
MAINTENANCE OF STRATIFIED DATABASES

VIEWED AS A BELIEF REVISION SYSTEM+

KrzysztofR. APT"
Laboratoire d'Informatique
Ecole Normale Superieure

45 rue d'Ulm, 75230 PARIS
and

LITP, Universitt Paris 7
2PlaceJussieu, 75251 PARIS

Jean-Marc PUG IN
BUU. Research Center

P.C 58 A 14 - A.I Division
68 route de Versailles, 78430 LOUVECIENNES

ABSTRACT

We study here declarative and dynamic aspectS of non­
monotonic reasoning in the context of deductive databases.
More precisely, we consider here maintenance of a special class
of indefinite deductive databases, called stratified databases,
introduced in Apt, Blair and Walker [ABW] and Van Gelder
[VG] in which recursion "through" negation is disallowed.

A stratified database has a natural model associated with it
which is selected as its intended meaning. The maintenance
problem for these databases is complicated because insertions
can lead to deletions and vice versa.

To solve this problem we make use of the ideas present in
the works of Doyle [DJ and de Kleer [dK] on belief revision
systems. We offer here a number of solutions which differ in
the amount of static and dynamic information used and the form
of support introduced. We also discuss the implementation
issues and the trade-offs involved.

t. INTRODUCTION

Use of incomplete information, for example in the case of
hypothetical reasoning or in real time applications in which
missing data has to be faced with, leads to non-monotonic
reasoning. Depending on the application domain differents
solutions to non-monotonic reasoning may arise and be needed.
The framework in which we carry out our investigations is that
of deductive databases, or more generally rule based
programming.

PC'r1111!.s.ion 10 copy w1thuui f~ all or par! of lhi~ materi.al is granci:d provid«i 1h1u 1hc: copies
are no1 nu.de or dislrihuu:d lor i.lirec1 commercial advamaat, 1he ACM copyright not1Ct'
and the. tuk of thC" pub,lica1ion and its d~te apPear, and no1ii;e is g1vC"n thal copying 1s bv
~rmi!S1on l\f ttlt Ait<;0e1atian for Computu'tg Machinery To copy oth.:rw1se, or to republish.
rC"quites a fre and I ur sptt1fo: pcrmi:i;~ion.

'9 1987 ACM 0-89791-223-3/87/0003/0136 75~

+ Work pa11ially supported by the ESPRIT project 415.

• First aulhor's addn>ss after March I, 1987 : CWI, Kruislaan 413, 1098 SJ
Amsterdam, The Netherlands.

A natural representation for handling incomplete
information is the one in which negative hypotheses are allowed
in rules. A negative hypothesis, say , A, should then be
interpreted as "if so far A cannot be confirmed" which models
the hypothetical character of reasoning.
These and other aspects of negation were intensely studied in
the framework of logic programming. Use of negation
increases the expressiveness of the syntax (see Chandra and
Hare! [CH]) but leads to several fundamental difficulties (see
e.g Shepherdson [S l, S2] and Gallaire, Minker and Nicolas
[GMN]. In particular, it is not clear what is the intended
declarative meaning of the program. Recently, Apt, Blair and
Walker [ABW] and independently Van Gelder [VG] proposed a
simple solution to the latter problem obtained by imposing a
restriction on the syntax, namely by disallowing recursion
"through" negation. This class of programs, called stratified
~ admits a simple declarative semantics in the form of
a particular minimal model, which enjoys several natural
propenies (see [ABW], [VG], Lifschitz [L] and Przymusinski
[Pr]).

Dynamic aspects of non-monotonic reasoning were
studied by Doyle [DJ, de Kleer [dK] and others in the form of
Truth Maintenance or Belief Revision Systems • a class of A.I
programs which maintain consistency by manipulating a set of
supports used in conditional proofs -. In [DJ when an
inconsistency is detected a special mechanism is invoked to
alter the supports associated with the conditionally derived
facts. In [dK] in case of detection of inconsistency, the
inconsistent part of the system (set of assumptions) is identified
and associated contexts are removed.

In this paper we combine the declarative and dynamic
aspects of non-monotonic reasoning by studying the
maintenance of stratified databases, i.e deductive databases
which when seen as a logic program are stratified. As their
intended meaning we choose the above mentioned model.

The non-monotonicity is reflected by the fact that
insertions can lead to deletions and vice versa. To handle this
problem we track dependencies between facts present in the
model and relations used in their derivations. These
dependencies can be either statically derived from the
dependency graph or dynamically computed during the
construction and subsequent modifications of the model.
Depending which form of dependencies is used we obtain a

136

different solution to the maintenance problem. We offer here
various solutions which rely successively on more dynamic
information. We also study lhe implementation issues
concluding on a version which admits a simple and efficient
implementation. Finally we point out the trade-offs involved.

While the idea of using supports attached to facts present
in the model directly relates to the work of [DJ and [dK] the
difference lies in the way they are constructed and used. In fact,
in the context of deductive databases the issue is maintenance of
the intended declarative meaning and not maintenance of
consistency. This leads to differents considerations and different
solutions.

2.STRATIFIED PROGRAMS-AN OVERVIEW

We recall here briefly the results of Apt, Blair and Walker
[ABW] which form a basis for this work.

Given a logic program P we define its dependency graph
Op by putting (r,q) belongs to Op iff there is a clause in P using
r in a conclusion and q in a hypothesis. To an arc (r,q) which
belongs to Op we attach an information whether a reference of r
to q is positive (i.e q occurs positively in the hypotheses) or
negative (i.e q occurs negatively in the hypotheses). In the first
case we speak of a positive arc, and in the second case of a
l}egative arc. An arc can be both positive and negative because a
reference of r to q can be both positive and negative (not
necessarily in the same rule).

Now, following [ABW], a logic program is called
stratified if no cycle in its dependency graph contains a negative
arc (intuitively : there is no recursion "passing through" a
negation). Equivalently, a program P is stratified if there is a
partition (where Pi can be empty) P = Pt U ... U Pn called a
stratification of P such that for i = !, ... , n

a) if a relation symbol occurs positively in a clause in Pi
then its definition is contained in U Pj for j.:;; i.

b) if a relation symbol occurs negatively in a clause in Pi
then its definition is conttained in U Pj for j < i.

Recall that a definition of a relation symbol is the set of
clauses using it in its conclusion. Given a logic program Panda
set of ground atoms (or facts) M, we denote by SAT(P,M) - the
~aturation of M by P - the set of ground atoms obtained by
closing the set M under the rules of P. Given a stratification P1
U ... UP n of P we put :

and call M(P) the standard model of the program P.

In general, SA T(P ,M) depends on the order of rule
application, but this is not the case here. The actual

137

implementation of the saturation process is discussed in detail
in section 5. Also, in general there is more than one way to
stratify a program. A stratification Pi U ... U Pn of P is
maximal if no stratum in it can be further decomposed into
different strata.

Let M be a Herbrand model of a program P. Mis called
minimal if no proper subset of it is a model of P. M is called
filWQQrled if for every element A of it there exists an
explanation for it in the form of an instance of a clause of P
whose body is true in M and whose conclusion is A. Recall that
Bp denotes the set of ground atoms in the language of the
program P, i.e the Herbrand base associated with P.

Using some general results on fupoints of non-monotonic
operators on complete lattices the following properties of the
model M(P) were proved in [ABW].

THEOREM:

Let P be a stratified program. Then

i) M(P) does not depend on the stratification of P,

ii) M(P) is a minimal model of P,

iii) M(P) is a supported model of P,

iv) there is an equivalent definition of M(P) which makes
use iteratively smallest models as follows :

M1 =n(M: M isa supported model of P1J.

M2 =n{M: Mis a supported model of P2 and MflBp1 =Mi}.

Mn =()[M: Mis a supported model of Pn and Mf1sp1 u ... u Pn-

1 "'Mn-tJ.

v) M(P) is a model of comp(P), Clark's [CJ completion
ofP,

vi) there is a backchaining interpreter for P using the
negation as failure rule and loop checking (but working only
with fully instantiated clauses) which tests for membership in
M(P) when P is function-free.

This and a recent result of Lifschitz [L] showing !hat M(P)
can be also defined using the circumscription method of
McCarthy [MC] provide an ample evidence that M(P) is a
natural model for a stratified program P. Other properties of
M(P) were proved in Van Gelder [VG] and Przyrnusinski [Pr).

3. STRATIFIED PROGRAMS AND THE
MAINTENANCE PROBLEM

A stratified database is a function-free stratified logic
program augmented by the usual particularization axioms (see
Gallaire et al. [GMN]) defining uniquely its domain and the
equality predicate. P is divided into

i) a set of ground atoms defining extensional relations
(Extensional Database).

ii) a set of clauses defining intentional relations, all of
them different from extensional relations ·(Intentional
Database).

In addition a database contains a set of integrity
constraints. As the issue of integrity constraints checking for
stratified databases was already studied in Lloyd and al. [LST],
we do not consider them in our framework.

A stratified database P has as its intended meaning the
standard model M(P). When maintaning P two representation
possibilities arise :

i) implicit representation consisting just of P,

ii) expliciwairesentation consisting of P and M(P).

Which alternative is more attractive depends on the
application. For example ii) is more interesting in case of
frequent queries and infrequent updates. Moreover, alternative
i) leads to difficult problems concerning an efficient
implementation of queries which only recently have been
solved in a satisfactory way for the case of definite deductive
databases (i.e those in which use of negation in the clauses is
disallowed) - see Rohmer et al. [RLK] and Bancilhon et al.
[BMSU]. Consequently, we choose, similarly as Nicolas and
Yazdanian [NY] for the case of definite deductive databases,
the explicit representation.

As we shall soon see we shall actually maintain an
enrichment of M(P) in which each fact from M(P) is tagged
with some additional information.

The maintenance problem can be viewed as a task of
processing supplementary information. In the case of a
stratified database P it can be formulated as follows : given P'
obtained by a fact or rule insertion or deletion compute its
intended meaning M(P') making use of the already existing
model M(P) of P. The computation of M(P') making use of
M(P) is closely related to the issue of dependency-directed
backtracking discussed in [SS]. In general, M(P') will be
neither a superset or subset of M(P).

Consider for example the stratified database

PODS = [submitted(!), ... , submitted(!), accepted(nl), ... ,
accepted(nk), rejccted(x) <- 1 accepted(x)}

where k,I ~ I and for i = I, ... , k 1 .s; ni.~ I holds.

Its model M(PODS) consists of all facts already present in
PODS together with the set of facts rejected(i) for i € Failure

{1, ... ,1) \ {nl, ... , nlc}.

Now an insertion of the fact accepted(m) where m €
Failure leads to a new database PODS' with the following
associated model
M(PODS ') = M(PODS) \ f rejected(m)) U { accepted(m)}.

Similarly, a deletion of the fact accepted(nj) where l ~ j ~
k leads to a new database PODS" with the following
associated model
M(PODS")= M(PODS)\ {accepted(nj)} U {rejected(nj)).

Thus to compute the new model M(P'), it is in general
necessary to remove some facts from M(P) and also add some
other facts.

To compare solutions to the maintenance problem we
concentrate on the issue of a mighition of facts - a phenomenon
consisting of an erroneous removal of a fact from the model. Jn
such case, this fact has to be added back to .the model. Different
solutions to the maintenance problem can be compared in terms
of the amount of migration caused.

While searching for good solutions to the maintenance
problem it makes sense to strike a balance between the
minimization of migration and the cost of bookkeeping
involved. We think that the solution proposed in the last section
achieves this compromise. The bookkeeping consists of a
maintenance of supports attached to the facts present in the
model. These supports will allow us to detect which facts
should be removed from the model after an insertion or
deletion.

4. CHOICE OF SUPPORTS

We now present various solutions to the maintenance
problem. They differ in the form of supports chosen. As we
analyze exclusively stratified databases, we require that, in the
case of a rule insertion, the resulting program remains
stratified. This can be simply checked by testing that each new
arc obtained from the rule does not create in the dependency
graph a cycle containing a negative arc. Also, we allow
deletions only for the relations defined in the extensional part.

Let now P be a given stratified database. We assume a
given maximal stratification say P 1 U ... U P n of P with the
corresponding sequence of models M1, .. ., Mn= M(P).

4.1 STATIC SOLUTION USING THE
DEPENDENCY GRAPH

This is perhaps the simplest solution and usually the most
inefficient one, but its presentation facilitates understanding of
the subsequent, improved versions. In this solution no suppons
are attached to the facts in the model. Instead, the dependency
graph is used. For each relation p of P, let Pos(p) stand for the
set of relations of P from which p depends through an even
number of negations and Neg(p) stand for the set of relations of

138

P from which p depends through an odd number of negations.
Thus,

Pos(p) = { q : there exist relations Pt = p, ... , Pn = q, such
that for all i < n CJ>i,pi+t) belongs to Op and the number of
negative arcs among them is even),

Neg(p) = (q : there exist relations Pt = p, ...• Pn = q, such that
for all i < n (p;,pi+t) belongs to Op, and the number of negative
arcs among them is odd).

Note that Pos(p) and Neg(p) need not be disjoint; Pos(p)
U Neg(p) is the set of all relations inP from which p depends.

We use here the notations Pos and Neg to indicate the
nature of dependencies between the meaning of relations in the
model. If r depends on p then a modification of p through an
update can influence the meaning of r in the new model. The
form of this influence implies the type of dependency of r on p.
Suppose that an increase of p leads to some decrease of r. Then
p belongs to Neg(r). Suppose that a decrease of p leads to some
decrease of r. Then p belongs to Pos(r).

The following lemma fonnalizes this observation.

Let [PlM stands here for the meaning of relation pin the model
.1'1.

i) let P' =PU {p(r)].

If not([r]M(P)~[r]M(P')) then p belongs to Neg(r).

ii) letP'=P\{pU}).

If not([r]M(P) ~(r]M(P')) then p belongs to Pos(r).

Proof idea By an induction on the index of the siratum
which contains the definition of the relation r.

Thus in the case of an insertion of a fact about p only
relations r for which p belongs to Neg(r) can decrease and in
the case of a deletion of a fact about p only relations r for
which p belongs to Pos(r) can decrease. We use these
observations in the procedures below.

FACT INSERTION:

INSERT(p(f))

1) remove from M(P) all facts r(S) such that p belongs to
Neg(r) ; these facts all belong to M(P) \Mi-I ;

2) add p(i) and call the resulting set of facts M ;

3) compute the sequence

M'j = SAT(P;,M),

M'n= SAT(Pn.M'n-t)

139

and put M(P') = M' n·

RULE INSERTION :

INSERT(p(X) <-Lt & .•• &Lie)

1) add this rule to the stratum P; ;

2) recompute the sets Pos(r) and Neg(r) for r; p and all
relations which depend on p;

3) perform step (1) of the fact insertion. Call the result M;

4) perform Step (3) of the fact insertion.

FACT DELETION :

DELETE(p(t))

1) remove from M(P) all facts r(S) such that p belongs to
Pos(r);

2) remove p(lJ and call the resulting sets of facts M ;

3) perform step (3) of the fact insertion.

RULE DELETION :

DELETE(p(X) <- L1 & ... & Lk)

1) remove this rule from the stratum Pi ;

2) recompute the sets Pos(r) and Neg(r) for r: p and all
relations r which depend on p ;

3) perform step (1) of the fact deletion and call the
resulting set of facts M ;

4) perform step (3) of the fact insertion.

In all four procedures during the removal phase we take a
"pessimistic" view and delete facts taking into account
exclusively the dependencies recorded in the dependency graph.
Clearly certain facts will then be subject to migration.

Example 1

Let CONF = {submitted(l), .. ., submitted(!), late(l+l),
accepted(x) <- submitted(x} & 1rejected(x), accepted(l+l))
where I ;i:. l.

Then M(CONF) consists of all facts already present in
CONF together with the following facts : accepted(l),
... ,accepted(!).

However, after the insertion of the fact rejected(!+ 1) in
CONF we should not remove the fact accepted(!+ I) from the
model. ln this case the static solution leads to a migration of the
fact accepted(l+ 1).

Thus the static analysis can provide dependencies which
are not used during the construction of the model. This problem

can be overcome by consuucting the dependencies in a
dynamic fashion.

Note : The presence of facts in a given program like
accepted(!+ 1) in CONF above cannot be discovered through the
analysis of the dependency graph of the program but it still can
be viewed as a part of a static analysis. This idea might "save"
certain facts like acccpted(l+l) from migration. However, this
solution falls down when some trivial derivations for each fact
arc used instead of asserting them.

4.LJ}X!!M!JJ;_,~QWTJON USING Pas AND NEG SETS

We now maintain M(P) by computing the Pos and Neg
scL5 dynamically during the construction of the model, i.e
during the saturation process iterated through the strata. This
leads to a better solution because the Pos and Neg sets are
computed taking into account the dependencies actually used
and not the l)illential ones. However, the use of negative literals
complicates the issue. Each fact in the model M(P) has a new
support in the fonn of Pos and Neg sets attached to it. Their
actual form depends on the way the saturation process is
implemented.

We are interested in keeping the Pos and Neg sets small.
In such a way less facts will be deleted during the removal
phase in each of the above four procedures. To this purpose for
each fact we just record the dependencies found during a
deduction of this fact. These Pos and Neg sets should not be
changed unless a smaller pair of them is found during another
deduction of the fact This idea leads to the following
construction.

Suppose that during the model construction a fact p(f) is
deduced by an application of a rule p(X) <- L1 & ... & Lk with
some substitution making every literal L; ground. Among those
ground literals, let Q1(Si), ... , Qi\sD be the positive ones and

lr1(fi) lrj([j) the negative ones. As the positive ground
literals Q1\Si), ...• Qi(S;) already belong to the constructed part of
M(P), they have attached to them the corresponding sets Pos1,
.... POSj and Neg1 •...• Negj.

We form the Pos and Neg sets attached to p(ij as follows :

Pos = Pos1 U ... U Posi U (q1, ... , q;)

Neg= Neg1 U ... U Neg; U (ri, ... , rj}.

If p{i} is already present in the model, we keep its old pair
of Pos and Neg sets unless the new pair is pairwise smaller
than the old one. In that case the new pair is preferable in view
of the previous remark.

Insertions and deletions are performed analogously as in
4.1 but now using the above Pos and Neg sets attached to all
facts of the model. As before the Pos and Neg sets need not be
disjoint

F~r example, in step (!) of the fact insertion concerning
p(i) we now remove from M(P) all facts r(s') whose Neg set
contains the relation p and then add p(l) with a suppon

140

cons1sung of empty Pos and Neg sets. Unfortunately this
solution is incorrect

Example2

Let P = {p1 <".'Jpo, P2 <:-Jp1. P3 <lP2l ;

Then M(P)= (p1,PJ).

After an insertion of the fact Po we get a new database P'
with a model M(P') = {po, P2l. However, the removal of the
fact P3 from M(P) is not captured by the solution proposed
above.

Indeed, the Neg set attached to p3 in the model M(P)
equals {P2} and the crucial (negative) dependency of p3 from
Po is not recorded. Similarly a det~tion of the fact po from P'
leads to the model M(P) = (pi. p:j). However, the removal of
the fact P'2 from M(P') is not captured by the proposed solution.
In this example, all constructed Pos sets are empty.

To resolve these difficulties in the case of negative hypotheses
we keep uack of their static dependencies, as well. The actual
construction and fonn of these supports remains almost the
same. What changes is their use during the updates. Given the
above mentioned deduction of p(l) we fonn the Pos and Neg
sets attached to it by putting

Pos = Pos1 u ... u POSi u (q1 •... , q;) u (- r1, ...• - rj},

Neg= Neg1 U ... U Negi U (+ ri , +rj).

During the updates we compute the actual form of the
supports by interpreting the signed relations as follows :

Pos' = (q: q belongs to Pos) U Neg(r1) U ... U Neg(rj) where
for k = I, j - l'Jc (Pos,

Neg'= (q: q belongs to Neg) U Pos(ri) U ... U Pos(IJ) U {f! •
... ,rj) where fork= l, ... ,j +n£Neg.

Neg(r) and Pos(r) refer here of course to the sets defined in
section 4.1, i.e to the static dependencies. The remaining details
of the insert and delete procedures are the same as before. The
above modification restores correctness of this solution. The
following lemma states the relevant propeny of the Pos' and
Neg' sets.

i)LetP' =PU {pli}).

:>uppose that r(S) belongs to [r]M(P) \ [r]M(P'), i.e that r(S)
was re;noved from the model M(P). Then p belongs to Neg'
where Neg' is associated with r(S) in the model M(P).

ii) Let P' = P\ (p(i)J.

Suppose that r(s) belongs to [r]M(P) \ [r]M(P'). i.e that r(S)
was removed from the model M(P). Then p belongs to Pos'
where Pos' is associated with r{S) in the model M(P).

Proof ide<! By an induction on the index of the stratum which
contains the definition of the relation r.

In contrast to lemma 1, lemma 2 refers to sets Pos' and
Neg' whose form depends on the actual form of the saturation
procedure computing the sets SAT(P,M).

In the case of the database P from example 2 the facts of
the model are generated only in one posible sequence. The
resulting Pos' and Neg' sets coincide with their static
counterparts. The following example shows an interest in
keeping a pair of smaller suppons if a choice arises.

Let CONGRESS = (submitted(!), ... , submitted(!), accepted(x)
<- submitted(x) &,rejected(x), accepted(!)<· submitted(!)}.

Suppose now that the fact accepted(!) is first deduced by
the first rule. Then the associated Pos and Neg sets have the
following form :

Pos = (submitted, - rejected} and Neg= (+rejected).

If the second rule is applied we obtain another pair of Pos and
Neg sets associated with the fact accepted(!):

Pos = (submitted) and Neg= 0.

Clearly, the latter pair is preferable because an insertion of a
fact rejected(i) will not lead then to a migration of the fact
accepted(!).

Though this solution leads to smaller migrations than the
one given in the previous section, it can still lead to
inaccuracies. The major reason is that only one suppon is kept
for each deduced fact Thus the maintained information can be
incomplete. Consider the following example.

Example4

(submitted(!),
in_JJ1cgram_committee(namel),
in_program_committee(name9), author(ml,l), ... , author(ml,l),

Let submitted(!),

accepted(x) <- submitted(x) & 1 rejected(x),
accepted(y) <· author(x,y) & in__prograrn_committee(x))

where I~ 1.

Then M(MEED consists of all facts already present in P
together with the facts accepted(!), ... ,accepted(!).

Suppose now that the fact author(name2,a) is in MEET.
Then after the insenion of the fact rejected(a) we should not
remove the fact accepted(a) from the model. However, if for
the fact accepted(a) the suppon Pos = (submiued, - rejected},
Neg = (+ rejected} is initially produced, it will lead to its
migration. Here the second possible suppon Pos = (author,
in_program_committee}, Neg = If is better but it is not kept

To take care of this type of situations we should maintain
suppons in the form of Pos and Neg sets for each derivation of a
fact, and thus maintain suppons not in the form of sets but
rather sets of sets. This observation leads us to the following
version.

4.3 DYNAMIC SOLUTION USING Pos AND NEG SETS OF SETS

The sets Pos and Neg will now be sets of sets of relations.

141

Intuitively, when a fact p{[} has a set Pos = {A1, Ak}
associated with it, it means that for each set Aj a derivation of
p([) has been found in which exactly all relations from Aj are
negated an even number of times. Similarly with the Neg set.

Let B 1 •.•• , Bk be non-empty sets of sets, we put :

B1 e ... El Bk= (At U ... U Ak: whereA;€B; fori= 1 ... k}.

For the situation discussed in the beginning of the previous
subsection Pos and Neg sets are now updated as follows :

Pos := Pos U (Pos1E& ... ePos;)111 ([q1, .. .,q;,· r1, .. .,- rj})

Neg := Neg U (Neg1 © ... E9 Neg;)@ ((+ ri , + ri} with Pos
and Neg initialised to the empty set.

Thus each time a new deduction of a fact has been found,
its Pos and Neg sets are updated as stated above. If a fact has a
trivial deduction, i.e. it is asserted, its Pos and Neg sets will
both have the empty set as an element. Similarly as in the
previous subsection we might be interested in keeping only
"small" suppons. That is, we might remove an element A from
Pos (or Neg) each time a proper subset of it has been added to
Pos (or Neg).

Because the supports have now a different structure, the
removal phase in each of the four procedures will be different.
Intuitively, a fact should now be removed from the model only
if all elements of its support "fail". More precisely, in
accordance with the previous solution we first put for an element
A which belongs to Pos

A' = [q: q EA} U Neg(r1) U ... U Neg(rj) where fork= 1, ... , j
-11<(A,

and for an element A which belongs to Neg

A'= (q: qE:A) U Pos(ri) U ... U Pos(rj) where fork = l,. .. .,j +
rk€ A.

Then in the case of an insertion of a fact p(i) we proceed
as follows during the removal phase : for each element rrn of
the model

i) remove from its Neg set all elements A such that p belongs
to A';

ii) if the Neg set becomes empty remove r(S) from the model.

Thus a "failure" of an element of a support means here that p
belongs to it.

An analogous action is taken during the removal phase in
other three procedures.

To see an improvement over the previous solution
reconsider the program from example 4. During the
construction of the model M(MEET) both supports of the fact
accepted(a) will be kept Thus the Pos and Neg sets associated
with acccepted(a) will have the following form :

Pos = [[submitted, rejected}, (author, in_program_committee)
}

Neg= ((+rejected}, I/).

Now, after the insertion of the fact rejected(a) we see that
rejected belongs to (+rejected}'= (rejected), so the Neg set
associated with accepted(a) becomes (1). Since it is not empty,
the fact rejected(a) is not removed from the model, as desired.

5. CLOSURE PROCESS REVIEWED

By the closure process we mean here the task of computing
the model by the iterated use of the saturation. We study here
the implementation of this process taking into account the
additional task of constructing supports. The support is
constructed in the dynamic solutions presented in the previous

142

section refer to static information through the use of signed
relation symbols. As static information can be inaccurate it is
natural to seek some ways to avoid it.

5.1 CASCADE EFFECT

All solutions presen•ed in the previous section have two
phases : the removal phase during which some facts are
deleted, and the addition phase during which some facts are
inserted. We now present another type of solutions in which the
removal and the addition phases are alternated. This will lead
to improved solutions and among others will obviate the need
for the static information in the supports.

We call this form of solutions "the cascade effect" because
of the phenomenon produced. Consider a stratification P = P1
U .•. U P n of a stratified database P with the corresponding
sequence of "layers" in M(P) : N1 = M1, N2 = M2 \M1, ... , Nn
=Mn\ Mn·l· Now, insertions inside Ni can lead to deletions
and insertions inside N;+ 1 which in turn can lead to deletions
and insertions inside N;+2. etc.

To describe this process we shall introduce three
procedures. We describe them for the fonn of supports used in
the second dynamic solution i.e. in subsection 4.3. It is clear
how to modify them for the case of supports used in the first
dynamic solution.

1) THE SATURATE PROCEDURE

The purpose of this procedure is to compute the saturation
using all clauses of a given stratum, and update during lhis
computation the Pos and Neg sets of sets attached to every
derived fact

SATURA1E(Stratum,B):

Consider P; where Stratum= P;.

a) Compute the set SAT(P;,M) where M is the current
version of the model and during this computation update each
Pos and Neg sets attached to the derived facts. This time these
sets are constructed as follows, assuming the situation
discussed in the beginning of the subsection 4.2 :

Pos := Pos U ((q1,. .. , qi}}

Neg:= Neg U ((r1, .. ., r;))

with Pos and Neg initialised to the empty set

b) Let B be the set of relations to which new facts were
added in step (a).

2) nrn REMOVEPOS PRlX"/il>{IRI'

The purpose of the procedure REMOVEPOS (Stratum. B.
C) is to compute the set C of relations dctined in the current
strntum which decrease because of the decrease of those relations
defined in lower strata which are listed in the set B.

REMOVEPOS(Stratum, B, C) :

Consider the elements of M = M; \ M;.1, where stratum= P;. C
:=%;

for each element p{i) of M do

a) remove from its Pos set all sets A such that AfE 'f ~ ;

b) if the Pas set becomes empty, then remove p{t) from
M(P).
C:=CU{p).

3) THE RF..MOVENEG PROCEDURIJ.

The purpose of the procedure REMOVENEG(Stratum, B,
C) is to compute the set C of relations which decrease because
of the increase of those relations defined in lower strata which
are listed in the set B.

REMOVENEG(Stratum, B, C)

Consider the elements of M = M; \ M;.1. where stratum= P;. C
:=~;

for each element p{i) of M do

a) remove from its Neg set all sets A such that AfE f 0 ;

b) if the Neg set becomes empty, then remove p{i') from M(P).
C:=CU{p).

We now present the new version of the fact insenion
algorithm, which uses Lhe procedures SATURATE,
REMOVEPOS and REMOVENEG.

Assume !hat p is defined in the stratum P;.

INSERT(p(i)) :

a) add p(t) with Pos = {~} and Neg = (~}.

b) Stratum:= P;;

SA TURA TE(Stratum,INC);

143

WHILE Stratum f- Pn

DO

i:=i+l;

Stratum := P; ;

REMOVEPOS(Stratum, DEC, C1);

REMOVENEG(Stratum, INC. C2) ;

SATURATE(Stratum, B1);

DEC:=DECUC1UC2;

INC :=INCUB1

OD

In the above algorithm, DEC (INC) is the set of relations
which were decremented (incremented) so far during the
construction of the model. Maintaining the sets DEC and INC
allows us to simplify considerably the form of suppons used.
These suppons are now "one level deep" as opposed to the
previous form in which pr.ictically whole proof trees were
maintained. This difference can be also found in the approaches
of Doyle [DJ and de Kleer [dKJ. In Doyle [DJ the latter type of
supports is used whereas de Kleer [dKJ uses the previous form
which allows him to maintain several contexts at the same time.
This simplified form of suppons can be efficiently implemented
by simply attaching to each fact in the model the set of pointers
pointing to the rules which triggered this fact during the
construction of the model. Then each time during the closure
process a new derivation of a fact has been found, a pointer to
the last rule applied is added to the set. The actual supports in
the form of Pos and Neg sets can be constructed from this set of
pointers in an obvious way.

An improvement of the above algorithm can be obtained
by taking into account the structure of each stratum. When
proceeding through the :,yhile loop one can skip the strata in
which no relation depends from the set DEC U INC.

In the case of an insenion of a rule p(X) <-- L1 & ... & Lk
we add it to the stratum Pi which contains the definition of the
relation p and perform directly step (b) of the above algorithm.
The deletions are treated in an analogous way.

To see how this version improves upon the given in
subsection 4.3 one, consider the database P = (r <-- p, q <-- r,
q <--1Pl- Then M(P) = (q). INSERT(p) if computed using the
previous version leads to the removal of q, followed by the
insertion of p and r and finally the insertion of q. In the above
version the removal of q does not take place.

5.2. SATURA T/ON PROCESS REVIEWED

As stated in section 2 the set SAT(P,M) for a stratum
P of a stratified program and a set of facts M does not depend
on the order of rule application.

To see this, first note that relations negated in the hypotheses
do not appear in the conclusions of rules from P. Thus their
meaning remains fixed throughout the saturation process. This
imp I ies that the rules of P form a monotonic production system
and the desired independency follows by a general result proved
in Cousot [C].

We exploit this independency by making use of an
efficient implementation of the saruration process proposed in
Rohmer et al. [RLK] for the case of definite deductive
databases. This algorithm is called there the delta driven
mechanism, and was firstly implemented in the framework of a
relational production system [Pu].

Infonnally, each rule when fired produces an increase (delta) of
the relation in the conclusion of the rule. When this increase is
non-empty all rules using this relation in a hypothesis can be
fired. The process stops when all increases are empty.

More formally, this algorithm has the following form

for each relation set its increase to the initial value of the
relation;

I. determine the set H of helpful rules,

2. fire each of the rules from H once,

3. determine the increases of all relations

no increase is registered.

Each rule is seen here as a mapping from the meanings of
the relations used in its hypotheses to the meaning of the
relation used in its conclusion. Here an increase of a relation is
the set of its n~ obtained tuples. A rule is called helpful if it
uses in its hypotheses a relation whose current increase is non­
empty.

The interest in the delta driven mechanism stems from the
fact that it can be efficiently implemented using standard
database operations, like joins and unions. However, since we
also need to maintain supports attached to the facts produced,
this form of implementation has to be carefully reviewed.

The supports constructed in subsections 4.2 and 4.3 use
the supports already attached to individual facts derived from
the hypotheses of the rule applied. To maintain these supports
each newly derived fact has to be handled individually. Thus the
delta driven mechanism which produces new facts in chunks
cannot be applied here. On the other hand, when the form of
supports proposed in the previous subsection is used, the delta
driven mechanism still can be applied. Indeed, all facts
produced in one delta are deduced by the same rule, so the
resulting update of their supports is the same for all of them.
Thus from the implementation point of view the solution
proposed in this section is clearly preferable.

Note however that there is a trade-off between an efficient
implemenrntion of the supports and the minimization of the
migration. Indeed. to maintain supports efficiently they should

144

be kept small. But then each fact will be more often subject
to migration.

One might consider a different form of supports in which
not relations but facts are recorded. This would be clearly
preferable from the point of view of minimization of migration.
In fact, this form of supports combined with an appropriate type
of a saruration procedure keeping all possible "original"
deductions would lead K a solution with no migration.

This solution could be of interest in the case of Artificial
Intelligence applications where typically few facts and many
rules are used.

However, this choice should be rejected in the framework
of databases. First, use of relations instead of facts in the
supports allows us to use the delta driven mechanism based on
relational operators to implement the closure process. Secondly,
the computation costs incurred in the task of keeping all
possible deductions is clearly too prohibitive to be of practical
interest when many facts are present

6. RELATED WORK

DEDUCTIVE DATABASES:

Nicolas and Y azdanian [NY] consider the maintenance
problem for definite deductive databases. Absence of negation
considerably simplifies the issue. Lloyd, Sonenberg and Topor
[LST] study the problem of integrity constraint checking in
stratified databases using constructions somewhat related to our
formation of Pos and Neg sets. Topor and Sonenberg [TS]
consider the problem of domain independent queries in
stratified databases.

NON-MONOTONIC REASONING:

Doyle [DJ introduces the class of justification-based Truth
Maintenance Systems and studies them both from a theorical
and practical point of view. De Kleer [dK] and Martins and
Shapiro [MS] introduce (we use here the original term of de
Kleer) the class of Assumption-based Thruth Maintenance
Systems. De Kleer gives a new, elegant notion of consistency
by introducing the multiple context framework instead of using
the classical scheme in which only one consistent context is
selected and used by the maintenance system. Jn both papers
the notion of selective backtracking in case of detection of
inconsistency is studied. These issues were subsequently
studied in other frameworks, for example in Shmueli et al.
[S1ZE] forthecaseofPROLOG.

t&k_Dowl~lb,1;;._ment The first author profitted from an early
discussion· on the subject of this paper with Peter van Emde
Boas.

REFERENCES

[ABW] Apt, K., Blair, H. and Walker, A.,

"Towards a Theory of Declarative Knowledge", in : Proc.
Workshop on Foundations of Deductive Databases and Logic
Programming, Washington D.C, pp. 546-629, 1986.

[BMSU] Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J.,

"Magic Sets and Other Strange Ways to Implement Logic
Programs", in : Proc. 5th ACM SlGMOD-SIGACT Symposium
on Principles of Database Systems, 1986.

[CH] Chandra, A. and Hare!, D.,

"Horn Clause Queries and Generalizations", Journal of Logic
Programming, vol.l, pp. 1-15, 1985.

[CJ Cousot, P.,

"Asynchronous Iterative Methods For Solving a Fixed Point
System of Monotone Equations in a Complete Lattice" ,Rapport
de Recherche N 88, L.A. 7, Univ. Scientifique et Medicale de
Grenoble, 1977.

[DJ Doyle, J.,

"A Truth Maintenance System", Artificial Intelligence 12, pp.
231-272, 1979.

[GMN] Gallaire, H., Minker, J. and Nicolas, J-M.,

"Logic and Databases : A Deductive Approach", ACM
Computing Surveys, pp. 153-185.

[VG] Van Gelder, A.,

"Negation as Failure Using Tight Derivations for General Logic
Programs", in : Proc. Third IEEE Symposium on Logic
Programming, Salt Lake City, Utah, 1986.

[dKJ de Kleer, J.,

"An Assumption-Based Truth Maintenance System", Artificial
Intelligence 28, pp. 127-162, 1986.

[L] Lifschitz, V.,

"On the Declarative Semantics of Logic Programs with
Negation", in : Proc. Workshop on Foundations of Deductive
Databases and Logic Programming, Washington D.C, pp. 420-
432, 1986.

[LST] Lloyd, J .W., Sonenbe.rg, E.A. and Topor, R.,

"Integrity Constraint Checking in Stratified DalJtmes",
Technical Report 86/5, Dept of Computer Science, Un;;, of
Melbourne, 1986.

[MC] McCarthy,J.,

"Circumscription - A Fonn of Non-monotonic Reasoning",
Artificial Intelligence 13, pp. 295-323, 1980.

[MS) Martins, J.P., and Shapiro, S.C.,

"Reasoning in Multiple Belief Spaces", in: Proc. UCAJ-83, pp.
370-373, 1983.

[NY] Nicolas, J-M., and Y azdanian, K.,

"An Outline of BOGEN : a Deductive DBMS", in : Proc. IFIP-
83, pp. 711-717, 1983.

[Pu] Pugin, J-M.,

"BOUM: Manuel de reference et d'utilisation", Rappon Inteme
du Centre de Recherche BULL, 1984.

[Pr] Przymusinski, T.,

"On the Semantics of Stratified Deductive Databases", in: Proc.
Workshop on Foundations of Deductive Databases and Logic
Programming, Washington D.C, pp. 433-443, 1986.

[SI] Shepherdson,J.C,

"Negation as Failure : a Comparison of Clark's Completed
Database and Reiter's C.W.A", Journal of Logic Programming
N 1, pp. 51-81, 1984.

[S2J Shepherdson, J.C.

"Negation as Failure. 11", Journal of Logic Programming, N 3,
pp. 185-202, 1985.

[SS] Stallman, R.M. and Sussman, G.J,

"Forward Reasoning and Dependency-Directed Backtracking in
a System for Computer-Aided Circuit Analysis", Artificial
Intelligence 9, pp. 135-196, 1977.

145

[TS] Topor, R., Sonenberg, E.A ..

"On Domain Independent Databases", in: Proc. Workshop on
Foundations of Deductive Databases and Logic Programming,
Washington D.C, pp. 403-419, 1986.

[STZE] Shmueli, 0., Tsur, S., Zfira, H., and Ever-Hadani, R.,

"Dynamic Rule Support in Prolog", Manuscript, 1985.

