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Abstract

The problem of updating incomplete infor mation databases is viewed as a pro-
gramming problem. From this point of view, for mal denotational semantics are devel-
oped for two applicative programming languages, BLU and HLU. BLU is a ver y sim-
ple language with only five primitives, and is designed primar ily as a tool for the
implementation of higher-level languages. The semantics of BLU are for mally devel-
oped at two lev els, possible wor lds and clausal, and the latter is shown to be a cor-
rect implementation of the for mer. HLU is a "user level" update language. It is
defined entirely in terms of BLU, and so immediately inherits its semantic definition
from that language. This demonstrates a level of completeness for BLU as a level of
pr imitives for update language implementation. The necessity of a particular BLU
pr imitive, masking, suggests that there is a high degree of inherent complexity in
updating logical databases.

0. Introduction

Database systems may be viewed as consisting of two components. A database
schema specifies the general structure of admissible data, and remains constant.
Database instances, on the other hand, record the actual state of the wor ld at a given
point in time, and changes upon update. In the case of complete infor mation, there is
exactly one instance associated with the system at any given point, whereas in the
incomplete infor mation case, there is a collection of alternative instances, or possible
worlds.

In the complete infor mation case, the representation of the system state is a
usually a direct one (such as a set of relations in the relational case), although indi-
rect representation is also possible, as in the negation as failure, or closed wor ld
clausal representation [3].

In the case of incomplete infor mation, on the other hand, direct representation is
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impractical, due to the potential size of the set of possible wor lds. Therefore, a
method of indirect representation must be employed. These include template meth-
ods [12], as well as the use of logic [16]. Approaches which combine these two
philosophies have also been suggested [11]. The key point is that, regardless of the
method of representation, the foundations rest in possible wor ld semantics.

It is our thesis that for the purposes of updating an incomplete infor mation
database, similar principles should apply. Fundamental semantics should be at the
possible wor lds level, while the representation and manipulation mechanism needs to
be at an indirect level to be practicable.

In this wor k, we present the foundations for understanding the process of updat-
ing incomplete infor mation databases. The basic idea is to regard updates to
databases as specified in an update programming language. To such a language, we
assign an instance semantics which describes how its programs behave at the level
of possible wor lds. Any other implementation, using an indirect for m of possible
worlds representation, must respect this instance semantics.

We actually develop two update programming languages, HLU and BLU. HLU
(for High-level Language for Updates) is our "user level" language for expressing
updates. It has only two basic sor ts or primitive data types, <possible-worlds>
and <masks>. Its syntax is summarized by the following set of productions.

<HLU-program> →
(assert <possible-worlds>) |
(clear <mask>) |
(insert <possible-worlds>) |
(delete <possible-worlds>) |
(modify <possible-worlds> <possible-worlds>) |
(where <possible-worlds> <HLU-program>) |
(where <possible-worlds>

<HLU-program> <HLU-program>)

HLU may be implemented at var ious levels, including instances, templates, and logic.
The for mal semantics is presented in Section 3; here we give an infor mal sketch for
motivational purposes. but independently of any par ticular implementation. It is
always assumed that there is a particular extant collection of possible wor lds,
denoted by S, which is the current state of the database system. For any representa-
tion W of <possible-worlds>, let pw(W) denote the actual collection of possible
worlds represented. Each HLU program modifies the current state. The program
(assert W) modifies the database state S to one in which the the only possible
worlds are those common to S and pw(W). It monotonically increases the infor mation
in the state S, by reducing the membership in the collection of possible wor lds of S.
The program (mask M) modifies the database state to be a view of its previous
state, by masking out all infor mation of a certain nature specified by the mask. For
example, in the clause wor ld, the program (mask {A,B}) would remove from S all
infor mation regarding the truth values of A and B. The program (insert W) gener-
alizes the notion of insertion into a complete infor mation database. The programs
(delete W) and (modify W V) similar ly generalize the notions of deletion from
and modification of complete infor mation databases in a manner which will be made
precise later. The control program (where W P Q) splits S into two par ts,
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S ∩pw(W) and S \ pw(W). The program P is then run on the first set of wor lds and
the program Q on the second, and the results are then combined. The program
(where W P) is equivalent to (where W P I), where I is the identity program.

We do not implement HLU directly. Rather, the semantics of HLU is expressed
formally as programs in a more basic language, which we have named BLU (for
Basic Language for Updates. Despite the fact that BLU has only five ver y elemen-
tar y pr imitive operations, it is more than powerful enough to support the implementa-
tion of HLU. Indeed, it is a major claim of this wor k that the BLU pr imitives are pre-
cisely those needed for update language implementation. Under lying this claim is the
mask-asser t paradigm, which states that all updates are founded upon the composi-
tion of two operations; a masking which projects out certain infor mation, and so con-
stitutes a decrease in infor mation content of the database, followed by an asser tion
which restricts the set of possible wor lds, and so constitutes an increase in infor ma-
tion content.

Tw o implementations of BLU are provided. First, we define the possible wor lds
instance semantics. Then, we provide an algor ithmic clause-level implementation,
based upon the resolution method of clausal inference. Because HLU is defined in
ter ms of BLU, these immediately provide implementations of HLU also.

The core of our presentation is based initially upon propositional logic. This
enables us to concentrate on core issues, without becoming bogged down in the
details of a full relational framework. Nonetheless, even if "grounding techniques" are
employed to convert a finite relational framework to an equivalent propositional one,
both conceptual and practical problems remain. These issues are briefly addressed
at the end of the paper.

Remark This paper is in the for m of an extended abstract. Due to space limita-
tions, proofs are generally omitted, and topics are often treated in a terse and/or
somewhat infor mal fashion. It is anticipated that more for mal and elaborated ver-
sions of these results will appear elsewhere.

1. Foundations of Propositional Database Systems

Since database systems founded upon propositional logic underly many of the
developments in this wor k, it is essential that we begin with a firm understanding of
precisely what is meant by a database system and related concepts within a proposi-
tional framework. Such is the purpose of this section.

1.1 Propositional Logic

Familiar ity with propositional logic, as discussed in, e.g., [6], is assumed. The
pr imary pur pose of this section is to establish a notational base.

A propositional logic is a pair L=(P,C), with P a set of proposition names
(denoted Prop(L)) and the nonlogical symbols C =  //\\, \\//, ¬, =>, <= =>,(, ). In this wor k, P is
generally taken to be finite, and is usually taken to be a sequence of symbols named
by a single letter indexed by an initial segment of natural numbers; e.g., P =
A1, A2,... , An. These indices give P an implicit order. In this wor k, the set of nonlog-
ical symbols is always the same as given above . Thus, as an abuse of notation, we
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always identify the propositional logic with its set of propositional symbols.

A str ucture for L is a function s : A → 0, 1 and may be represented naturally as
an n-tuple over 0, 1, with the i-th entry the value of s(Ai). The set of all structures for
L is denoted Struct[L].

WF[L] denotes the set of well-for med formulas (wff ’s) for L. s : WF[L] → 0, 1
denotes the natural extension of the structure s to WF[L]. For Φ ⊆ WF[L], Prop[Φ] =
 A∈L A occurs in some for mula φ∈Φ, while Mod[Φ] = s∈Struct[L] 
s(φ) = 1 for each φ∈Φ. Conversely, for S ⊆ Struct[L], Sat[S] =
 φ∈WF[L] s(φ) = 1 for all s∈S. Dep[S] defines the dependency set of S; it consists of
all proposition letter which occur in every Φ for which Mod[Φ] = S. Finally, the theor y
of Φ is Th[Φ] =  φ Φ=φ.

We also assume familiar ity with resolution and the associated language of
clauses, as descr ibed in [2]. Lit[L] denotes the set of all literals over L, while CF[L]
denotes the set of all clauses over L. Lit[φ] denotes just the set of literals occurring in
the clause φ. The length of a clause φ is the number of distinct literals occurring in
that clause, while the length of a set Φ of clauses is the sum of the lengths of its con-
stituents. The notation Length[Φ] is used to denote the length of the set of clauses Φ.

is reserved to denote the empty clause, as is 0; the two are entirely synonymous. 1
denotes a tautological clause which is "always true". Resolvent(φ1, φ2, A) is the resol-
vent, with respect to atom A, of the clauses φ1 and φ2, if it exists.

1.2 Database Schemata and Instances

In the logical approach to relational database systems, as descr ibed in, for
example, [20] or [8], a database schema E is given by a finite set of relation names R,
a finite set of constant names K, and a set of typing and domain closure constraints
TC. A ground fact is just a for mula of the for m R(a1, a2, ..., an), in which R∈R, each
ai ∈K, and which satisfies all typing constraints. (For now, just think of a typing and
domain closure constraint as rules stating precisely which constant names may occur
in which positions in an elementary fact, and that these are the only elementary facts
possible.) Since both R and K are taken to be finite, so too is the collection of ele-
mentar y facts. The grounding of E yields a propositional schema D, whose atom
names are precisely the elementary facts of E.

Upon grounding, the state of E may be completely represented by an inter preta-
tion s : Prop[D] → 0, 1, with s(R(a1, a2, ..., ak)) = 1 if and only if the tuple (a1, a2, ..., ak) is
"in" the relation R in the state s.

The viability of the grounding technique is at the root of the justification for using
a propositional logic to study updates to incomplete infor mation databases, and is
invoked explicitly in [22] and at least implicitly in [7]. We shall have more to say on
this issue in Section 5; for now we proceed to the for mal development of the proposi-
tional framework.

1.2.1 Definition (a) A (propositional) database schema is a pair D =
(Prop[D],Con[D]), in which Prop[D] is a propositional logic and Con[D] ⊆ WF[Prop[D]], is
the set of integrity constraints. In general, we may use any notation given for a
propositional logic; so, for example, WF[D] denotes the set of well-for med formulas
over the propositional logic associated with D.
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(b) A database for D is any s ∈ Struct[Prop[D]]; s is legal if s ∈ Mod[Con[D]] also.
We write DB[D] for the set of all databases for D, and LDB[D] for just the legal ones.

1.2.2 Definition An incomplete infor mation database for D is a subset of DB[D];
IDB[D] denotes the set of all incomplete infor mation databases for D. Similar ly, a
legal incomplete infor mation database is a subset of LDB[D], and we write ILDB[D]
to denote the set of all legal incomplete infor mation databases for D. Each member s
of S ∈ILDB[D] is called a possible wor ld of S.

1.2.3 Notational Convention Throughout the rest of this paper, the symbols D and
Di, for i an integer, shall denote arbitrar y propositional database schemata, without
the need to explicitly designate them as such.

Cr ucial to the entire theory presented here is the way in which the complete
infor mation case extends to the incomplete infor mation case. This is for malized at
the level of database instances by the following identification maps.

1.2.4 Definition Let D be a database schema. The natural identification maps
DB[D] → IDB[D]

LDB[D] → ILDB[D]
are those which send each element to its corresponding singleton; i.e., S → S.

1.3 Deterministic Database Morphisms

On the logical level, a database morphism is an interpretation between theories.
The idea of regarding a database morphism as such was first explicitly proposed by
Jacobs [13,14], although it has been implicit in the definition of queries at least since
the early wor k of Codd [4]. It is also the basis for an extensive study of database
decomposition [9], to which the reader is referred for more motivation and discussion.

1.3.1 Definition A (deter ministic) mor phism f : D1 → D2 is an assignment Prop[D2]
→ WF[D1] .  (Note the direction!) f extends naturally to f : WF[D2] → WF[D1] by sub-
stituting f(Ai) for each occurrence of Ai. If f : D1 → D2 and g : D2 → D3 are mor-
phisms, the composition g°f : D1 → D3 is defined by

Prop[D3] WF[D2] WF[D1]
g f

Define f′ : DB[D1] → DB[D2] by s → (Ai → s( f(Ai))) . f’ is extended to operate on
incomplete infor mation databases IDB[D] → IDB[D] by the rule S → ∪ f(s) s∈S.
As a slight abuse of notation, we use the symbol f’ to denote both of these structure
mappings.

1.3.2 Fact Let f : D1 → D2 and g : D2 → D3 be database morphisms. Then
(g°f)′ = g′°f′.

The morphism f : D1 → D2 is correct if either of the equivalent conditions of the
second part of 1.3.3 is met. It is easy to see that the composition of correct mor-
phisms is itself correct.

In a complete relational database, there is an implicit closed wor ld assumption
which states that tuples which are not presented are assumed to designated false
statements. A request to insert a tuple t means that whatever knowledge currently
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exists regarding the truth value of the infor mation represented by t should be
replaced with the fact that it is true. The truth values of other tuples are not affected.
In a deletion, whatever knowledge is currently present regarding that tuple is replaced
by the knowledge that the infor mation represented by the tuple is now false. Modifi-
cation is slightly more complex. Here we wish to change a a tuple t to a tuple u, pro-
vided that t is present. If t is absent, we do nothing. Thus, the truth value of the infor-
mation associated with t becomes false regardless, while the truth value of the infor-
mation associated with u becomes true if either it were true before, or else the truth
value of t is true. Relative to the propositional framework, this is all for malized as fol-
lows.

1.3.3 Definition Let D be a database schema, and let Ai, Aj ∈ Prop[D].
(a) insert[Ai] : D → D is given by

Ak →




1
Ak

(k = i)
(k ≠ i).

(b) delete[Ai] : D → D is given by

Ak →




0
Ak

(k = i)
(k ≠ i).

(c) modify[Ai, Aj] : D → D is given by

Ak →







0
Ai\\//Aj

Ak

(k = i)
(k = j)
(k ≠ i, j).

Note that the definition of f’ on incomplete infor mation databases immediately
tells us how to inter pret these update operations on such databases; namely, update
each possible wor ld individually. It should also be noted that the above update oper-
ations are not necessarily correct. In the deterministic case, the updated database is
computed, and then checked for compliance with the integrity constraints. If those
constraints are not satisfied, the update is rejected. In the incomplete infor mation
case, it is possible to interpret the update somewhat differently. We update each pos-
sible wor ld individually, and then those which are not legal are eliminated. In either
case, the process of enforcing integrity constraints is not immediately representable
as a morphism operation. For this reason, we shall, unless otherwise mentioned,
ignore integrity constraints in the basic handling of updates.

It is convenient to extend the definition of insertion to include not just atom
names, but literals as well, with insert[¬Ak] defined as delete[Ak]. Then, the insertion
operation may be extended to sets of consistent literals by just inserting them all.
The modify operation has a similar extension; in modify[Φ1,Φ2], if each literal in Φ1 is
tr ue, we delete the literals of Φ1 and then insert the literals of Φ2. The for mal defini-
tions follow.

1.3.4 Definition Let D be a database schema, and let Φ1 and Φ2 be consistent
sets of literals over Prop[D].
(a) insert[P] : D → D is given by
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Ak →







1
0
Ak

(Ak ∈Φ1)
(¬ Ak ∈Φ1)
(Ak, ¬Ak ∈Φ1)

(b) modify[Φ1, Φ2] : D → D is given by

Ak →







1
0
Ak

(//\\Φ1≡1 and ((Ak ∈Φ1\Φ2) or (¬Ak ∈Φ2)))
(//\\Φ1≡1 and ((¬ Ak ∈Φ1\Φ2) or (Ak ∈Φ2)))
(//\\Φ1≡0)

1.4 Nondeterministic Database Morphisms

Incomplete infor mation may arise in a database system in two distinct ways.
First, the database itself may not represent complete infor mation, but rather a set of
possible alternatives. We have already examined this type of incompleteness in the
previous two subsections. Second, a database mapping, such as an update, may
itself be incompletely specified (such as in a request to insert A1\\//A2). To represent
the latter type of incompleteness, we introduce the concept of a nondeterministic
mor phism.

1.4.1 Definition (a) A nondeter ministic mor phism of database schemata
F : D1 °→ D2 is a set of deterministic morphisms from D1 to D2. Thus, each f ∈F is a
function f : Prop[D2] → WF[D1]. We shall always use the "°→" arrow to denote nonde-
ter ministic mor phisms, while the ordinary "→" will be used to denote deterministic
mor phisms, so no confusion can result.
(b) If F : D1 °→ D2 and G : D2 °→ D3 , then G°F : D1 °→ D3 is defined to be
 g°f f∈F and g∈G.
(c) For F : D1 °→ D2 , define the extension F′ : DB[D1] → IDB[D2] by s→  f′(s) f∈F.
Define F : IDB[D1] → IDB[D2] by S → ∪  F′(s) s∈S.

1.4.2 Fact Let F : D1 °→ D2 and G : D2 °→ D3 . Then (G°F)′ = (G′°F′).
It is essential that the definitions of nondeterministically specified updates (such

as the insertion of A1\\//A2) be extensions of the deterministic cases. In other words, a
request to nondetermistically insert A1 should be identical in action to a request to
deter ministically perfor m the update. The following definition for malizes the obvious
embedding.

1.4.3 Definition Let f :D1 → D2 be a deterministic database morphism. The cor-
responding nondeterministic morphism is f.

We now tur n to the issue how to inter pret a nondeter ministic update request
such as "insert[A1\\//A2]". The idea is to regard such a request as a nondeterministic
mor phism, each of whose components is a deterministic insertion request (to a pos-
sibly incomplete infor mation database). Thus, to extend the operation of insertion to
nondeter ministically specified updates, it is necessar y to express it as a nondetermin-
istic morphism, each of whose components is a deterministic insertion request. The
deletion and modification operations extend in a similar fashion. The formalization is
contained in the following.

1.4.4 Definition Let Φ ⊆ WF[D].
(a) The literal base of Φ, denoted LB[Φ], is the set
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 Ψ⊆Lit[D] Ψ is consistent and Ψ=Φ.
(b) For l ∈Lit(D), l is irrelevant if for every Ψ ∈LB(Φ), l ∈Ψ implies that Ψ\l,
Ψ\¬l ∈LB(Φ) also. Ψ is minimal if it contains no irrelevant elements.
(c) Ψ ∈LB[Φ] is complete if it is minimal, and, for any other Λ ∈LB[Φ], Ψ ⊆  Λ implies
that Ψ =  Λ.
(c) Inset[Φ] =  Φ∈LB[Φ] Ψ is complete. Inset[Φ] is called the literal insertion set for
Φ.

1.4.5 Definition Let Φ ⊆ WF[D].
(a) Define the nondeterministic morphism insert[Φ] : D °→ D as
 insert[Ψ] : D → D Ψ∈Inset[Φ].
(b) Define the nondeterministic morphism delete[Φ] : D °→ D as insert[Ψ] : D → D, with
Ψ = ¬(//\\φ) φ∈Φ1.
(c) Define the nondeterministic morphism modify[Φ1, Φ2] : D °→ D as
modify[Ψ1, Ψ2] : D → D Ψ1 ∈Inset[Φ1] and Ψ2 ∈Inset[Φ2].

1.4.6 Discussion It is important to understand these concepts intuitively. As a
concrete example, let Φ = A1\\//A2. The literal base of Φ consists of sets of literals,
with each set sufficiently rich to semantically entail Φ. A minimal such set contains
no literals which are totally irrelevant to the truth value of Φ. Thus, A1, ¬A2, A3 is in
the literal base of Φ, but is not minimal, since A3 is irrelevant. A complete set con-
tains enough literals to span all truth values which need to be known. Thus, A1,
while minimal, is not complete for Φ. In fact, Inset(Φ) = A1, A2, A1, ¬A2, ¬A1, A2.
This defines precisely the updates which must be perfor med to implement the inser-
tion of A1\\//A2. Each possible wor ld is replace by three new wor lds, one for each of the
three deterministic updates insert[A1, A2], insert[¬A1, A2], and insert[A1, ¬A2].
Note that these three correspond precisely to the three possible ways in which truth
values can be assigned to A1 and A2 such that A1\\//A2 is true.

1.4.7 Remark The update semantics which we have just described is ver y similar
to that proposed by Wilkins in [22], although we have arr ived at it in quite a different
manner. How ever, there is one ver y significant difference. Her approach is some-
what syntactic, in that a request of the for m inser t[A1\\//¬A1] is treated nontrivially. In
our framework, such an update request would result in the identity update, since the
empty set is complete for A1\\//¬A1. How ever, in her approach, the update request
would result in what is equivalent to perfor ming each of the four deterministic updates
inser t[A1, A2], insert[¬A1, A2], insert[A1, ¬A2], and insert[¬A1, ¬A2], which
amounts to masking all infor mation regarding A1. We prefer our definition, because
the update only depends upon the semantics of for mulas, and not upon the represen-
tation. Nonetheless, the action of masking all infor mation about one or more proposi-
tion letters is important in its own right, and will be examined more closely in the next
subsection.

1.5 Masks and Congruences

Whenever we have a database morphism f : D1 → D2 and two states s1, s2 ∈
DB(D1) for which r = f′(s1) = f′(s2), the state r does not contain enough infor mation to
recover its preimage; some infor mation is masked. All we know is that the preimage
is a member of f′−1(r); a member of an equivalence class of states of DB(D1). If f is an
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update operation, it is critical to identify the infor mation which it masks.

1.5.1 Definition Let F : D °→ D1. Define Congruence[F] to be the equivalence rela-
tion on D defined by (s1, s2) f(s1) = f(s2) for all f∈F. This equivalence relation is
called the mask congruence of F. A mask is any such equivalence relation.

There is a particular ly impor tant class of mask congruences, which is defined as
follows.

1.5.2 Definition A symbolwise nondeterministic morphism F : D1 °→ D2 is an
assignment F : Prop[D2] → 2WF[D1]. The corresponding nondeterministic morphism is
given by  f f(A)∈F(A) for all A∈Prop[D2].

1.5.3 Definition Let P ⊆ Prop[D].
(a) Define the nondeterministic morphism mask[P] : D °→ D symbolwise by

Ak →




0, 1
Ak

(Ak ∈P)
(Ak ∈/P)

(b) Let P ⊆ Prop[D]. Define the simple mask for P to be the congruence induced by
the morphism mask[P] : D → D. This mask is denoted by s − −mask[P]. s-mask[D]
denotes the collection of all simple masks over D.

The following result is crucial. It says that an insertion masks precisely those
proposition letters upon which the inserted for mula depends.

1.5.4 Theorem Let Φ ⊆ WF(D). Then Congruence(insert[Φ])) =
s − −mask[Prop[Inset[Φ]]].

2. Specification of the Programming Language BLU

In the previous section, we gave precise definitions for basic update operations
to incomplete infor mation databases. How ever, they were just definitions; little was
presented which indicated just how one might compute the results of update
requests. In this section, we dev elop a simple applicative programming language
BLU. The primar y pur pose of this language is as a tool for the specification and
implementation of higher level update languages, rather than as an end in itself.

2.1 The Syntax of BLU

The syntactic specification of BLU is specified as an algebraic signature. Due to
space limitations, we must be brief and somewhat infor mal. The reader is referred to
the excellent references [5] and [17] for a much more detailed development of the rel-
ev ant issues.

2.1.1 Definition (a) The algebraic signature (or syntax of) BLU is defined as fol-
lows.

(i) There are two sor ts, which represents fundamental data types. S denotes the
sor t of states, and M denotes the sort of masks.
(ii) There are five operation symbols. Together with their arities, they are given
below.
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assert : S × S → S
combine : S × S → S

complement : S → S
mask : S × M → S

genmask : S → M
(b) There are two countable families of var iables, one for each sort. Var[S] =
s0,s1,s2,...; Var[M] = m0, m1, m2,...;
(c) Ter ms are built up in the standard way. How ever, we use a Lisp-like list for malism,
rather than the more conventional mathematical for malism.

(i) Each si ∈Var[S] is an S-ter m, and each mi ∈Var[M] is an M-ter m.
(ii) If s0 and s1 are S-ter ms, and m is an M-ter m, then (assert s0 s1), (combine
s0 s1), (complement s0), and (mask s0) are S-ter ms, and (genmask m) is an
M-ter m.

Think of terms for BLU as just s-expressions which have the right sorts for their
arguments. For example, the following is an S-ter m for BLU.
(combine (assert (s1

(mask (genmask s1)
(assert s2 so))))

(assert (complement s2) s0))

2.1.2 Definition A BLU program is an expression of the for m
(lambda <varlist> <S-term>)

subject to the following conditions.

(i) <varlist> is a list of var iables starting with s0, and containing precisely the
variables which occur in the succeeding S-ter m.

(ii) <S-term> is an S-ter m which contains the var iable s0.

Thus, BLU programs are syntactically similar to the lambda for ms of Lips and
Scheme [19]. The convention of requiring that s0 be present is one of convenience;
we will always assume that s0 identifies the program state. This is done to facilitate
the definition of the for m of HLU programs given in the introduction, in which the sys-
tem state is implicit. s0 will always denote the system state in their implementation.

2.1.3 Example and Discussion The following is a simple BLU program
(lambda (s0 s1 s2)

(combine
(assert s1

((mask (genmask s1)
(assert s2 so)))

(assert (complement s2) s0))))

Ultimately (in HLU) we will have need for var iables which can take on programs as
values; that is, we will need to give programs first-class citizenship. Therefore, we
use the Scheme for malism [19] define for the assignment of a program value to a
variable, as in
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(define insert
(lambda (s0 s1 s2)

(combine
(assert s1

((mask (genmask s1)
(assert s2 so)))

(assert (complement s2) s0)))))

This example names the program of the previous example insert by assigning
the var iable of the same name to have the program definition as its value.

2.2 Fundamental Denotational Semantics of BLU

In assigning a denotational semantics to a programming language, we assume
the existence of a set S of underlying states, and we seek a systematic way of
assigning a function S →S to each program. In general programming languages, the
real challenge lies in addressing looping and recursion; sophisticated methods of
dealing with limits must be employed [17]. However, in BLU, there are no looping or
recursive constr ucts, so the for malities of specifying the semantics are quite straight-
forward.

In this section, we give a simple denotational semantics for BLU at the level of
str uctures; the state set S will be IDB[D] for our reference database schema D. On a
more for mal level, while the syntax of BLU is defined using an algebraic signature,
the semantics is defined by actual algebras for this signature. As in the previous sub-
section, here we present a somewhat infor mal sketch.

2.2.1 Definition An implementation A of BLU consists of the following.
(i) The designation of two sets A[S] and B[S] which are the concrete domains for the
sor ts.
(ii) The assignment of functions of the appropriate arities to each function symbol.
For example, to genmask we assign a function A[genmask] : A[S] × A[M] → A[S].

Running a BLU program in an implementation A just amounts to binding appro-
pr iate concrete domain values to the argument list of the lambda expression and then
"evaluating the term." Although this process may be given a for mal definition, we
shall not do so here, but rather rely on the reader’s intuition of that process.

We now tur n to specifying the actual instance-level semantics for BLU. In the
following, it is assumed that there is a reference database schema D upon which the
constr uctions are based.

2.2.2 Definition The BLU implementation BLU − −I is defined as follows.
(a) Sorts:

(i) BLU − −I[S] = IDB[D].
(ii) BLU − −I[M] = s-mask[D].

(b) Operators:
(i) combine : (X, Y) → X∪Y
(ii) assert : (X, Y) → X∩Y
(iii) complement : X → ILDB[D]\X
(iv) mask : (R, X) →  y(∃x∈X)R(x, y)
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(v) genmask : X → s − −mask[Dep[X]]

Obser ve first of all that the the three operations combine, assert, and com-
plement are precisely those which make IDB[D] into a Boolean algebra under the
usual set-theoretic operations. mask perfor ms, at the level of instances, precisely the
masking operation described in 1.5. genmask generates the mask corresponding to
the set of all proposition letters upon which the set of possible wor lds depends.

The remarkable fact is the simplicity of this collection of operations. We are only
allowed the usual set theoretic manipulations, plus the operations of generating and
applying masks, and yet we claim that this is a complete set of primitives for the
implementation of update programs for incomplete infor mation databases.

2.3 Fundamental Clausal Semantics for BLU

The instance-level semantics for BLU descr ibed in the previous section provides
us with the fundamental definition of how BLU programs should behave . However,
direct implementation of BLU as a manipulator of sets of possible wor lds would be
inefficient, if not impossible, for any reasonably size language. Therefore, we need to
identify a means of representing and manipulating such states at a higher level, and
emulate the implementation BLU − −I at that level. In this subsection, we present an
implementation BLU − −C of BLU at the level of clauses which is an emulation of
BLU − −I. A key feature of the definition of BLU − −C is that its operations are not
specified merely as abstract operations, but rather as resolution-based algorithms
operating on sets of clauses. Thus, it is a relatively straightforward task to actually
implement BLU − −C.

We begin by sketching what it means for one implementation of a BLU to be an
emulation of another. Basically, we want to represent each state of BLU − −I with one
or more states of BLU − −C in such a way that perfor ming operations in BLU − −C and
then examining the corresponding state in BLU − −I is exactly the same as mapping
the arguments of the computation down to BLU − −I and perfor ming the computation
there.

2.3.1 Definition Let A and B be implementations of BLU. For mally, an emulation e
of B by A is a surjective mor phism of the defining algebras. This means that it is
given by a pair of surjective functions e[S] : A[S] → B[S] and e[M] : A[M] → B[M] which
respect the operations of BLU. For example, for mask we require that
e[S]((A[mask] s  m)) = (B[mask] e[S](s) e[M](m))

2.3.2 Definition (a) The BLU implementation BLU − −C is defined as follows.
(a) Sorts:

(i) BLU − −C[S] = 2CF[D]

(ii) BLU − −C[M] = 2Prop[D]

(b) Operators:
(i) combine, assert, and complement are defined by Algor ithm 2.3.3.
(ii) mask is defined by Algor ithm 2.3.5.
(v) genmask is defined by Algor ithm 2.3.8.

(b) The canonical emulation eCI of BLU − −I by BLU − −C is defined as follows.
(i) eCI[S] : Φ → Mod[Φ]
(ii) eCI[M] :  P → s − −mask[P].
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The algorithms for the computation of the three Boolean-algebraic functions
combine, assert and complement are quite straightforward. We next present
them, in an Ada-like syntax, together with a statement of their complexity.

2.3.3 Algorithms
function BLU − −I[assert] (Φ1, Φ2: CF[D])

returns CF[D] is
begin

return Φ1 ∪Φ2;
end;

function BLU − −I[combine] (Φ1, Φ2: CF[D])
returns CF[D] is

begin
return φ1\\//φ2 φ1 ∈Φ1 and φ2 ∈Φ2;

end;

function BLU − −I[complement] (Φ1: CF[D])
returns CF[D] is

begin
Ψ ←   ;
C(Φ1, Ψ);
return Ψ;

end;

procedure C ( Γ: in CF[D], ∆: CF[D] in out )
is

-- support procedure for C[complement].
begin

if Γ = ∅
then return;
else

γ ← any element of Γ;
Γ ←  Γ \ γ;
for each δ ∈∆ loop

∆ ←  ∆ \ δ;
for each λ ∈Lit[γ] loop

∆ ←  ∆∪ δ\\//¬λ;
end loop;

end loop;
C(Γ,∆);

end if;
end;

2.3.4 Theorem (a) The algorithms defined in 2.3.3 are correct, in the sense that
they respect the emulation defined in 2.3.2(b).
(b) Their worst case time and space complexities are as follows.
(i) BLU − −I[assert]: Θ(Length[Φ1] + Length[Φ2]).
(ii) BLU − −I[combine]: Θ(Length[Φ1] × Length[Φ2]).
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(iii) BLU − −I[complement]: Θ

εLength(Φ1)


, where ε =e1/e.

(c) The bounds specified in (b) are in fact problem complexity bounds; no algorithms
of lower worst case asymptotic complexity are possible.

Rather than discuss the implications of algorithm and problem complexity on a
case-by-case basis as they are presented, we defer the discussion until Section 4,
where they will be considered within a more global context.

We now tur n to the implementation of mask in BLU − −C. It is quite a bit less
straightforward than the implementation of the three Boolean algebra operations, and
involves the use of two auxiliar y algor ithms. rclosure simply closes up the set of
clauses Φ under resolution with the proposition letters in P. drop eliminates all
clauses which involve the proposition letters in its argument. Thus, we can compute
a mask by repeating each of these steps on each letter to be masked. In effect, the
rclosure step ensures that, when we discard those clauses involving the masked
letters, there are enough others around to completely describe the constraints on
those which are left. It would trivially be sufficient to close up Φ1 under total resolu-
tion; what is somewhat remarkable is that it suffices to close it up under just those
proposition letters which are to be masked.

2.3.5 Algorithms
function rclosure (Φ: CF[D], P: s-mask[D])

return CF[D] is
begin

Γ ← Φ1;
for each A ∈P loop

Γ+ ← all γ ∈Γ with A ∈Lit(γ)
Γ− ← all γ ∈Γ with ¬A ∈Lit(γ)
for each γ+ ∈Γ+ loop;

for each γ− ∈Γ− loop;
Γ ←  Γ∪ resolvent(γ+, γ−, A);

end loop;
end loop;

end loop;
return Γ;

end;
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function drop (Φ: CF[D], P: s-mask[D])
return CF[D] is

begin
Ψ ← ∅;
for each φ ∈Φ loop

if Lit[Prop[φ]]∩P = ∅
then

Ψ ←  Ψ∪φ;
end if;

end loop;
return Ψ;

end;

function BLU − −C[mask] (Φ: CF[D], P: s-mask[D])
return CF[D] is

begin
Ψ ← ∅;
for each A∈P loop

Ψ ← (Drop A (Rclosure Φ1 A));
end loop;
return Ψ;

end;

2.3.6 Theorem (a) The algorithm BLU − −I[mask] defined in 2.3.5 is correct, in the
sense that it respects the emulation of 2.3.2(b).
(b) The worst-case time and space complexity is bounded by O(Length[Φ]2

Card[P]
),

where Card denotes cardinality. Fur thermore, as long as Card(P) << Card[Prop[D]]
and Length[Φ] << Maxclause[Φ], where Maxclause denotes the maximum length of a
set of consistent clauses over P and "<<" means "sufficiently smaller than", this lower
bound may be realized. (The precise character ization of these conditions is too com-
plex to dev elop here.)

Thus, the computation of a mask for a set of clauses is inherently a ver y hard
problem, in the worst case. This is not surpr ising. Essentially, computing a mask is
computing a projection on a schema. In fact, there is a relational schema with only
one relational symbol of only five arguments, and constrained by only three functional
dependencies, with a projection onto four of its columns which is not finitely axiomati-
zable in first-order logic [10]. If we ground such a schema and use finite domain clo-
sure, we get a ver y large number of dependencies in the view, relative to the base
schema. In shor t, a fast algorithm for computing mask implies a fast algorithm for
solving the implied constraint problem for views [14], and that is simply not possible.

The final operation which we need to implement at the clause level is genmask.
In testing the dependency of Φ upon A, the basic idea is to take two copies of Φ,
assign A to be true in one and false in the other, and then look for truth assignments
on the other letters which yield a difference. We need a few auxiliar y definitions.

Definition 2.3.7 Let P be a set of propositions, and Φ a set of clauses.
(a) CLS[Φ] denotes the set of all consistent subsets of Lit[Φ] which contain either A or
else ¬A for each A ∈ Prop[Φ].
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(b) For A ∈ Prop[Φ], Ldiff[A, Φ] denotes the set of all pairs (L1,L2) ∈ CLS[Φ] × CLS[Φ]
which differ only in that A∈L1 and ¬A∈L2.

2.3.8 Algorithm
function unitres (Φ: CF[D], L: CLS[Φ])

returns Boolean is
-- Unit resolution computation.

begin
Ψ ←  Φ;
for each l ∈ L loop

for each φ ∈ Φ loop
if φ = ψ\\//¬l

then Ψ ←  Ψ\φ∪ ψ;
end if;

end loop;
end loop;

return Ψ;
end;

function BLU − −I[genmask] (Φ: CF[D])
returns P: s-mask[D] is

begin
X ← ∅;
for each A ∈ Prop[Φ] loop

for each (L1,L2) ∈ Ldiff[A, Φ] loop
if unitres(Φ,L1) ≠ unitres(Φ,L2)
then
X ← X∪ A;
exit loop;

end if;
end loop;

end loop;
return X;
end;

2.3.9 Theorem (a) The algorithm BLU − −I[genmask] defined in 2.3.7 is correct, in
the sense that it respects the emulation of 2.3.2(b).
(b) The worst-case time complexity is Θ(2Card[Prop[Φ]]. Length[Φ].Card[Prop[Φ]]2). where
Card denotes cardinality.
(c) The problem of deciding whether a set of clauses depends upon a particular
proposition letter is NP-complete. .

3. Specification of the Programming Language HLU

In this section, we demonstrate the utility of BLU by defining the semantics of the
language HLU, which was infor mally descr ibed in the introduction, entirely in terms of
BLU. The development of HLU is divided into two par ts. In 3.1, we present a for mal
semantic description of simple-HLU, which is a subset of full HLU which contains all
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of the constructs except the two involving the where constr uct. These are imple-
mented directly in BLU. In 3.2, we provide the definitions of the two where con-
str ucts, using a for m of macro expansion.

3.1 Direct Semantics for Simple-HLU

3.1.1 Definition The algebraic signature simple-HLU is defined as follows.
(a) The sorts are the same as for BLU, namely S,M.
(b) There are five operation symbols. Together with their arities, they are given
below.

assert : S × S → S
clear : S × M → S
insert : S × S → S
delete : S × S → S
modify : S × S → S

These five operation symbols correspond to the first five operations listed for
HLU in the introduction. The arities seem different because in the "user’s syntax" of
HLU, the system state is hidden. In each of the five cases above , the first argument
corresponds to the system state. Thus, the "user level" HLU program (insert X),
using the syntax described in the introduction, is more properly represented as
(insert s0 X).

We now tur n to expressing the semantics in terms of BLU. The process is ver y
simple. We use the define convention outlined in 2.1.3 to express each simple-HLU
program as a BLU program.

3.1.2 Definition The BLU-based semantics for simple-HLU is given as follows.
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(define HLU-assert
(lambda (s0 s1) (assert so s1)))

(define HLU-clear
(lambda (s0 s1) (mask s0 s1)))

(define HLU-insert
(lambda (s0 s1)
(assert (mask s0 (genmask s1)) s1)))

(define HLU-delete
(lambda (s0 s1)

(assert (mask s0 (genmask s1))
(complement s1))))

(define HLU-modify
(lambda (s0 s1 s2)
(combine
(assert (assert

(mask
(assert (mask (assert s0 s1)

(genmask s1))
(complement s1)))

(genmask s2))
s2)

(assert s0 (complement s1)))))

Note how insert, delete, and modify all confor m to our "mask and assert
paradigm." In insert and delete, the mask corresponding to the insertion state is
generated, applied to the system state, and the insertion state is then asserted upon
the system state. To asser t formal compliance with the definitions of 1.4.5, we need
to define the clause-level implementation.

3.1.3 Definition We define simple-HLU − −C and simple-HLU − −S as the BLU − −I
and BLU − −C based implementations of simple-HLU, respectively.

As long as we understand the ideas of lambda expression evaluation, there is
nothing further to explain regarding this definition. All of the wor k was done in the
definitions of the implementations of BLU. The for mal statement of correctness is as
follows.

3.1.4 Theorem The definitions of HLU-insert, HLU-delete, and HLU-modify, imple-
mented in simple-HLU, are logically equivalent to those defined in 1.4.5.

3.1.5 Example Consider the simple-HLU − −C update program (insert(A1\\//A2)
with system state Φ = ¬A1\\//A3, A1\\//A4, A4\\//A5, ¬A1\\//¬A2\\//¬A5. This translates to the
following BLU program.
(assert (mask Φ ’ A1, A2)) ’A1\\//A2 )).

First we compute (genmask ’A1\\//A2) to be  A1, A2. Next, (mask Φ ’ A1, A2)
=  A4\\//A5, A3\\//A4. Finally, (assert ’ A4\\//A5, A3\\//A4 ′A1\\//A2) =
 A1\\//A2, A4\\//A5, A3\\//A4 .

3.2 Direct Semantics for full HLU
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3.2.1 Definition The algebraic signature HLU is defined as follows.
(a) There are three sorts. In addition to the two sor ts S and M, there is an additional
sor t P, which represents the abstract data type of BLU programs.
(b) The operator names consist of those of simple-HLU, together with the two listed
below.

where1 : S × P → S
where2 : S × P × P → S

where1 and where2 represent the "where" construction of HLU with one and
two program arguments, respectively. To handle this construction, we define them as
macros which force the expansion of these program arguments. We borrow both the
name syntax and the semantics from the TI Implementation of Scheme [21]. We
also assume that the reader is familiar with Lisp/Scheme quasi-quote syntax as well
as the definition of the primitives cdr and cons; refer to [23] for an explanation. The
actual macro semantics is ver y easy; the key point is that a call to this macro is to
retur n a BLU program as its value. The first name in the list following the syntax is
the name of the expanded macro; the rest of the elements in the list are the for mal
arguments. The following list is the body, which is expanded at the call. The only
technical "problem" is argument naming; the returned function must have a for mal
argument list free of name collisions; in a call of the for m (where s p1 p2) we
must ensure that the for mal parameter lists of p1 and p2 do not have collisions with
one another or with s. To address this, we define a few simple support functions.

3.2.2 Definitions (a) Let Λ =(λ1
... λm) be a list of atoms names, and let σ be a

str ing. Define (atomappend σ Λ) =(λ1
. σ ... λm

. σ).
(b) Let foo be any BLU program. (arglist ’foo) retur ns the list of for mal argu-
ments for foo.

3.2.3 Definition The BLU-based semantics for HLU is defined as follows.
(a) The semantics of operations in simple-HLU is exactly as given in 3.1.2.
(b) The semantics of where1 is defined as follows.
(syntax (where1 s0 s1 p0)

`(lambda ,(append
´(s0 s1)
(atomappend ".0"

(cdr (arglist p0))))
(combine
(,p0 ,(cons ´(assert s0 s1)

,(atomappend ".0"
(cdr (arglist p0)))))

(assert s0 (complement s1)))))

(c) The semantics of where2 is defined as follows.
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(syntax (where2 s0 s1 p0 p1)
`(lambda

,(append
´(s0 s1)
(atomappend ".0"

(cdr (arglist p0)))
(atomappend ".1"

(cdr (arglist p1))))
(combine

(,p0 ,(cons
´(assert s0 s1)
,(atomappend ".0"

(cdr (arglist p0)))))
(,p1 ,(cons ´(assert s0 s1)

,(atomappend ".1"
(cdr (arglist p0))))))))

In the expansion of (where2 s0 p1 p2), the first argument of p1 and of p2
remains as s0 (recall the convention defined in 2.1.2). However, the rest of the argu-
ments of p1 have the string ".1" appended to them, and the rest of the arguments
of p2 have ".2" appended to them. This ensures that there are no for mal argument
naming collisions. The case of where1 is similar. Let us examine an example at the
clause level.

3.2.5 Example Let the system state Φ be as in 3.1.4, and consider the program
(where ’A5 (insert ’A1\\//A2)).

First, let us expand the more general program
(where s1 (insert s2)).

Using 3.2.3 and 3.1.2, we get
(lambda (s0 s1 s1.0)

(combine
((lambda (assert (mask s0 (genmask s1))

s1))
((assert s0 s1) s1.0))

(assert s0 (complement s1))))

We may use lambda var iable substitution to reduce this to the following program.
(lambda (s0 s1 s1.0)

(combine
(assert (mask (assert s0 s1)

(genmask s1.0)) s1.0 ))
(assert s0 (complement s1))))

Now we can perfor m the actual parameter substitution and evaluation, with s0← Φ;
s1← A; s1.1← A1\\//A2. We already know that(genmask ′A1\\//A2) = A1, A2, and
that(assert Φ ′A5) = Φ∪ A5. Now(mask Φ∪ A5  A1, A2) is computed as in
3.1.5 to yield  A4\\//A5, A3\\//A4, A5, A1\\//A2. Thus,(assert ′ A4\\//A5, A3\\//A4, A5 ′A1\\//A2)
=  A4\\//A5, A3\\//A4, A5, A1\\//A2. Next, (complement ′A5) = ¬A5, and
(assert Φ, ′¬A5) = Φ∪ ¬A5. Thus, the final result is
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(combine ′ A4\\//A5, A3\\//A4, A5, A1\\//A2 ′¬A1\\//A3, A1\\//A4, A4\\//A5, ¬A1\\//¬A2\\//¬A5).
We leave it to the reader to expand this into the 16 clauses yielded by Algor ithm
2.3.3.

3.3 Comparison to Other Work

3.3.1 The work of Wilkins In [22], Wilkins presents semantics and algorithms for
updates of the for m (assert φ), (where φ (insert ω)), (where φ//\\t
(delete t)), and (where φ//\\t (modify t w)) are presented, with φ and w
arbitrar y wff ’s, and t a ground fact. (We have altered her syntax slightly to confor m
with ours.) With the exception noted in 1.4.7, the semantics of her update algorithms
are identical to ours. How ever, the actual algorithms are ver y different. Specifically,
her algorithms introduce new auxiliar y proposition letters at each update. In effect,
she defers the computation of the mask component via the retention of historical
infor mation. Her update algor ithms are unquestionably faster than ours. In fact, they
are linear in the sizes of the database and update for mulas. How ever, the price is
repaid when the database is queried. Each update adds at least one new proposition
letter. Thus, after a large number of updates, quer y processing becomes ver y expen-
sive, since the query solver must constantly eliminate auxiliary symbols from for-
mulas. It would seem that, after a large number of updates, a system based upon
her algorithms would have its query evaluation mechanism greatly slowed by the
presence of the large number of auxiliary symbols employed. To "clean up" the
knowledge base, masking of these auxiliary symbols would be necessary. How ever
masking is inherently a hard problem (see 2.3.6), and so her algorithms would not
seem to offer a superior alternative to ours.

3.3.2 The flock approach In [7], an alternative for updating logical databases is
proposed. This strategy may be broadly character ized as minimal change. For
example, in inser ting α into the database, rather generating a database independent
mask for α, we look for minimal ways to alter the database so that the insertion of α
will be consistent. However, this definition of minimality is a purely syntactic one, and
so the spirit of the approach differs fundamentally from ours. While it is possible to
obtain a semantic version of minimal change, at the expense of a greatly complicated
masking function, space limitations preclude presentation in this paper.

3.3.3 A tabular approach Both of the wor ks mentioned above are basically propo-
sitional in nature. In [1], Abiteboul and Grahne present a structure-or iented approach
to update specification, and implementation using the notion of tables of Imieliński
and Lipski [12]. As such, their approach directly uses relations. It is interesting to
note that two of their basic update operators are precisely union and intersection,
which, at the instance level, are precisely our combine and assert. Set-theoretic
difference is also one of their primitives; it can easily be realized as a combination of
intersection and absolute complement. Thus, of their six primitives, three are essen-
tially identical to three of our five BLU pr imitives. Their other three primitives are rela-
tion-by-relation versions of these same primitives. At the propositional level, these
correspond to possible-wor ld by possible-wor ld logical operations of //\\, \\//, and /⇒.
These primitives are also sufficient in power to realize HLU, although it appears that
they are strictly less powerful than those of BLU, in that genmask cannot be realized.
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A detailed comparison of the two approaches is warranted.

Another paper promoting a relational approach is [15]. It deals more with prag-
matics of individual examples, and so differs in emphasis from our wor k.

4. Towards a Practical Implementation

We briefly examine the practicability of the definitions presented herein, together
with some of our future directions.

Notice that there are two ways in which a possible wor ld definition (qua clause)
may be an argument to an HLU program. First, the system state itself is such an
argument. Second, any user-supplied update parameter is such an argument also.
In general, we would expect the system state to have a much larger and more com-
plex representation than a typical user supplied parameter. Now we may obser ve
from the definition of HLU that the BLU pr imitives complement and genmask only
take user supplied parameters as arguments. Thus, even though these problems
have inherently high degrees of complexity for the clausal representation, they will
likely be applied only to arguments which are small and simple enough to be man-
ageable. The clausal implementations of assert and combine are quite
respectable in terms of perfor mance, even though they do take the system state as
arguments in several HLU definitions.

It seems likely that the bottleneck in any clausal implementation of HLU base
upon BLU is going to be the implementation of mask. The masking problem is
inherently difficult; yet it is essential to an implementation. The question is whether
there is another, much efficient implementation of HLU which avoids masking entirely.
The answer is no. Masking is itself a for m of insertion; just as (insert ´A1\\//A2)
says that three of the four truth values of (A1,B1), so too does (mask A1, A2) say
that all four are possible. At any rate, the inherent complexity of inserting A1\\//A2 is
no less than masking A1, A2.

Thus, it is clear that the worst case in any clausal implementation of HLU is
going to be intolerably bad. The question remains, how ever, as to whether there is
some other "reasonable" implementation which admits more efficient execution. If so,
the representation must be far removed from the clausal one, else we could efficiently
reduce the clausal approach to it. Care must be taken in expressing the problem; for
example, we might demand that all sets of clauses be fully expanded to include all
consequences. Masking then becomes trivial. Of course, other operations then
become intolerably slow.

The most promising approach to take, from a practical point of view, would seem
to be to look for an incomplete implementation which nonetheless covers many inter-
esting cases. Currently, we are pursuing two avenues in this spirit. The first is to
implement a small version of HLU in Lisp. The implementation is based substantially
upon the BLU definition, although a number of correctness-preserving optimizations
are employed. The implementation is initially for a propositional logic, although we
plan to extend it to the first order situation sketched in the next section in the near
future. The purpose of this implementation is to study empirically the bottlenecks in
such a system.

The second avenue is to examine in more detail other realizations. Foremost,
we are looking at the template model [12], and particular ly the wor k on updates for it
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[1]. Although this model is not able to represent all possible wor lds, it can represent
many impor tant cases arising in practice. A compar ison of these two approaches will
hopefully shed light on some of the more practical aspects of the problem.

5. Extension to a First-Order Relational Framework

5.1 Problem Statement

Despite the fact that database schemata are not propositionally based, there is
ample justification for an initial examination of the update problem on propositional
schemata. First, the propositional framework provides a "stripped down" testbed; if
the problems cannot be adequately for mulated and solved at the propositional level,
there is little hope of a more general solution at the relational level. Second, it may
be argued that relational databases are finite, and so may be represented logically as
a set of ground clauses. Nonetheless, we argue that it is not sufficient, from a practi-
cal point of view, to invoke this grounding assumption and limit the investigation to the
propositional case.

5.1.1 Motivating example Consider a simple relational schema with a single
ter nary relational symbol R[NDT], and attributes N = name; D = department; T =
telephone. Fur ther consider an update request expressed infor mally as "Jones has a
new telephone number." Implicit in this request is that Jones’ new telephone number
is not known. Assume that the appropriate domain closure axioms are present [20],
so we know, in par ticular, that there is a finite set of constant symbols T = t1, t2, .., tn
which represent all possible telephone numbers. Then it is possible to express this
update request directly in HLU. Let JD denote Jones’ department, and φ be the
clause which is the enormous disjunction \\// (Jones, JD, t) t∈T. Then the appropri-
ate update request in HLU is (insert φ). However, there are at least two prob-
lems. First of all, we must know Jones’ department in order to specify the update,
ev en though it is totally irrelevant, and remains unchanged. Second, in a realistic
application, the collection of telephone numbers would indeed be enormous, making
the direct expression of this update request all but impossible.

5.2 Solution Sketch

The overall goal of this component of our wor k is to extend the framework and
algor ithms already developed to a first-order framework in which updates such as the
example given above are easily handled. The key idea is to maintain the same set of
possible wor lds as the purely propositional case, but to employ representation tech-
niques which admit much more efficient manipulation.

We follow the idea of grounding as described at the beginning of 1.2, with some
impor tant extensions. There are two kinds of constant symbols, inter nal and exter-
nal. The exter nal constant symbols correspond exactly to those of the purely propo-
sitional framework. They have unique naming relative to other exter nal constant sym-
bols, and are visible to the user in the query and update languages. The inter nal
constant symbols, on the other hand, do not have unique naming enforced, and are
not directly visible to the user. They are countably infinite in number, although only a
finite number are active at any given time. There is a modified close wor ld assump-
tion stating that the exter nal and active inter nal constant symbols are the only ones
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known, and, further more, that each internal constant symbol is equal to some exter-
nal constant symbol. Essentially, the modified internal symbols correspond to null
values, as descr ibed by Reiter in [20].

Also present in the extension is a Boolean algebra of types. These correspond
to the Boolean categories of McSkimin and Minker[18]. Reiter has proposed a similar
framework.[20]. The constant dictionary is used to classify each exter nal and active
inter nal constant symbol, and has one entry for each. An entry for an exter nal sym-
bol contains just one component; that which identifies the smallest type to which it
belongs. An entr y for an inter nal symbol u contains what McSkimin and Minker call a
Boolean category expression. It identifies the under lying type ty(u), together with a
list of inclusion exceptions ie(u) and a list of exclusion exceptions ee(u). The seman-
tics is that the actual value of u, which is some exter nal symbol, is either of type ty(u)
or a member of the set ie(u), but is not a member of ee(u). The lists of inclusion and
exclusion exceptions may contain internal as well as exter nal symbols. As a simple
example, to represent the fact that Jones has an unknown telephone number, we
active an inter nal symbol u, and designate it to have type τtelno, the type of all tele-
phone numbers. The fact about Jones would be represented as the single literal
R(Jones, JD, u). "Jones" would be an exter nal constant; JD might be internal or exter-
nal.

To render this representation useful, resolution must be extended to make use of
it. This is done by employing a special case of semantic resolution developed by
McSkimin and Minker[18]. Basically, when resolving R(a, ...) and R(b, ...) on the first
argument (for example), we tur n to the constant dictionary to deter mine the intersec-
tion of the constant values represented. This intersection is effectively the unification.

It is quite possible to use the full Π-σ clause framework of McSkimin and
Minker[18] to represent universal quantification as well, although it will add substan-
tially to the complexity of the computations.

To make the extension complete, it is also necessary to augment the query lan-
guage, so that queries such as that illustrated at the beginning of this section may be
formed. The key idea here is to allow var iables in the "where" part of HLU programs.
These var iables define an instance-by-instance environment for the action of the
where. As a concrete example, here is our example query expressed in this
extended language.
(where ((Jones = x) (y ∈ τu))

(insert ((∃ w ∈ τtelno) (R x y w))))

Here x is bound to "Jones", while y is bound to the universal type τu from the calling
environment, on a case-by-case basis. This means that, for every binding of (x, y)
satisfying these constraints, perfor m the insertion specified. (Of course, assuming
that Jones has a unique department, there will only be one such binding.) The"exis-
tence of w" statement in the insertion is converted to an internal constant, con-
strained to type τtelno.

There are, of course, many subtleties to this process which space limitations
prohibit us from expressing. However, the key point should be evident. It is possible
to extend the purely propositional framework descr ibed in this paper to a useful sub-
set of relational logic. Since resolution has a direct extension, so too do our algo-
rithms.
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