
Safety and Correct Translation of
Relational Calculus Formulas

Allen Vm Gelder*
Stanford Uruverslty

Rodney W Topor
University of Melbourne

Abstract 1 Introduction
Not all queries m relational calculus can be answered
“sensibly” once disJunctIon, negation, and umversal quan-
tlfication are allowed The class of relational calculus
queries, or formulas, that have “sensible” answers 1s called
the domaw Independent class, which IS known to be
undecidable Subsequent research has focused on Iden-
tifymg large decidable subclasses of domam independent
formulas In this paper we mvestlgate the properties of
two such classes the euoluoble formulas and the allowed
formulas Although both classes have been defined before,
we give slmphfied definitions, piesent short proofs of their
main properties, and describe a method to mcorporate
equa1lt.y

Alt 11o11gh cvaluable que~ ES have SC nslble answers, It
IS uot l tralghlforwartl to corii~~ilc them efiiclently or
correctly We Introduce relatronul algebru normal form
for formuLti flom whtch form the correct translation
mto relatlonal algebra 19 trivial We grve algorithms
to transform an evaluable formula mto an equivalent
nllowed formula, and from there mto relational algebra
normal form Our algorithms avoid use of the stxalled
Dom relation, conslstmg of all constants appearmg m the
database or the query

Fmallv, we describe a restriction under wluch every
domam independent formula IS evaluable, and argue that
evaluable formulas may be the largest decidable subclass
of the domam Independent formulas that can be efficiently
recogmzed

With the increased Interest m development of deduc-
tive database systems and mtegratlon of logic pro-
gramming languages such as Prolog with relational
database systems, It has become more important
that relational query systems be able to handle a
wider range of relational calculus formulas correctly
and efficiently In particular, disJunctlon, negation,
and universal quantlficatlon over subformulas, which
are excluded from the class of congunctrve querzes
[Ull80], should be available Current “mdustrlal
strength” lmplementatlons handle the class of con-
Junctlve queries well, but leave much to be desired
m the areas mentioned, we shall give an example
later In defense of these lmplementhtlons, we should
point out that the large maJolky of queries posed
by typical users to tradltlonsl databases fall Into the
class of conJunctlve quenes However, m sophIstI-
cated systems of the future we envlslon the queries
often being generated not by the user typing them m
at the termmal, but by a layer of software posltloned
between the user and the relatlonal database system
This software will access a large set of deductive rules
m addltlon to the user’s query m order to construct
relational calculus formulas The Nail’ project at
Stanford Umverslty [MUVG86] is Just one example
of several research proJects headed m this direction

*Supported by NSF grant IST-84-12791 and a grant of IBM
co1 p 2 Problem Statement and

Background

In this paper we shall be concerned with two main
questions
1 Which relatlonal calculus queries can be answered

sensibly?
2 How can such queries be answered?
For our purposes, answermg a query means evaluat-
mg a relatlonal calculus formula By “sensible” we
mean that values m any logically correct answer are
hmlted to values that appear m the query itself or m

313

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28659.28693&domain=pdf&date_stamp=1987-06-01

tlatab<ase relations mentioned m the query
Not all queries m relational calculus can be an-

sweled sensibly Two simple examples that cannot
be answered sensibly are

F(c) %f TP(Z)

G(~,Y) !zf P(x) ~Q(Y)

whele P and Q are database relations F(z) holds for
arbitrary t’s that are not m the database, and G(z, y)
holds for arbitrary y values when P(z) 1s true, and
we versa

In the followmg section, we describe previous
attempts to characterize those classes of queries that
can be answered sensibly

Evaluation of relational calculus queries can be per-
formed either by translation mto a set of clauses suit-
able for a Prolog interpreter [LT84, Top86, Dec86],
OI by translation mto a relational algebra expression
Here, we are concerned solely with the second ap-
plodCl1

‘1‘1nn~latlo11 of rt relational calculus query that
Iuclutles drsJunctlon and/or negation IS a theoretically
qolvcd problem [Ul180], p rovltletl the query is “safe ”
However, the practical dlficultles are such that
several commercial database query systems give
mtultlvely unexpected results on such queries

Here IS a “real life” example Essentially, a user
posed the query (we slmphfy the syntax)

select Rl name
from Rl, R2, R3

where RI name = R2 name
or RI name = R3 name,

.
and was quite surprised to find out that the answer
w* ml when relation R3 was empty, even though
there were matches between Rl and R2 This user
was even more surprised when the vendor clamed
t llat this behavior waq (orrectf In fact, the semantics
of QUEL [Ull80] do 5uppot t 1111s behclvlor, and several
\ysfcltl\ whose query language IS an outgrowth of
QUEL give ml answers

While the vendors are saved by the “fine print,”
which says that even though their language looks
llhe relational calculus, it is really a relational
algebra expression m disguise, the sltuatlon 1s hardly
satisfactory from the user’s point of view The
QUEL interpretation has only been proven to yield
correct translations of conJuncttve relational calculus
qu(~~c~ (defined below) [Ull80] The problems of
correct translation of more general relational calculus
formulas still need to be addressed

2 1 What ale the Problems7

Conjunctive queiy formulas are fhosc that I~\C only 3
and h (Equality can be replcsc>nled 111 coulunctlvc
queries by repetltlon of variables and substltut 1011 of
constants, for amphclty, we do not consider “bmlf-
m” predicates such as <, >, etc) The translation
of such a for, iula into an equivalent relational
algebra expression IS straightforward and well-hnown
Informally, A(rl, v, VI, zy) A B(u, v, y, z) becomes a11
eqmJom on the columns of u and V, and 3cA(r, I/, :)
beconir7 a proJcctlori lhat cliiimiclte4 the co111ln11 f01
2 Essenhally, all such formulas can be translated

The sltuatlon changes when we mtroduce dlsJuuc-
tlon and/or negation We intend to handle d~s~unc-

tlon algebraically by timon and handle uegatlon 1)~
set dtflerence For example, P(z, y) V Q(.I, y) can
be evaluated by P U Q, and P(z, y) A +J(z) can
be evaluated by P diff Q More generally, to have
a snnple representation m relatlonal algebra, both
operands of “V” must have the Same vanahlcs, wlult
negations must appear m the form A A -I? whcle 13 4
vanablrs alt a SubSCl of A’s [1Jll80]

These hmltatlons glvc 11s~ to 11l-l~~l1a~ctl C~IVY <I\
demonstrated by the two earlier exampler

F(r) g lP(,)
G(GY) !Zif J’(z) v Q(Y)

The two problems here, which are the mam problems
aside from handling equahty, are

l The terms of a disJunction do not have the same
set of free variables

l A variable m a negative atom 1s not limited m tts
range by positive atoms elsewhere m the formula

Once we develop tools to handle these problems,
then universal quantifiers will not present any new
problems, we will be able to rewrite VI as 4~1 at
the appropriate moment

The sltuatlon 1s really more complicated than II
might appear at first glance, because the p1oble111 111
a subformula can oflcu bc culc~tl by \0111c olllc~t p,lI 1
of the ovcr,lll fol1nul,1 Thus (‘v(‘il t llougll the qllc I y

G(z, Y) ‘!gf P(z) v&(x, Y)

1s definitely not “reasonable,” because It holds for
arbitrary y values when P(z) IS true, nevertheless,
the query

F(z) gf 3yG(z, y) E 3y(P(z) v Q(z, y))

may well be consldered reasonable The nalvtb
translation mto al(P U Q), where ~1 means “project
onto column 1,” piesents problems because lllc

314

“I” l,illC,ll I’ I I (2 III‘II\t CI I10 WI141 Ilowcwt~l, III tills

f*ld F(r) II,‘ <III (Cllllb III Ill If,1 I,,,

l+‘(J)= (l’(J)V3f/lJ(J,f/))

fol wh1c11 tl1c nCuve lranslatlon I\ corlcct, and IS
1’ u KI (&I

Our goal 1s develop d systematic method to dlstm-
gmsh the curable problems, such as the above, from
the uncurable ones, such as 3y(P(z) V Q(y)), and to
provide correct transformations for the curable ones

2 2 Plevlous Work

Thele have been several at tempts to define a “reason-
able” class of queries, I e , a class with the followmg
desirable properties

l The constants 111 the database and the query
provide a sufficient domain for the values m the
answer Formulas with this property are called
domazn zndependeni [Fag80, Mah81]

l ‘l%le IS cul efJLlcut way to decide If the query
formula IS “reasonable” and if so, to translate
the relntloiinl calciiliis formula into a relational
algebra explesslon whose evaluation gives the
correct answer

l There IS an efficient way to evaluate the resulting
relational algebra e\plesslon

The class of conJunctlve queries has these plopertles,
as shown m [Ull80], but this class IS rather limited
The class of domnzn zndependent foolmulas [Fag80,
Mak81], which by its definition 1s the largest class
havmg the first property Itsted above, represents a
generahzatlon of sufe formulas, mtroduced m [UllSO]
However, the domam independent class 11cas been
shown m [ND821 to be equivalent to the class of
definrfe formulas defined m [Kul167], and definite
formulas were shown to be not reculslve m [DIP691

Other researchers have subsequently proposed de-
cldablc, subclasses of domam mdepcndent formulas,
Iucludtng mnqe restrzcted formulas [Nlc82, Dec86],
eualuable formuld5 [l>em82], Ed ntlowed formulas
(Top80j Wr ~IVC thclr defiultlons latrl, ti we discuss
t1v2111

Of these, the evnluable formulas comprise the
largest class, but the tlefimtlon of this class m
[Den182] occupies three pages, Its complex defimtlon
mahes It unwieldy to work with, as evidenced by the
fact that It required ten pages Just to prove that it IS a
subclass of domain independent formulas, moreover,
there IS no attempt there to describe how to actually
evaluate evaluable formulas, 1 e , how to translate
them correctly mto relatlonal algebra expressions

The allowed formulas, although a strict subclass of
tl1e evaluable formulas, are the eastest (among the

nhove-mcntloned cln\ses) to trdnslatcb Into ~clat~onnl
,klghrn

‘I’lic i.mg(r(9lric 1f (1 lor~i~ul4.5 (OIII~I 14~ I IN , v,~lii
&IV foi rriul~ls tlhit Cile 111 dl5Juuctrve iioruhil IOI III 01
conJunctlve normal form [Dem82] 111 an nnportant
step toward practical evaluation, Decher [Dec8G] has
shown how to transform any range restricted formula
mto an equivalent’ range form that IS suitable for
Prolog-style “tuple at a time” evaluation

3 Summary of Results

In this paper we give a much simpler definition of
evaluable formulas With this simpler defimtlon, it
1s more feasible to prove propertles of the evaluable
class, and to see the relatlonshlp between allowed
formulas and evaluable formulas We show that the
evaluable class IS invariant under a set well-hnown
equivalences that can be used as rewrite rules (e g ,
DeMorgan’s laws), which we call co7~selvofzv~ trans-
formations This mvclllance make? It easy to see
that every evaludble formula CJI~ be couservatlvtly
rewritten m prenex-literal nolmnl form (Def 4 1)
However, the evaluable property 1s not always pre-
served under dlstrlbutlon of A over V or V over A

Using dlstrlbutlon IS apparently a necessary step to
put certain formulas into an equivalent form that can
be “transliterated” mto relational algebra This 1s
our motlvatlon for transformmg evaluable formulas
mto allowed formulas, which nre mvarlant under dls-
trlbutlon

One of our mam results 19 an algorithm that
transforms any evaluable formula mto an eqmvalent
allowed formula

Another mam result 1s that every allowed formula
can be effectively translated correctly mto a relational
algebra expression

At this point we should mention two propertles of
formula transformations (either mto other formulas
or mto relatlonal algebra explesslons) that we con-
sider unacceptable, and wish to dvold The first
property IS that the transformation does not neces-
sarlly produce a logically equivalent formula, but 1s
only guaranteed to do so if the input formula 1s a
certam class (such as the domam independent class)
This puts the burden ou the user of providing correct
input, or getting erroneous results with no warmng
The second unacceptable method 1s to exphcltly form
the so-called Dam relation, conslstmg of all constants
present m the database and the query Both these
drawbacks are present, for example, m the rewrite

1 By equrvalenl we shall always mean logtcally equ:valent

315

1 Ilk

-P(x, y) z Dom(x) A Dam(y) A -P(t, y)
-Domx Doln-P

130th of our transformation algonthms have the
dltrnctlve property that such tactics are not required

Fmally, we shall show that the class of evaluable
formulas IS the largest practical subclass of domain
independent formulas m a certain sense Essentially,
the domain independent class 1s not recursive because
a given formula may have a subformula that 1s super-
ficially not domaul Independent, but IS unsatisfiable,
hence IS actually domain mdependent (vacuously) ’
However, formulas m which no predicate symbol IS
repeated cannot possibly have unsatisfiable subfor-
mulas We show that formulas m this class are
evaluable 1f and only 1f they are domain independent,
and discuss the lamlficatlons

4 Notation and Definitions

We assume the leader IS familiar with the standard
notation and terminology of logic, relational calculus,
and lclatlonal algebra [Man74, U1180] We shall
ahbicviate “lirst order well formed formula” to
fo7v,aln, and “atoiiiic formulcl” to atom A ltteral
IS either an atom or 5 negated atom We assume the
absence of function symbols (other than constants)
throughout We shall use P and & to denote
predicate symbols or atoms that correspond to a
database relation, we call these edb predicates We
use A, B, to denote formulas and subformulas,
we use a, , d as constants, u, , z as variables,
and s and t to represent a term that may be either a
vailable or a constant

We adopt a sort of vector notation i to denote a
We (21, , zn), where n may be zero Thus the
notation A(z, y’) denotes a formula m which I 1s a
flee variable and there are zero or more other free
variables yz that are of interest, m add1tlon, A may
contam still other free variables that are not currently
of interest

In a smular vein, we write Vii! for t/ccl Vz,,, and
wllte 35 for 3r1 3zc, We also use “%” as a
“quantlfkr variable,” standing for either V or 3, or
m the caSe of %Z, for a specific slrzng of (posstbly
mlued) quantifiers We assume that no quantified
variable occurs outside the scope of Its quantifier,
I e , WC avold (3zA(z) A 3rB(t)) and use instead
(3slA(a) A 3~2B(22))

We shall use 3 to denote logical equivalence and +
to denote logical lmphcatlon, both denote relations
between formulas, not symbols within formulas In

2The sltuatmn I$ not this simple, but this 8s the central rdea

addltlon, dsr IS often used to mean “IS defined ag”
to give names to formulas We otcaslonnllv use “[1”
as synonyms for “()” for readabdlty

We adopt the usual defkutlons ([Mau74], ctc) for
prenex noiinal form, conpnrtlue noimal form, and
d:spritcltve irormnl form, whch wc abbrc~vlalc to
PNF, CNF .LII’ IINk’, rerpectlvcly WC 411all &o
introduce relattonnl algebra normal form, abbreviated
RANF (See Def 9 2) In addltlon, we shall have
several occasions to 1efer to the following normal
form

Definition 4.1 A formula 1s said to be m p?ener-
lrterol normal form (PLNF) 1f it 1s 111 PNF and all
negations are lmmedlately above the atoms (This IS
sometimes called uegatrve normal form) 0

As usual m the context of normal forms, we regard
A and V as polyadlc operators tahmg zero or more
operands, with zero operands, A() s irue and V() z

f&e A clause 1s a conJunctlo of hterals 01 a
disJunct~oi1 of lltclals

5 Evaluable aud Allowed Classes of
Formulas

In this scctrou we define the classes of edunblc
form&s and allowed formulas, and give some of
then properties The term evaluable 1s due to
R Demolombe [Dem82] We use the same term
because the class 1s the same, although our defimtlon
IS different Actually, there 1s a mmor difference 1n
that we treat 1: = c, where c 1s a constant, as though
1t were z 2 c, where 2 1s an edb predicate, m effect,
this case 1s not mentloned m [Dem82], but could be
incorporated easily

5 1 The gen and con Relations
To define evaluable and allowed we first need to define
certam relations between variables and (sub)formulas
We have chosen the names gen and con fo1 these hey
lelatlous They are abbrevlatlons for generated and
conszsient Our relation generated 1s called resfrzcfcd
m [Dem82] and pas in Top86, to avoid tahlng sides
we have chosen a third name Also, our constdmf 15
slmllar to, but not qultc the same as, wh& [l)em8J]
calls posrttve We prcfel to use the terms poszlzve
and negatrve to describe the polarity of atoms or
subformulas w1thm a formula As mentloned before,
a subformula IS consldered to he posztzve 1f 1t falls
under an even number of negations, and negatzve 1f 1t
falls under an odd number

Definltlon 5 1 The essentials of the defimtlons for
gen and con are presented 111 Fig 1 In a rule fo1mat

316

gen(t, P) if e&(P) & jree(z, P)
gen(x, 2 = c) if cons2anl(c)

gcn(.t, ‘A) if pushnot(~A, B) Rr. gen(z, II)
‘/f n(s, 3yA) If d~/tncl(r, ?/) k qcn(z, A)
f/C n(r, VT/A) lf dzs/zncl(z, 1/) s(q(II(J, A)
grw(~, A V U) If gen(z, A) & gev(x, 13)
gen(s, A A B) if gen(z, A)
gen(r, A A B) if gen(z, B)

con(5, P) d e&(P) t free(2, P)
con(x, 2 = c) d conslan2(c)

con(z, A) if notfree(c, A)
con(x, ‘A) If pushnot(--A, B) & con(z, B)
con(x, 31/A) If dmttnct(t, y) & con(+, A)
con (3 , S/A) lf dlhzct(r, y) & coqz, A)

con(x, A V B) if con(z, A) & con(~, B)
con(x, A A B) if gen(t, A)
con(x, A A B) if gen(z, B)
con(x, A Al?) If con(z, A) & con(z, B)

Figure 1 Definltlons by rules of gen and con

snmlar to a Prolog program 3 We Intend that the
relations gen and con hold only when they can be
estabhshed by a fimte number of apphcatlons of these
rules 0

Read the & ‘s that separate subgoals (to the rlght
of the “ If “) as “and” For example, the first rule
reads, “x IS generated m P d P IS an edb atom, and
ir IS free m P ”

%cral predicates appear m these rules to support
111~1 tl&nltlons of gen dnd (011 We 1nt~t1t1 that they
IW

.

.

.

.

.

Ilttchrpletcd ZB follows
edb(P) holds pleclsely when P 1s an atom whose
predicate symbol represents a database relation
free(x, .4) holds when variable t occurs freely m
formula A
dzstrncf(x, y) holds when x and y are different
variables
constant(c) holds when c IS a constant
pushnot rewrites its first argument mto an equlv-
alent formula wlthout “1” at the top, by applying
DeMorgan’s laws, changing 73 to VT, or chang-
mg + to 31, it falls when this 1s lmposslble,
1 e , when A IS an atom The second argument
becomes the transformed formula when pushnot
succeeds

Intultlvely, gen(z, A) means that A can generate
ail the needed values of x, as though It were a
database relation In other words, A holds for only a
finltr set of values of x (assummg fimte edb relations,
of course)

Lemma 5.1 For every variable t and formula A,
gen(c, A) nnphes con(z, A)

Proof- Use structural mductlon on the subformulas
OfA 1

3Prolog eognoscentr are warned not to take the syntax too
ser~owly, I and y are still to be mterpreted as varmbles

Example 5 1 The converse to Lemma 5 1 IS false
In the followmg, con(z, A) holds but gen(z, A) does
not hold

A gf P(x,Y) v Q(Y)
A ef ~Q(Y)

Note that z need not appear m A q

Intultlvely, con(z, A) means that for any asslgn-
ment to other variables of A, say y’ = &, either

l A can generate all the needed values of L, or
l ,4(x,&) holds for no z, or
l A(z,&) holds for all E

Figure 2 shows a geometric mterpretatlon of con
If con holds for all the free variables of A and the
underlying edb relations are finite, then the set of
points where A holds can be represented as a finite
collection of pomts, lines, planes, and hyperplanes

Also, from a logic programmmg vlewpomt, we
can think of A as a goaI that may succeed without
mstantiatmg all of its arguments

5.2 Evaluable and Allowed Formulas
Definition 5 2. A formula F 1s evaluable or has the
evaluable property If and only If

l For every variable x that 1s free m F, gen(r, F)
holds

l For every subformula of the form %A, con(z, A)
holds

l For every subformulaof the form VzA, con(z, -A)
holds

Cl

Defimtion 5.3: A formula F 1s allowed, or has the
allowed property d and only If

l For every variable x that IS free m F, gen(z, F)
holds

l For every subformula of the form %A, gen(z, A)
holds

317

Figure 2 Geometric lnterpretatlon of the con prop-
erty for A(x, y) d&f P(x) V Q(y) V R(z, y)

l For every subformulaof the form VtA, gen(z, 7A)
holds

0

Rather than p1ove that our clefinltlon of evaluable
yields the same class as [Dc11182], it IS easier t0 JUSt re-
pi-o\t tlie important plol)t~ ties of tlic class We shall
show tJ1at cvcly (v,llunble fol1nula (and 11cnce every
allowed fornlula) 13 do1na1n independent m Section 10,
after developing some more machinery

Theorem 5 2 Every allowed formula IS evaluable

Pxoof Immediate from Lemma 5 1 1

Example 5 2 The converse of Theorem 5 2 xs false
The followmg formulas are evaluable but not allowed

F(Y) !Zf %P(x, Y) V Q(Y)) A +(Y)I
G - def 3yVx(7P(x) v S(y, 2))

With appropriate interpretations of P and S formula
G corresponds to the questIon, “Does some supplier
supply all parts?”

Also, note that removing the outer quhntxfier makes
both F and G not evaluable The problem with the
apparently 11al 1nless variant, “What supphers supply
all pa1 ts t” IS that If P(x) 19 empty, then G holds for
arl11t1ary y 0

5 3 Equality m Evduable Formulas
The definition of evaluable 1n this se&on adopts a
“middle of the road” approach to equahty It IS quite
conservative with respect to equality between two
variables, smce gen(x, x = y) and con(x, x = y)
11ever hold Formulas satisfying Def 5 2 may be
said to be stract sense evalunble In Appendix A we

describe transformations that remove 111nny 1114tdnces
of such equaht1es, and yield an “ccl11~\11ty ieduced”
folm We call formulas that can IX transformed into
evaluablc forlnulas by mcany oft httsc t1 ,IIIS~OI n1a1 IOUY
wade senw tvnlunble

On the olhcr liautl, dt~f1111iig (I(/I(I , J L t) lo holtl

involves goiug beyoid sl1 Ict rt~l,1llo11,ll t nit ulus ran
defined III [Ull80], 1n that I& allowz “dl~t~n~hod~ed”
variables into a formula tl1at do 11ot appea1 111 any
edb atoms One way to Justify thrq 15 to assume that
the underlying query answermg \y<ft~n will (III t~ffcct)
form a relatloii on the fly, call it 2, cant C~~~i~i~g tuples
(c,, cI) for the constants ct that appear ii1 tlie queiy
Then the system treats x = c as though 1t were x 2 c,
an edb atom It 1s easy to adapt our methods to
systems that lacl, this capab111ty Smlply ltmove the
rules for gen(x, x = c) and con(x, x = c) 111 Figs 1
and 5 and treat x = c like x = y tl11oughout

Allowmg x = c IS the only way to babe values 1n
the answer that were not 111 the tlat,1haac Such bCcllues
might se1ve as defaults For e\anlplt>, if’ 1’ 1eprc$ents
part and S rep1esents wpplzes, the11

p(x) A (S(?/, 3) V (t/z+(z, J) A t/ = non(‘))

appears to Iw a plau~iblr tlwrq 111,11 d <v4t\111 4ioultl
linndlc

6 Conservative aud Distributive
Transformatious of Formulas

In this section we study the effects of various
logical transformatlo11s on the evaluable and allowed
properties of formulas, w1tl1 a view Lo ideutifymg sets
of transformations under which these properties are
invariant

Figure 3 shows some standct1d equivalences that
are frequently useful to manipulate formulas [AcbG8,
Man741 Note that they preselve the number of
atoms, and hence prese1ve the number of binary
logical operator4 We show tl1al the evaluable
property 1s 1nva11nnt untlel transfolmatlons based on
these 1de11t1tles

Defimtxou 6 1 WC say 111& G lb ‘1 COH~C~ IJ~/HJC
tr4n9forvrnlwr~ of P if C: can bt oI~l~~nt~l I)y ~t~pl,~c~rig
asubformulaof~ ~ccoidmg to o11c of the equivdle11ces
1n F1g 3, or by a series of such replncements 17

Lemma 6 1 The relations gen dnd con defined 111
Fxg 1 are 1nvar1ant under conservative transforma-
tions ((El-lo) of F1g 3) ‘I’llat IS, 1f G(y) 1s a conser-
vative transformation of F(y), tl1en gen(y, $‘(I/)) *
gen(y, G(y)), and similarly for tort

318

%xA(x,G) E %vA(v, y’)
Vc(A(z) v B) f VzA(z) v B I:;;
3.~(A(z) A B) E 3zA(z) A B w

3r(A(z) v B(s)) z 3qA(q) v 3z2B(z2) (E9)
Vz(A(x) A B(z)) E VzlA(zl) AVzzB(z2) (ElO)

Figure 3 The equivalences upon which conservalzve
/rcrss~onna~~ons are based “%” stands for 3 or V

AA(OVC) z (AAB)v(AAC) (Ell)
Av(BAC) G (Av@A(AvC) (E12)

~J(J = I/ A /I(.L,I/)) G A(?/,?/) W3)
V4r # Y v l(cv Y)) = 4Y,Y) (3314)

I I~IIIC 1 01hc1 useful equivalences dlstrlbutlve laws
dnd cqualltj c+inmatlon We use 2 # y to abbreviate
-1 =y

Proof ‘l’h~b 1s merely a matter of applying the
tlefinltlons roar example, suppose (ElO) apphes, 1 e ,

f’(~, Y) % ‘WA(z, Y) A B(z, Y))
G(z,y) %’ V~~A(~I,Y)AV~~B(~~,Y)

((1 111~ly bc &sent from A or B) If con(y, F(z, y))
I~oltls, then con(y, A(z, y) A B(z, y)) &o holds, and
<It Ic;lst one of the followmg three IS true

gen(y, A(z, y)) holds Then gen(y, VE~A(Z~, y))
also holds
gcv(y, B(.I y)) holds Then gen(y, V~B(z2,y))
niso hold>
IMh ton(y, A(z,y)) and con(y, B(P, y)) hold
‘l’hru coniy, VzlA(zl, y)) hntl con(y, VszR(22, y))

. . .
A0 lloltl

And $0 cov(y, G(c, y)) IS seen to hold The other
tlucctloll nutl other cases are similar 1

Thcorcnl G 2 If A IS evaluable and B IS a conser-
vative transformation of A, then B 1s evaluable
Proof (Sketch) The only cases not handled by
Lemma 6 1 mvolve moving the quantifier for the first
argument of a con by means of (E7-10) 1

Colollal y G 3 Every evaluable formula can be con-
servatively transformed mto an equivalent evaluable
IOIIIIIILL III I’LNl (Def 4 1)

Corolhy 6 4 Awry cv,dual~lc forntula can be con-
wrvnl IV{ ly 1 r~~rd0rtrw~l 11110 racy ~~qu1vJrnt evalunblr
formuln lhnt corithlns no universal quanllhers nntl
has negcltlons only mmledlately above atoms anti
existential quantiers

Example 6.1 The nllowed property may not be
preserved by the conservative transformations (E7-
8) Thus, allowed formulas do not, always have a
conservative transformation into prenex normal form
E g , the allowed formula

3zA(z) V B

can be conservatively transformed to

3s(A(z) v B)

which 1s not allowed 0

Although the dlstrlbutlve laws, shown m Fig 4,
cannot be applied Intllscrlmlnately, sonw popcrf ICS
are preserved III some (<we\, <IS dcscrlbcd III t IIP nt~t
lemiri,i

Lemma G 5 ‘l’he lelatlou con defined m Fig 1 15
invariant under (Ell) of Fig 4 (“pushmg an&)

That IS,
con(x, A A (II V C))

if and only If

con(z, (A A B) V (A A C))

In addition, gen 1s mvarlant under both dlstrlbutlve
laws (Ell-12) of Fig 4
Proof (Sketch) Case analysis, using the delimtlons
I

Example 6.2. As pomted out m [Dem82], “pushmg
ors” (E12) does not always preserve con For
example, consider

F +? P(z) V (Q(t, T/) A in)
G gf (P(z) V Q(c, y)) A (P(z) V 7R(y))

Here con(y, F) holds, but con(y, G) falls 0

6.1 Invariance of Allowed Formulas under
Distribution

In Section 8 we describe an algorithm to transform an
evaluable formula mto an equivalent allowed formula
One motlvatlon for this transformation 1s that the
allowed property IS preserved by the dlstrlbutlve
laws, whereas the evaluable property 1s not The
final translation mto relational algebra normal fol111
(Section 9) frequently requires apphcatlon of the
dlstnbutlve laws

319

Thco1em 6 6. If A 1s allowed and B 1s obtained
from A by either

l a distributive law transformation (Ell-12) of
F1g 4, or

l a conservative transformation except for (ET-~),
then B 1s also allowed

Proof. The dlstrlbutlve laws are immediate from
Lemma 6 5 The rest 1s similar to Theorem 6 2,
except that we need to check that the needed gen

relations are present when (E9-10) are used

Example 6 3 The following formula shows that
“pushing ands” (Ell) d oes not always preserve the
cvaluable property Let F(z) ef V23yA(r, 21, z),
where

A(JG Y, 2) !Zf R(Y, z> A (Q(z) V --P(z))

Since

~A(x, Y, 2) = -(Y, ~1 V (-Q(x) A P(z))

we have con(t, lA), as required for F to be evaluable
Pushing the “and” gives

B(z, Y, z) !Ef (R(Y, 2) A Q(z)) V (R(Y, 2) A +(,))

and the corresponding G d!* Vz3~B(z, Y, ~1
However, con(t, ‘B) does not hold, so G 1s not
evaluable The problem 15 that “pushing and” m A
15 the same as “pushmg 01” (E12) 1n 1A This 1s the
one d1stnbut1ve t1ansformatlon that may not preserve
con cl

7 Range Restricted Formulas

Range 1estr1cted formulas are based on d1sJunctlve
and conJunct1ve normal forms, and represent one of
the first decidable subclasses of domain independent
formulas to be studied [N1c82] Putting formulas into
normal forms requires the use of dlstrlbutlve laws
(Ell-12) of F1g 4 S 1nce the distributive laws do
not always preserve the evaluable property, 1t 1s not
too surprising that certain evaluable formulas become
non-evaluable 1f we simply put them into DNF 1n
an attempt to make an equivalent range restricted
formula, as shown by Example 6 3 However, we
show that every evaluable formula (and only those)
has an associated paw of formulas 1n DNF and CNF
that satisfy conditions quite similar those required
for range restrlcted formulas This theorem provides
an alternate recognltlon mechanism for evaluable
I-01 lllll1;1~

Let M’ dZ* (C1 V VC,,,) be the conJuuct1vcx IIOIIII~~

form of M constructed by applymg the rhstlll)utlvc\
law (E12) of Fig 4 Then F 19 rclnqe resfrzckd If lh(b
follow111g propcrt1es hold
1 For every free vn1lable 2 1n !‘, 2 OCCUIS in <I

positive atom 1n every U,, I e , gen(z, M) holds
2 For every ex stentially quantified va11able 3 111 F,

z occurs In a positive atom iii eveiy D, iii whicli

1: occurs, I e , COR(Z, M) holds
3 For every universally quantified varlablc L III k’

t occurs III a negative ato1n m every C; 111 which
I occurs, 1 e , con(~) 7M’) hold-

0

Item 3 111 the above defm1t1on wss stated ~omewhnt
d1fl?rently 111 [Dem82]
3’ For every universally quantified variable I 1n l’, 1f

z occurs 1n any positive atom, then there IS some
clause 0, such that every atom of Dj IS negative
and contains 2 (Either COR(X, ~0%) holds for
all D, 01 gen(z, -0,) holds for some U, , 1 e
con(t, -M) 11olds)

The equivalence of the two defin1t1onT follow5 f1oul
Lcm1nd 6 5, since TM’ 15 obtamed f1o111 7 \I b\
pushing and’s (El 1)

Theorem 7 1 (Demolombe [Dem82]) Let f he a
formula 1n disJunct1ve norinal form The11 F I$
evsluable 1f and only 1f F 1s range rcstl I(tc~l

Proof Immcd1ate flom the definltlon, lJ~~n~n~~l 0 I 1
and Lemma 6 5 1

Demolombe observes that a srtnllal result holds fat
formulas 1n conjunctive normal form

Tl11s theorern can be general1xttl ! o ‘apply to ,111
evaluable formulas

Definition 7 2. Let cnf(F) (resp , dn/(F)) be the
conjunctive (resp , d1sJunctive) normal form of foi-
mula F constructed by applying conservative trdus-
formations and distributive law (Ell) (1esp (EI’L))
cl

Theorem 7 2 Let F be a formula w1tl1

dnf(F) ‘Gf %Z!Md d2f %l(Dl V v On)

cnf(F) dZf %Z’M, dgf %Z(Cl A A cm)

Then F 1s evaluable 1f and only 1f the followmg
properties hold
1 For every free variable z m F, t occurs 11~ a

posl(lw id0111 iii every D,, I e , qe7t(J , Md) hold<

2 For ~cly ~XiStClif Idly cjllall~l~l~Y~ V*ll IAbb J III

fh/(l~‘), s OCCIII~ in h pwil~vc~ dtotii III w rv I),
,,I \vlltc~, .I oar,,,‘, I (, CO/t(J, A!,/) II~d~l

320

3 For every universally quantified vallnble z m
cnf(F), s occurs 111 a negdtlvc &om m every Ck
III whrc II J O((1114, I (’ , WI(S, 44,) holtls

1’1oof (Skc I(II) ‘l’h((,r(III 0 2 cmd 1,~ IIIIII~L 0 5 Jlow
115 to put If’ lilt0 prc ncx-lltrrnl notmnl form (Dcf 4 1)
Cr~~tl push and’s m A4, wlt~lc prescrvmg gel, and con
I’ushmg or’s III A4 15 III(, tlunl ofpushmg ,md’s m TM

1

Agam we remark that &f(F) and cnf(F) may not
themselves be evaluable, as shown m Example 6 3

8 Transformation into an Allowed
Formula

We now describe a plocedule to transform any
evaluable formula mto an equivalent allowed formula
The approach used m [Dec86] to convert a range-
lestrlcted formula mto “range form,” which 1s nearly
the same as “allowed,” can be generalized quite nicely
with the ald of the yules for gen and con 111 Fig 1

The bns~c ttlc,r 13 lo Jtl n 1 Iiild argunicnt G to gen
<III~ (or), NIII(II f1111cl10ns <L\ a “gciicihtoi” of sorts
‘I III> ~t~otl~l~~~l rules nie 41own III Ylg 5 (I(z) will
I)t, a dlsJunctlon of cert,lm atoms 111 A, either edb
or of the forni .c = c (Hoth A and G may contam
other vnrlnblcs besldes 2) We bee that Ihe G m the
conclusion, 01 bend, of each rule IS mherltc\cl naturally
from the sul~go~ls The G m con IS slmllar, except
we need to plovlde for the posslblhty that z does not
even occur m d For this, we mtroduce “I” as a
placeholder, it may be thought of as a one place edb
predicate whose relation is always empty

Defimtlon 8 1 For any formula G, not necessarily
contammg 2 and possibly contamlng other free
\allables, &G(z) denotes G with all variables except
a e\lstentlally quantified, except that El*1 denotes
f&e IJ

Dduutlou 8 2 The oper&on of trnlh v&r srmplr-
jrtn/~~ (OMS~S of applying the followmg simplifica-
IIOIIS to Cl fornmln as long as posslblc

-7false -+ tiue -hue -+ false
A A false -+ false A A true + A
A V false -+ A AV true -+ true

7ooL false + false ?&!rue + tme

0

The followmg lemma partly motivates the defim-
tlon of the third arguments of gen and con

Lemma 8 1 Let gen be defined as 111 Fig 5 Let L
be any varlablc and A and G be any formulas 4uch
thal ~cn(~, A, G) holds Then

3 * A(L) + 3 * G(a)

In other words, in any intelprctat~on the set of value5
of 2r for which A(z) holds 1s a subset of those fog w111ch
G(x) holds

Proof: Straightforward by structural mductlon, ob-
serving that VyA =S 3yA 1

In the followmg algorithm genzfy(F) we describe
the local transformation that, when repeatedly ap-
plied, makes an evaluable formula mto an allowed
formula with respect to all of its bound valuables
Beforehand, we check that gen(z, F) holds for each
free variable c, and replace Vy by 73~1 throughout

Algorithm 8 1: genify(F)
INPUT A formula F with no universal quantifiers
such that gen(z, F) holds for all free variables x m
F
OUTPUT An nllowctl fornml,l cquIv&nt lo E’, OI a
message that F 1s not evaluable
PROCEDURE

1 Let F be of the form 3xA, where z may not appeal
m A and A may have other variables as well

(4

lb)

(cl

(4

If gen(z, A(r), G(z)) holds, there IS notlnng to
do here, set Fl dsf F and contmue at (3)

If con(x, A(z), G(z)) does not hold, then F IS
not evaluable Issue an error message and halt

If x 1s not free m A (detected by G = 1), then
set Fl d&f A and continue at (3)

If con(z, A(z), G(z)) holds (but gen does not)
Recall that G is a disJunction 9 V V Pk

of atoms that appear m A Let R be the
new formula that results from replacing each
occurrence of 9, , Pk in A by false, and
carrying out trutll value simphficatlons 4 Set

FI d&f 343+G(c) A A(z)) V R

and continue at (3)

2. If F IS not of the form 3xA, set Fl dgf F and
continue at (3)

3. If Fl 1s an atom, return Fl, otherwise, recursively
call gen& on each prmclpal subformula of FI,
and return the combmed results That IS, if
Fl dsf AVB, then return genzfy(A)vgenzfy(B),
etc

4Quentdied vanables m A are given new names m R, of
course

321

gen(x, R P) of edb(P) k fee(x, P)
gen(x, x = c, x = c) if constant(c)

gen(x, -4 G) d puslrno2(~A, B) & gen(x, B, G)
gen(x, 3~4 G> if drshct(e, y) dz gen(-, A, G)

gen(x, VYA, G) if drs2rnct(x, y) & gen(L, A, G)
gen(x, AV B, GI V G2) if gen(x, A, GI) 8~ gen(z, B, G2)
gen(x, A A B, G) if gen(x, A, G)
gen(x, AA B, G) if gen(x, B, G)

con(x, P, P) if edb(P) & free(x, P)
con(x, x = c, x = c) if con&ml(c)

con(x, A, I) if notfree(x, A)
con(x, lA, G) if pushnol(~A, B) Sr con(x, B, G)
con(x, 3yA, G) if dastanci(x, y) & COH(.C, A, G)
con(z, VyA, G) if drslrncd(x, tj) & IW(J, A, <:)
con(x, A V B, GI V G2) if CON(X, A, G,) & COll(d, 11, CiJ)
con(x, AA B, G) If gen(z, A, G)
con(x, -4 A B, G) If gen(z, B, G)
con(x, A A B, GI V G2) d con(x, A, GI) & con(x, B, G2)

Figure 5 Expansion of &es for gen and con to produce “generatols ”

cl

Lemma 8 2 If F IS evaluable, then after Step Id of
Alg 8 1

1 gen(r, 3*G(x) A A(x)) holds
2 R does not contam x

3 If y 1s free m 3xA, then gen(y, R) holds

Proof It 1s obvious that gen(x, G(x)) holds, from
\\lll(II (I) follows

USIII~; 11~ [‘ICI, thnt LOU(C, A) holds, It IS c’dsy
to show by structural mductlon that during truth
value slmphficatlon each subformula B of A for which
gen(x, B) holds evaluates to false Thus for all B
that do not evaluate to false, con(x, B) holds and
gen(x, B) does not That R does not contam x
follows easily

Item (3) 1s eastly verified by consldermg a conserva-
tive transformation of A m which the only negations
are immediately above atoms By structural mduc-
tlon, it can be shown that for every subformula B
such that gen(y, B) holds, either B evaluates to false
or gen(y, B) still holds 1

Lemma 8 3 Let A(t), G(x) and II bc d\ &scrlbrd
III Alg 8 1 Tlwn A(Z) f (34(s) A A(x)) V II

PiooF Let

Al(x) dSf &G(x) A A(x)

A2(x) sf BIG A A(z)

Clearly A(x) E Al(x) V AZ(Z) But R - AZ(Z) [

Theorem 8.4 Every evnlusble formula can be effeec-
tlvely transformed mto an equivalent allowed form&
Proof By Alg 8 1 and Lemmas 8 2 and 8 3 1

It foltows r~i~li~cvl~drly ftmi ltils lhc~orcili d,~id

‘I’hrorf~rti 7 I tlinl cvcvy 14.iigc tostrldd f01 liliitn (~II

also bc efFec.tlvcly ~rausformed into JII cqulvknt
allowed formuln In this special case, 0111 plocedule
reduces to a shght variant of Decher’s, whele &G(z)
plays the role of range expresszon and R 1s called the
rematnder

Fmally, we observe that the expanded rules for gen
and con have some nondetermmacy for conJun&ons
the G of either conJunct can be adopted when gelI
holds for both This choice represents an opportumty
for optimization

9 Translation into a Relational
Algebra Expression

wr IIOW (Icv ril)v ,I I)rocvtl~ii(~ lo I i,1i14l,blc lily
<lllowcvl lOI 111111~1 II110 .,,I cqlrlvdc III I(Iall l(J11 II <II,g’ IJld

322

(~p~css~on In combmatlon with the transformation
of Ihc pamx~s qectlon, this allows any evaluablc
Ir,i i1111l.i IO IM Ir~l~dnlc~l into au c~qulvah*nt r&ttonal
tip l,l#I (\1,1(‘7101,

I’IN I1.111~1.1l1011 ~““‘w1111~ Ilds Iwo Illrllll pllcw

II dii5fot Ill.11 IOII 01 I Ilo dlowccl lormula into dational
,~lp,cl~~ IIOII~J~~ form, nntl translation of the normal
lortii inlo d, rclal~onal algebra expression

9 1 Relational Algebra Normal Folm

To facilitate defining relation algebra normal form, it
IS convenient to define two types of formulas

Definition 9 1 We define D- and G-formulas m
telms of atoms and each other as follows

l A D-formula JS one of

- a G-formula

- n A ‘G, where D IS a D-formula and G IS a
G-f01 mula

- /)AL = 7/01 IIAL # ~1, where I1 14 a I)-formula
(IIC c.111 I Ikll 3 # ?/ <rlhlcvl.LIc~s -7.r = ?/)

<I (oii~iriic I IOII 11, A I) of I)-foriiIiIh.9

. A C;-formulf6 IS OllC 01

- an edb atom J’

- an atom of thr form 2 = c (treated as an edb
at0111 1 2 r)

- 3yD, where D JS a D-formula contammg y

- a dlslunctlon G1 V Ga of G-formulas

D- and G-subformulas are subformulas that are D-
and G-formulas respectively q

Defimtlon 9 2 A formula F IS m relaltonol algebra
nonttnl Joln1 (RANF) If it IS a D-formula and
1 For each G-subfolmula of the form Cl V Ga the

same v,u I,bhles me free In GJ and Gz
2 For cnc II Ihul~forn~uln of IIIC form /I A -C; the

IIW C~II 1~11h of (; .lr(a ,I 41tl)d oft IIC free vanablcs
of I)

3 I~OI (W 11 D-subformula of I Ire form U A a! = 1/ or

D A 2 # 11 1’ and y arr free 111 D

cl

Lemma 9 1 Every RANF formula IS allowed

Proof Clearly gen holds for every free variable m
every D- and G-subformula of an RANF formula 1

Example 9 1 The converse of Lemma 9 1 JS false
Not OJJIY are the followmg allowed formulas not m

RANF, but no conservative transformation of them
yields an RANF formula

P(r, Y) A (Q(J) V NV))

0

9 2 Transformation mto RANF
We now present a straightforward algorithm to
transform an allowed formula mto an equivalent
RANF formula In terms of producmg a small RANF
equivalent, we acknowledge that this algorithm 1s not
the last word on the subject, but it demonstrates
feaslblhty and JS easy to prove correct

Algorithm 9 1 ranf(F)
INPUT An allowed formula F
OUTPUT An RANF formula F2 equivalent to F
PROCEDURE

1. Repeatedly apply all possible tr~nsformatlons of
the following forlri

2

--A - A (‘VI)
+iAB) ---,dv~R u-4
l(AvB) --daub (T3)

‘itA(- GISTA (T4)
WA(z) v B(+)) - 3uA(u) V 3vB(w) (T(J)

AA(BVC) --+(AAB)v(AAC) (Tll)

Call the resulting formula Fl
Starting with Fl, repeatedly apply the followmg
transformations from the top down wherever
possible
For each subformula

G dSi Cl A A c, A A c,,

where some variable z JS free m C, and gen(z, C,)
does not hold, find a conJunct C,(z) for which
gen(;r, C,) does hold (powl~lc because tile for-
mula is allowed) If I > 3, niove C, Just to th
right of C,, but we COIJ~IIIIJC to call the COJJJUIJC~

for wl1lc11 gen fcllls C, Now of C, d&f 13yA(x, y),
then rewrite

C, gf dyA(c, y) - 73y(G(z) A A(%, Y)>

If G has no free variables, then every conJunct
C, may be negative In this case, to ensure a D-
formula, rewrite

G --+ true A G

Call the resulting formula Fz, and output it

323

0

Lemma 9 2 After Step 1 of Alg 9 1, the resulting
formula Fl has the followmg properties

kll E F and IS allowed
Fl has the folm Zi)l V V II,, where m > 1 and
every L)n has the folm dcscr~bcd 111 (3) TIIN 14
the only place where dlqunction occurs in F,
Each DL m (2) and (4) has the form Cl A AC,,
(n 2 1 and varies with L), where each C, has the
form of (4)
Every C, m (3) has the form E, or YE,, where E,
1s either an atom, or 1s of the form 3yDk, where
DL has the form of (3)

Proof Each rewrite rule (Tz) IsJustified for property
(1) by equivalence (Ez) and Theorem 6 6 Since no
(Tz) IS applicable m Fl, plopertles (2-4) follow 1

Lemma 9 3 After Step 2 of Alg 9 1, the result-
lug formula Fz 5 Fl , preserves properties (l-4) of
Lemma 9 2, and has the followmg additIona prop-
rrty
5 For every subfolmula Cl A A C,, of F that

I< rn,~~rnal (I e , not ~mn~etl~ntely under clnothcr
A), of cc E fiec III C, and gen(s, C,) dots not
hold, then thelc c\l\ts C, with 7 < 3, for which
gm(2, Ct) does hold

Proof The rewllte lulc m Step 2 of Alg 9 1 pro-
duces an equivalent formula because of the identity
A A -B f A A -$A A B) Property (5) 1s achieved
because the formula being operated upon IS always
allowed 1

Theorem 9 4 Alg 9 1 transforms any allowed for-
mula mto an equivalent RANF formula

Proof Straightforward from properties (l-5) estab-
lished m Lemmas 9 2 and 9 3 In particular, If
cl A A C,, IS a subformula of F, then each prefix
Cl1 A AC, for z 5 11 IS a D-formula m

9 3 From RANF to RelatIonal Algebra

The translation of a formula F m relational algebra
normal form mto an eqmvalent relatlonal algebra
mprf3ion IS quite stialghlforwnld, the basics are
grvc II III [Ull80] However, 11 15 unucces+uy lo form
the Uom relation mentIoned there, which includes
all constants m query and the database Because
A V B only occurs when A and U have the same free
variables, we can simply use ‘~lnton (possibly after a
column permutation) Also, negation only appears
as A A -B, where B’s free vanables are a subset of
A’s, permlttmg the use of a generalized set difference
operator

Definition 9.3. The relational operation generaked
set drflerence, P difl Q, yields the set of tuples m P
whose proJections are not m Q That IS,

PdlffQ-P-r(PwQ)

where the (eql’i-)JOIII IS on lhr (o~npon~nls of CJ
(which 111115l be a subset OT thoscx 01 I’), ,III~ t11~
proJectIon 14 onto the components of P If Y did Q
have the same arlty, then P cliff Q IS simply P - Q,
possibly after a permutation of columns •I

Although we have defined P dlff Q m terms of
prlmltlve letatlonal operators, it should be mple-
mented as a prnnttlve m its own light, usmg tech-
niques similar to those used for efficient JOTS (Iu fact
we believe that dlff 1s also called nail-~otn) Thus wc
heep dlff m our final relational algebra eaprcsslons

We assume that the system budds (m effect) a
temporary g relation for constants that appeal 111
the query, antI treats J = c as an edb predicate .z 2 (

Example 9.2 We show below, for several allowed
formulas (cf Exctmpk 9 l), the RANF and lelatlonal
algebra eupresslon construcf cd by I 11e ,II)OI (3 proc +
dures

173 , Y) A (Q(J) V /t(v))
E (I’(& y) A c&J)) V (P(z, y) A IL(y))

- m(P WI=, Q) u m(P WL=I R)

P(x) A VY(~Q(Y) V 3zR(z, Y, z))
E P(z) A ~ay(P(z) A Q(y) A -3tR(z, y, z))

- P- q(P x Q-q&)

P(z, y) A Vz(~&(z, z) V R(y, z))
=

z
P(z, y) A -+(P(E, y) A Q(x, z) A -%(y, 2))
P - m(~m(P WI=, Q) dlffz,3=?,3 R)

cl

Theorem 9 5 Every allowed formula can effectively
be translated mto au equivalent Iclatlonal algebra
expression

Proof. Theorem 9 4 and above dIscussIon l

Many <lmpllficatlons of the relational algebra c\-
prc~,i011s protluc cd by t Ii<- proccdlllcs of 1 Iii\ \((t 1011
cau be mntlc tlur lug I hclr condrucl~ou Allcru~rtlv~~lv,
final expressions caii be smlplifktl uqlng, (> g , 11~
methods 111 [Ull80]

10 Relation between Evaluable and
Domain Independent Classes

In this sectlon we show that the evaluahle class 1s
contamed 111 the domam mdependent class and that

324

with the restriction to formulas wilh no repeated
predicates evaluable IS equlvnlent to domam znde-
pewden To do 40, we use the fact that domarn
mdependent IS equivalent to definzte, which we now
defme [ND821

Dcfinltlon 10 1 Let I bc an lntelpretatlon with
tlomam D for a formula 8’, and let 11, be the relations
assigned by I to the edb pledlcates P, that occur m
F Let * be a value not m D Then the *-extensaon
of 11s the mterpretatlon I’ with domain D’ = DU{*}
that assigns the same relations y, to the predicates P,
rl< tlocs I We denote approprlatc croSs products of
D and D’ by 5 and fi’, respcctlvcly 0

Dehnitlon 10 2: A formula 17 1s called dejinrte if,
for all interpretations I, F 1s satisfied at the same
points m I as in I’, where I’ is the *-extension of I
In other words, ii satisfies F m I’ d and only if ii
satisfies F in I 0

10 1 Evnluable Folmulas are Domain
Indcpcndent

We now show that every evaluable formula 1s domain
mdependcnt This was proved orlgmally m [Dem82]
for ekaluable formulas as defined there The state-
ment needs to be re-examined because we have used
an Independent definition, and have incorporated
equahty

Our proof IS slgmficantiy simpler because of The-
orcms 8 4 and 9 4, which ststc that every evaluable
formula has an cymvdent RANF formula Hence it
I> 411111c1(111 lo 1)tovc (IOIII,LII~ Il~dq.)entlencc for RANF
LOI Illuln~

Lc~nia 10 1 Let F(z) be a formula, possibly
tontalnlng other free variables besides 2 Let I be an
mterpletatlon for F with domam D and *-extension
I’ If gen(z, F) holds, then F does not hold m I’ for
any assignment that asslgns * to 2
Proof Use mductlon on formula size, which we
define to be the number of atoms plus the number of
quantifiers (negations are excluded) For the basis F
IS an atom and not of the form z = y, the conclusion
1s lmmedlate For the mductlon, one of the followmg
cases applies

l F ‘2’ A /\ B One of A and B satisfies gen,
and therefore by the mductlve hypothesis, does
not hold if z 1s assigned *

l F dgf A V B Both of A and B satisfy gen, and
thcreforr by the mductlve hypothesis, do not hold
If .t 15 nsslgned *

b 11’ ‘!$ ‘)/or//i A sntlsfics geti, and therefore by the
mduct lve hypothcsls, does not hold d 1: IS assigned
*

. F d&f TA If A 1s an atom, the conclusion holds
vacuously, smce gen(z, F) 13 false Otlierwlse,
push the 1 down glvmg G (1 e , pushnol(4, G)
holds) Now either G 1s an atom other than L = T/,
or one of the above caSes applies to G

I

Lemma 10 2 If F IS hn RANF formula, then bF’ IS
definite
Proof. In view of Lemma 10 1, It 1s sufficient to
show that gen holds for all free variables m every D-
subformula and m every G-subformula of F This
is straightforward by strut trii al inductlou For
example, suppose D 1s a D-formula If U IS of the
form AA+, then the free variables of B are a subset
of those of A, and A 1s a D-formula Also, if D IS of
the form A A x = y or A A x # y, then A 1s a D-
formula m which 2 and y are free In both cases all
the free variables of D are also free m A, and by the
mductlve hypothesis gen holds for them m A, hence
in D Other cases are similar 1

Theorem 10 3 If F 1s evaluable, then F 1s defimte,
and hence 1s domain independent

Proof. By Theorems 8 4 and 9 4 and Lemma 10 2
I

10.2 Evaluable Formulas with No Repeated
Predicates

Essentially, the domam Independent class IS not le-
cursive because d given formula may have a subfor-
mula that is supcrficlally nol domam mtlepentl~nt,
but 1s unsatisfiable, hence (vacuously) domam mde-
pendent But even though unsatlsfiablhty IS decld-
able for formulas with suficlently simple quantifier
structure [Ack68], we do not consider It practical to
test subformulas for unsatlsfiablhty as part of the plo-
cedure that transforms them mto relational algebra
However, formulas m which no predicate symbol 1s
repeated cannot possibly have unsatisfiable subfor-
mulas We show that formulas m this class (without
equality) are evaluable d and only If they are domam
independent This means that any extension to the
class of evaluable formulas that remains domain m-
dependent must at least provide for slmphficatlons
based on common subexpresslons (e g , subsumptlon
tests), and should probably include some form of
inference capability (e g , resolution)

Lemma 10.4. Let F be a formula m prenex-literal
normal form (I’LNF, see Def 4 1) T,et F have
no repeated predlcclte symbols, no equalrt>, .IIIJ no
disJunction If F 1s not evaluable, then F 1s not
definite The same holds if F has no conJunctlon

325

Proof (Sketch) Let F d&f %iW(Z’, +j), where

M elf P, A - A PiI A +J* A A -Q,,

611~d cd(11 I’, and Q, 15 ,111 ntom of a different prcd~cdtc

Let D = {u) We shall find an mterpretatlon I with
domam D and *-e\tenslon I’ such that F evaluates
dlffercntly m I and I’ g

Theorem 10 5 Let F be a. formula with no re-
peated predicate symbols and no equality Then F
IS definite d and only If F IS evaluable

Proof (Shetch) The “e” part holds by Theo-
leni 10 3 above By Cor 6 3 we may assume F 1s
m PLNF, and 1s given by

F d;f %ZM(Z, jj)

where M 1s quantifier free We define the size of a
formula to be the number of atoms plus the number
ol quantlfiels m It For the “3” part, WC show by
Intluctlon on size thnt if F 1s definite, then we can
~t~luce to the ca7sc covered m Lemma 10 4 1

\\J(t OIII((IIII(‘ 111~1t 1111s Illc~orc~lli crm I~~~cxIc~ntlt~rl to
.1Il0w ~OIII(\ l~if~~onc(~ 01 c~li~~~l~l~y However, rt cannot
Ix c~xtentled much 111 other dlrcctlons m view of the
fat t t hht (cf Example 6 2)

F(x) %’ vy[(P(x) A Q(Y)) V (P(x) A OR)]

1s domam independent but not evaluable

11 Acknowledgements

We would hke to thank Robert Demolombe, who
ollgmated the evaluable class of formulas, for helpful
dlscusslons and comments on an early draft of this
walk We also thank Hendrlk Decker for helpful
dlscusslons

References

[AchGS]

[I h 80]

[Dem82]

[DiP69]

W Ackermann Solvable Cases of the
Declszon Problem North-Holland, Am-
\ter(lrlni, 1968
II I)ccLcxr lntegrily cnforcemcnt ui de-
ducllve databases In 1st Int’l Con-
ference on Expert Database Systems,
pages 271-285,1986
R Demolombe Syntactrcal Characten-
zatzon of a Subset of Domarn Independent
Form&s Technical Report, ONERA-
CERT, 1982
II. A DlPaola The recursive unsolvalxl-
lty of the declslon problem for the class of
defimte formulas JACM, 16(2) 324-324,
1969

Pa@01

[1<ulr67]

[LT84]

[Mak81]

[Man741

[MUVGSG]

[ND821

[NlC82]

[TOP861

[UllSO]

R Fagm 110111 (lallws alItI clnl,ll~,l~c~
dependencies In 1J1lt ,4?,a 4 Crll ,~“r/ntp
on 7’lWOl (r of Co7,rp/ll/7,q, p'lp,“G IL I I 14,
IO80

.J 1, l\ll1lll~ /l7l~UV /11/g ()ClC~/lO/,~ by

Computer A Logical Study ‘I’echiiic~il
Report RM -542%Pit, It& Carp , 1967
J W Lloyd and R W Topor Making
Prolog more exprrsslve Joarnal of Logic
Programmmg, l(3) 225-240, 1984
J A Mahowsky Chalactellzmg data
base dependencies In 8th Co11 on

Automata, Languages and Programlnzng,
Springer Verlag, 1981
Z Manna Malhemaiacal Theory of

Computatron McGraw-Hill, New York,
1974
K Morris, J D Ullman, and A
Van Gelder Design overview of the Nail’
system In Thrtd lnt’l Conf on Loglr
Prograrnmzrrg, July 1986
I -M N~colns and It Dcmolombc~ On l/lc
,Slabrlglq of Ilclalioital C)urrl(9 ‘I’w 1111ic *II
I<(~OI I, ON El1 A-(‘151(‘1 , 1082
J -M Ni(ohs Logic for iinpioving in-
tegllty checkmg m relational databases
Acta Informataca, 18(3) 227-253, 1982
R Topor Domaan Independent For-
mulas and Databases Technical Re-
port 86/11, Umv of Melbourne, 1986
(To appear m Theorettcal Computer Sct-
ence)
J D Ullman Prtn clples of Dais base
Sysiems Computer Science Press,
Rochvllle, MD, 1980 (Revised Ed 1982)

A Equality Reduction and Wide
Sense Evaluability

In this appendix, we tlcsclibe transformations thal
normahze foimulds with respect to equality (=),
which wc call quality rcductron Many formulas
colll‘L11l1n~ (qlldllty do not S.ll 14-y llw I~'qIIIlcIIIclII~
for evdliinhility in11 i~lly, but arc cv~~lu.~l~lc ,illct

equality reduction We say that such formula3 are
evaluable an the luzde sense Wide sense evaluablllty IS
mvarlant under conservative transformations Smce
every wide sense evaluable formula 1s equivalent to an
evaluable formula, It 1s also domam independent

Lemma A 1 Let F d2f x = t A A(x, t,$), where 2
1s either a varlahle or a constant, and IS not requlretl
to appear m A(x,t, y3 Then

326

F ‘2’ %[P(L, z) A (iz = y V &(I, y, 2)) A ~(2 = y v R(y, z))]

E %[(r = y A fake) V (z # T/ A P(z, z) A (z = y V Q(J) y, 2)) A +(y, z))]

- %[z # y A P(z, z) A (x = y V Q(z, y, z)) A -R(y, z)]

E (z = ?/ A %[z # y A P(y, z) A 7R(y, z)]) V (z # y A 3tu[w # y A P(z, zu) A Q(x, y, w) A -R(y, w)])

s (zz = y A A(t) A A(y)) V (z # y A %[w # y A P(,, w) A Q(z, y, 10) A +(y, w)])

where A(y) dSf 3t[z # y A P(y, z) A yR(y, z)]

Figure G Equality reduction of a wide sense evaluable formula

The lemma generalizes the transformntlons (E13-
14) m Fig 4 to free variables

Algorithm A 1. Equahty Reduction
INPUT A relational calculus formula F
OUTPUT An equivalent equality-reduced formula
PROCEDURE

1 Apply the followmg transformation wherever pos-
sible
Let A(z) be the maximal subformulaof F m which
E IS free A may have other free variables If A
contains an atom z = t, where t 1s either another
free variable of A or a constant,5 then

(4

(I>)

(cl

(4

Define Al(t) to be the formula thnt results
from replncmg cvrry occurrcucc of c 111 A by t,
,lnd then replactng t = 1 I)y /I (I(,wtl carrylug
ant truth value siinplific al iou (IhI 8 2)

Dcfk AZ(z) to bc the formul,~ that results
hoin rcpl,lcmg each occurrcncc of c = t 111
l(J) hy j&e, ,md cdrrymg out truth value

sunphficatml (Bound varl&lcs of A hrc given
different names in A1 and A2)

Replace A by

A’ *’ (x = t A Al(t)) V (z # t A A2(t))

If 2 1s bound m F, then replace %A by

Al(t) V 3x(x # t A Az(x))

2 Equality reduction can also be carried out on
equalities between two constank, which may be
mtroduced III Step 1 Supposc~ L = d occurs,
where c and d WC htlwb cw~~tnnts If the sydrm

i I a *#Ill ,I,,\ I t \I,< II III 11 I ‘lllnllll~ , II L,l-.,~~h~ II 148

I- I

3

cl

.l~4lllllc\ llldt I lw (1141 lll(I ll,1lll(’ clxlolll c # r6 I4

in~pli(11 111 E’, then WC CJII tilahc it exphclt at the
top level

F-c#dAF

Now replace c = d by false throughout F and
simplify, as m Step lb Repeat until all equalities
between constants are removed
At this point all equalities between two free
variables of F that remam can be put m the
form of “case splits” at the top of the formula
by appropriately “pushing ands” (Ell) For any
case of the form z = z A A(z), where 2 IS not free
m A and gen(r, A) holds, rewrite this case as

2 = z A A(z) A A(z)

This typically arises when A orlgmally contained
z but It was substituted for m Step 1 above In an
Implementation, WP would not actually do it 11~1s
way, we would add rl co11m~t1 rephcatlon pruml rve

to our rt~latlonal algdwa

The correctness of the algorithm follows frolu
Lemma A 1 and elementary arguments

Definition A.1 A formula F 1s said to be w&e
sense evaluable if Alg A 1 transforms It mto an
evaluable formula as defined m Def 5 2 q

Example A.l: The formula m Fig 6 1s unmotl-
vated, but serves to illustrate the mechamcs of the
algorithm c]

A better characterization of wide sense evaluable
formulas 1s a topic for future research

327

