M(P). 

Proof ide<! By an induction on the index of the stratum which 
contains the definition of the relation r. 

In contrast to lemma 1, lemma 2 refers to sets Pos' and 
Neg' whose form depends on the actual form of the saturation 
procedure computing the sets SAT(P,M). 

In the case of the database P from example 2 the facts of 
the model are generated only in one posible sequence. The 
resulting Pos' and Neg' sets coincide with their static 
counterparts. The following example shows an interest in 
keeping a pair of smaller suppons if a choice arises. 

Let CONGRESS = (submitted(!), ... , submitted(!), accepted(x) 
<- submitted(x) &,rejected(x), accepted(!)<· submitted(!)}. 

Suppose now that the fact accepted(!) is first deduced by 
the first rule. Then the associated Pos and Neg sets have the 
following form : 

Pos = (submitted, - rejected} and Neg= (+rejected). 

If the second rule is applied we obtain another pair of Pos and 
Neg sets associated with the fact accepted(!): 

Pos = (submitted) and Neg= 0. 

Clearly, the latter pair is preferable because an insertion of a 
fact rejected(i) will not lead then to a migration of the fact 
accepted(!). 

Though this solution leads to smaller migrations than the 
one given in the previous section, it can still lead to 
inaccuracies. The major reason is that only one suppon is kept 
for each deduced fact Thus the maintained information can be 
incomplete. Consider the following example. 

Example4 

(submitted(!), 
in_JJ1cgram_committee(namel), 
in_program_committee(name9), author(ml,l), ... , author(ml,l), 

Let submitted(!), 

accepted(x) <- submitted(x) & 1 rejected(x), 
accepted(y) <· author(x,y) & in__prograrn_committee(x)) 

where I~ 1. 

Then M(MEED consists of all facts already present in P 
together with the facts accepted(!), ... ,accepted(!). 

Suppose now that the fact author(name2,a) is in MEET. 
Then after the insenion of the fact rejected(a) we should not 
remove the fact accepted(a) from the model. However, if for 
the fact accepted(a) the suppon Pos = ( submiued, - rejected}, 
Neg = ( + rejected} is initially produced, it will lead to its 
migration. Here the second possible suppon Pos = (author, 
in_program_committee}, Neg = If is better but it is not kept 

To take care of this type of situations we should maintain 
suppons in the form of Pos and Neg sets for each derivation of a 
fact, and thus maintain suppons not in the form of sets but 
rather sets of sets. This observation leads us to the following 
version. 

4.3 DYNAMIC SOLUTION USING Pos AND NEG SETS OF SETS 

The sets Pos and Neg will now be sets of sets of relations. 
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Intuitively, when a fact p{[} has a set Pos = {A1 ... ., Ak} 
associated with it, it means that for each set Aj a derivation of 
p([) has been found in which exactly all relations from Aj are 
negated an even number of times. Similarly with the Neg set. 

Let B 1 •.•• , Bk be non-empty sets of sets, we put : 

B1 e ... El Bk= (At U ... U Ak: whereA;€B; fori= 1 ... k}. 

For the situation discussed in the beginning of the previous 
subsection Pos and Neg sets are now updated as follows : 

Pos := Pos U (Pos1E& ... ePos;)111 ( [q1, .. .,q;,· r1, .. .,- rj}) 

Neg := Neg U (Neg1 © ... E9 Neg;)@ ( ( + ri .... , + ri} with Pos 
and Neg initialised to the empty set. 

Thus each time a new deduction of a fact has been found, 
its Pos and Neg sets are updated as stated above. If a fact has a 
trivial deduction, i.e. it is asserted, its Pos and Neg sets will 
both have the empty set as an element. Similarly as in the 
previous subsection we might be interested in keeping only 
"small" suppons. That is, we might remove an element A from 
Pos (or Neg) each time a proper subset of it has been added to 
Pos (or Neg). 



Because the supports have now a different structure, the 
removal phase in each of the four procedures will be different. 
Intuitively, a fact should now be removed from the model only 
if all elements of its support "fail". More precisely, in 
accordance with the previous solution we first put for an element 
A which belongs to Pos 

A' = [ q: q EA} U Neg(r1) U ... U Neg(rj) where fork= 1, ... , j 
-11<(A, 

and for an element A which belongs to Neg 

A'= (q: qE:A) U Pos(ri) U ... U Pos(rj) where fork = l,. .. .,j + 
rk€ A. 

Then in the case of an insertion of a fact p(i) we proceed 
as follows during the removal phase : for each element rrn of 
the model 

i) remove from its Neg set all elements A such that p belongs 
to A'; 

ii) if the Neg set becomes empty remove r(S) from the model. 

Thus a "failure" of an element of a support means here that p 
belongs to it. 

An analogous action is taken during the removal phase in 
other three procedures. 

To see an improvement over the previous solution 
reconsider the program from example 4. During the 
construction of the model M(MEET) both supports of the fact 
accepted( a) will be kept Thus the Pos and Neg sets associated 
with acccepted(a) will have the following form : 

Pos = [ [submitted, rejected}, (author, in_program_committee) 
} 

Neg= ((+rejected}, I/). 

Now, after the insertion of the fact rejected(a) we see that 
rejected belongs to (+rejected}'= (rejected), so the Neg set 
associated with accepted(a) becomes (1). Since it is not empty, 
the fact rejected( a) is not removed from the model, as desired. 

5. CLOSURE PROCESS REVIEWED 

By the closure process we mean here the task of computing 
the model by the iterated use of the saturation. We study here 
the implementation of this process taking into account the 
additional task of constructing supports. The support is 
constructed in the dynamic solutions presented in the previous 
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section refer to static information through the use of signed 
relation symbols. As static information can be inaccurate it is 
natural to seek some ways to avoid it. 

5.1 CASCADE EFFECT 

All solutions presen•ed in the previous section have two 
phases : the removal phase during which some facts are 
deleted, and the addition phase during which some facts are 
inserted. We now present another type of solutions in which the 
removal and the addition phases are alternated. This will lead 
to improved solutions and among others will obviate the need 
for the static information in the supports. 

We call this form of solutions "the cascade effect" because 
of the phenomenon produced. Consider a stratification P = P1 
U .•. U P n of a stratified database P with the corresponding 
sequence of "layers" in M(P) : N1 = M1, N2 = M2 \M1, ... , Nn 
=Mn\ Mn·l· Now, insertions inside Ni can lead to deletions 
and insertions inside N;+ 1 which in turn can lead to deletions 
and insertions inside N;+2. etc. 

To describe this process we shall introduce three 
procedures. We describe them for the fonn of supports used in 
the second dynamic solution i.e. in subsection 4.3. It is clear 
how to modify them for the case of supports used in the first 
dynamic solution. 

1) THE SATURATE PROCEDURE 

The purpose of this procedure is to compute the saturation 
using all clauses of a given stratum, and update during lhis 
computation the Pos and Neg sets of sets attached to every 
derived fact 

SATURA1E(Stratum,B): 

Consider P; where Stratum= P;. 

a) Compute the set SAT(P;,M) where M is the current 
version of the model and during this computation update each 
Pos and Neg sets attached to the derived facts. This time these 
sets are constructed as follows, assuming the situation 
discussed in the beginning of the subsection 4.2 : 

Pos := Pos U ( (q1,. .. , qi}} 

Neg:= Neg U ( (r1, .. ., r;)) 

with Pos and Neg initialised to the empty set 

b) Let B be the set of relations to which new facts were 
added in step (a). 



2) nrn REMOVEPOS PRlX"/il>{IRI' 

The purpose of the procedure REMOVEPOS (Stratum. B. 
C) is to compute the set C of relations dctined in the current 
strntum which decrease because of the decrease of those relations 
defined in lower strata which are listed in the set B. 

REMOVEPOS(Stratum, B, C) : 

Consider the elements of M = M; \ M;.1, where stratum= P;. C 
:=%; 

for each element p{i) of M do 

a) remove from its Pos set all sets A such that AfE 'f ~ ; 

b) if the Pas set becomes empty, then remove p{t) from 
M(P). 
C:=CU{p). 

3) THE RF..MOVENEG PROCEDURIJ. 

The purpose of the procedure REMOVENEG(Stratum, B, 
C) is to compute the set C of relations which decrease because 
of the increase of those relations defined in lower strata which 
are listed in the set B. 

REMOVENEG(Stratum, B, C) 

Consider the elements of M = M; \ M;.1. where stratum= P;. C 
:=~; 

for each element p{i) of M do 

a) remove from its Neg set all sets A such that AfE f 0 ; 

b) if the Neg set becomes empty, then remove p{i') from M(P). 
C:=CU{p). 

We now present the new version of the fact insenion 
algorithm, which uses Lhe procedures SATURATE, 
REMOVEPOS and REMOVENEG. 

Assume !hat p is defined in the stratum P;. 

INSERT(p(i)) : 

a) add p(t) with Pos = {~} and Neg = (~}. 

b) Stratum:= P;; 

SA TURA TE(Stratum,INC); 
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WHILE Stratum f- Pn 

DO 

i:=i+l; 

Stratum := P; ; 

REMOVEPOS(Stratum, DEC, C1); 

REMOVENEG(Stratum, INC. C2) ; 

SATURATE(Stratum, B1); 

DEC:=DECUC1UC2; 

INC :=INCUB1 

OD 

In the above algorithm, DEC (INC) is the set of relations 
which were decremented (incremented) so far during the 
construction of the model. Maintaining the sets DEC and INC 
allows us to simplify considerably the form of suppons used. 
These suppons are now "one level deep" as opposed to the 
previous form in which pr.ictically whole proof trees were 
maintained. This difference can be also found in the approaches 
of Doyle [DJ and de Kleer [dKJ. In Doyle [DJ the latter type of 
supports is used whereas de Kleer [dKJ uses the previous form 
which allows him to maintain several contexts at the same time. 
This simplified form of suppons can be efficiently implemented 
by simply attaching to each fact in the model the set of pointers 
pointing to the rules which triggered this fact during the 
construction of the model. Then each time during the closure 
process a new derivation of a fact has been found, a pointer to 
the last rule applied is added to the set. The actual supports in 
the form of Pos and Neg sets can be constructed from this set of 
pointers in an obvious way. 

An improvement of the above algorithm can be obtained 
by taking into account the structure of each stratum. When 
proceeding through the :,yhile loop one can skip the strata in 
which no relation depends from the set DEC U INC. 

In the case of an insenion of a rule p(X) <-- L1 & ... & Lk 
we add it to the stratum Pi which contains the definition of the 
relation p and perform directly step (b) of the above algorithm. 
The deletions are treated in an analogous way. 

To see how this version improves upon the given in 
subsection 4.3 one, consider the database P = (r <-- p, q <-- r, 
q <--1Pl- Then M(P) = (q). INSERT(p) if computed using the 
previous version leads to the removal of q, followed by the 
insertion of p and r and finally the insertion of q. In the above 
version the removal of q does not take place. 

5.2. SATURA T/ON PROCESS REVIEWED 

As stated in section 2 the set SAT(P,M) for a stratum 
P of a stratified program and a set of facts M does not depend 
on the order of rule application. 



To see this, first note that relations negated in the hypotheses 
do not appear in the conclusions of rules from P. Thus their 
meaning remains fixed throughout the saturation process. This 
imp I ies that the rules of P form a monotonic production system 
and the desired independency follows by a general result proved 
in Cousot [C]. 

We exploit this independency by making use of an 
efficient implementation of the saruration process proposed in 
Rohmer et al. [RLK] for the case of definite deductive 
databases. This algorithm is called there the delta driven 
mechanism, and was firstly implemented in the framework of a 
relational production system [Pu]. 

Infonnally, each rule when fired produces an increase (delta) of 
the relation in the conclusion of the rule. When this increase is 
non-empty all rules using this relation in a hypothesis can be 
fired. The process stops when all increases are empty. 

More formally, this algorithm has the following form 

for each relation set its increase to the initial value of the 
relation; 

I. determine the set H of helpful rules, 

2. fire each of the rules from H once, 

3. determine the increases of all relations 

no increase is registered. 

Each rule is seen here as a mapping from the meanings of 
the relations used in its hypotheses to the meaning of the 
relation used in its conclusion. Here an increase of a relation is 
the set of its n~ obtained tuples. A rule is called helpful if it 
uses in its hypotheses a relation whose current increase is non­
empty. 

The interest in the delta driven mechanism stems from the 
fact that it can be efficiently implemented using standard 
database operations, like joins and unions. However, since we 
also need to maintain supports attached to the facts produced, 
this form of implementation has to be carefully reviewed. 

The supports constructed in subsections 4.2 and 4.3 use 
the supports already attached to individual facts derived from 
the hypotheses of the rule applied. To maintain these supports 
each newly derived fact has to be handled individually. Thus the 
delta driven mechanism which produces new facts in chunks 
cannot be applied here. On the other hand, when the form of 
supports proposed in the previous subsection is used, the delta 
driven mechanism still can be applied. Indeed, all facts 
produced in one delta are deduced by the same rule, so the 
resulting update of their supports is the same for all of them. 
Thus from the implementation point of view the solution 
proposed in this section is clearly preferable. 

Note however that there is a trade-off between an efficient 
implemenrntion of the supports and the minimization of the 
migration. Indeed. to maintain supports efficiently they should 
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be kept small. But then each fact will be more often subject 
to migration. 

One might consider a different form of supports in which 
not relations but facts are recorded. This would be clearly 
preferable from the point of view of minimization of migration. 
In fact, this form of supports combined with an appropriate type 
of a saruration procedure keeping all possible "original" 
deductions would lead K a solution with no migration. 

This solution could be of interest in the case of Artificial 
Intelligence applications where typically few facts and many 
rules are used. 

However, this choice should be rejected in the framework 
of databases. First, use of relations instead of facts in the 
supports allows us to use the delta driven mechanism based on 
relational operators to implement the closure process. Secondly, 
the computation costs incurred in the task of keeping all 
possible deductions is clearly too prohibitive to be of practical 
interest when many facts are present 

6. RELATED WORK 

DEDUCTIVE DATABASES: 

Nicolas and Y azdanian [NY] consider the maintenance 
problem for definite deductive databases. Absence of negation 
considerably simplifies the issue. Lloyd, Sonenberg and Topor 
[LST] study the problem of integrity constraint checking in 
stratified databases using constructions somewhat related to our 
formation of Pos and Neg sets. Topor and Sonenberg [TS] 
consider the problem of domain independent queries in 
stratified databases. 

NON-MONOTONIC REASONING: 

Doyle [DJ introduces the class of justification-based Truth 
Maintenance Systems and studies them both from a theorical 
and practical point of view. De Kleer [dK] and Martins and 
Shapiro [MS] introduce (we use here the original term of de 
Kleer) the class of Assumption-based Thruth Maintenance 
Systems. De Kleer gives a new, elegant notion of consistency 
by introducing the multiple context framework instead of using 
the classical scheme in which only one consistent context is 
selected and used by the maintenance system. Jn both papers 
the notion of selective backtracking in case of detection of 
inconsistency is studied. These issues were subsequently 
studied in other frameworks, for example in Shmueli et al. 
[S1ZE] forthecaseofPROLOG. 



t&k_Dowl~lb,1;;._ment The first author profitted from an early 
discussion· on the subject of this paper with Peter van Emde 
Boas. 
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