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Abstract 1 Introduction 
Not all queries m relational calculus can be answered 
“sensibly” once disJunctIon, negation, and umversal quan- 
tlfication are allowed The class of relational calculus 
queries, or formulas, that have “sensible” answers 1s called 
the domaw Independent class, which IS known to be 
undecidable Subsequent research has focused on Iden- 
tifymg large decidable subclasses of domam independent 
formulas In this paper we mvestlgate the properties of 
two such classes the euoluoble formulas and the allowed 
formulas Although both classes have been defined before, 
we give slmphfied definitions, piesent short proofs of their 
main properties, and describe a method to mcorporate 
equa1lt.y 

Alt 11o11gh cvaluable que~ ES have SC nslble answers, It 
IS uot l tralghlforwartl to corii~~ilc them efiiclently or 
correctly We Introduce relatronul algebru normal form 
for formuLti flom whtch form the correct translation 
mto relatlonal algebra 19 trivial We grve algorithms 
to transform an evaluable formula mto an equivalent 
nllowed formula, and from there mto relational algebra 
normal form Our algorithms avoid use of the stxalled 
Dom relation, conslstmg of all constants appearmg m the 
database or the query 

Fmallv, we describe a restriction under wluch every 
domam independent formula IS evaluable, and argue that 
evaluable formulas may be the largest decidable subclass 
of the domam Independent formulas that can be efficiently 
recogmzed 

With the increased Interest m development of deduc- 
tive database systems and mtegratlon of logic pro- 
gramming languages such as Prolog with relational 
database systems, It has become more important 
that relational query systems be able to handle a 
wider range of relational calculus formulas correctly 
and efficiently In particular, disJunctlon, negation, 
and universal quantlficatlon over subformulas, which 
are excluded from the class of congunctrve querzes 
[Ull80], should be available Current “mdustrlal 
strength” lmplementatlons handle the class of con- 
Junctlve queries well, but leave much to be desired 
m the areas mentioned, we shall give an example 
later In defense of these lmplementhtlons, we should 
point out that the large maJolky of queries posed 
by typical users to tradltlonsl databases fall Into the 
class of conJunctlve quenes However, m sophIstI- 
cated systems of the future we envlslon the queries 
often being generated not by the user typing them m 
at the termmal, but by a layer of software posltloned 
between the user and the relatlonal database system 
This software will access a large set of deductive rules 
m addltlon to the user’s query m order to construct 
relational calculus formulas The Nail’ project at 
Stanford Umverslty [MUVG86] is Just one example 
of several research proJects headed m this direction 

*Supported by NSF grant IST-84-12791 and a grant of IBM 
co1 p 2 Problem Statement and 

Background 

In this paper we shall be concerned with two main 
questions 
1 Which relatlonal calculus queries can be answered 

sensibly? 
2 How can such queries be answered? 
For our purposes, answermg a query means evaluat- 
mg a relatlonal calculus formula By “sensible” we 
mean that values m any logically correct answer are 
hmlted to values that appear m the query itself or m 
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tlatab<ase relations mentioned m the query 
Not all queries m relational calculus can be an- 

sweled sensibly Two simple examples that cannot 
be answered sensibly are 

F(c) %f TP(Z) 

G(~,Y) !zf P(x) ~Q(Y) 

whele P and Q are database relations F(z) holds for 
arbitrary t’s that are not m the database, and G(z, y) 
holds for arbitrary y values when P(z) 1s true, and 
we versa 

In the followmg section, we describe previous 
attempts to characterize those classes of queries that 
can be answered sensibly 

Evaluation of relational calculus queries can be per- 
formed either by translation mto a set of clauses suit- 
able for a Prolog interpreter [LT84, Top86, Dec86], 
OI by translation mto a relational algebra expression 
Here, we are concerned solely with the second ap- 
plodCl1 

‘1‘1nn~latlo11 of rt relational calculus query that 
Iuclutles drsJunctlon and/or negation IS a theoretically 
qolvcd problem [Ul180], p rovltletl the query is “safe ” 
However, the practical dlficultles are such that 
several commercial database query systems give 
mtultlvely unexpected results on such queries 

Here IS a “real life” example Essentially, a user 
posed the query (we slmphfy the syntax) 

select Rl name 
from Rl, R2, R3 

where RI name = R2 name 
or RI name = R3 name, 

. 
and was quite surprised to find out that the answer 
w* ml when relation R3 was empty, even though 
there were matches between Rl and R2 This user 
was even more surprised when the vendor clamed 
t llat this behavior waq (orrectf In fact, the semantics 
of QUEL [Ull80] do 5uppot t 1111s behclvlor, and several 
\ysfcltl\ whose query language IS an outgrowth of 
QUEL give ml answers 

While the vendors are saved by the “fine print,” 
which says that even though their language looks 
llhe relational calculus, it is really a relational 
algebra expression m disguise, the sltuatlon 1s hardly 
satisfactory from the user’s point of view The 
QUEL interpretation has only been proven to yield 
correct translations of conJuncttve relational calculus 
qu(~~c~ (defined below) [Ull80] The problems of 
correct translation of more general relational calculus 
formulas still need to be addressed 

2 1 What ale the Problems7 

Conjunctive queiy formulas are fhosc that I~\C only 3 
and h (Equality can be replcsc>nled 111 coulunctlvc 
queries by repetltlon of variables and substltut 1011 of 
constants, for amphclty, we do not consider “bmlf- 
m” predicates such as <, >, etc ) The translation 
of such a for, iula into an equivalent relational 
algebra expression IS straightforward and well-hnown 
Informally, A(rl, v, VI, zy) A B(u, v, y, z) becomes a11 
eqmJom on the columns of u and V, and 3cA(r, I/, :) 
beconir7 a proJcctlori lhat cliiimiclte4 the co111ln11 f01 
2 Essenhally, all such formulas can be translated 

The sltuatlon changes when we mtroduce dlsJuuc- 
tlon and/or negation We intend to handle d~s~unc- 

tlon algebraically by timon and handle uegatlon 1)~ 
set dtflerence For example, P(z, y) V Q(.I, y) can 
be evaluated by P U Q, and P(z, y) A +J(z) can 
be evaluated by P diff Q More generally, to have 
a snnple representation m relatlonal algebra, both 
operands of “V” must have the Same vanahlcs, wlult 
negations must appear m the form A A -I? whcle 13 4 
vanablrs alt a SubSCl of A’s [1Jll80] 

These hmltatlons glvc 11s~ to 11l-l~~l1a~ctl C~IVY <I\ 
demonstrated by the two earlier exampler 

F(r) g lP(,) 
G(GY) !Zif J’(z) v Q(Y) 

The two problems here, which are the mam problems 
aside from handling equahty, are 

l The terms of a disJunction do not have the same 
set of free variables 

l A variable m a negative atom 1s not limited m tts 
range by positive atoms elsewhere m the formula 

Once we develop tools to handle these problems, 
then universal quantifiers will not present any new 
problems, we will be able to rewrite VI as 4~1 at 
the appropriate moment 

The sltuatlon 1s really more complicated than II 
might appear at first glance, because the p1oble111 111 
a subformula can oflcu bc culc~tl by \0111c olllc~t p,lI 1 
of the ovcr,lll fol1nul,1 Thus (‘v(‘il t llougll the qllc I y 

G(z, Y) ‘!gf P(z) v&(x, Y) 

1s definitely not “reasonable,” because It holds for 
arbitrary y values when P(z) IS true, nevertheless, 
the query 

F(z) gf 3yG(z, y) E 3y(P(z) v Q(z, y)) 

may well be consldered reasonable The nalvtb 
translation mto al(P U Q), where ~1 means “project 
onto column 1,” piesents problems because lllc 
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“I” l,illC,ll I’ I I (2 III‘II\t CI I10 WI141 Ilowcwt~l, III tills 

f*ld F(r) II,‘ <III ( Cllllb III Ill If,1 I,,, 

l+‘(J)= (l’(J)V3f/lJ(J,f/)) 

fol wh1c11 tl1c nCuve lranslatlon I\ corlcct, and IS 
1’ u KI (&I 

Our goal 1s develop d systematic method to dlstm- 
gmsh the curable problems, such as the above, from 
the uncurable ones, such as 3y(P(z) V Q(y)), and to 
provide correct transformations for the curable ones 

2 2 Plevlous Work 

Thele have been several at tempts to define a “reason- 
able” class of queries, I e , a class with the followmg 
desirable properties 

l The constants 111 the database and the query 
provide a sufficient domain for the values m the 
answer Formulas with this property are called 
domazn zndependeni [Fag80, Mah81] 

l ‘l%le IS cul efJLlcut way to decide If the query 
formula IS “reasonable” and if so, to translate 
the relntloiinl calciiliis formula into a relational 
algebra explesslon whose evaluation gives the 
correct answer 

l There IS an efficient way to evaluate the resulting 
relational algebra e\plesslon 

The class of conJunctlve queries has these plopertles, 
as shown m [Ull80], but this class IS rather limited 
The class of domnzn zndependent foolmulas [Fag80, 
Mak81], which by its definition 1s the largest class 
havmg the first property Itsted above, represents a 
generahzatlon of sufe formulas, mtroduced m [UllSO] 
However, the domam independent class 11cas been 
shown m [ND821 to be equivalent to the class of 
definrfe formulas defined m [Kul167], and definite 
formulas were shown to be not reculslve m [DIP691 

Other researchers have subsequently proposed de- 
cldablc, subclasses of domam mdepcndent formulas, 
Iucludtng mnqe restrzcted formulas [Nlc82, Dec86], 
eualuable formuld5 [l>em82], Ed ntlowed formulas 
(Top80j Wr ~IVC thclr defiultlons latrl, ti we discuss 
t1v2111 

Of these, the evnluable formulas comprise the 
largest class, but the tlefimtlon of this class m 
[Den182] occupies three pages, Its complex defimtlon 
mahes It unwieldy to work with, as evidenced by the 
fact that It required ten pages Just to prove that it IS a 
subclass of domain independent formulas, moreover, 
there IS no attempt there to describe how to actually 
evaluate evaluable formulas, 1 e , how to translate 
them correctly mto relatlonal algebra expressions 

The allowed formulas, although a strict subclass of 
tl1e evaluable formulas, are the eastest (among the 

nhove-mcntloned cln\ses) to trdnslatcb Into ~clat~onnl 
,klghrn 

‘I’lic i.mg( r( 9lric 1f (1 lor~i~ul4.5 (OIII~I 14~ I IN , v,~lii 
&IV foi rriul~ls tlhit Cile 111 dl5Juuctrve iioruhil IOI III 01 
conJunctlve normal form [Dem82] 111 an nnportant 
step toward practical evaluation, Decher [Dec8G] has 
shown how to transform any range restricted formula 
mto an equivalent’ range form that IS suitable for 
Prolog-style “tuple at a time” evaluation 

3 Summary of Results 

In this paper we give a much simpler definition of 
evaluable formulas With this simpler defimtlon, it 
1s more feasible to prove propertles of the evaluable 
class, and to see the relatlonshlp between allowed 
formulas and evaluable formulas We show that the 
evaluable class IS invariant under a set well-hnown 
equivalences that can be used as rewrite rules (e g , 
DeMorgan’s laws), which we call co7~selvofzv~ trans- 
formations This mvclllance make? It easy to see 
that every evaludble formula CJI~ be couservatlvtly 
rewritten m prenex-literal nolmnl form (Def 4 1) 
However, the evaluable property 1s not always pre- 
served under dlstrlbutlon of A over V or V over A 

Using dlstrlbutlon IS apparently a necessary step to 
put certain formulas into an equivalent form that can 
be “transliterated” mto relational algebra This 1s 
our motlvatlon for transformmg evaluable formulas 
mto allowed formulas, which nre mvarlant under dls- 
trlbutlon 

One of our mam results 19 an algorithm that 
transforms any evaluable formula mto an eqmvalent 
allowed formula 

Another mam result 1s that every allowed formula 
can be effectively translated correctly mto a relational 
algebra expression 

At this point we should mention two propertles of 
formula transformations (either mto other formulas 
or mto relatlonal algebra explesslons) that we con- 
sider unacceptable, and wish to dvold The first 
property IS that the transformation does not neces- 
sarlly produce a logically equivalent formula, but 1s 
only guaranteed to do so if the input formula 1s a 
certam class (such as the domam independent class) 
This puts the burden ou the user of providing correct 
input, or getting erroneous results with no warmng 
The second unacceptable method 1s to exphcltly form 
the so-called Dam relation, conslstmg of all constants 
present m the database and the query Both these 
drawbacks are present, for example, m the rewrite 

1 By equrvalenl we shall always mean logtcally equ:valent 
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1 Ilk 

-P(x, y) z Dom(x) A Dam(y) A -P(t, y) 
-Domx Doln-P 

130th of our transformation algonthms have the 
dltrnctlve property that such tactics are not required 

Fmally, we shall show that the class of evaluable 
formulas IS the largest practical subclass of domain 
independent formulas m a certain sense Essentially, 
the domain independent class 1s not recursive because 
a given formula may have a subformula that 1s super- 
ficially not domaul Independent, but IS unsatisfiable, 
hence IS actually domain mdependent (vacuously) ’ 
However, formulas m which no predicate symbol IS 
repeated cannot possibly have unsatisfiable subfor- 
mulas We show that formulas m this class are 
evaluable 1f and only 1f they are domain independent, 
and discuss the lamlficatlons 

4 Notation and Definitions 

We assume the leader IS familiar with the standard 
notation and terminology of logic, relational calculus, 
and lclatlonal algebra [Man74, U1180] We shall 
ahbicviate “lirst order well formed formula” to 
fo7v,aln, and “atoiiiic formulcl” to atom A ltteral 
IS either an atom or 5 negated atom We assume the 
absence of function symbols (other than constants) 
throughout We shall use P and & to denote 
predicate symbols or atoms that correspond to a 
database relation, we call these edb predicates We 
use A, B, to denote formulas and subformulas, 
we use a, , d as constants, u, , z as variables, 
and s and t to represent a term that may be either a 
vailable or a constant 

We adopt a sort of vector notation i to denote a 
We (21, , zn), where n may be zero Thus the 
notation A(z, y’) denotes a formula m which I 1s a 
flee variable and there are zero or more other free 
variables yz that are of interest, m add1tlon, A may 
contam still other free variables that are not currently 
of interest 

In a smular vein, we write Vii! for t/ccl Vz,,, and 
wllte 35 for 3r1 3zc, We also use “%” as a 
“quantlfkr variable,” standing for either V or 3, or 
m the caSe of %Z, for a specific slrzng of (posstbly 
mlued) quantifiers We assume that no quantified 
variable occurs outside the scope of Its quantifier, 
I e , WC avold (3zA(z) A 3rB(t)) and use instead 
(3slA(a) A 3~2B(22)) 

We shall use 3 to denote logical equivalence and + 
to denote logical lmphcatlon, both denote relations 
between formulas, not symbols within formulas In 

2The sltuatmn I$ not this simple, but this 8s the central rdea 

addltlon, dsr IS often used to mean “IS defined ag” 
to give names to formulas We otcaslonnllv use “[ 1” 
as synonyms for “( )” for readabdlty 

We adopt the usual defkutlons ([Mau74], ctc ) for 
prenex noiinal form, conpnrtlue noimal form, and 
d:spritcltve irormnl form, whch wc abbrc~vlalc to 
PNF, CNF .LII’ IINk’, rerpectlvcly WC 411all &o 
introduce relattonnl algebra normal form, abbreviated 
RANF (See Def 9 2) In addltlon, we shall have 
several occasions to 1efer to the following normal 
form 

Definition 4.1 A formula 1s said to be m p?ener- 
lrterol normal form (PLNF) 1f it 1s 111 PNF and all 
negations are lmmedlately above the atoms (This IS 
sometimes called uegatrve normal form ) 0 

As usual m the context of normal forms, we regard 
A and V as polyadlc operators tahmg zero or more 
operands, with zero operands, A() s irue and V() z 

f&e A clause 1s a conJunctlo of hterals 01 a 
disJunct~oi1 of lltclals 

5 Evaluable aud Allowed Classes of 
Formulas 

In this scctrou we define the classes of edunblc 
form&s and allowed formulas, and give some of 
then properties The term evaluable 1s due to 
R Demolombe [Dem82] We use the same term 
because the class 1s the same, although our defimtlon 
IS different Actually, there 1s a mmor difference 1n 
that we treat 1: = c, where c 1s a constant, as though 
1t were z 2 c, where 2 1s an edb predicate, m effect, 
this case 1s not mentloned m [Dem82], but could be 
incorporated easily 

5 1 The gen and con Relations 
To define evaluable and allowed we first need to define 
certam relations between variables and (sub)formulas 
We have chosen the names gen and con fo1 these hey 
lelatlous They are abbrevlatlons for generated and 
conszsient Our relation generated 1s called resfrzcfcd 
m [Dem82] and pas in Top86, to avoid tahlng sides 
we have chosen a third name Also, our constdmf 15 
slmllar to, but not qultc the same as, wh& [l)em8J] 
calls posrttve We prcfel to use the terms poszlzve 
and negatrve to describe the polarity of atoms or 
subformulas w1thm a formula As mentloned before, 
a subformula IS consldered to he posztzve 1f 1t falls 
under an even number of negations, and negatzve 1f 1t 
falls under an odd number 

Definltlon 5 1 The essentials of the defimtlons for 
gen and con are presented 111 Fig 1 In a rule fo1mat 
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gen(t, P) if e&(P) & jree(z, P) 
gen(x, 2 = c) if cons2anl(c) 

gcn(.t, ‘A) if pushnot(~A, B) Rr. gen(z, II) 
‘/f n(s, 3yA) If d~/tncl(r, ?/) k qcn(z, A) 
f/C n(r, VT/A) lf dzs/zncl(z, 1/) s( q( II(J, A) 
grw(~, A V U) If gen(z, A) & gev(x, 13) 
gen(s, A A B) if gen(z, A) 
gen(r, A A B) if gen(z, B) 

con(5, P) d e&(P) t free(2, P) 
con(x, 2 = c) d conslan2(c) 

con(z, A) if notfree(c, A) 
con(x, ‘A) If pushnot(--A, B) & con(z, B) 
con(x, 31/A) If dmttnct(t, y) & con(+, A) 
con (3 , S/A) lf dlhzct(r, y) & coqz, A) 

con(x, A V B) if con(z, A) & con(~, B) 
con(x, A A B) if gen(t, A) 
con(x, A A B) if gen(z, B) 
con(x, A Al?) If con(z, A) & con(z, B) 

Figure 1 Definltlons by rules of gen and con 

snmlar to a Prolog program 3 We Intend that the 
relations gen and con hold only when they can be 
estabhshed by a fimte number of apphcatlons of these 
rules 0 

Read the & ‘s that separate subgoals (to the rlght 
of the “ If “) as “and” For example, the first rule 
reads, “x IS generated m P d P IS an edb atom, and 
ir IS free m P ” 

%cral predicates appear m these rules to support 
111~1 tl&nltlons of gen dnd (011 We 1nt~t1t1 that they 
IW 

. 

. 

. 

. 

. 

Ilttchrpletcd ZB follows 
edb(P) holds pleclsely when P 1s an atom whose 
predicate symbol represents a database relation 
free(x, .4) holds when variable t occurs freely m 
formula A 
dzstrncf(x, y) holds when x and y are different 
variables 
constant(c) holds when c IS a constant 
pushnot rewrites its first argument mto an equlv- 
alent formula wlthout “1” at the top, by applying 
DeMorgan’s laws, changing 73 to VT, or chang- 
mg + to 31, it falls when this 1s lmposslble, 
1 e , when A IS an atom The second argument 
becomes the transformed formula when pushnot 
succeeds 

Intultlvely, gen(z, A) means that A can generate 
ail the needed values of x, as though It were a 
database relation In other words, A holds for only a 
finltr set of values of x (assummg fimte edb relations, 
of course) 

Lemma 5.1 For every variable t and formula A, 
gen(c, A) nnphes con(z, A) 

Proof- Use structural mductlon on the subformulas 
OfA 1 

3Prolog eognoscentr are warned not to take the syntax too 
ser~owly, I and y are still to be mterpreted as varmbles 

Example 5 1 The converse to Lemma 5 1 IS false 
In the followmg, con(z, A) holds but gen(z, A) does 
not hold 

A gf P(x,Y) v Q(Y) 
A ef ~Q(Y) 

Note that z need not appear m A q 

Intultlvely, con(z, A) means that for any asslgn- 
ment to other variables of A, say y’ = &, either 

l A can generate all the needed values of L, or 
l ,4(x,&) holds for no z, or 
l A(z,&) holds for all E 

Figure 2 shows a geometric mterpretatlon of con 
If con holds for all the free variables of A and the 
underlying edb relations are finite, then the set of 
points where A holds can be represented as a finite 
collection of pomts, lines, planes, and hyperplanes 

Also, from a logic programmmg vlewpomt, we 
can think of A as a goaI that may succeed without 
mstantiatmg all of its arguments 

5.2 Evaluable and Allowed Formulas 
Definition 5 2. A formula F 1s evaluable or has the 
evaluable property If and only If 

l For every variable x that 1s free m F, gen(r, F) 
holds 

l For every subformula of the form %A, con(z, A) 
holds 

l For every subformulaof the form VzA, con(z, -A) 
holds 

Cl 

Defimtion 5.3: A formula F 1s allowed, or has the 
allowed property d and only If 

l For every variable x that IS free m F, gen(z, F) 
holds 

l For every subformula of the form %A, gen(z, A) 
holds 
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Figure 2 Geometric lnterpretatlon of the con prop- 
erty for A(x, y) d&f P(x) V Q(y) V R(z, y) 

l For every subformulaof the form VtA, gen(z, 7A) 
holds 

0 

Rather than p1ove that our clefinltlon of evaluable 
yields the same class as [Dc11182], it IS easier t0 JUSt re- 
pi-o\t tlie important plol)t~ ties of tlic class We shall 
show tJ1at cvcly ( v,llunble fol1nula (and 11cnce every 
allowed fornlula) 13 do1na1n independent m Section 10, 
after developing some more machinery 

Theorem 5 2 Every allowed formula IS evaluable 

Pxoof Immediate from Lemma 5 1 1 

Example 5 2 The converse of Theorem 5 2 xs false 
The followmg formulas are evaluable but not allowed 

F(Y) !Zf %P(x, Y) V Q(Y)) A +(Y)I 
G - def 3yVx(7P(x) v S(y, 2)) 

With appropriate interpretations of P and S formula 
G corresponds to the questIon, “Does some supplier 
supply all parts?” 

Also, note that removing the outer quhntxfier makes 
both F and G not evaluable The problem with the 
apparently 11al 1nless variant, “What supphers supply 
all pa1 ts t” IS that If P(x) 19 empty, then G holds for 
arl11t1ary y 0 

5 3 Equality m Evduable Formulas 
The definition of evaluable 1n this se&on adopts a 
“middle of the road” approach to equahty It IS quite 
conservative with respect to equality between two 
variables, smce gen(x, x = y) and con(x, x = y) 
11ever hold Formulas satisfying Def 5 2 may be 
said to be stract sense evalunble In Appendix A we 

describe transformations that remove 111nny 1114tdnces 
of such equaht1es, and yield an “ccl11~\11ty ieduced” 
folm We call formulas that can IX transformed into 
evaluablc forlnulas by mcany oft httsc t1 ,IIIS~OI n1a1 IOUY 
wade senw tvnlunble 

On the olhcr liautl, dt~f1111iig (I( /I( I , J L t ) lo holtl 

involves goiug beyoid sl1 Ict rt~l,1llo11,ll t nit ulus ran 
defined III [Ull80], 1n that I& allowz “dl~t~n~hod~ed” 
variables into a formula tl1at do 11ot appea1 111 any 
edb atoms One way to Justify thrq 15 to assume that 
the underlying query answermg \y<ft~n will (III t~ffcct) 
form a relatloii on the fly, call it 2, cant C~~~i~i~g tuples 
(c,, cI) for the constants ct that appear ii1 tlie queiy 
Then the system treats x = c as though 1t were x 2 c, 
an edb atom It 1s easy to adapt our methods to 
systems that lacl, this capab111ty Smlply ltmove the 
rules for gen(x, x = c) and con(x, x = c) 111 Figs 1 
and 5 and treat x = c like x = y tl11oughout 

Allowmg x = c IS the only way to babe values 1n 
the answer that were not 111 the tlat,1haac Such bCcllues 
might se1ve as defaults For e\anlplt>, if’ 1’ 1eprc$ents 
part and S rep1esents wpplzes, the11 

p(x) A (S(?/, 3) V (t/z+(z, J) A t/ = non(‘)) 

appears to Iw a plau~iblr tlwrq 111,11 d <v4t\111 4ioultl 
linndlc 

6 Conservative aud Distributive 
Transformatious of Formulas 

In this section we study the effects of various 
logical transformatlo11s on the evaluable and allowed 
properties of formulas, w1tl1 a view Lo ideutifymg sets 
of transformations under which these properties are 
invariant 

Figure 3 shows some standct1d equivalences that 
are frequently useful to manipulate formulas [AcbG8, 
Man741 Note that they preselve the number of 
atoms, and hence prese1ve the number of binary 
logical operator4 We show tl1al the evaluable 
property 1s 1nva11nnt untlel transfolmatlons based on 
these 1de11t1tles 

Defimtxou 6 1 WC say 111& G lb ‘1 COH~C~ IJ~/HJC 
tr4n9forvrnlwr~ of P if C: can bt oI~l~~nt~l I)y ~t~pl,~c~rig 
asubformulaof~ ~ccoidmg to o11c of the equivdle11ces 
1n F1g 3, or by a series of such replncements 17 

Lemma 6 1 The relations gen dnd con defined 111 
Fxg 1 are 1nvar1ant under conservative transforma- 
tions ((El-lo) of F1g 3) ‘I’llat IS, 1f G(y) 1s a conser- 
vative transformation of F(y), tl1en gen(y, $‘(I/)) * 
gen(y, G(y)), and similarly for tort 
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%xA(x,G) E %vA(v, y’) 
Vc(A(z) v B) f VzA(z) v B I:;; 
3.~(A(z) A B) E 3zA(z) A B w 

3r(A(z) v B(s)) z 3qA(q) v 3z2B(z2) (E9) 
Vz(A(x) A B(z)) E VzlA(zl) AVzzB(z2) (ElO) 

Figure 3 The equivalences upon which conservalzve 
/rcrss~onna~~ons are based “%” stands for 3 or V 

AA(OVC) z (AAB)v(AAC) (Ell) 
Av(BAC) G (Av@A(AvC) (E12) 

~J(J = I/ A /I(.L,I/)) G A(?/,?/) W3) 
V4r # Y v l(cv Y)) = 4Y,Y) (3314) 

I I~IIIC 1 01hc1 useful equivalences dlstrlbutlve laws 
dnd cqualltj c+inmatlon We use 2 # y to abbreviate 
-1 =y 

Proof ‘l’h~b 1s merely a matter of applying the 
tlefinltlons roar example, suppose (ElO) apphes, 1 e , 

f’(~, Y) % ‘WA(z, Y) A B(z, Y)) 
G(z,y) %’ V~~A(~I,Y)AV~~B(~~,Y) 

((1 111~ly bc &sent from A or B) If con(y, F(z, y)) 
I~oltls, then con(y, A(z, y) A B(z, y)) &o holds, and 
<It Ic;lst one of the followmg three IS true 

gen(y, A(z, y)) holds Then gen(y, VE~A(Z~, y)) 
also holds 
gcv(y, B(.I y)) holds Then gen(y, V~B(z2,y)) 
niso hold> 
IMh ton(y, A(z,y)) and con(y, B(P, y)) hold 
‘l’hru coniy, VzlA(zl, y)) hntl con(y, VszR(22, y)) 

. . . 
A0 lloltl 

And $0 cov(y, G(c, y)) IS seen to hold The other 
tlucctloll nutl other cases are similar 1 

Thcorcnl G 2 If A IS evaluable and B IS a conser- 
vative transformation of A, then B 1s evaluable 
Proof (Sketch) The only cases not handled by 
Lemma 6 1 mvolve moving the quantifier for the first 
argument of a con by means of (E7-10) 1 

Colollal y G 3 Every evaluable formula can be con- 
servatively transformed mto an equivalent evaluable 
IOIIIIIILL III I’LNl (Def 4 1) 

Corolhy 6 4 Awry cv,dual~lc forntula can be con- 
wrvnl IV{ ly 1 r~~rd0rtrw~l 11110 racy ~~qu1vJrnt evalunblr 
formuln lhnt corithlns no universal quanllhers nntl 
has negcltlons only mmledlately above atoms anti 
existential quantiers 

Example 6.1 The nllowed property may not be 
preserved by the conservative transformations (E7- 
8) Thus, allowed formulas do not, always have a 
conservative transformation into prenex normal form 
E g , the allowed formula 

3zA(z) V B 

can be conservatively transformed to 

3s(A(z) v B) 

which 1s not allowed 0 

Although the dlstrlbutlve laws, shown m Fig 4, 
cannot be applied Intllscrlmlnately, sonw popcrf ICS 
are preserved III some (<we\, <IS dcscrlbcd III t IIP nt~t 
lemiri,i 

Lemma G 5 ‘l’he lelatlou con defined m Fig 1 15 
invariant under (Ell) of Fig 4 (“pushmg an& ) 

That IS, 
con(x, A A (II V C)) 

if and only If 

con(z, (A A B) V (A A C)) 

In addition, gen 1s mvarlant under both dlstrlbutlve 
laws (Ell-12) of Fig 4 
Proof (Sketch) Case analysis, using the delimtlons 
I 

Example 6.2. As pomted out m [Dem82], “pushmg 
ors” (E12) does not always preserve con For 
example, consider 

F +? P(z) V (Q(t, T/) A in) 
G gf (P(z) V Q(c, y)) A (P(z) V 7R(y)) 

Here con(y, F) holds, but con(y, G) falls 0 

6.1 Invariance of Allowed Formulas under 
Distribution 

In Section 8 we describe an algorithm to transform an 
evaluable formula mto an equivalent allowed formula 
One motlvatlon for this transformation 1s that the 
allowed property IS preserved by the dlstrlbutlve 
laws, whereas the evaluable property 1s not The 
final translation mto relational algebra normal fol111 
(Section 9) frequently requires apphcatlon of the 
dlstnbutlve laws 
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Thco1em 6 6. If A 1s allowed and B 1s obtained 
from A by either 

l a distributive law transformation (Ell-12) of 
F1g 4, or 

l a conservative transformation except for (ET-~), 
then B 1s also allowed 

Proof. The dlstrlbutlve laws are immediate from 
Lemma 6 5 The rest 1s similar to Theorem 6 2, 
except that we need to check that the needed gen 

relations are present when (E9-10) are used 

Example 6 3 The following formula shows that 
“pushing ands” (Ell) d oes not always preserve the 
cvaluable property Let F(z) ef V23yA(r, 21, z), 
where 

A(JG Y, 2) !Zf R(Y, z> A (Q(z) V --P(z)) 

Since 

~A(x, Y, 2) = -(Y, ~1 V (-Q(x) A P(z)) 

we have con(t, lA), as required for F to be evaluable 
Pushing the “and” gives 

B(z, Y, z) !Ef (R(Y, 2) A Q(z)) V (R(Y, 2) A +(,)) 

and the corresponding G d!* Vz3~B(z, Y, ~1 
However, con(t, ‘B) does not hold, so G 1s not 
evaluable The problem 15 that “pushing and” m A 
15 the same as “pushmg 01” (E12) 1n 1A This 1s the 
one d1stnbut1ve t1ansformatlon that may not preserve 
con cl 

7 Range Restricted Formulas 

Range 1estr1cted formulas are based on d1sJunctlve 
and conJunct1ve normal forms, and represent one of 
the first decidable subclasses of domain independent 
formulas to be studied [N1c82] Putting formulas into 
normal forms requires the use of dlstrlbutlve laws 
(Ell-12) of F1g 4 S 1nce the distributive laws do 
not always preserve the evaluable property, 1t 1s not 
too surprising that certain evaluable formulas become 
non-evaluable 1f we simply put them into DNF 1n 
an attempt to make an equivalent range restricted 
formula, as shown by Example 6 3 However, we 
show that every evaluable formula (and only those) 
has an associated paw of formulas 1n DNF and CNF 
that satisfy conditions quite similar those required 
for range restrlcted formulas This theorem provides 
an alternate recognltlon mechanism for evaluable 
I-01 lllll1;1~ 

Let M’ dZ* (C1 V VC,,,) be the conJuuct1vcx IIOIIII~~ 

form of M constructed by applymg the rhstlll)utlvc\ 
law (E12) of Fig 4 Then F 19 rclnqe resfrzckd If lh(b 
follow111g propcrt1es hold 
1 For every free vn1lable 2 1n !‘, 2 OCCUIS in <I 

positive atom 1n every U,, I e , gen(z, M) holds 
2 For every ex stentially quantified va11able 3 111 F, 

z occurs In a positive atom iii eveiy D, iii whicli 

1: occurs, I e , COR(Z, M) holds 
3 For every universally quantified varlablc L III k’ 

t occurs III a negative ato1n m every C; 111 which 
I occurs, 1 e , con(~) 7M’) hold- 

0 

Item 3 111 the above defm1t1on wss stated ~omewhnt 
d1fl?rently 111 [Dem82] 
3’ For every universally quantified variable I 1n l’, 1f 

z occurs 1n any positive atom, then there IS some 
clause 0, such that every atom of Dj IS negative 
and contains 2 (Either COR(X, ~0%) holds for 
all D, 01 gen(z, -0, ) holds for some U, , 1 e 
con(t, -M) 11olds ) 

The equivalence of the two defin1t1onT follow5 f1oul 
Lcm1nd 6 5, since TM’ 15 obtamed f1o111 7 \I b\ 
pushing and’s (El 1) 

Theorem 7 1 (Demolombe [Dem82]) Let f he a 
formula 1n disJunct1ve norinal form The11 F I$ 
evsluable 1f and only 1f F 1s range rcstl I( tc~l 

Proof Immcd1ate flom the definltlon, lJ~~n~n~~l 0 I 1 
and Lemma 6 5 1 

Demolombe observes that a srtnllal result holds fat 
formulas 1n conjunctive normal form 

Tl11s theorern can be general1xttl ! o ‘apply to ,111 
evaluable formulas 

Definition 7 2. Let cnf(F) (resp , dn/(F)) be the 
conjunctive (resp , d1sJunctive) normal form of foi- 
mula F constructed by applying conservative trdus- 
formations and distributive law (Ell) (1esp (EI’L)) 
cl 

Theorem 7 2 Let F be a formula w1tl1 

dnf(F) ‘Gf %Z!Md d2f %l(Dl V v On) 

cnf(F) dZf %Z’M, dgf %Z(Cl A A cm) 

Then F 1s evaluable 1f and only 1f the followmg 
properties hold 
1 For every free variable z m F, t occurs 11~ a 

posl(lw id0111 iii every D,, I e , qe7t(J , Md) hold< 

2 For ~cly ~XiStClif Idly cjllall~l~l~Y~ V*ll IAbb J III 

fh/(l~‘), s OCCIII~ in h pwil~vc~ dtotii III w rv I), 
,,I \vlltc~, .I oar,,,‘, I ( , CO/t(J, A!,/) II~d~l 
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3 For every universally quantified vallnble z m 
cnf(F), s occurs 111 a negdtlvc &om m every Ck 
III whrc II J O( ( 1114, I (’ , WI(S, 44,) holtls 

1’1oof (Skc I( II) ‘l’h((,r( III 0 2 cmd 1,~ IIIIII~L 0 5 Jlow 
115 to put If’ lilt0 prc ncx-lltrrnl notmnl form (Dcf 4 1) 
Cr~~tl push and’s m A4, wlt~lc prescrvmg gel, and con 
I’ushmg or’s III A4 15 III(, tlunl ofpushmg ,md’s m TM 

1 

Agam we remark that &f(F) and cnf(F) may not 
themselves be evaluable, as shown m Example 6 3 

8 Transformation into an Allowed 
Formula 

We now describe a plocedule to transform any 
evaluable formula mto an equivalent allowed formula 
The approach used m [Dec86] to convert a range- 
lestrlcted formula mto “range form,” which 1s nearly 
the same as “allowed,” can be generalized quite nicely 
with the ald of the yules for gen and con 111 Fig 1 

The bns~c ttlc,r 13 lo Jtl n 1 Iiild argunicnt G to gen 
<III~ (or), NIII( II f1111cl10ns <L\ a “gciicihtoi” of sorts 
‘I III> ~t~otl~l~~~l rules nie 41own III Ylg 5 (I(z) will 
I)t, a dlsJunctlon of cert,lm atoms 111 A, either edb 
or of the forni .c = c (Hoth A and G may contam 
other vnrlnblcs besldes 2 ) We bee that Ihe G m the 
conclusion, 01 bend, of each rule IS mherltc\cl naturally 
from the sul~go~ls The G m con IS slmllar, except 
we need to plovlde for the posslblhty that z does not 
even occur m d For this, we mtroduce “I” as a 
placeholder, it may be thought of as a one place edb 
predicate whose relation is always empty 

Defimtlon 8 1 For any formula G, not necessarily 
contammg 2 and possibly contamlng other free 
\allables, &G(z) denotes G with all variables except 
a e\lstentlally quantified, except that El*1 denotes 
f&e IJ 

Dduutlou 8 2 The oper&on of trnlh v&r srmplr- 
jrtn/~~ ( OMS~S of applying the followmg simplifica- 
IIOIIS to Cl fornmln as long as posslblc 

-7false -+ tiue -hue -+ false 
A A false -+ false A A true + A 
A V false -+ A AV true -+ true 

7ooL false + false ?&!rue + tme 

0 

The followmg lemma partly motivates the defim- 
tlon of the third arguments of gen and con 

Lemma 8 1 Let gen be defined as 111 Fig 5 Let L 
be any varlablc and A and G be any formulas 4uch 
thal ~cn(~, A, G) holds Then 

3 * A(L) + 3 * G(a) 

In other words, in any intelprctat~on the set of value5 
of 2r for which A(z) holds 1s a subset of those fog w111ch 
G(x) holds 

Proof: Straightforward by structural mductlon, ob- 
serving that VyA =S 3yA 1 

In the followmg algorithm genzfy(F) we describe 
the local transformation that, when repeatedly ap- 
plied, makes an evaluable formula mto an allowed 
formula with respect to all of its bound valuables 
Beforehand, we check that gen(z, F) holds for each 
free variable c, and replace Vy by 73~1 throughout 

Algorithm 8 1: genify(F) 
INPUT A formula F with no universal quantifiers 
such that gen(z, F) holds for all free variables x m 
F 
OUTPUT An nllowctl fornml,l cquIv&nt lo E’, OI a 
message that F 1s not evaluable 
PROCEDURE 

1 Let F be of the form 3xA, where z may not appeal 
m A and A may have other variables as well 

(4 

lb) 

(cl 

(4 

If gen(z, A(r), G(z)) holds, there IS notlnng to 
do here, set Fl dsf F and contmue at (3) 

If con(x, A(z), G(z)) does not hold, then F IS 
not evaluable Issue an error message and halt 

If x 1s not free m A (detected by G = 1), then 
set Fl d&f A and continue at (3) 

If con(z, A(z), G(z)) holds (but gen does not) 
Recall that G is a disJunction 9 V V Pk 

of atoms that appear m A Let R be the 
new formula that results from replacing each 
occurrence of 9, , Pk in A by false, and 
carrying out trutll value simphficatlons 4 Set 

FI d&f 343+G(c) A A(z)) V R 

and continue at (3) 

2. If F IS not of the form 3xA, set Fl dgf F and 
continue at (3) 

3. If Fl 1s an atom, return Fl, otherwise, recursively 
call gen& on each prmclpal subformula of FI, 
and return the combmed results That IS, if 
Fl dsf AVB, then return genzfy(A)vgenzfy(B), 
etc 

4Quentdied vanables m A are given new names m R, of 
course 
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gen(x, R P) of edb(P) k fee(x, P) 
gen(x, x = c, x = c) if constant(c) 

gen(x, -4 G) d puslrno2(~A, B) & gen(x, B, G) 
gen(x, 3~4 G> if drshct(e, y) dz gen(-, A, G) 

gen(x, VYA, G) if drs2rnct(x, y) & gen( L, A, G) 
gen(x, AV B, GI V G2) if gen(x, A, GI) 8~ gen(z, B, G2) 
gen(x, A A B, G) if gen(x, A, G) 
gen(x, AA B, G) if gen(x, B, G) 

con(x, P, P) if edb(P) & free(x, P) 
con(x, x = c, x = c) if con&ml(c) 

con(x, A, I) if notfree(x, A) 
con(x, lA, G) if pushnol(~A, B) Sr con(x, B, G) 
con(x, 3yA, G) if dastanci(x, y) & COH(.C, A, G) 
con(z, VyA, G) if drslrncd(x, tj) & IW(J, A, <:) 
con(x, A V B, GI V G2) if CON(X, A, G,) & COll(d, 11, CiJ) 
con(x, AA B, G) If gen(z, A, G) 
con(x, -4 A B, G) If gen(z, B, G) 
con(x, A A B, GI V G2) d con(x, A, GI) & con(x, B, G2) 

Figure 5 Expansion of &es for gen and con to produce “generatols ” 

cl 

Lemma 8 2 If F IS evaluable, then after Step Id of 
Alg 8 1 

1 gen(r, 3*G(x) A A(x)) holds 
2 R does not contam x 

3 If y 1s free m 3xA, then gen(y, R) holds 

Proof It 1s obvious that gen(x, G(x)) holds, from 
\\lll( II (I) follows 

USIII~; 11~ [‘ICI, thnt LOU(C, A) holds, It IS c’dsy 
to show by structural mductlon that during truth 
value slmphficatlon each subformula B of A for which 
gen(x, B) holds evaluates to false Thus for all B 
that do not evaluate to false, con(x, B) holds and 
gen(x, B) does not That R does not contam x 
follows easily 

Item (3) 1s eastly verified by consldermg a conserva- 
tive transformation of A m which the only negations 
are immediately above atoms By structural mduc- 
tlon, it can be shown that for every subformula B 
such that gen(y, B) holds, either B evaluates to false 
or gen(y, B) still holds 1 

Lemma 8 3 Let A(t), G(x) and II bc d\ &scrlbrd 
III Alg 8 1 Tlwn A(Z) f (34(s) A A(x)) V II 

PiooF Let 

Al(x) dSf &G(x) A A(x) 

A2(x) sf BIG A A(z) 

Clearly A(x) E Al(x) V AZ(Z) But R - AZ(Z) [ 

Theorem 8.4 Every evnlusble formula can be effeec- 
tlvely transformed mto an equivalent allowed form& 
Proof By Alg 8 1 and Lemmas 8 2 and 8 3 1 

It foltows r~i~li~cvl~drly ftmi ltils lhc~orcili d,~id 

‘I’hrorf~rti 7 I tlinl cvcvy 14.iigc tostrldd f01 liliitn (~II 

also bc efFec.tlvcly ~rausformed into JII cqulvknt 
allowed formuln In this special case, 0111 plocedule 
reduces to a shght variant of Decher’s, whele &G(z) 
plays the role of range expresszon and R 1s called the 
rematnder 

Fmally, we observe that the expanded rules for gen 
and con have some nondetermmacy for conJun&ons 
the G of either conJunct can be adopted when gelI 
holds for both This choice represents an opportumty 
for optimization 

9 Translation into a Relational 
Algebra Expression 

wr IIOW (Icv ril)v ,I I)rocvtl~ii(~ lo I i,1i14l,blc lily 
<lllowcvl lOI 111111~1 II110 .,,I cqlrlvdc III I( Iall l(J11 II <II,g’ IJld 
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( ~p~css~on In combmatlon with the transformation 
of Ihc pamx~s qectlon, this allows any evaluablc 
Ir,i i1111l.i IO IM Ir~l~dnlc~l into au c~qulvah*nt r&ttonal 
tip l,l#I ( \1,1( ‘7101, 

I’IN I1.111~1.1l1011 ~““‘w1111~ Ilds Iwo Illrllll pllcw 

II dii5fot Ill.11 IOII 01 I Ilo dlowccl lormula into dational 
,~lp,cl~~ IIOII~J~~ form, nntl translation of the normal 
lortii inlo d, rclal~onal algebra expression 

9 1 Relational Algebra Normal Folm 

To facilitate defining relation algebra normal form, it 
IS convenient to define two types of formulas 

Definition 9 1 We define D- and G-formulas m 
telms of atoms and each other as follows 

l A D-formula JS one of 

- a G-formula 

- n A ‘G, where D IS a D-formula and G IS a 
G-f01 mula 

- /)AL = 7/01 IIAL # ~1, where I1 14 a I)-formula 
(IIC c.111 I Ikll 3 # ?/ <rlhlcvl.LIc~s -7.r = ?/ ) 

<I (oii~iriic I IOII 11, A I) of I)-foriiIiIh.9 

. A C;-formulf6 IS OllC 01 

- an edb atom J’ 

- an atom of thr form 2 = c (treated as an edb 
at0111 1 2 r) 

- 3yD, where D JS a D-formula contammg y 

- a dlslunctlon G1 V Ga of G-formulas 

D- and G-subformulas are subformulas that are D- 
and G-formulas respectively q 

Defimtlon 9 2 A formula F IS m relaltonol algebra 
nonttnl Joln1 (RANF) If it IS a D-formula and 
1 For each G-subfolmula of the form Cl V Ga the 

same v,u I,bhles me free In GJ and Gz 
2 For cnc II Ihul~forn~uln of IIIC form /I A -C; the 

IIW C~II 1~11h of (; .lr(a ,I 41tl)d oft IIC free vanablcs 
of I) 

3 I~OI (W 11 D-subformula of I Ire form U A a! = 1/ or 

D A 2 # 11 1’ and y arr free 111 D 

cl 

Lemma 9 1 Every RANF formula IS allowed 

Proof Clearly gen holds for every free variable m 
every D- and G-subformula of an RANF formula 1 

Example 9 1 The converse of Lemma 9 1 JS false 
Not OJJIY are the followmg allowed formulas not m 

RANF, but no conservative transformation of them 
yields an RANF formula 

P(r, Y) A (Q(J) V NV)) 

0 

9 2 Transformation mto RANF 
We now present a straightforward algorithm to 
transform an allowed formula mto an equivalent 
RANF formula In terms of producmg a small RANF 
equivalent, we acknowledge that this algorithm 1s not 
the last word on the subject, but it demonstrates 
feaslblhty and JS easy to prove correct 

Algorithm 9 1 ranf(F) 
INPUT An allowed formula F 
OUTPUT An RANF formula F2 equivalent to F 
PROCEDURE 

1. Repeatedly apply all possible tr~nsformatlons of 
the following forlri 

2 

--A - A (‘VI ) 
+iAB) ---,dv~R u-4 
l(AvB) --daub (T3) 

‘itA( - GISTA (T4) 
WA(z) v B(+)) - 3uA(u) V 3vB(w) (T(J) 

AA(BVC) --+(AAB)v(AAC) (Tll) 

Call the resulting formula Fl 
Starting with Fl, repeatedly apply the followmg 
transformations from the top down wherever 
possible 
For each subformula 

G dSi Cl A A c, A A c,, 

where some variable z JS free m C, and gen(z, C,) 
does not hold, find a conJunct C,(z) for which 
gen(;r, C,) does hold (powl~lc because tile for- 
mula is allowed) If I > 3, niove C, Just to th 
right of C,, but we COIJ~IIIIJC to call the COJJJUIJC~ 

for wl1lc11 gen fcllls C, Now of C, d&f 13yA(x, y), 
then rewrite 

C, gf dyA(c, y) - 73y(G(z) A A(%, Y)> 

If G has no free variables, then every conJunct 
C, may be negative In this case, to ensure a D- 
formula, rewrite 

G --+ true A G 

Call the resulting formula Fz, and output it 
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0 

Lemma 9 2 After Step 1 of Alg 9 1, the resulting 
formula Fl has the followmg properties 

kll E F and IS allowed 
Fl has the folm Zi)l V V II,, where m > 1 and 
every L)n has the folm dcscr~bcd 111 (3) TIIN 14 
the only place where dlqunction occurs in F, 
Each DL m (2) and (4) has the form Cl A AC,, 
(n 2 1 and varies with L), where each C, has the 
form of (4) 
Every C, m (3) has the form E, or YE,, where E, 
1s either an atom, or 1s of the form 3yDk, where 
DL has the form of (3) 

Proof Each rewrite rule (Tz) IsJustified for property 
(1) by equivalence (Ez) and Theorem 6 6 Since no 
(Tz) IS applicable m Fl, plopertles (2-4) follow 1 

Lemma 9 3 After Step 2 of Alg 9 1, the result- 
lug formula Fz 5 Fl , preserves properties (l-4) of 
Lemma 9 2, and has the followmg additIona prop- 
rrty 
5 For every subfolmula Cl A A C,, of F that 

I< rn,~~rnal (I e , not ~mn~etl~ntely under clnothcr 
A), of cc E fiec III C, and gen(s, C,) dots not 
hold, then thelc c\l\ts C, with 7 < 3, for which 
gm(2, Ct) does hold 

Proof The rewllte lulc m Step 2 of Alg 9 1 pro- 
duces an equivalent formula because of the identity 
A A -B f A A -$A A B) Property (5) 1s achieved 
because the formula being operated upon IS always 
allowed 1 

Theorem 9 4 Alg 9 1 transforms any allowed for- 
mula mto an equivalent RANF formula 

Proof Straightforward from properties (l-5) estab- 
lished m Lemmas 9 2 and 9 3 In particular, If 
cl A A C,, IS a subformula of F, then each prefix 
Cl1 A AC, for z 5 11 IS a D-formula m 

9 3 From RANF to RelatIonal Algebra 

The translation of a formula F m relational algebra 
normal form mto an eqmvalent relatlonal algebra 
mprf3ion IS quite stialghlforwnld, the basics are 
grvc II III [Ull80] However, 11 15 unucces+uy lo form 
the Uom relation mentIoned there, which includes 
all constants m query and the database Because 
A V B only occurs when A and U have the same free 
variables, we can simply use ‘~lnton (possibly after a 
column permutation) Also, negation only appears 
as A A -B, where B’s free vanables are a subset of 
A’s, permlttmg the use of a generalized set difference 
operator 

Definition 9.3. The relational operation generaked 
set drflerence, P difl Q, yields the set of tuples m P 
whose proJections are not m Q That IS, 

PdlffQ-P-r(PwQ) 

where the (eql’i-)JOIII IS on lhr (o~npon~nls of CJ 
(which 111115l be a subset OT thoscx 01 I’), ,III~ t11~ 
proJectIon 14 onto the components of P If Y did Q 
have the same arlty, then P cliff Q IS simply P - Q, 
possibly after a permutation of columns •I 

Although we have defined P dlff Q m terms of 
prlmltlve letatlonal operators, it should be mple- 
mented as a prnnttlve m its own light, usmg tech- 
niques similar to those used for efficient JOTS (Iu fact 
we believe that dlff 1s also called nail-~otn ) Thus wc 
heep dlff m our final relational algebra eaprcsslons 

We assume that the system budds (m effect) a 
temporary g relation for constants that appeal 111 
the query, antI treats J = c as an edb predicate .z 2 ( 

Example 9.2 We show below, for several allowed 
formulas (cf Exctmpk 9 l), the RANF and lelatlonal 
algebra eupresslon construcf cd by I 11e ,II)OI (3 proc + 
dures 

173 , Y) A (Q(J ) V /t(v)) 
E (I’(& y) A c&J)) V (P(z, y) A IL(y)) 

- m(P WI=, Q) u m(P WL=I R) 

P(x) A VY(~Q(Y) V 3zR(z, Y, z)) 
E P(z) A ~ay(P(z) A Q(y) A -3tR(z, y, z)) 

- P- q(P x Q-q&) 

P(z, y) A Vz(~&(z, z) V R(y, z)) 
= 

z 
P(z, y) A -+(P(E, y) A Q(x, z) A -%(y, 2)) 
P - m(~m(P WI=, Q) dlffz,3=?,3 R) 

cl 

Theorem 9 5 Every allowed formula can effectively 
be translated mto au equivalent Iclatlonal algebra 
expression 

Proof. Theorem 9 4 and above dIscussIon l 

Many <lmpllficatlons of the relational algebra c\- 
prc~,i011s protluc cd by t Ii<- proccdlllcs of 1 Iii\ \( ( t 1011 
cau be mntlc tlur lug I hclr condrucl~ou Allcru~rtlv~~lv, 
final expressions caii be smlplifktl uqlng, (> g , 11~ 
methods 111 [Ull80] 

10 Relation between Evaluable and 
Domain Independent Classes 

In this sectlon we show that the evaluahle class 1s 
contamed 111 the domam mdependent class and that 
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with the restriction to formulas wilh no repeated 
predicates evaluable IS equlvnlent to domam znde- 
pewden To do 40, we use the fact that domarn 
mdependent IS equivalent to definzte, which we now 
defme [ND821 

Dcfinltlon 10 1 Let I bc an lntelpretatlon with 
tlomam D for a formula 8’, and let 11, be the relations 
assigned by I to the edb pledlcates P, that occur m 
F Let * be a value not m D Then the *-extensaon 
of 11s the mterpretatlon I’ with domain D’ = DU{*} 
that assigns the same relations y, to the predicates P, 
rl< tlocs I We denote approprlatc croSs products of 
D and D’ by 5 and fi’, respcctlvcly 0 

Dehnitlon 10 2: A formula 17 1s called dejinrte if, 
for all interpretations I, F 1s satisfied at the same 
points m I as in I’, where I’ is the *-extension of I 
In other words, ii satisfies F m I’ d and only if ii 
satisfies F in I 0 

10 1 Evnluable Folmulas are Domain 
Indcpcndent 

We now show that every evaluable formula 1s domain 
mdependcnt This was proved orlgmally m [Dem82] 
for ekaluable formulas as defined there The state- 
ment needs to be re-examined because we have used 
an Independent definition, and have incorporated 
equahty 

Our proof IS slgmficantiy simpler because of The- 
orcms 8 4 and 9 4, which ststc that every evaluable 
formula has an cymvdent RANF formula Hence it 
I> 411111c1( 111 lo 1)tovc (IOIII,LII~ Il~dq.)entlencc for RANF 
LOI Illuln~ 

Lc~nia 10 1 Let F(z) be a formula, possibly 
tontalnlng other free variables besides 2 Let I be an 
mterpletatlon for F with domam D and *-extension 
I’ If gen(z, F) holds, then F does not hold m I’ for 
any assignment that asslgns * to 2 
Proof Use mductlon on formula size, which we 
define to be the number of atoms plus the number of 
quantifiers (negations are excluded) For the basis F 
IS an atom and not of the form z = y, the conclusion 
1s lmmedlate For the mductlon, one of the followmg 
cases applies 

l F ‘2’ A /\ B One of A and B satisfies gen, 
and therefore by the mductlve hypothesis, does 
not hold if z 1s assigned * 

l F dgf A V B Both of A and B satisfy gen, and 
thcreforr by the mductlve hypothesis, do not hold 
If .t 15 nsslgned * 

b 11’ ‘!$ ‘)/or//i A sntlsfics geti, and therefore by the 
mduct lve hypothcsls, does not hold d 1: IS assigned 
* 

. F d&f TA If A 1s an atom, the conclusion holds 
vacuously, smce gen(z, F) 13 false Otlierwlse, 
push the 1 down glvmg G (1 e , pushnol(4, G) 
holds) Now either G 1s an atom other than L = T/, 
or one of the above caSes applies to G 

I 

Lemma 10 2 If F IS hn RANF formula, then bF’ IS 
definite 
Proof. In view of Lemma 10 1, It 1s sufficient to 
show that gen holds for all free variables m every D- 
subformula and m every G-subformula of F This 
is straightforward by strut trii al inductlou For 
example, suppose D 1s a D-formula If U IS of the 
form AA+, then the free variables of B are a subset 
of those of A, and A 1s a D-formula Also, if D IS of 
the form A A x = y or A A x # y, then A 1s a D- 
formula m which 2 and y are free In both cases all 
the free variables of D are also free m A, and by the 
mductlve hypothesis gen holds for them m A, hence 
in D Other cases are similar 1 

Theorem 10 3 If F 1s evaluable, then F 1s defimte, 
and hence 1s domain independent 

Proof. By Theorems 8 4 and 9 4 and Lemma 10 2 
I 

10.2 Evaluable Formulas with No Repeated 
Predicates 

Essentially, the domam Independent class IS not le- 
cursive because d given formula may have a subfor- 
mula that is supcrficlally nol domam mtlepentl~nt, 
but 1s unsatisfiable, hence (vacuously) domam mde- 
pendent But even though unsatlsfiablhty IS decld- 
able for formulas with suficlently simple quantifier 
structure [Ack68], we do not consider It practical to 
test subformulas for unsatlsfiablhty as part of the plo- 
cedure that transforms them mto relational algebra 
However, formulas m which no predicate symbol 1s 
repeated cannot possibly have unsatisfiable subfor- 
mulas We show that formulas m this class (without 
equality) are evaluable d and only If they are domam 
independent This means that any extension to the 
class of evaluable formulas that remains domain m- 
dependent must at least provide for slmphficatlons 
based on common subexpresslons (e g , subsumptlon 
tests), and should probably include some form of 
inference capability (e g , resolution) 

Lemma 10.4. Let F be a formula m prenex-literal 
normal form (I’LNF, see Def 4 1) T,et F have 
no repeated predlcclte symbols, no equalrt>, .IIIJ no 
disJunction If F 1s not evaluable, then F 1s not 
definite The same holds if F has no conJunctlon 
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Proof (Sketch) Let F d&f %iW(Z’, +j), where 

M elf P, A - A PiI A +J* A A -Q,, 

611~d cd( 11 I’, and Q, 15 ,111 ntom of a different prcd~cdtc 

Let D = {u) We shall find an mterpretatlon I with 
domam D and *-e\tenslon I’ such that F evaluates 
dlffercntly m I and I’ g 

Theorem 10 5 Let F be a. formula with no re- 
peated predicate symbols and no equality Then F 
IS definite d and only If F IS evaluable 

Proof (Shetch) The “e” part holds by Theo- 
leni 10 3 above By Cor 6 3 we may assume F 1s 
m PLNF, and 1s given by 

F d;f %ZM(Z, jj) 

where M 1s quantifier free We define the size of a 
formula to be the number of atoms plus the number 
ol quantlfiels m It For the “3” part, WC show by 
Intluctlon on size thnt if F 1s definite, then we can 
~t~luce to the ca7sc covered m Lemma 10 4 1 

\\J( t OIII( ( IIII(‘ 111~1t 1111s Illc~orc~lli crm I~~~cxIc~ntlt~rl to 
.1Il0w ~OIII(\ l~if~~onc(~ 01 c~li~~~l~l~y However, rt cannot 
Ix c~xtentled much 111 other dlrcctlons m view of the 
fat t t hht (cf Example 6 2) 

F(x) %’ vy[(P(x) A Q(Y)) V (P(x) A OR)] 

1s domam independent but not evaluable 
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A Equality Reduction and Wide 
Sense Evaluability 

In this appendix, we tlcsclibe transformations thal 
normahze foimulds with respect to equality (=), 
which wc call quality rcductron Many formulas 
colll‘L11l1n~ ( qlldllty do not S.ll 14-y llw I~'qIIIlcIIIclII~ 
for evdliinhility in11 i~lly, but arc cv~~lu.~l~lc ,illct 

equality reduction We say that such formula3 are 
evaluable an the luzde sense Wide sense evaluablllty IS 
mvarlant under conservative transformations Smce 
every wide sense evaluable formula 1s equivalent to an 
evaluable formula, It 1s also domam independent 

Lemma A 1 Let F d2f x = t A A(x, t,$), where 2 
1s either a varlahle or a constant, and IS not requlretl 
to appear m A(x,t, y3 Then 

326 



F ‘2’ %[P(L, z) A (iz = y V &(I, y, 2)) A ~(2 = y v R(y, z))] 

E %[(r = y A fake) V (z # T/ A P(z, z) A (z = y V Q(J) y, 2)) A +(y, z))] 

- %[z # y A P(z, z) A (x = y V Q(z, y, z)) A -R(y, z)] 

E (z = ?/ A %[z # y A P(y, z) A 7R(y, z)]) V (z # y A 3tu[w # y A P(z, zu) A Q(x, y, w) A -R(y, w)]) 

s (zz = y A A(t) A A(y)) V (z # y A %[w # y A P(,, w) A Q(z, y, 10) A +(y, w)]) 

where A(y) dSf 3t[z # y A P(y, z) A yR(y, z)] 

Figure G Equality reduction of a wide sense evaluable formula 

The lemma generalizes the transformntlons (E13- 
14) m Fig 4 to free variables 

Algorithm A 1. Equahty Reduction 
INPUT A relational calculus formula F 
OUTPUT An equivalent equality-reduced formula 
PROCEDURE 

1 Apply the followmg transformation wherever pos- 
sible 
Let A(z) be the maximal subformulaof F m which 
E IS free A may have other free variables If A 
contains an atom z = t, where t 1s either another 
free variable of A or a constant,5 then 

(4 

(I>) 

(cl 

(4 

Define Al(t) to be the formula thnt results 
from replncmg cvrry occurrcucc of c 111 A by t, 
,lnd then replactng t = 1 I)y /I (I( ,wtl carrylug 
ant truth value siinplific al iou (IhI 8 2) 

Dcfk AZ(z) to bc the formul,~ that results 
hoin rcpl,lcmg each occurrcncc of c = t 111 
l(J) hy j&e, ,md cdrrymg out truth value 

sunphficatml (Bound varl&lcs of A hrc given 
different names in A1 and A2 ) 

Replace A by 

A’ *’ (x = t A Al(t)) V (z # t A A2(t)) 

If 2 1s bound m F, then replace %A by 

Al(t) V 3x(x # t A Az(x)) 

2 Equality reduction can also be carried out on 
equalities between two constank, which may be 
mtroduced III Step 1 Supposc~ L = d occurs, 
where c and d WC htlwb cw~~tnnts If the sydrm 

i I a *#Ill ,I,,\ I t \I,< II III 11 I ‘lllnllll~ , II L,l-.,~~h~ II 148 

I- I 

3 

cl 

.l~4lllllc\ llldt I lw (1141 lll( I ll,1lll(’ clxlolll c # r6 I4 

in~pli( 11 111 E’, then WC CJII tilahc it exphclt at the 
top level 

F-c#dAF 

Now replace c = d by false throughout F and 
simplify, as m Step lb Repeat until all equalities 
between constants are removed 
At this point all equalities between two free 
variables of F that remam can be put m the 
form of “case splits” at the top of the formula 
by appropriately “pushing ands” (Ell) For any 
case of the form z = z A A(z), where 2 IS not free 
m A and gen(r, A) holds, rewrite this case as 

2 = z A A(z) A A(z) 

This typically arises when A orlgmally contained 
z but It was substituted for m Step 1 above In an 
Implementation, WP would not actually do it 11~1s 
way, we would add rl co11m~t1 rephcatlon pruml rve 

to our rt~latlonal algdwa 

The correctness of the algorithm follows frolu 
Lemma A 1 and elementary arguments 

Definition A.1 A formula F 1s said to be w&e 
sense evaluable if Alg A 1 transforms It mto an 
evaluable formula as defined m Def 5 2 q 

Example A.l: The formula m Fig 6 1s unmotl- 
vated, but serves to illustrate the mechamcs of the 
algorithm c] 

A better characterization of wide sense evaluable 
formulas 1s a topic for future research 
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