Check for
Updates

Safety and Correct Translation of
Relational Calculus Formulas

Allen Van Gelder*
Stanford University

Abstract

Not all queries in relational calculus can be answered
“sensibly” once disjunction, negation, and universal quan-
tification are allowed The class of relational calculus
quertes, or formulas, that have “sensible” answers 1s called
the domain independent class, which 1s known to be
undecidable Subsequent research has focused on iden-
tifying large deaidable subclasses of domain independent
formulas In this paper we investigate the properties of
two such classes the evaluable formulas and the allowed
formulas Although both classes have been defined before,
we give simplified definitions, piresent short proofs of their
main properties, and describe a method to mcorporate
equality

Althongh cvaluable quenes have scnsible answers, 1t
15 not straghtforward to computc them efficiently or
correctly We mtroduce relational algebra normal form
for formulas fiom which form the correct translation
mto relational algebra is trivial We give algonithms
to transform an evaluable formula nto an equvalent
allowed formula, and from there imnto relational algebra
normal form Our algonthms avoid use of the so-called
Dom relation, consisting of all constants appearing 1n the
database or the query

Finally, we describe a restnction under which every
domain independent formula 1s evaluable, and argue that
evaluable formulas may be the largest decidable subclass
of the domain independent formulas that can be efficiently
recogmzed

*Supported by NSF grant IST-84-12791 and a grant of IBM
Corp

Permission to copy without fee all or part of this material 1s granted provided that the coptes
are not made or distributed for direct commercial advantage the ACM copynight notice
and the title of the publication and its date appear, and notice 1s given that copying 15 by
pernussion of the A for Cy Aachinery To copy otherwise, or to republish,
requires a fee and / or specific permission

© 1987 ACM 0-89791-223-3/87/0003/0313 75¢

Rodney W Topor

University of Melbourne

313

1 Introduction

With the increased mterest in development of deduc-
tive database systems and integration of logic pro-
grammung languages such as Prolog with relational
database systems, 1t has become more important
that relational query systems be able to handle a
wider range of relational calculus formulas correctly
and efficiently In particular, disjunction, negation,
and umversal quantification over subformulas, which
are excluded from the class of conjunctive queries
[U1180], should be available Current “industrial
strength” 1mplementations handle the class of con-
junctive queries well, but leave much to be desired
in the areas mentioned, we shall give an example
later In defense of these implementations, we should
pomt out that the large majorty of queries posed
by typical users to traditional databases fall into the
class of conjunctive queries However, m sophisti-
cated systems of the future we envision the queries
often being generated not by the user typing them in
at the terminal, but by a layer of software positioned
between the user and the relational database system
This software will access a large set of deductive rules
1n addition to the user’s query in order to construct
relational calculus formulas The Nail! project at
Stanford University [MUVG86] 1s just one example
of several research projects headed 1n this direction

2 Problem Statement and
Background

In this paper we shall be concerned with two mam
questions

1 Which relational calculus queries can be answered

sensibly?

2 How can such queries be answered?

For our purposes, answering a quety means evaluat-
ing a relational calculus formula By “sensible” we
mean that values 1n any logically correct answer are
limited to values that appear 1n the query 1tself or 1n


http://crossmark.crossref.org/dialog/?doi=10.1145%2F28659.28693&domain=pdf&date_stamp=1987-06-01

database relations mentioned 1n the query
Not all queries in relational calculus can be an-

swered senstbly Two simple examples that cannot
be answered sensibly are

F(z) %f -P(z)
G(z,y) ' P(z) Vv Q(y)

whetre P and @) are database relations F(z) holds for
arbitrary 2’s that are not in the database, and G(z,y)
holds for arbitrary y values when P(z) 1s true, and
vice versa

In the following section, we describe previous
attempts to characterize those classes of quenes that
can be answered sensibly

Evaluation of relational calculus queries can be per-
formed erther by translation into a set of clauses suit-
able for a Prolog nterpreter [LT84, Top86, Dec86],
o1 by translation into a relational algebra expression
Here, we are concerned solely with the second ap-
ptoach

Translation of a relational calculus query that
mcludes disjunction and/or negation 1s a theoretically
solved problem [Ull80], provided the query 15 “safe ”
However, the practical difficulties are such that
several commercial database query systems give
intuitively unexpected results on such queries

Here 15 a “real life” example Essentially, a user
posed the query (we simphfy the syntax)

select Rl name
from RI1, R2, R3
where Rl name = R2 name
or Rl name = R3 name,

and was quite surprised to find out that the answer
was nil when relation B3 was empty, even though
there were matches between R1 and R2 This user
was even more surprised when the vendor claimed
that this behavior was correct! In fact, the semantics
of QUEL [U1!80] do support tlus behavior, and several
~ystems whose query language 1s an outgrowth of
QUEL give nil answers

While the vendors are saved by the “fine print,”
which says that even though their language looks
like relational calculus, 1t 1s really a relational
algebra expression 1n disguise, the situation 1s hardly
satisfactory from the user’s point of view  The
QUEL nterpretation has only been proven to yield
correct, translations of conjunctive relational calculus
queries (defined below) {UI80] The problems of
correct translation of more general relational calculus
formulas still need to be addressed

314

21 What aie the Problems?

Conjunctive query formulas are those that usc only 3
and A (Equality can be represented m conjunctive
queries by repetition of vanables and substitution of
constants, for ssmplicity, we do not consider “built-
" predicates such as <, >, etc) The translation
of such a forrila into an equivalent relational
algebra expression 1s straightforward and well-hnown
Informally, A(u,v,w,zy) A B(u,v,y, z) becomes an
equijoin on the columns of 4 and v, and 3z A(r,y, 2)
becomes a projection that chminates the column for
2 Essentially, all such formulas can be translated

The situation changes when we itroduce disjunc-
tion and/or negation We intend to handle disjunc-
tion algebraically by union and handle negation by
set difference For example, P(z,y) V @(a,y) can
be evaluated by P U @, and P(z,y) A ~Q(z) can
be evaluated by P diff ) More generally, to have
a simple representation 1n relational algebra, both
operands of “v” must have the same variables, while
negations must appear 1n the form AA-B wheie B~
variables ate a subset of A’s [U1180]

These himitations give 1ise to ill-behaved cases as
demonstrated by the two earlier examples

F(z)  <P()
Giz,y) & P(x)VQ()

The two problems here, which are the main problems
aside from handling equality, are
o The terms of a disjunction do not have the same
set of free vanables
o A vanable 1n a negative atom 1s not himuted 1n 1ts
range by positive atoms elsewhere 1n the formula
Once we develop tools to handle these problems,
then umiversal quantifiers will not present any new
problems, we will be able to rewrite Vz as ~32—- at
the appropriate moment
The situation 1s really more complicated than 1t
might appear at first glance, becanse the problem in
a subformula can often be cured by <ome other part
of the overall fornula Thus even though the quary

G(z,y) & P(z)VQ(z,y)

1s defimitely not “reasonable,” because 1t holds for
arbitrary y values when P(a) 1s true, nevertheless,
the query

F(z) %' 3yG(z,y) = y(P(z) vV Q(z,))

may well be considered reasonable The naive
translation into 7 (P U @), where 7; means “project
onto column 1,” piesents problems because the



opcration 1) @ mahkes no sense  However, m tlus

coase I7(a) Toe an cquivalent lorm,
Fa)=(P()VIyQa, y)

for which the naive translation 1s coricct, and 1s
PUm(Q)

Our goal 1s develop a systematic method to distin-
guish the curable problems, such as the above, from
the uncurable ones, such as Iy(P(z) V Q(y)), and to
provide correct transformations for the curable ones

2 2 Pievious Work

Theie have been several attempts to define a “reason-
able” class of queries, 1€, a class with the following
desirable properties
e The constants 1 the database and the query
provide a sufficient domain for the values 1n the
answer Formulas with this property are called
doman mdependent [Fag80, Mah81]
e Theie 15 an effiient way to deade 1 the query
formula 1s “reasonable” and 1if so, to translate
the relational calculus formula into a relational
algebra expiession whose evaluation gives the
correct answer
o There 1s an efficient way to evaluatc the resulting
relational algebia expression
The class of conjunctive queries has these properties,
as shown 1n [UI80], but this class 1s rather hmited
The class of domain independent formulas [Fag80,
Mak81], which by 1its definition 1s the largest class
having the first property listed above, represents a
generalization of safe formulas, introduced 1n [U1180]
However, the domamn independent class has been
shown i [ND82] Lo be equivalent to the class of
definite foumulas defined 1n [KuhG7], and definite
formulas were shown to be not recuisive 1n [D1P69]
Other researchers have subsequently proposed de-
cidable subclasses of domain independent formulas,
mecluding range restricted formulas [N1c82, Dec86],
evaluable formulas [Dem82], and allowed formulas
[Top8t] We give their defimtions later, as we discuss
them

Of these, the evaluable formulas comprise the
largest class, but the definition of this class n
[Dem82] occupies three pages, 1ts complex defimtion
mahes 1t unwieldy to work with, as evidenced by the
fact that 1t required ten pages just to prove thatitisa
subclass of domain independent formulas, moreover,
there 15 no attempt there to describe how to actually
evaluate evaluable formulas, 1e, how to translate
them correctly 1nto relational algebra expressions

The allowed formulas, although a strict subclass of

the evaluable formulas, are the easiest (among the

315

above-mentioned classes) to translate into relational
algebra
The range rostrictod formulas compnise the cvalu

able formulas that ate m disjunctive normal form o
conjunctive normal form {Dem82] In an unportant
step toward practical evaluation, Decher [Dec86)] has
shown how to transform any range restricted formula
into an equivalent! range form that 1s swtable for
Prolog-style “tuple at a time” evaluation

3 Summary of Results

In this paper we give a much simpler definition of
evaluable formulas With this ssmpler definition, 1t
18 more feasible to prove properties of the evaluable
class, and to see the relationship between allowed
formulas and evaluable formulas We show that the
evaluable class 1s invariant under a set well-hnown
equivalences that can be used as rewrite rules (e g,
DeMorgan’s laws), which we call conservative trans-
formations This mmvailance makes 1t easy to see
that every evaluable formula can be conservatively
rewritten 1n prenex-hteral noimal form (Def 4 1)
However, the evaluable property 1s not always pre-
served under distnbution of A over V or V over A
Using distribution 1s apparently a necessary step to
put certain formulas mto an equivalent form that can
be “transhiterated” into relational algebra This 1s
our motivation for transforming evaluable formulas
into allowed formulas, which are mvaniant under dis-
tribution

One of our main results 1s an algorithm that
transforms any evaluable formula into an equivalent
allowed formula

Another man result 1s that every allowed formula
can be effectively translated correctly into a relational
algebra expression

At this point we should mention two properties of
formula transformations (either into other formulas
or mto relational algebia expiessions) that we con-
sider unacceptable, and wish to avoid The fiist
property 1s that the transformation does not neces-
sarily produce a logically equivalent formula, but 1s
only guaranteed to do so if the mput formula s a
certain class (such as the domain mdependent class)
This puts the burden on the user of providing correct
mnput, or getting erroneous results with no warning
The second unacceptable method 1s to expliaitly form
the so-called Dom relation, consisting of all constants
present 1n the database and the query Both these
drawbacks are present, for example, in the rewnte

1By equsvalent we shall always mean logically equivalent



1tle

=P(z,y) = Dom(z) A Dom(y) A =P(z,y)
—+ Dom x Dom — P

Both of our transformation algorithms have the
attractive property that such tactics are not required

Finally, we shall show that the class of evaluable
formulas 1s the largest practical subclass of domain
independent formulas 1n a certain sense Essentially,
the domain independent class i1s not recursive because
a given formula may have a subformula that 1s super-
ficially not domamn independent, but 1s unsatisfiable,
hence 1s actually domain independent (vacuously) 2
However, formulas in which no predicate symbol 1s
repeated cannot possibly have unsatisfiable subfor-
mulas  We show that formulas i this class are
evaluable 1if and only 1f they are domain mdependent,
and discuss the rtamifications

4 Notation and Definitions

We assume the 1eader 15 famihar with tlie standard
notation and terminology of logic, relational calculus,
and 1elational algebta [Man74, UlI80] We shall
abbieviate “first order well formed formula” to
formula, and “atomuc formula” to alom A literal
1s either an atom or a negated atom We assume the
absence of function symbols (other than constants)
throughout =~ We shall use P and @ to denote
predicate symbols or atoms that correspond to a
database relation, we call these edb predicates We
use A, B, to denote formulas and subformulas,
we use @, , d as constants, u, , z as varlables,
and s and ¢ to represent a term that may be either a
vanable or a constant

We adopt a sort of vector notation Z to denote a
tuple (z;, ,n), where n may be zero Thus the
notation A(z,%) denotes a formula 1n which z 15 a
fiee vanable and there are zero or more other free
vanables y, that are of interest, in addition, A may
contain still other free variables that are not currently
of interest

In a ssmilar vein, we wnite V% for Vz; Vz,, and
wiite 37 for dry 3z, We also use “%” as a
“quantifier vanable,” standing for either V or 3, or
in the case of %Z, for a specific string of (possibly
mixed) quantifiers We assume that no quantified
variable occurs outside the scope of its quantifier,
1e, we avord (3zA(z) A 3zB(z)) and use instead
(321A(21) A 3z2B(z2))

We shall use = to denote logical equivalence and =
to denote logical implication, both denote relations
between formulas, not symbols within formulas In

27The situation 1s not this simple, but thisis the central idea

316

addition, ' 15 often used to mean “is defined as”

to give names to formulas We occasionally use “[ 1"
as synonyms for “( )" for readability

We adopt the usual defimtions ([Man74], etc ) for
prenez normal form, conjunclive normal form, and
dispunctive normal form, which we abbreviate to
PNF, CNF an: DNF, respectively  We shall also
itroduce relational algebra normal form, abbreviated
RANF (See Def 92) In addition, we shall have
several occasions to 1efer to the followmng normal
form

Defimition 4.1 A formula 1s said to be in prenea-
literal normal form (PLNF) if 1t 1s n PNF and all
negations are immediately above the atoms (This 1s
sometimes called negative normal form ) [

As usual 1n the context of normal forms, we regard
A and V as polyadic operators tahing zero or more
operands, with zero operands, A{) = true and V() =
false A clause 15 a conjunction of literals o1 a
digjunction of hitcrals

5 Evaluable and Allowed Classes of
Formulas

In this scction we define the classes of evaluable
formulas and allowed formulas, and give some of
then properties  The terin evaluable 1s due to
R Denolombe [Dem82] We use the same term
because the class 1s the same, although our definition
1s different Actually, there 1s a munor difference 1n
that we treat = ¢, where ¢ 1s a constant, as though
1t were £ 2 ¢, where 1 1s an edb predicate, 1n effect,
this case 1s not mentioned in [Dem82], but could be
incorporated easily

51 The gen and con Relations

To define evaluable and allowed we first need to define
certain relations between vanables and (sub)formulas
We have chosen the names gen and con for these hey
1elations They are abbreviations for generated and
conststent Qur relation generated 1s called restricted
in [Dem82] and pos in Top86, to avoid taking sides
we have chosen a third name Also, our conststent 15
stmilar to, but not quite the same as, what [Dem8.)
calls positive We prefer to use the terms postiive
and negative to describe the polarty of atoms or
subformulas within a formula As mentioned before,
a subformula 1s considered to be posilive 1f 1t falls
under an even number of negations, and negative if 1t
falls under an odd number

Definition 5 1 The essentials of the defimtions for
gen and con are presented mn Fig 11n a rule format



gen(x, P) if edb(P) & free(a, P)

gen(z, z = c) 1f constani(c)

gen(a, ~A)  1f pushnot(—A, B) & gen(a, B)
gen(r, JyA)  of distinct(z, y) & gen(a, A)
qen(x, YyA)  af distincel(z, y) & gon(a, A)
gen(a, AV B) 1if gen(z, A) & gen(a, B)
gen(a, AA B) if gen(z, A)

gen(z, AAB) if gen(z, B)

Figure 1 Defimtions by rules of gen and

We ntend that the

program 2
relations gen and con hold only when they can be
established by a fimte number of applications of these

rules []

similar to a Prolog

Read the & ’s that separate subgoals (to the right
of the “1f ”) as “and” For example, the first rule
reads, “z 1s generated 1n P if P 1s an edb atom, and
r1s freemm P”

Several predicates appear in these rules to support
the definitions of gen and con We mtend that they
be mterpreted as follows

e cdb(P) holds precisely when P 1s an atom whose
predicate symbol represents a database relation

e free(z, A) holds when variable & occurs {reely m
formula A

e distinci(xz, y) holds when z and y are different
variables

o constant(c) holds when ¢ 1s a constant

o pushnot rewrites its first argument 1nto an equiv-
alent formula without “=” at the top, by applying
DeMorgan’s laws, changing -3 to V-, or chang-
g -V to 3I-, 1t fails when this 1s 1mpossible,
1e, when A 18 an atom The second argument
becomes the transformed formula when pushnot
succeeds

Intwntively, gen(z, A) means that A can generate
all the needed values of z, as though 1t were a
database relation In other words, A holds for only a
finite set of values of z (assuming finite edb relations,
of course)

Lemma 5.1 For every variable £ and formula A,
gen(z, A) mnphes con(z, A)

Pioof Use structural induction on the subformulas
of A |

3Prolog cognoscents are warned not to take the syntax too
seriously, z and y are still to be interpreted as variables

317

con(a, P) if edb(P) & free(z, P)

con(z, z =c) 1f constani(c)

con{z, A) if not free(z, A)

con(x, ~A)  1if pushnot(—A, B) & con(z, B)
con(z, IyA) of distinci(z, y) & con(z, A)
con(a, VyA) of distincl(r, y) & con(z, A)

if
if
if
if

con(z, AV B)
con(z, AN B)
con(z, AA B)
con(z, AN B)

con(z, A) & con(s, B)
gen(z, A)
gen(z, B)

con(z, A) & con(z, B)
con

Example 51 The converse to Lemma 5 1 1s false

In the followng, con(z, A) holds but gen(z, A) does

not hold
A ¥ P(z,y)VQ(y)
A ¥ -Q(y)

Note that z need not appear m A []

Intuttively, con(z, A) means that for any assign-
ment to other vanables of A, say § = 3y, either

e A can generate all the needed values of 2, or

e A(z, o) holds for no z, or

o A(z, o) holds for all z
Figure 2 shows a geometric interpretation of con
If con holds for all the free variables of A and the
underlymng edb relations are finite, then the set of
points where A holds can be represented as a finite
collection of points, hnes, planes, and hyperplanes

Also, from a logic programming viewpoint, we
can think of A as a goal that may succeed without
instantiating all of its arguments

5.2 Evaluable and Allowed Formulas

Definition 5 2: A formula F' 1s evaluable or has the
evaluable property if and only 1if
e For every vanable z that 1s free in F, gen(z, F)
holds
e For every subformula of the form 3z A, con(z, A)
holds
e For every subformula of the form Vz A, con(z, —A)

holds
O

Definition 5.3: A formula F 1s allowed, or has the
allowed property if and only if
o For every variable r that 1s free 1n F, gen(z, F)
holds
o For every subformula of the form Iz A, gen(z, A)
holds



Figure 2 Geometric interpretation of the con prop-
erty for A(z,y) 4 P(z)vQ(y) Vv R(z,y)

o For every subformula of the form Yz A, gen(z, —=A)
holds
0J

Rather than pirove that our definition of evaluable
yields the same class as [Dem82], 1t 15 easier to just re-
prove the important propeities of the class We shall
show that every (valuable founula (and hence every
allowed formula) 1s domam independent 1 Section 10,
after developing some more machinery

Theorem 5 2 Every allowed formula 1s evaluable

Example 5 2 The converse of Theorem 5 2 1s false
The following formulas are evaluable but not allowed

F(y) % 32[(P(z,y)V Q(y)) A —~R(y)]
G & Fyae(-P(z)V Sy, z))

Piroof Immediate from Lemma 5 1

With appropriate interpretations of P and S formula
G corresponds to the question, “Does some suppher
supply all parts?”

Also, note that removing the outer quantifier makes
both F' and G not evaluable The problem with the
apparently haimless variant, “What suppliers supply
all paits?” 1s that if P(x) 1s empty, then G holds for
arbitrtary y [

53 Equality in Evaluable Formulas

The definition of evaluable in this section adopts a
“middle of the road” approach to equahity It 1s quite
conservative with respect to equality between two
vaniables, since gen(z, y) and con(zx, = )
never hold Formulas satisfying Def 52 may be
said to be strict sense evaluable In Appendix A we

318

describe transformations that remove many mstances
of such equalities, and yield an “cquality reduced”
foim We call formulas that can be transformed into
evaluable foriulas by means of these transformations
wide sense evaluable

On the other hand, defimng gen(r, + = ) to hold
involves going beyond stnict relational calculus as
defined m [UlI80], in that 1t allows “disembodied”
variables into a foimula that do not appear m any
edb atoms One way to justify this 1s to assume that
the underlying quety answering system will (in effect)
form a relation on the fly, call 1t &, contaming tuples
(e, ¢) for the constants ¢, that appear m the query
Then the system treats z = ¢ as though 1t were ¢ 2 ¢,
an edb atom It 1s easy to adapt our methods to
systems that lack tins capabihity Simply 1emove the
rules for gen(z, z = ¢) and con(z, z = ¢) n Figs 1
and 5 and treat z = ¢ hke z = y thioughout

Allowing £ = ¢ 1s the only way to have values in
the answer that were not i the database Such values
mught serve as defaults For example, if I” 1epre<ents
part and S represents supplies, then

P(z) A (S(y,2) V (V2~S(z,2) A y = none))

appcars o he a plansible query that a svstem should
handle

6 Conservative and Distributive
Transformations of Formulas

In this section we study the effects of various
logical transformations on the evaluable and allowed
properties of formulas, with a view to 1dentifyng sets
of transformations under which these properties are
mvariant

Figure 3 shows some standaid equivalences that
are frequently useful to manipulate formulas [AchG8,
Man74] Note that they preseive the number of
atoms, and hence preseive the number of binary
logical operators ~ We show that the evaluable
property 1s invailant under transformations based on
these 1dentities

Definition 6 1 We say that G 1s a conservalive
transformalion of I" 1f ¢/ can b obtamed by 1eplaaing
asubformula of /7 according to one of the equivalences
in Fig 3, or by a sertes of such replacements 0

Lemma 6 1 The relations gen and con defined 1n
Fig 1 are mvanant under conservative transforma-
tions ((E1-10) of Fig 3) 'That 1s,:f G(y) 1s a conser-
vative transformation of F'(y), then gen(y, F'(y)) &
gen(y, G(y)), and sinmlarly for con



LA A (B1)

~NAAB) = ~AV -3 (E2)
~(AVB) = ~AA-B (E3)
“VzA(r)) = Je-Alz) (E4)
-JzA(z)) = Vz-A(z) (E5)
%zA(z,§) = %vA(v, ) (E6)
Vr(A(z)vVB) = VzA(z)V B (ET)
Ja(A(z)AB) = JzA(z)A B (E8)
Je(A(z) V B(2)) = Jr1A(zy) V32 B(z2) (E9)
Ve(A(z) A B(z)) = Vai1A(z)) AVzoB(z2) (E10)

Figure 3 The equivalences upon which conservative
{ransformations are based “%” stands for 3 or V

AAN(BVC) = (AAB)V(AAC) (E11)
AV(BAC) = (AVB)A(AVC) (E12)
Ju(z = yA A, y)) = Ay, v) (E13)
Va(r £y V (&, 9)) = A(y,y) (E14)

Liguie t Other usclul equivalences distributive laws
and equahity echimmation We use z # y to abbreviate
- = y

Pioof This 1s mecrely a matter of applying the
defimitions Tor example, suppose (E10) apphes, t e,

F(a,y) 4 Vz(A(z,y) A B(z,y))
G(2,y) % Vr1A(z1,y) AVz2B(22,y)

(y may be absent from A or B) If con(y, F(z,y))
hiolds, then con(y, A(z,y) A B(z,y)) also holds, and
at least one of the following three is true
o gen(y, A(2,y)) holds Then gen(y, Vz1A(z1,y))
also holds
o gen(y, B(a y)) holds Then gen(y, VzoB(z2,y))
also holds
e Both con(y, A(z,y)) and con(y, B(x,y)) hold
Then conly, Yz A(z1,y)) and con(y, VraB(z2,y))
also hold
And <o con(y, G(xr,y)) 1s seen to hold The other
direction and other cases are similar |

Theorem 6 2 If A 1s evaluable and B 18 a conser-
vative transformation of A, then B 1s evaluable
Pioof (Sketch) The only cases not handled by
Lemma 6 1 mmvolve moving the quantifier for the first
argument of a con by means of (E7-10) |}

Coiollary 6 3 Every evaluable formula can be con-
servatively transformed mnto an equivalent evaluable
formmla m PLNF (Def 41)

319

Corollary 6 4 livery evaluable formula can be con-
servalivily transforied mto an equivalent evaluable
formula that contamms no umversal quantifiers and
has negations only imniediately above atoms and
existential quantiers

Example 6.1 The allowed property may not be
preserved by the conservative transformations (E7-
8) Thus, allowed formulas do not always have a
conservative transformation into prenex normal form
E g, the allowed formula

JzA(z)V B
can be conservatively transformed to
Ja(A(z) V B)
which 1s not allowed [

Although the distributive laws, shown i Fig 4,
cannot be appled indiscrimmately, some properties
are preserved 1 some cases, as described 1 the neat
lemma

Lemma 6 5 The ielation con defined mn Fig 1 1
invariant under (E11) of Fig 4 (“pushmng ands )
That 1s,

con(z, AN(BVC))

if and only 1If
con(z, (AANB)V(AAQD))

In addition, gen 1s invanant under both distributive
laws (E11-12) of Fig 4
Proot (Sketch) Case analysis, using the deflinitions

Example 6.2. As pomted out in [Dem82], “pushing
ors” (E12) does not always preserve con  For
example, consider

F 4 P(z) v (Q(z,y) A ~R(y))
G« (P(z)VQ(x,y)) A(P(2) V ~R(y))

Here con(y, F) holds, but con(y, G) fails a

6.1 Invariance of Allowed Formulas undex
Distribution

In Section 8 we describe an algorithm to transform an
evaluable formula into an equivalent allowed formula
One motivation for this transformation 1s that the
allowed property 1s preserved by the distributive
laws, whereas the evaluable property 1s not The
final translation into relational algebra normal form
(Section 9) frequently requires application of the
distributive laws



Theorem 6 6. If A 1s allowed and B 1s obtained
from A by either
e a distnbutive law transformation (E11-12) of
Fig 4, or
e a conservative transformation except for (E7-8),
then B 1s also allowed

Proof. The distributive laws are immediate from
Lemma 6 5 The rest 1s similar to Theorem 6 2,
except that we need to check that the necded gen
relations are present when (E9-10) are used

Example 6 3 The following formula shows that
“pushing ands” (E11) does not always preserve the
evaluable property Let F(z) % VzIyA(z,y,z),
where

Az,y,2) € R(y,2) A(Q(z) V ~P(z))
Since
-A(z,y,2) = ~R(y,2) V (—Q(z) A P(z))

we have con(x, —A), as required for F to be evaluable
Pushing the “and” gives
B(2,y,2) ¥ (R(y,2) AQ(2)) V (R(y, z) A~P(2))
and the corresponding G ' Vz3yB(z,y,2)
However, con(z, =B) does not hold, so G 1s not
evaluable The problem 1s that “pushing and” mn A
15 the same as “pushing 01” (E12) in =4 This 1s the
one distributive t1ansformation that may not preserve

con D

7 Range Restricted Formulas

Range 1estricted formulas are based on disjunctive
and conjunctive normal forms, and represent one of
the first decidable subclasses of domain independent
formulas to be studied [N1c82] Putting formulas into
normal forms requires the use of distributive laws
(E11-12) of Fig 4 Since the distributive laws do
not always preserve the evaluable property, 1t 1s not
too surprising that certain evaluable formulas become
non-evaluable if we simply put them into DNF in
an attempt to make an equivalent range restricted
formula, as shown by Example 6 3 However, we
show that every evaluable formula (and only those)
has an associated pair of formulas in DNF and CNF
that satisfy conditions quite simular those required
for range restricted formulas This theorem provides
an alternate recogmition mechamsm for evaluable
formulas

Defuntion 71 Let 2 % %FM be a formulan
disjunctive nonmal form, whao M AT (v VD)

320

Let M' %' (C;vV  VCp) be the conjunctive noimal
form of M coustructed by applying the distithutive
law (E12) of Fig 4 Then F 1s range restricled f the
following properties hold

1 For every free vanable 2 1n F', 2 occuis 1n a
positive atom 1n every D,, 1e, gen(x, M) holds
For every ex stentially quantified vaitable 2 1n F,
z occurs 1n a positive atom 1n evety D; m which
z occurs, 1 e, con{z, M) holds

For every universally quantified variable o 1n I
z occurs In a negative atom 1 every Cj 1n which
z occurs, 1 e, con{a, ~M') holds

a

Item 3 1n the above dehmtion was stated somewhat
differently 1n [Dem82]

3’ For every umversally quantified vartable z mm 1", 1f
x occurs 1n any posttive atom, then there 1s some
clause D, such that every atom of D, 1s negative
and contans ¢ (Either con(z, -D,) holds for
all D, o1 gen(z, ~D,) holds for some D),, 1e
con(z, =M) holds )

The equivalence of the two defimtions follows {1om

Lemma 6 5, since M’ 1s obtamed fiom =1/ by

pushing and’s (E11)

2

Theorem 71 (Demolombe [Dem82]) Let I' be a
formula 1 disjunctive normal form  Then F 1<
evaluable if and only if F 1s range restncted

Proof Immediate fioin the defimtion, Lemma 61,
and Lemma 65 [

Demolombe observes that a sinilat result holds for
formulas 1n conjunctive normal form

This theorem can be generalized to apply to all
evaluable formulas

Defimition 7 2* Let cnf(F) (resp, dnf(F)) be the
conjunctive (resp , disjunctive) normal form of foi-
mula F constructed by applying conservative trans-
formations and distributive law (E11) (1esp (E12))

O

Theorem 7 2 Let F be a formula with

duf(F) 4" %ZMy & %F(D, v
enf(F) % %M, ¥ %E(Cy A

v Dy,)
ACp)

Then F 1s evaluable if and only 1if the following

properties hold

1 For every free variable £ m F, z occurs m a
positive atom m every D,, 1€, gen(2, Mg) holds

2 For every existentially quantified vanable o m
daf(17), r occurs i a positive atom m every 1),
mowhicl 2 occurs, v o, con{a, Ay hold



3 For every umversally quantified vanable z 1n
enf(I'), r occurs 1 a negative atom in every Cy
i which 4 occms, e, con(r, “M,) holds

Proot (Skctch) Fheorem 6 2 and Lanmima 05 allow
s Lo put /" into prenex-hiteral normal form (Def 4 1)
and push and’s in M, while prescrving gen and con
Pushing or’s in M 15 the dual of pushing and’s n ~M

Agan we 1emark that dnf(F) and cnf(F) may not
themselves be evaluable, as shown in Example 6 3

8 Transformation into an Allowed
Formula

We now describe a pioceduie to transform any
evaluable formula into an equivalent allowed formula
The approach used 1n [Dec86] to convert a range-
1estricted formula into “range form,” which 1s nearly
the same as “allowed,” can be generahzed quite mecely
with the aid of the tules for gen and con 1n Fig 1

The basic 1dea 1s {o add a third argument ' to gen
and con, wlich functions as a “generator” of sorts
The modilied rules are shown m Fig 5 G(z) will
he a disjunction of certamn atoms mm A, either edb
or of the form + = ¢ (Both A and G may contam
other vanables besides z ) We sce that the G 1n the
conclusion, o1 head, of each rule 1s mhented naturally
from the subgoals The G n con 1s similar, except
we need to provide for the possibility that z does not
even occur 1 A  For this, we mtroduce “L” as a
placeholder, 1t may be thought of as a one place edb
predicate whose relation 1s always empty

Definition 8 1 For any formula G, not necessanly
containing = and possibly contaiing other free
vatiables, 3xG(z) denotes G with all variables except
2 eustentially quantified, except that IxL denotes
false [

Dcfimition 8 2 The operation of truth value ssmph-
Jicalion consists of applymg the following simplifica-
t1ons to a formula as long as possible

—true — false
AAtrue— A
AVirue — true

%zxtrue — irue

~false — true

A A false — false
AV false — A

% false — false

O

The following lemma partly motivates the defin-
tion of the third arguments of gen and con

321

Lemma 8 1 Let gen be defined as m Fag 5 Let 2
be any variable and A and G be any formulas such
that gen(a, A, G) holds Then

Ix A(2) = 3+ G(2)

In other words, 1n any inteipretation the sct of valies
of = for which A(xz) holds 1s a subset, of those for which
G(z) holds

Proof: Straightforward by structural induction, ob-
serving that VyA => 3yA |

In the following algorithm genify(F) we describe
the local transformation that, when repeatedly ap-
phed, makes an evaluable foimula into an allowed
formula with respect to all of its bound vanables
Beforehand, we check that gen(z, F') holds for each
free variable z, and replace Vy by -3y~ thioughout

Algorithm 8 1: genify(F)

INPUT A formula F with no umversal quantifiers

such that gen(z, F') holds for all free variables z 1n

F

ouTPuT An allowed formula cquivalent to /', o1 a

message that F'1s not evaluable

PROCEDURE

1 Let F be of the form 3z A, where z may not appeal
1 A and A may have other variables as well

(a) 1If gen(z, A(x), G(x)) holds, there 1s nothing to
do here, set F; 4 F and continue at (3)

(b) If con(x, A(z), G(2)) does not hold, then F 1s
not evaluable Issue an error message and halt

(¢) If z 1s not free in A (detected by G = 1), then
set F; %7 A and continue at (3)

(d) If con(z, A(z), G(z)) holds (but gen does not)
Recall that G 1s a disjunction P; V Vv P
of atoms that appear in A Let R be the
new formula that results from replacing each

occurrence of Py, ,P, mm A by false, and
carrying out truth value stmplifications 4 Set

F 4 3,35G(x)A A(z)) VR

and continue at (3)

. If F 1s not of the form 3z A, set F; 4 F and
continue at (3)

. If Fy 1s an atom, return Fj, otherwise, recursively
call gentfy on each principal subformula of Fj,
and return the combined results That 1s, 1If
Fy 9f Av B, then return genify(A)V genify(B),
etc

4Quantified variables m A are given new names in R, of
course



gen(x: P: P) lf
gen(z,z=c,z=c) if
gen(z, —A, G) if
gen(z, IyA, G) if
gen(z, YyA, G) if

gen(z, AVB, G; VGs)

if

edb(P) & free(z, P)

constant(c)

pushnol(—A, B) & gen(z, B, G)
distinci(z, y) & gen(., A, G)
distinct(z, y) & gen{r, 4, G)
gen(z, A, G1) & gen(a, B, Ga)

gen(z, AA B, G) if gen(z, A, G)

gen(z, AA B, G) if gen(z, B, G)

con(z, P, P) if edb(P) & free(z, P)

con(z, z=c, z=c) if constani(c)

con(z, A, 1) if not free(z, A)

con{z, ~A, G) if pushnot(-A, B) & con(z, B, G)
con(z, JyA, G) if distinct(z,y) & con(z, 4, G)
con(a, VyA, G) if distinct(z, y) & con(a, A, G7)

con(:c, AVB, GV Gz)

if

con(x, A, Gi) & con(a, B, (i3)

if
if

con(z, AA B, G)
con(z, AA B, G)

gen(z, 4, G)
gen(a, B, G)

con{z, ANB, G1V G3) if con(z, 4, G1) & con(z, B, (33)

Figure 5 Expansion of rules for gen and con to produce “generatois’

O

Lemma 8 2 If F 1s evaluable, then after Step 1d of
Alg 81

1 gen(x, 3xG(z) A A(z)) holds
2 R does not contain z
3 Ify s free in 3z A, then gen(y, R) holds

Proof It 15 obvious that gen(z, G(z)) holds, from
wlich (1) follows

Using the fact that con{z, A) holds, 1t 15 easy
to show by stiuctural induction that during truth
value simplification each subformula B of A for which
gen{z, B) holds evaluates to false Thus for all B
that do not evaluate to false, con(z, B) holds and
gen(z, B) does not That R does not contan z
follows easily

Item (3) 1s easily verified by considering a conserva-
tive transformation of A 1n which the only negations
are immediately above atoms By structural induc-
tion, 1t can be shown that for every subformula B
such that gen(y, B) holds, either B evaluates to false
or gen(y, B) staill holds |

Lemma 8 3 Let A(x), G(z) and R be as described
m Alg 81 Then A(z) = (G (r) A A(z)) VIR

322

'y

Pioof* Let

Ai(z) 4 I]xG(z) A A(z)
As(z) def —3*G(z) A A2)

Clearly A(z) = A1(z)V Az(z) But R= A3(2) |

Theorem 8.4 Every evaluable formula can be eflec-
tively transformed mto an equivalent allowed formula

Piroof By Alg 81 and Lemmas82and §3 |

It follows mmediately fiom this theorem and
Theorem 7 1 thal every 1ange testricled formula can
also be effectively transformed nto an cquivalent
allowed formula In this special case, our proceduie
reduces to a shght varnant of Decher’s, where 3xG(a)
plays the role of range expression and R 1s called the
remawnder

Finally, we observe that the expanded rules for gen
and con have some nondetermimacy for conjunctions
the G of either conjunct can be adopted when gen
holds for both This choice represents an opportunity
for optimization

9 Translation into a Relational
Algebra Expression

We "y

allowed formula mio an equvalent iclational algebra

now describe a procedure to translate



xpression  In combination with the transformation
of the previous section, this allows any evaluable
formulato be translated mto an equivalent relational
dpcbra oxpre sion

I'he translation procedure has two main phases
transformation of the allowed lorinula into relational
algebra noimal formi, and translation of the normal
form 1nto a relational algebra expression

91 Relational Algebira Normal Foim

To facilitate defining relation algebra normal form, 1t
1s conventent to define two types of formulas

Definition 91 We define D- and G-formulas n
teims of atoins and each other as follows

e A D-formula s one of
- a G-formula

- D A-G, where D 1s a D-formula and G 15 a
G-formula

- DAL =y o1 DAL # y, where D 1s a D-formula
(Recall that 2 # y abbieviates —r = )

a conpunchion Dy A Dy of D-formulas
e A (-formulas one ol
— an edb atom P

- an atom of the form & = ¢ (treated as an edb
atom 1 2 ¢)

— JyD, where D 1s a D-formula containing y
— a disjunction Gy V G of G-formulas

D- and G-subformulas are subformulas that are D-
and G-formulas respectively []

Defimition 9 2 A foimula F 1s 1n relational algebra

normal form (RANF) if 1t 18 a D-formula and

1 For each G-subfoimula of the form G, V G2 the

same vatiables are free in GG and G

For cach D-subformula of the form D A =G the

free vattables of (¢ are asuiibset of the free vaniables

of D

3 lot cach D-subformula of the form DAz = y or
DAa#y 2 and yare frecem D

D)
&

O

Lemma 91 Every RANF formula is allowed

Proof Clearly gen holds for every free variable 1n
every D- and G-subformula of an RANF formula ||

Example 91 The converse of Lemma 9 1 1s false
Not only are the following allowed formulas not in

323

RANF, but no conservative transformation of them
yields an RANF formula

Pz, y) A(Q(2) V Ii(y))
P(a,y) A -32(Q(a, 2) A = 1t(y, )
P(2) A=3y(Q(y) A -3z R(x,y, 7))

O

9 2 Transformation into RANF

We now present a straightforward algorithm to
transform an allowed formula into an equivalent
RANTF formula In terms of producing a small RANF
equivalent, we acknowledge that this algorithm is not
the last word on the subject, but 1t demonstiates
feasibility and is easy to prove correct

Algorithm 91 ranf(F)

INPUT An allowed formula F

oUTPUT An RANF formula F» equivalent to F

PROCEDURE

1. Repeatedly apply all possible transformations of
the following forin

A — A (rn
~(AAB) — ~AV-B (T2)
~(AVB) — ~AA-B (T3)

VzA(z)) — —~3Jz—A(x) (T4)
Az(A(z) V B(z)) — FuA(u) VIvB(v)  (T9)
AAN(BVC)— (AAB)V(AANC) (T11)

Call the resulting formula F

Starting with Fj, repeatedly apply the following
transformations from the top down wherever
possible

For each subformula

G¥E A AC,A AC,

where some variable x 1s free in C, and gen(z, C;)
does not hold, find a conjunct C,(z) for which
gen(x, C,) does hold (possible because the for-
mula 1s allowed) If + > 3, move ) just to the
nght of C,, but we continue to call the conyunet
for which gen fals €, Now if C, 4€f ~3yA(z,y),

then rewnite
C, & ~3yA(z,y) — ~Fy(Ci(x) A Az, v))

If G has no free variables, then every conjunct
C, may be negative In this case, to ensure a D-
formula, rewnite

G — true NG

Call the resulting formula F3, and output 1t



O]

Lemma 9 2 After Step 1 of Alg 9 1, the resulting
formula Fy has the following properties

1 Fy = F and s allowed

2 F; hasthe fom Dy vV D,,, where m > 1 and
every Dy has the foum deseribed 1 (3) This 15
the only place where disjunction occurs 1n F
Each Dy in (2) and (4) has the form C;A  AC,
(n > 1 and varies with &), where each C, has the
form of (4)

Every C) 1n (3) has the form E, or ~E;, where E,
1s erther an atom, or 1s of the form JyDy, where
D; has the form of (3)

Piroof Each rewnite rule (T?) 1s justified for property
(1) by equivalence (E2) and Theorem 6 6 Since no
(T2) 15 applicable 1n Fy, properties (2-4) follow 1l

Lemma 9 3 After Step 2 of Alg 91, the result-

g formula F, = I, preserves properties (1-4) of

Lemma 9 2, and has the following additional prop-

erty

5 For every subformula 7 A A C, of F that
1< maxmal (1 e, not immediately under another
A), f z 15 fiee in ) and gen(r, C;) docs not
hold, then there exists C, with 1 < 3, for which
gen{r, C;) does hold

Pioof The rewiite 1ule m Step 2 of Alg 91 pro-
duces an equivalent formula because of the identity
AA-B = AA-(AAB) Property (5) 1s achieved
because the formula being operated upon 1s always
allowed |

Theorem 94 Alg 9 1 transforms any allowed for-
mula nto an equivalent RANF formula

Proof Straightforward from properties (1-5) estab-
lished 1n Lemmas 92 and 93 In particular, 1if
Ci A AC, 1s asubformula of F, then each prefix
(YA AC, forz<nisaD-formula §

93 From RANF to Relational Algebra

The translation of a formula F' 1n relational algebra
noimal form to an equivalent relational algebra
expression 15 quite stiaightforward, the basics are
given m [UII80] However, 1l 15 unnecessary to form
the Dom relation mentioned there, which wncludes
all constants m query and the database DBecause
AV B only occurs when A and B have the same free
variables, we can simply use union (possibly after a
column permutation) Also, negation only appears
as A A ~B, where B’s free variables are a subset of
A’s, permitting the use of a generalized set difference
operator

324

Definition 9.3. The relational operation generalized
set difference, P dift @, yields the set of tuples n P
whose projections are not in Q That 1s,

PaffQ=P—-n(PQ)

where the (equi-)jomm is on the components of @
(which must be a subset of those of P’), and the
projection 1s onto the components of /> If P and
have the same arity, then P diff @ 1s ssmply P ~ Q,
possibly after a permutation of columns []

Although we have defined P diff Q in terms of
primitive 1elational operators, 1t should be imple-
mented as a primitive m 1ts own nght, using tech-
niques stmilar to those used for efficient joins (In fact
we believe that iff 1s also called anti-yoan ) Thus we
keep duff 1n our final 1elational algebra expressions

We assume that the system builds (in effect) a
temporary L relation for constants that appear m
the query, and treats + = ¢ as an edb predicate 2 3 «

Example 9.2 We show below, for several allowed
formulas (¢f Example 9 1), the RANI and 1elational
algebra expression constructed by the above proce-
dures

P(a,y) A (Q(2) V I(y))
(P(z,y) AQQ))V (P(z,y) A R(y))
mi2(P paj=; Q) Uma(P pp=; R)

P(z) AVy(~Q(y) V 3zR(z,y, 2))
P(z) A -3y(P(z) AQ(y) A~F2R(2,y,2))
P — 7I'1(P X Q - 7f12R)

P(:L‘, y) A Vz(—wQ(:z:, z) v R(ya Z))
P(z,y) A =3z(P(z,y) AQ(z, 2) A-R(y,2))
P — mia(my24(P >y Q) diffz 3223 R)

l i l f

l i

0

Theorem 9 5 Every allowed formula can effectively
be translated mto an equivalent ielational algebra
expression

Proof. Theorem 9 4 and above discussion |}

Many <imphfications of the relational algebra ex-
pressions produced by the procedures of this scction
can be made durmg their construction  Alternatively,
final expressions can be simplfied usmg, cg, the
methods m [U1180]

10 Relation between Evaluable and
Domain Independent Classes

In this scction we show that the evaluable class 1s
contatned 1 the domain independent class and that



with the restriction to formulas with no repeated
predicates evaluable 1s equivalent to domamn inde-
pendent  'To do so, we use the fact that domamn
independent 1s equivalent to definite, which we now
define [ND32)

Definition 10 1 Let I be an inteipretation with
domain D for a formula F, and let p, be the relations
assigned by I to the edb predicates P, that occur n
F Let x be a value not in D Then the *-eztension
of I1s the interpretation I’ with domain D’ = DU{*}
that assigns the same relations p, to the predicates P,
as does T We denote appropriate cross products of

D and D’ by D and 13,, respectively (]

Definition 10 2: A formula F 15 called definite if,
for all interpretations I, F' 1s satisfied at the same
points m I as in T, where I’ 1s the *-extension of I
In other words, @ satisfies F in I' if and only if @
satisfies Fin I [

101 Evaluable Foimulas are Domain
Independent

We now show that every evaluable formula 1s domain
mndependent This was proved onigmally in [Dem82]
for evaluable formulas as defined there The state-
ment needs to be re-examined because we have used
an ndependent definition, and have incorporated
equality

Our proof 1s significantly simpler because of The-
oreins 8 4 and 9 4, which state that every evaluable
formula has an equivalent RANF formula Hence 1t
i~ suffident to prove domain mdependence for RANF
formulas

Lemyma 101 Let F(z) be a formula, possibly
containing other free variables besides z Let I be an
mterpietation for £ with domain D and *-extension
I' If gen(x, F) holds, then F does not hold in I’ for
any assignment that assigns * to x

Piroof Use mduction on forinula size, which we
define to be the number of atoms plus the number of
quantifiers (negations are excluded) For the basis F
1s an atom and not of the form z = y, the conclusion
1s immediate For the induction, one of the following
cases applies
o F 4 AAB Oneof Aand B satisfies gen,
and therefore by the inductive hypothesis, does
not hold if  1s assigned *
e F %' Av B Both of A and B satisfy gen, and
therefore by the inductive hypothesis, do not hold
if 215 assigned *
o I 9t %yA A satislics gen, and therefore by the
wiductive hypothesis, does not hold if z 1s assigned
*

325

o F 9 4 If A s an atom, the conclusion holds
vacuously, since gen(z, I') 15 false Otherwise,
push the = down gaiving G (1 e, pushnot(—A, G)
holds) Now either G 1s an atom other than 2 = v,
or one of the above cases apples to G

Lemma 10 2 If F 1s an RANF formula, then /' 1s
definite

Proof. In view of Lemma 10 1, 1t 1s sufficient to
show that gen holds for all free varnables in every D-
subformula and m every G-subformula of I This
15 straightforward by structural induction For
example, suppose D is a D-formula If D 1s of the
form AA-B, then the free vanables of B are a subset
of those of A, and A 1s a D-formula Also, if D 1s of
the foorm ANz = yor AAz # y, then A15a D-
formula 1n which ¢ and y are free In both cases all
the free variables of D are also free 1n A, and by the
inductive hypothesis gen holds for them 1n A, hence
in D Other cases are sumilar |

Theorem 10 3 If F 1s evaluable, then F 1s definite,
and hence 1s domain independent

Proof. By Theorems 8 4 and 94 and Lemma 10 2
|

10.2 Evaluable Foimulas with No Repeated
Predicates

Essentially, the domain independent class 1s not 1e-
cursive because a given formula may have a subfor-
mula that 1s superfiaially not domaim mdependent,
but 1s unsatisfiable, hence (vacuously) domain inde-
pendent But even though unsatisfiability 15 deaid-
able for formulas with sufliciently simple quantifier
structure [Ack68], we do not consider 1t practical to
test subformulas for unsatisfiability as part of the p1o-
cedure that transforms them into relational algebra
However, formulas in which no predicate symbol 1s
repeated cannot possibly have unsatisfiable subfor-
mulas We show that formulas in this class (without
equality) are evaluable if and only if they are domamn
independent This means that any extension to the
class of evaluable formulas that remams domain -
dependent must at leasi provide for stmphfications
based on common subexpressions (e g , subsumption
tests), and should probably include some form of
inference capability (e g , resolution)

Lemma 10.4: Let F be a formula i prenex-hteral
normal form (PLNF, see Def 41) Let F have
no repeated predicate symbols, no equahty, and no
disjunction If F 1s not evaluable, then F' 1s not
definite The same holds if F' has no conjunction



Proof (Shetch) Let F 4f %zEM(Z, §), where

A —‘Qm

and cach P, and @, 15 an atom of a different piedicate
Let D = {a} We shall find an interpretation I with
domain D and #-extension I’ such that F evaluates
differently mIand ¥}

M‘{—Ef P A /\Pn/\‘ﬂQl/\

Theorem 105 Let F' be a formula with no re-
peated predicate symbols and no equahity Then F
1s definite 1f and only if F 1s evaluable

Proof (Shetch) The “<=” part holds by Theo-
1tem 103 above By Cor 63 we may assume F' 1s
m PLNF, and 1s given by

F & %zM (2, 9)

where M 1s quantifier free  We define the size of a
formula to be the number of atoms plus the number
ol quantifiets in 1t TFor the “=” part, we show by
mduction on size that if 7 1s defimte, then we can
reduce to the case covered m Lemma 104 |}

We conjecture that tlus theorem can be extended to
adlow somie presence of equality  However, 1L cannot
be extended much in other directions 1n view of the
fact that (¢f Example 6 2)

F(z) & Vy[(P(z) A Q) V (P(z) A=R(y))]

ts domain independent but not evaluable

11 Acknowledgements

We would like to thank Robert Demolombe, who
ongmated the evaluable class of formulas, for helpful
discusstons and comments on an early draft of this
wortk  We also thank Hendrik Decker for helpful
discussions

References

[Ach68] W Ackermann  Solvable Cases of the
Decision Problem North-Holland, Am-
sterdam, 1968

I Decher  Integrily cnforcement in de-
ductive databases In Ist Int’l Con-
ference on Expert Database Systems,
pages 271-285, 1986

[Dec86]

[Dem82] R Demolombe Syntactical Characters-
zation of a Subset of Domain Independent
Formulas Techmcal Report, ONERA-
CERT, 1982

[DiP6Y) R A DiPaola The recursive unsolvabil-

ity of the decision problem for the class of
defimte formulas JACM, 16(2) 324-324,
1969

326

[Fag80] R Fagin  Hon clauses and database
dependencies In 12th Ann ACA Symp
on Theory of Computing, pages 123 134,
1080

[Kuh67]  J L Whuhns  Answcrimg Questions by
Compuler A lLogical Study 'lechmcal
Report RM -5428-PR, Rand Corp , 1967
J W Lloyd and R W Topor Making
Prolog more expressive  Journal of Logic
Programmang, 1(3) 225-240, 1984

J A Makowsky Chaiactenzing data
base dependencies In 8th Coll on
Automata, Languages and Programming,
Springer Verlag, 1981

Z Manna Mathematical Theory of
Computation McGraw-Hill, New Yorh,
1974

K Morns, J D Ullman, and A
Van Gelder Design overview of the Nail!
system In Thuad Int'l Conf on Loguc
Programmang, July 1986

] -M Nicolas and R Demolombe  On the
Stabialy of Relational Querics "Techmcal
Report, ONERA-CER1, 1982

J-M Nicolas  Logic for nuproving -
tegiity checking m relational databases
Acta Informatica, 18(3) 227-253, 1982
R Topor Domawn Independent For-
mulas and Databases  Technical Re-
port 86/11, Umv of Melbourne, 1986
(To appear in Theoretical Computer Sci-
ence)

J D Ulman Principles of Database
Systems Computer Science Press,
Rochville, MD, 1980 (Revised Ed 1982)

[LT84]

[Mak81]

[ManT74]

[MUVGS6]

[ND82]
[N1c82]

[Top86]

[U1180]

A Equality Reduction and Wide
Sense Evaluability

In tlus appendix, we descuibe transformations that
normalize foimulas with respect to equality (=),
which we call cquality 1eduction  Many formulas
contanmng < quahity do not salisfly the requirements
for evaluability mtially, but are cvaluable after
equality reduction We say that such formulas are
evaluable 1n the wide sense Wide sense evaluability 1s
mvariant under conservative transformations Since
every wide sense evaluable formula is equivalent to an
evaluable formula, 1t 1s also domain independent

Lemma A1 Let F 4 r =1 A A(z,,7)), where t
1s erther a variable or a constant, and 1s not required
to appear in A(z,t,§) Then

F=F © 2=t AA(LLT))



F & 3[P(a,2) A2 =y V Q(z,y,2)) A=(2 =y V R(y, 2))]
=3f(z=yAfalse)V(z £ yAP(z,2)A(z=yVQ1,y,2)) A~R(y, 2))]
=3[z Z2yAP@R,2)A (2 =y VQ(z,y,2)) A~R(y, 2)]
=(z=yAJ[z£YyAP(y,2) A-R(y, 2))) V(z # yAJw[w # y A P(z,w) A Q(z,y, w) A ~R(y, w)])
=@ =yAAE)AAQW) V (z £y AJu[w # y A Pz, w) AQ(z,y, w) A =1y, w)])

where A(y) 4 3z[z # y A P(y,z) A-R(y, 2)]

Figure 6 Equality reduction of a wide sense evaluable formula

Proot In any cvaluation, either 1 s assigned the
same value as ¢ or both F and I’ evaluate to false

The lemma generalizes the transformations (E13-
14) 1n Fig 4 to free variables

Algorithm A 1. Equahty Reduction

INPUT A relational calculus forinula F'

OUTPUT An equivalent equality-reduced forinula

PROCEDURE

1 Apply the following transformation wherever pos-
sible
Let A(z) be the maximal subformula of F 1n which
z 1s free A may have other free variables If A
contains an atom z = ¢, where t 1s either another
free variable of A or a constant,® then

(a) Define A;(t) to be the formula that 1esults
from replacing every occurrence of z m A by ¢,
and then replacing ¢ = ¢ by fruc and carcying
out truth value sunphfication (Def 8 2)

Define As(z) to be the formula that results
fiom replacing each occurrence of 2 = ¢ n
1{2) by Jalse, and carrymg out truth value
simphfication (Bound variables of A are given
different names in A; and A; )

(c) Replace A by
A (2=t AALI() V(2 # LA Ax(2))
(d) If 2 1s bound mm F, then replace 3xA’ by
A1)V Fz(x # tA As(2))

2 Equality reduction can also be carried out on
equalities between two constants, which may be
mmtroduced 1 Step 1 Suppose ¢ d occurs,
where ¢ and d are distinet constants  1f the system

1 contuns ! e thd 1 quahihie | Goasposoat to

¢ - !

327

assunmes that the distindd name axiom ¢ # d 15
mmphat i F') then we can make 1t exphat at the
top level

F—c¢#dAF

Now replace ¢ = d by false throughout F' and
simplify, as in Step 1b Repeat until all equahties
between constants are removed

3 At this point all equalities between two free
variables of F' that remain can be put in the
form of “case splits” at the top of the formula
by appropriately “pushing ands” (E11) For any
case of the form ¢ = z A A(z), where z 1s not free
in A and gen(z, A) holds, rewrite this case as

z=2ANA(z) A A(2)

This typically arises when A originally contained
x but 1t was substituted for in Step 1 above In an
implementation, we would not actually do 1t this
way, we would add a column replication primitive
to our relational algebra

O

The coriectness of the algorithm follows from
Lemma A 1 and elementary arguments

Defimition A.1 A foimula F 1s said to be wide
sense evaluable 1f Alg A1 transforms 1t mto an
evaluable formula as defined 1 Def 52 [J

Example A.1: The formula 1n Fig 6 1s unmot1r-
vated, but serves to illustrate the mechanics of the
algorithm []

A better characterization of wide sense evaluable
formulas 1s a topic for future research



