Safety and Correct Translation of Relational Calculus Formulas

Allen Van Gelder*
Stanford Unıversity

Rodney W Topor
University of Melbourne

Abstract

Not all queries in relational calculus can be answered "sensibly" once disjunction, negation, and universal quantification are allowed The class of relational calculus queries, or formulas, that have "sensible" answers is called the domain independent class, which is known to be undecidable Subsequent research has focused on identifying large decidable subclasses of domain independent formulas In this paper we investigate the properties of two such classes the evaluable formulas and the allowed formulas Although both classes have been defined before, we give sumplified defintions, piesent short proofs of their man properties, and describe a method to incorporate equality Althongh cvaluable quenes have scinsible answers, it is not tranghtorward to compute them efficiently or correctly We introduce elational algebra normal form for formulas fiom which form the correct translation into relational algebra is trivial We give algorithms to transform an evaluable formula into an equivalent allowed formula, and from there into relational algebra normal form Our algorithms avoid use of the so-called Dom relation, consisting of all constants appearing in the database or the query

Finally, we describe a restriction under which every domain independent formula is evaluable, and argue that evaluable formulas may be the largest decidable subclass of the domain independent formulas that can be efficiently recognzed

[^0]Permission to copy without fee all or part of this material is granted provided that the copies arc not made or distributed for direct commercial advantage the ACM copyright notice and the tutle of the pubiscation and its date appear, and notice is given that copying is by permussion of the Association for Computing Machinery To copy otherwise, or to republish, requires a fec and/or specific permisuon
database relations mentioned in the query
Not all querles in relational calculus can be answered sensibly Two simple examples that cannot be answered sensibly are

$$
\begin{gathered}
F(x) \stackrel{\text { def }}{=} \neg P(x) \\
G(x, y) \stackrel{\text { def }}{=} P(x) \vee Q(y)
\end{gathered}
$$

where P and Q are database relations $F(x)$ holds for arbitrary x 's that are not in the database, and $G(x, y)$ holds for arbitrary y values when $P(x)$ is true, and mace versa

In the following section, we describe previous attempts to characterize those classes of queries that can be answered sensibly

Evaluation of relational calculus queries can be performed either by translation into a set of clauses suitable for a Prolog interpreter [LT84, Top86, Dec86], o o by translation into a relational algebra expression Here, we are concerned solely with the second approach
'Tianslation of a relational calculus query that moludes disjunction and/or negation is a theoretically solved problem [UlI80], provided the query is "safe" However, the practical difficulties are such that several commercial database query systems give intuitively unexpected results on such queries

Here is a "real life" example Essentially, a user posed the query (we simplify the syntax)

select	$R 1$ name
from	$R 1, R 2, R 3$
where	$R 1$ name $=R 2$ name
or	$R 1$ name $=R 3$ name,

and was quite surprised to find out that the answer was ull when relation $R 3$ was empty, even though there were matches between $R 1$ and $R 2$ This user was even more surprised when the vendor claimed that this behavior was correct' In fact, the semantics of QUEL [Ull80] do suppoit this behavior, and several cystems whose query language is an outgrowth of QUEL give nul answers

While the vendors are saved by the "fine print," which says that even though their language looks hike relational calculus, it is really a relational algebra expression in disguise, the situation is hardly satisfactory from the user's point of view The QUEL interpretation has only been proven to yıeld correct, translations of conjunctive relational calculus querien (defined below) [Ull80] The problems of correct translation of more general relational calculus foimulas still need to be addressed

21 What are the Problems?

Conjunctive query formulas are those that ure only \exists and \wedge (Equality can be repiesented in compunctive queries by repetition of variables and substitution of constants, for smplicity, we do not consider "builtin" predicates such as $<$,$\rangle , etc) The translation$ of such a for iula into an equivalent relational algebra expression is straightforward and well-known Informally, $A(u, v, w, x y) \wedge B(u, v, y, z)$ becomes an equijom on the columns of u and v, and $\exists x A(x, y, z)$ becomes a projection that climmates the columin for a Essentially, all such formulas can be translated

The situation changes when we introduce disjunction and/or negation We intend to handle disjunction algebraically by union and handle negation by set difference For example, $P(x, y) \vee Q(x, y)$ can be evaluated by $P \cup Q$, and $P(x, y) \wedge \neg Q(x)$ can be evaluated by P diff Q More generally, to have a simple representation in relational algebra, both operands of " V " must have the same variables, whik negations nust appear in the form $A \wedge \neg B$ where B, variables are a subset of A's [Ul180]

These limitations give ase to ill-hehaved cases a demonstrated by the two earleer examples

$$
\begin{gathered}
F(x) \stackrel{\text { def }}{=} \neg P(x) \\
G(x, y) \stackrel{\text { def }}{=} P(x) \vee Q(y)
\end{gathered}
$$

The two problems here, which are the man problems aside from handling equality, are

- The terms of a disjunction do not have the same set of free variables
- A variable in a negative atom is not limited in its range by positive atoms elsewhere in the formula
Once we develop tools to handle these problems, then universal quantifiers will not present any new problems, we will be able to rewrite $\forall x$ as $\neg \exists a \neg$ at the appropriate moment

The situation is really more complicated than it might appear at first glance, because the poblem in a subformula can often be cunced by some othet pal of the overall fomula 'Ilus even though the queiy

$$
G(x, y) \stackrel{\text { def }}{=} P(x) \vee Q(x, y)
$$

is definitely not "reasonable," because it holds for arbitrary y values when $P(x)$ is true, nevertheless, the query

$$
F(x) \stackrel{\text { def }}{=} \exists y G(x, y) \equiv \exists y(P(x) \vee Q(x, y))
$$

may well be considered reasonable The nave translation into $\pi_{1}(P \cup Q)$, where π_{1} means "project onto column 1," presents problems because the
operation Pu Q make no semse However, in this

$$
F^{\prime}(\alpha)=\left(I^{\prime}(\alpha) \vee \operatorname{l} \ell(Q(x, y))\right.
$$

for which the nave translation is coricct, and is $P \cup \pi_{1}(Q)$
Our goal is develop a systematic method to distingursh the curable problems, such as the above, from the uncurable ones, such as $\exists y(P(x) \vee Q(y))$, and to provide correct transformations for the curable ones

22 Previous Work

There have been several attempts to define a "reasonable" class of queries, 1 e, a class with the following desirable properties

- The constants m the database and the query provide a sufficient domain for the values in the answer Formulas with this property are called domain independent [Fag80, Mah81]
- There is all efficient way to decide if the query formula is "reasonable" and if so, to translate the relational calculus formula into a relational algebra expicssion whose evaluation gives the correct answer
- There is an efficient way to evaluate the resulting relational algebia expiession
The class of conjunctive queries has these pioperties, as shown in [Ull80], but this class is rather limited The class of domain independent foimulas [Fag80, Mak81], which by its definition is the largest class having the first property listed above, represents a generalization of safe formulas, introduced in [Ull80] However, the doman independent class has been shown in [ND82] to be equivalent to the class of defintte formulas defmed in [Kuh67], and definite fommulas were shown to be not recursive in [D1P69]

Other researchers have subsequently proposed decidabli, subclasses of domain mdependent formulas, mcluding range restricted formulas [N 1 c 82 , Dec86], evaluable formulds [Dem82], dud allowed formulas [Top8ti] We give therr defimitions latei, as we discuss them

Of these, the evaluable formulas comprise the largest class, but the definition of this class in [Dem82] occupies thrce pages, its complex definition makes it unwieldy to work with, as evidenced by the fact that it required ten pages just to prove that it is a subclass of domain independent formulas, moreover, there is no attempt there to describe how to actually evaluate evaluable formulas, $1 e$, how to translate them correctly into relational algebra expressions

The allowed formulas, although a strict subclass of the evaluable formulas, are the easiest (among the
above-mentioned classes) to translate into ielational algebra
'Ilae tange restrutcil tormalas (ontaplase the a valu able fonmulas that ate m disjunctive normal fom on conjunctive normal form [Dem82] In an mportant step toward practical evaluation, Decher [Dec86] has shown how to transform any range restricted formula into an equivalent ${ }^{1}$ range form that is suitable for Prolog-style "tuple at a time" evaluation

3 Summary of Results

In this paper we give a much simpler definition of evaluable formulas With this simpler definition, it is more feasible to prove properties of the evaluable class, and to see the relationship between allowed formulas and evaluable formulas We show that the evaluable class is invariant under a set well-hnown equivalences that can be used as rewrite rules (eg, DeMorgan's laws), which we call conservatuve transformations This mvdiance makes it easy to see that every evaluable formula can be conservatively rewritten in prenex-hteral noimal form (Def 41) However, the evaluable property is not always preserved under distribution of \wedge over \vee or \vee over \wedge Using distribution is apparently a necessary step to put certan formulas into an equivalent form that can be "transhterated" into relational algebra This is our motivation for transforming evaluable formulas into allowed formulas, which are invariant under distribution

One of our main results is an algorithm that transforms any evaluable formula into an equivalent allowed formula

Another main result is that evesy allowed formula can be effectively translated correctly into a relational algebra expression

At this point we should mention two properties of formula transformations (either into other formulas or into relational algebia expiessions) that we consider unacceptable, and wish to avoid The first property is that the transformation does not necessarily produce a logically equivalent formula, but is only guaranteed to do so if the input formula is a certain class (such as the domain independent class) This puts the burden on the user of providing correct input, or getting erroneous results with no warning The second unacceptable method is to explicitly form the so-called Dom relation, consisting of all constants present in the database and the query Both these drawbacks are present, for example, in the rewrite

[^1]me
\[

$$
\begin{aligned}
\neg P(x, y) & \equiv \operatorname{Dom}(x) \wedge \operatorname{Dom}(y) \wedge \neg P(x, y) \\
& \operatorname{Dom} \times \operatorname{Dom}-P
\end{aligned}
$$
\]

Both of our transformation algorithms have the attractive property that such tactics are not required

Fmally, we shall show that the class of evaluable formulas is the largest practical subclass of doman independent formulas in a certain sense Essentially, the domam independent class is not recursive because a given formula may have a subformula that is superficially not domam independent, but is unsatisfiable, hence is actually doman independent (vacuously) ${ }^{2}$ However, formulas in which no predicate symbol is repeated cannot possibly have unsatisfiable subformulas We show that formulas in this class are evaluable if and only if they are domain independent, and discuss the iamifications

4 Notation and Definitions

We assume the reader is familiar with the standard notation and terminology of logic, relational calculus, and iclational algebıa [Man74, Ull80] We shall abbicviate "first order well formed formula" to formula, and "atomic formuld" to atom Λ literal is etther an atom or a negated atom We assume the absence of function symbols (other than constants) throughout We shall use P and Q to denote predicate symbols or atoms that correspond to a database relation, we call these $e d b$ predicates We use A, B, to denote formulas and subformulas, we use a, \quad, d as constants, u, \quad, z as variables, and s and t to represent a term that may be either a varuable or a constant

We adopt a sort of vector notation \vec{x} to denote a tuple (x_{1}, \quad, x_{n}), where n may be zero Thus the notation $A(x, \vec{y})$ denotes a formula in which x is a fiee vanable and there are zero or more other free variables y_{2} that are of interest, in addition, A may contain still other free variables that are not currently of interest

In a smmlar venn, we write $\forall \vec{x}$ for $\forall x_{1} \quad \forall x_{n}$, and wite $\exists \overrightarrow{\boldsymbol{h}}$ for $\exists x_{1} \quad \exists x_{n} \quad$ We also use " $\%$ " as a "quantifier variable," standing for either \forall or \exists, or in the case of $\% \vec{x}$, for a specific string of (possibly mived) quantifiers We assume that no quantified variable occurs outside the scope of its quantifier, 1 e , we avoid $(\exists x A(x) \wedge \exists x B(x))$ and use instead $\left(\exists x_{1} A\left(x_{1}\right) \wedge \exists x_{2} B\left(x_{2}\right)\right)$

We shall use \equiv to denote logical equivalence and \Rightarrow to denote logical implication, both denote relations between formulas, not symbols within formulas In

[^2]addition, def 15 often used to mean "is defined as" to give names to formulas We occasionally use "[]" as synonyms for "()" for readability

We adopt the usual defintions ([Man74], etc) for prenex normal form, conjunctive normal form, and disjunctive normal form, whinch we abbrevate to PNF, CNF at DNF, respectively We shall also introduce relational algebra normal form, abbreviated RANF (See Def 92) In addition, we shall have several occasions to lefer to the following normal form

Definition 4.1 A formula is said to be in pienexhiteral normal form (PLNF) if it is 11 PNF and all negations are immediately above the atoms (This is sometımes called negative normal form) \square

As usual in the context of normal forms, we regard Λ and \vee as polyadic operators tahing zero or more operands, with zero operands, $\wedge() \equiv$ true and $\vee() \equiv$ false A clause is a conjunction of hiterals or a disjunction of hterals

5 Evaluable and Allowed Classes of Formulas

In this section we define the classes of evaluable formulas and allowed formulas, and give some of then properties The term evaluable is due to R Demolombe [Dem82] We use the same term because the class is the same, although our definition is different Actually, there is a minor difference in that we treat $x=c$, where c is a constant, as though it were $x \underline{\underline{q}} c$, where $\underline{\underline{q}}$ is an $e d b$ predicate, in effect, this case is not mentioned in [Dem82], but could be incorporated easily

51 The gen and con Relations

To define evaluable and allowed we first need to define certain relations between variables and (sub)formulas We have chosen the names gen and con for these hey relations They are abbreviations for generated and conststent Our relation generaled is called restricted in [Dem82] and pos in Top86, to avold tahing sides we have chosen a third name Also, our consistent is smilar to, but not quite the same as, what [1)em82] calls positive We prefer to use the terms positive and negative to describe the polarity of atoms or subformulas within a formula As mentioned before, a subformula is considered to be positive if it falls under an even number of negations, and negative if it falls under an odd number

Definition 51 The essentials of the definitions for gen and con are presented in Fig 1 in a rule format

```
gen(.x,P) if cdb(P)& frec(a,P)
gen(x,x=c) if constant(c)
gen(x,\negA) if pushnot (\negA,B) & gen(a,B)
|\subsetn(x,JyA) if distznct( }x,y)&|gcn(x,A
|/ n(x,\forallyA) if dzs/anct(x,y) & gcu(d,A)
gen(\alpha,A\veeB) If gen (x,A)& gen (x,B)
gen(a,A\wedgeB) If gen(x,A)
gen(x,A\wedgeB) if gen(x,B)
```

```
\(\operatorname{con}(2, P) \quad\) if \(\operatorname{edb}(P) \& f r e e(x, P)\)
\(\operatorname{con}(x, x=c)\) if constant \((c)\)
\(\operatorname{con}(x, A) \quad\) if \(\operatorname{not} \operatorname{free}(x, A)\)
\(\operatorname{con}(x, \neg A) \quad\) if \(\operatorname{pushnot}(\neg A, B) \& \operatorname{con}(x, B)\)
\(\operatorname{con}(x, \exists y A) \quad\) if \(\operatorname{destznct}(x, y) \& \operatorname{con}(x, A)\)
\(\operatorname{con}(2, \forall y A)\) if dastinct \((x, y) \& \operatorname{con}(x, A)\)
\(\operatorname{con}(x, A \vee B)\) if \(\operatorname{con}(x, A) \& \operatorname{con}(\nu, B)\)
\(\operatorname{con}(x, A \wedge B)\) if \(\operatorname{gen}(x, A)\)
\(\operatorname{con}(x, A \wedge B)\) if \(\operatorname{gen}(x, B)\)
\(\operatorname{con}(x, A \wedge B)\) if \(\operatorname{con}(x, A) \& \operatorname{con}(x, B)\)
```

Figure 1 Defimtions by rules of gen and con
similar to a Prolog program ${ }^{3}$ We intend that the relations gen and con hold only when they can be established by a finite number of applications of these rules

Read the \& 's that separate subgoals (to the right of the " $\mathbf{1 f}$ ") as "and" For example, the first rule reads, " x is generated on P if P is an edb atom, and x is free in P "

Several predicates appear in these rules to support the defimitions of gen and con We mend that they be interpieted as follows

- $\operatorname{cdl}(P)$ holds piecisely when P is an atom whose predicate symbol represents a database relation
- $\operatorname{free}(x, A)$ holds when variable x occurs freely m formula A
- distinct (x, y) holds when x and y are different variables
- constant (c) holds when c is a constant
- pushnot rewrites its first argumentinto an equivalent formula without " \neg " at the top, by applying DeMorgan's laws, changing $\neg \exists$ to $\forall \neg$, or changing $\neg \forall$ to $\exists \neg$, it fails when this is impossible, 1 e , when A is an atom The second argument becomes the transformed formula when pushnot succeeds
Inturtively, $\operatorname{gen}(x, A)$ means that A can generate all the needed values of x, as though it were a database relation In other words, A holds for only a finite set of values of x (assuming finite $e d b$ relations, of course)

Lemma 5.1 For every variable x and fonmula A, gen (x, A) implies con (x, A)
Pioof- Use structural induction on the subformulas of A

[^3]Example 51 The converse to Lemma 51 is false In the following, con (x, A) holds but gen (x, A) does not hold

$$
\begin{aligned}
& A \stackrel{\text { def }}{=} P(x, y) \vee Q(y) \\
& A \stackrel{\text { def }}{=} \neg Q(y)
\end{aligned}
$$

Note that x need not appear in A
Intuitively, $\operatorname{con}(x, A)$ means that for any assignment to other variables of A, say $\vec{y}=\vec{y}_{0}$, elther

- A can generate all the needed values of 2 , or
- $\Lambda\left(x, \vec{y}_{0}\right)$ holds for no x, or
- $A\left(x, \vec{y}_{0}\right)$ holds for all x

Figure 2 shows a geometric interpretation of con If con holds for all the free variables of A and the underlying $e d b$ relations are finite, then the set of points where A holds can be represented as a finite collection of points, lines, planes, and hyperplanes

Also, from a logic programming viewpoint, we can think of A as a goal that may succeed without instantiating all of its arguments

5.2 Evaluable and Allowed Formulas

Definition 5 2. A formula F is evaluable or has the evaluable property if and only if

- For every variable x that is free in F, gen (x, F) holds
- For every subformula of the form $\exists x A, \operatorname{con}(x, A)$ holds
- For every subformula of the form $\forall x A, \operatorname{con}(x, \neg A)$ holds

Definition 5.3: A formula F is allowed, or has the allowed property if and only if

- For every variable x that is free in $F, \operatorname{gen}(x, F)$ holds
- For every subformula of the form $\exists x A, \operatorname{gen}(x, A)$ holds

Figure 2 Geometric interpretation of the con property for $A(x, y) \stackrel{\text { def }}{=} P(x) \vee Q(y) \vee R(x, y)$

- For every subformula of the form $\forall x A, \operatorname{gen}(x, \neg A)$ holds []

Rather than piove that our definition of evaluable yields the same class as [Dem82], it is easier to just reprove the important properties of the class We shall show that every (valuable formula (and hence every allowed formula) is domain independent in Section 10, after developing some more machinery

Theorem 52 Every allowed formula is evaluable Pıoof Immediate from Lemma 51

Example 52 The converse of Theorem 52 is false The following formulas are evaluable but not allowed

$$
\begin{aligned}
& F(y) \stackrel{\text { def }}{=} \exists x[(P(x, y) \vee Q(y)) \wedge \neg R(y)] \\
& G \\
& \stackrel{\text { def }}{=} \exists y \forall x(\neg P(x) \vee S(y, x))
\end{aligned}
$$

With appropriate interpretations of P and S formula G corresponds to the question, "Does some supplier supply all parts?"

Also, note that removing the outer quantifier makes both F and G not evaluable The problem with the apparently haımless variant, "What suppliers supply all paits" is that if $P(x)$ is empty, then G holds for arbitiary y

53 Equality in Evaluable Fon mulas

The definition of evaluable in this section adopts a "middle of the road" approach to equality It is quite conservative with respect to equality between two variables, sunce $\operatorname{gen}(x, x=y)$ and $\operatorname{con}(x, x=y)$ never hold Formulas satisfying Def 52 may be said to be stract sense evaluable In Appendix A we
describe transformations that remove many matances of such equalities, and yield an "equality icduced" form We call formulas that can be transformed mo evaluable formulas by means of these tidnsfomations mode sence cualuable

On the other hand, deffing $\not \subset n(1,2=1)$ to hold involves gong beyond stact refational calculus as defined in [Ull80], in that it allows "dicombodied" variables into a formula that do not appear many $e d b$ atoms One way to justify this is to assume that the underlying quely answering systom will (in offoct) form a relation on the fly, call it $\underline{\underline{q}}$, contanning tuples, (c_{4}, c_{8}) for the constants c_{2} that appear in the query Then the system treats $x=c$ as though it were $x \underline{q} c$, an edb atom It is easy to adapt our methods to systems that lach this capability Simply 1 emove the rules for $\operatorname{gen}(x, x=c)$ and $\operatorname{con}(x, x=c)$ in Figs 1 and 5 and treat $x=c$ hike $x=y$ thoughout

Allowing $x=c$ is the only way to have values in the answer that were not in the database Such values might serve as defaults For example, if P iepresents part and S repiesents supplies, then

$$
P(x) \wedge(S(y, x) \vee(\forall z \neg S(z, x) \wedge y=\text { nonc }))
$$

appears to be a plaumble guery that a cratem hould handle

6 Conservative and Distributive Transformations of Formulas

In this section we study the effects of various logical transformations on the evaluable and allowed properties of formulas, with a view to identifying sets of transformations under which these properties are invariant

Figure 3 shows some standad equivalences that are frequently useful to manıpulate formulas [Ach68, Man74] Note that they preserve the number of atoms, and hence preserve the number of binary logical operators We show that the evaluable property is invailant under transformations based on these identities

Definition 61 We say that G is a conservalive tran sformation of l^{\prime} if G (an be obtamed by meplacing a subformula of F^{\prime} acconding to one of the equivalences in Fig 3, or by a series of such replacements

Lemma 61 The relations gen and con defined in Fig 1 are invariant under conservative transformations ((E1-10) of Fig 3) 'That is, if $G(y)$ is a conservative transformation of $F^{\prime}(y)$, then $\operatorname{gcn}\left(y, F^{\prime}(y)\right) \Leftrightarrow$ gen $(y, G(y))$, and simlarly for con

$$
\begin{array}{rlr}
\cdot A & \Lambda & \text { (E1) } \\
\neg(A \wedge B) & =\neg A \vee \neg / 3 & \text { (E2) } \\
\neg(A \vee B) & \equiv \neg A \wedge \neg B & \text { (E3) } \\
\neg \forall x A(x)) & \equiv \exists x \neg A(x) & \text { (E4) } \\
\neg \exists x A(x)) & \equiv \forall x \neg A(x) & \text { (E5) } \\
\% x A(x, \vec{y}) & \equiv \% v A(v, \vec{y}) & \text { (E6) } \\
\forall x(A(x) \vee B) & \equiv \forall x A(x) \vee B & \text { (E8) } \\
\exists x(A(x) \wedge B) & \equiv \exists x A(x) \wedge B & \text { (E9) } \\
\exists x(A(x) \vee B(x)) & \equiv \exists x_{1} A\left(x_{1}\right) \vee \exists x_{2} B\left(x_{2}\right) & \\
\forall x(A(x) \wedge B(x)) & \equiv \forall a_{1} A\left(x_{1}\right) \wedge \forall x_{2} B\left(x_{2}\right) & \text { (E10) } \tag{E10}
\end{array}
$$

Figure 3 The equivalences upon which conservative Iransformations are based "\%" stands for \exists or \forall

$$
\begin{align*}
A \wedge(B \vee C) & \equiv(A \wedge B) \vee(A \wedge C) \tag{E11}\\
\Lambda \vee(B \wedge C) & \equiv(\Lambda \vee B) \wedge(\Lambda \vee C) \tag{E12}\\
\exists ⿲(x=y \wedge A(\iota, y)) & \equiv A(y, y) \tag{E13}\\
\forall\lrcorner(x \neq y \vee 1(x, y)) & \equiv A(y, y) \tag{E14}
\end{align*}
$$

I guice 1 Othei useful equivalences distributive laws and equality elmmation We use $x \neq y$ to abbreviate $\neg 1=y$

Pioof This is merely a matter of applying the definitions For example, suppose (E10) applies, 1 e ,

$$
\begin{aligned}
& F(\varkappa, y) \stackrel{\text { def }}{=} \forall x(A(x, y) \wedge B(x, y)) \\
& G(x, y) \stackrel{\text { def }}{=} \forall x_{1} A\left(x_{1}, y\right) \wedge \forall x_{2} B\left(x_{2}, y\right)
\end{aligned}
$$

(1) may be absent from A or B) If $\operatorname{con}(y, F(x, y)$) holds, then con $(y, A(x, y) \wedge B(x, y))$ also holds, and at least one of the following three is true

- $\operatorname{gen}(y, A(x, y))$ holds Then $\operatorname{gen}\left(y, \forall x_{1} A\left(x_{1}, y\right)\right)$ also holds
- gcn $(y, B(\ldots y))$ holds Then $\operatorname{gen}\left(y, \forall x_{2} B\left(x_{2}, y\right)\right)$ also holds
- Bolh $\operatorname{con}(y, A(x, y))$ and $\operatorname{con}(y, B(x, y))$ hold Then con $\left(y, \forall x_{1} A\left(x_{1}, y\right)\right)$ and $\operatorname{con}\left(y, \forall x_{2} B\left(x_{2}, y\right)\right)$ also hold
And so $\operatorname{con}(y, G(x, y))$ is seen to hold The other dinection and other cases are similar

Theorem 62 If A is evaluable and B is a conservative transformation of A, then B is evaluable
Pıoof (Sketch) The only cases not handled by Lemma 61 involve moving the quantifier for the first argument of a con by means of (E7-10)

Coıollaıy 63 Every evaluable formula can be conservatively transformed into an equivalent evaluable fommalam PLNF (Def 41)

Corollay 64 Every evalual)le formula can be conwrovalivaly tramsiorined mion all equavalent evaluable formula that contants no universal quantifiers and has negations only immediately above atoms and existential quantiers

Example 6.1 The allowed property may not be preserved by the conservative transformations (E78) Thus, allowed formulas do not always have a conservative transformation into prenex normal form $E g$, the allowed formula

$$
\exists x A(x) \vee B
$$

can be conservatively transformed to

$$
\exists x(A(x) \vee B)
$$

which is not allowed
Although the distributive laws, shown in Fig 4, camot be applied indiscriminately, some pioperties are preserved in some cases, as described in the next lemina

Lemma 65 The relation con defined in Fig 1 is invariant under (E11) of Fig 4 ("pushing ands) That is,

$$
\operatorname{con}(x, A \wedge(B \vee C))
$$

If and only if

$$
\operatorname{con}(x,(A \wedge B) \vee(A \wedge C))
$$

In addition, gen is invariant under both distributive laws (E11-12) of Fig 4
Proof (Sketch) Case analysis, using the definitions

Example 6.2. As pointed out in [Dem82], "pushing ors" (E12) does not always preserve con For example, consider

$$
\begin{aligned}
& F \stackrel{\text { def }}{=} P(x) \vee(Q(x, y) \wedge \neg R(y)) \\
& G \stackrel{\text { def }}{=}(P(x) \vee Q(x, y)) \wedge(P(x) \vee \neg R(y))
\end{aligned}
$$

Here $\operatorname{con}(y, F)$ holds, but $\operatorname{con}(y, G)$ fanls

6.1 Invariance of Allowed Foimulas undeı Distribution

In Section 8 we describe an algorithm to transform an evaluable formula into an equivalent allowed formula One motivation for this transformation is that the allowed property is preserved by the distributive laws, whereas the evaluable property is not The final translation into relational algebra normal form (Section 9) frequently requires application of the distributive laws

Theorem 6 6. If A is allowed and B is obtained from A by either

- a distributive law transformation (E11-12) of Fig 4, or
- a conservative transformation except for (E7-8), then B is also allowed
Proof. The distributive laws are immediate from Lemma 65 The rest is similar to Theorem 62 , except that we need to check that the nerded gen relatıons are present when (E9-10) are used

Example 63 The following formula shows that "pushing ands" (E11) does not always preserve the evaluable property Let $F(z) \stackrel{\text { def }}{=} \forall x \exists y A(x, y, z)$, where

$$
A(x, y, z) \stackrel{\text { def }}{=} R(y, z) \wedge(Q(x) \vee \neg P(x))
$$

Since

$$
\neg A(x, y, z) \equiv \neg R(y, z) \vee(\neg Q(x) \wedge P(x))
$$

we have $\operatorname{con}(x, \neg A)$, as required for F to be evaluable
Pushing the "and" gives

$$
B(x, y, z) \stackrel{\text { def }}{=}(R(y, z) \wedge Q(x)) \vee(R(y, z) \wedge \neg P(x))
$$

and the corresponding $G \stackrel{\text { det }}{=} \forall x \exists y B(x, y, z)$ However, $\operatorname{con}(x, \neg B)$ does not hold, so G is not evaluable The problem is that "pushing and" in A is the same as "pushing or" (E12) in $\neg A$ This is the one distributive tiansformation that may not preserve con

7 Range Restricted Formulas

Range iestricted formulas are based on disjunctive and conjunctive normal forms, and represent one of the first decidable subclasses of domain independent formulas to be studied [$\mathrm{N} ı \mathrm{c} 82$] Putting formulas into normal forms requires the use of distributive laws (E11-12) of Fig 4 Since the distributive laws do not always preserve the evaluable property, it is not too surprising that certain evaluable formulas become non-evaluable if we simply put them into DNF in an attempt to make an equivalent range restricted formula, as shown by Example 63 However, we show that every evaluable formula (and only those) has an associated pair of formulas in DNF and CNF that satisfy conditions quite simular those required for range restricted formulas This theorem provides an alternate recognition mechanism for evaluable fommulas

Defimition 71 Let $F \stackrel{\text { det }}{=} \% \vec{x} M$ be a formula in dispuntive normal form, when $\left.M \stackrel{\text { dir }}{=}(l) \vee V)_{n}\right)$

Let $M^{\prime} \stackrel{\text { det }}{=}\left(C_{1} \vee \quad \vee C_{m}\right)$ be the conjunctive nomal form of M constructed by applying the distabutive law (E12) of Fig 4 Then F is range restructed if the following properties hold
1 For every free varable 2 in $F^{\prime}, 2$ occuis in a positive atom in every $D_{2}, 1 \mathrm{e}, \operatorname{gen}(x, M)$ holds
2 For every ex stentially quantified vanable 2 in F, x occurs in a positive atom in evely D_{j} in which x occurs, $1 \mathrm{e}, \operatorname{con}(x, M)$ holds
3 for every umversally quantıfied variable a in F^{\prime} x occurs in a negative atom in every C_{k} in which x occurs, $1 \mathrm{e}, \operatorname{con}\left(x, \neg M^{\prime}\right)$ holds

Item 3 m the above definition was stated somewhat differently in [Dem82]
3^{\prime} For every universally quantıfied variable x in I^{\prime}, if x occurs in any positive atom, then there is some clause $D_{\text {, }}$ such that every atom of $D_{\text {, is negative }}$ and contains x (Either $\operatorname{con}\left(x, \neg D_{2}\right)$ holds for all D_{\imath} ol $\operatorname{gen}\left(x, \neg D_{\jmath}\right)$ holds for some $D_{j}, 1$ e $\operatorname{con}(x, \neg M)$ holds)
The equivalence of the two definitions follows fiom Lemma 65 , since $\neg M^{\prime}$ is obtamed fiom $\neg V$ b, pushing and's (E11)

Theorem 71 (Demolombe [Dem82]) Let Γ be a formula in disjunctive normal form Then F is evaluable if and only if F is range restucted
Proof Immediate fiom the defintion, Lcmma 61, and Lemma 65

Demolombe observes that a sumilat rosult holds for formulas in conjunctive normal form

This theorem can be generalized to apply to all evaluable formulas

Defintion 7 2. Let $\operatorname{cnf}(F)(\operatorname{resp}, d n f(F)$) be the conjunctive (resp, disjunctive) normal form of formula F constructed by applying conservative transformations and distributive law (E11) (ıesp (E12))

Theorem 72 Let F be a formula with

$$
\left.\begin{array}{l}
d n f(F) \stackrel{\text { def }}{=} \% \vec{x} M_{d} \stackrel{\text { def }}{=} \% \vec{x}\left(D_{1} \vee\right. \\
c n f(F) \stackrel{\text { def }}{=} \% \vec{x} M_{c} \stackrel{\text { def }}{=} \% \vec{x}\left(C_{1} \wedge\right.
\end{array} \wedge C_{n}\right)
$$

Then F is evaluable if and only if the following properties hold
1 For every free variable x in F, x occurs in a positive atom in every D_{i}, e , gen (\downarrow, M_{d}) holds
2 For cvery existentially quantifed vilublin 2 in dnf(l^{\prime}), x ocrims in a positive dom ill every 1 ,

3 For every universally quantified vanable x in $\operatorname{cnf}(F), x$ occurs in a negative atom in every C_{k} in whith a ocrins, $10, \operatorname{ron}\left(r, ~ ᄀ M_{r}\right)$ hold
 us to put F mo prene-hteral normal form (Def 41) and puah and's in M, while preserving gen and con P'ushing or's in M is the dual of pushing and's in $\neg M$ I

Again we remark that $\operatorname{dnf}(F)$ and $\operatorname{cnf}(F)$ may not themselves be evaluable, as shown in Example 63

8 Transformation into an Allowed Formula

We now describe a procedure to transform any evaluable formula into an equivalent allowed formula The approach used in [Dec86] to convert a rangeiestricted formula into "range form," which is nearly the same as "allowed," can be generalized quite micely with the ald of the iules for gen and con in Fig 1

The basic aldea is to add a lliud argument G to gen rud con, which functions as a "generatom" of sorts 'The moditied rules are shown in Fig $5, G(x)$ will be a disjunction of certam atoms in A, etther edb or of the form $l=c$ (Both A and G may contam other variables besides x) We see that the G in the conclusion, ol head, of each rule is mherited naturally from the sulbgoals The G in con is simular, except we need to provide for the possibility that x does not even occur in A For this, we introducc " \perp " as a placeholder, it may be thought of as a one place $e d b$ predicate whose relation is always empty

Definition 81 For any formula G, not necessarily containing x and possibly containing other free vanables, $\exists * G(x)$ denotes G with all variables except x existentially quantified, except that $\exists * \perp$ denotes false

Definition 82 The operation of trulh value samplafecation consists of applying the following simplifications to a formula as long as possible

$$
\begin{array}{rlrl}
\neg \text { false } & \rightarrow \text { tiue } & \neg \text { true } & \rightarrow \text { false } \\
A \wedge \text { false } & \rightarrow \text { false } & A \wedge \text { true } & \rightarrow A \\
\text { A false } & \rightarrow A & A \vee \text { true } & \rightarrow \text { true } \\
\text { \% false } \rightarrow \text { false } & \text { \%xtrue } & \rightarrow \text { true }
\end{array}
$$

The following lemma partly motivates the definition of the third arguments of gen and con

Lemma 81 Let gen be defined as in Fig 5 Let 2 be any variable and A and G be any formulas such that gen (x, A, G) holds 'Then

$$
\exists * A(\alpha) \Rightarrow \exists * G(a)
$$

In other words, in any inteipretation the set of values of x for which $A(x)$ holds is a subset of those for which $G(x)$ holds
Proof: Stralghtforward by structural induction, observing that $\forall y A \Rightarrow \exists y A$

In the following algorithm $\operatorname{genify}(F)$ we describe the local transformation that, when repeatedly apphed, makes an evaluable formula into an allowed formula with respect to all of its bound vanables Beforehand, we check that gen (x, F) holds for each free varıable x, and replace $\forall y$ by $\neg \exists y \neg$ thioughout

Algorıthm 8 1: genify(F)

inPuT A formula F with no universal quantifiers such that $\operatorname{gen}(x, F)$ holds for all free variables x in F
outpur An allowed formula equivalent to F, on a message that F is not evaluable

PROCEDURE

1 Let F be of the form $\exists x A$, where x may not appeas in A and A may have other variables as well
(a) If $\operatorname{gen}(x, A(x), G(x))$ holds, there is nothing to do here, set $F_{1} \stackrel{\text { def }}{=} F$ and continue at (3)
(b) If $\operatorname{con}(x, A(x), G(x))$ does not hold, then F is not evaluable Issue an error message and halt
(c) If x is not free in A (detected by $G=\perp$), then set $F_{1} \stackrel{\text { def }}{=} A$ and continue at (3)
(d) If $\operatorname{con}(x, A(x), G(x))$ holds (but gen does not) Recall that G is a disjunction $P_{1} \vee \vee P_{k}$ of atoms that appear in A Let R be the new formula that results from replacing each occurrence of P_{1}, \quad, P_{k} in A by false, and carrying out truth value simplifications ${ }^{4}$ Set

$$
F_{1} \stackrel{\text { def }}{=} \exists \iota(\exists * G(x) \wedge A(x)) \vee R
$$

and contmue at (3)
2. If F is not of the form $\exists x A$, set $F_{1} \stackrel{\text { def }}{=} F$ and continue at (3)
3. If F_{1} is an atom, return F_{1}, otherwise, recursively call genify on each principal subformula of F_{1}, and return the combined results That is, if $F_{1} \stackrel{\text { def }}{=} A \vee B$, then return $\operatorname{gen} \imath f(A) \vee g e n \imath f y(B)$, etc

[^4]```
gen(x,P,P) if edb(P) & frec(x, P)
gen(x,x=c,x=c) if constant(c)
gen(x,\negA,G) If pushnot (\negA,B) & gen(x,B,G)
gen(x,\existsyA,G) if dzstanct(}x,y)&\operatorname{gen}(~,A,G
gen(x,\forallyA,G) if dzstanct(}x,y)&\mp@code{gen}(\imath,A,G
gen(x,A\veeB, G1\vee G) if gen(x,A,G1) & gen(x,B,G隹)
gen(x,A\wedgeB,G) if gen(x,A,G)
gen(x,A\wedgeB,G) if gen(x,B,G)
con(x,P,P) if edb(P)& free(x,P)
con(x,x=c,x=c) if constant(c)
con(x,A,\perp) if not free(x,A)
con(x,\negA,G) If pushnot (\negA,B)& con(x,B,G)
con(x,\existsyA,G) if destinct(}x,y)&\mp@code{con(x,A,G)
con(x,\forallyA,G) if destinct(x,y) & con(ג, A, (i)
con(x,A\veeB,G涪\veeG的) if con(x,A,G的)& con(\alpha, B, (i,)
con(x,A\wedgeB,G) if gen(x,A,G)
con(x,A\wedgeB,G) if gen (a,B,G)
con(x,A\wedgeB,G1\veeG隹) if con(x,A,G1)& con(x,B,G)
```

Figure 5 Expansion of rules for gen and con to produce＂generatols＂

Lemma 82 If $F$ is evaluable，then after Step 1d of Alg 81
$1 \operatorname{gen}(x, \exists * G(x) \wedge A(x))$ holds
$2 R$ does not contain $x$
3 If $y$ is free in $\exists x A$ ，then $\operatorname{gen}(y, R)$ holds
Pioof It is obvious that gen $(x, G(x))$ holds，from whurh（1）follows

Using the lact that con $(x, A)$ holds，it is easy to show by stiuctural induction that during truth value simplification each subformula $B$ of $A$ for which gen $(x, B)$ holds evaluates to false Thus for all $B$ that do not evaluate to false， $\operatorname{con}(x, B)$ holds and gen $(x, B)$ does not That $R$ does not contann $x$ follows easily
Item（3）is easily verified by considering a conserva－ tive transformation of $A$ in which the only negations are immediately above atoms By structural induc－ tion，it can be shown that for every subformula $B$ such that $\operatorname{gcn}(y, B)$ holds，etther $B$ evaluates to false or $\operatorname{gen}(y, B)$ still holds

Lemma 83 Let $A(x), G(x)$ and $R$ be ds described iII Alg 81 Then $A(x) \equiv(\exists * G(x) \wedge A(x)) \vee R$

Proof• Let

$$
\begin{aligned}
& A_{1}(x) \stackrel{\text { def }}{=} \exists * G(x) \wedge A(x) \\
& A_{2}(x) \stackrel{\text { def }}{=} \neg \exists * G(x) \wedge A(2)
\end{aligned}
$$

Clearly $A(x) \equiv A_{1}(x) \vee A_{2}(x)$ But $R \equiv A_{2}(\alpha)$
Theorem 8．4 Every evaluable formula can be effec－ tively transformed into an equivalent allowed formula Proof By Alg 81 and Lemmas 82 and 83

It follows mumediately fiom this theorem and ＇Theorem 71 that every 1 ange astricted fommula can also be effectively transformed into an equivalent allowed formuld In this special case，our procedure reduces to a slight variant of Decher＇s，where $\exists * G(a)$ plays the role of range expression and $R$ is called the remainder

Finally，we observe that the expanded rules for gen and con have some nondetermmacy for conjunctions the $G$ of either conjunct can be adopted when gen holds for both This choice represents an opportunsty for optimization

## 9 Translation into a Relational Algebra Expression

We now doscribe a proceduce to limilate my altowed fommalation an equivale nt whatomal algetha

Aptession In combination with the transformation of the previous section, this allows any evaluable fommiatolie tramsinted mito all equivalent relational


Ille tranlation procedare has two mant phases fanifonmation of the allowed tormuld into relational algelta nomal form, and translation of the normal form into a relational algebra expression

## 91 Relational Algebia Normal Foım

To facilitate defining relation algebra normal form, it is conventent to define two types of formulas

Definition 91 We define D- and G-formulas in terms of atoms and each other as follows

- A D-formula is one of
- a G-formula
- $D \wedge \neg G$, where $D$ is a D-formula and $G$ is a G-formuld
- $D \wedge \lambda=y$ or $D \wedge \lambda \neq y$, where $D$ is a D D-formula (Ricall that $x \neq y$ abbervates $\neg x=y$ )
a (omumetion $D_{1} \wedge J$ ) of 1 -formulas
- A Ci-formula is one ol
- an $\epsilon d b$ atom $P$
- an atom of the form $x=c$ (treated as an $e d b$ atomı $1 \stackrel{9}{=} c$ )
- $\exists y D$, where $D$ is a D-formula containing $y$
- a disjunction $G_{1} \vee G_{2}$ of G-formulas
D. and G-subformulas are subformulas that are Dand G -fommulas respectıvely

Definition 92 A foimula $F$ is in relational algebra normal form (RANF) if it is a D-formula and
1 For each (r-subformula of the form $G_{1} \vee G_{2}$ the same vatubles ate free in $G_{1}$ and $G_{2}$
2 For each D-subformila of the form $D \wedge \neg G$ the fiere valables of (i, are a subset of the free variables of $D$
3 Fon edch D-subformula of the form $D \wedge x=y$ or $D \wedge a \neq y x$ and $y$ are free in $D$

Lemma 91 Every RANF formula is allowed
Proof Clearly gen holds for every free variable in every D- and G-subformula of an RANF formula

Example 91 The converse of Lemma 91 is false Not only are the following allowed formulas not in

RANF, but no conservative transformation of them yields an RANF formula

$$
\begin{aligned}
& P(x, y) \wedge(Q( \lrcorner) \vee R(y)) \\
& P(x, y) \wedge \neg \exists z(Q(x, z) \wedge \neg R(y, z)) \\
& P(x) \wedge \neg \exists y(Q(y) \wedge \neg \exists z R(\downarrow, y, z))
\end{aligned}
$$

## 92 Transformation into RANF

We now present a straightforward algorithm to transform an allowed formula into an equivalent RANF formula In terms of producing a small RANF equivalent, we acknowledge that this algorithm is not the last word on the subject, but it demonstiates feasibility and is easy to prove correct

## Algorithm $91 \operatorname{ranf}(F)$

INPUT An allowed formula $F$
outpur An RANF formula $F_{2}$ equivalent to $F$ PROCEDURE

1. Repeatedly apply all possible transformations of the following form

$$
\begin{align*}
\neg \neg A & \longrightarrow A  \tag{'TI}\\
\neg(A \wedge B) & \longrightarrow \neg A \vee \neg B  \tag{'Г2}\\
\neg(A \vee B) & \longrightarrow \neg A \wedge \neg B  \tag{T3}\\
\forall x A(x)) & \longrightarrow \neg \exists x \neg A(x)  \tag{T'4}\\
\exists x(A(x) \vee B(x)) & \longrightarrow \exists u A(u) \vee \exists v B(v)  \tag{T9}\\
A \wedge(B \vee C) & \longrightarrow(A \wedge B) \vee(A \wedge C) \tag{T11}
\end{align*}
$$

Call the resulting formula $F_{1}$
2 Starting with $F_{1}$, repeatedly apply the following transformations from the top down wherever possible
For each subformula

$$
G \stackrel{\text { def }}{=} C_{1} \wedge \quad \wedge C_{3} \wedge \wedge C_{n}
$$

where some variable $x$ is free in $C_{3}$ and gen $\left(x, C_{3}\right)$ does not hold, find a conjunct $C_{4}(x)$ for which $\operatorname{gen}\left(x, C_{4}\right)$ does hold (possible because the formula is allowed) If,$>j$, move $C$, just to the right of $C_{4}$, but we contimuc to call the conjunct for which gen fails $C$, Now if $C$, def $\neg \exists y A(x, y)$, then rewrite

$$
C_{3} \stackrel{\text { def }}{=} \neg \exists y A(x, y) \longrightarrow \neg \exists y\left(C_{s}(x) \wedge A(x, y)\right)
$$

If $G$ has no free variables, then every conjunct $C_{1}$ may be negative In this case, to ensure a $D$ formula, rewrite

$$
G \longrightarrow \text { true } \wedge G
$$

Call the resulting formula $F_{2}$, and output it

Lemma 92 After Step 1 of Alg 91 , the resulting formula $F_{1}$ has the following properties
$1 \quad F_{1} \equiv F$ and is allowed
$2 F_{1}$ has the form $D_{1} \vee \vee D_{m}$, where $m \geq 1$ and every $D_{k}$ has the fom described in (3) This is the only place where disjunction occurs in $F_{1}$
3 Each $D_{\ell}$ in (2) and (4) has the form $C_{1} \wedge \wedge C_{n}$ ( $n \geq 1$ and varies with $h$ ), where each $C$, has the form of (4)
4 Every $C_{3}$ in (3) has the form $E_{3}$ or $\neg E_{3}$, where $E_{3}$ is either an atom, or is of the form $\exists y D_{k}$, where $D_{h}$ has the form of (3)
Pıoof Each rewrite rule ( $\mathrm{T}_{2}$ ) is justified for pioperty (1) by equivalence ( $\mathrm{E}_{2}$ ) and Theorem 66 Since no ( $\mathrm{T}_{2}$ ) is applicable in $F_{1}$, pioperties (2-4) follow

Lemma 93 After Step 2 of Alg 91 , the resultmg formula $F_{2} \equiv F_{1}$, preserves properties (1-4) of Lemma 92 , and has the following additional property
5 For every subfommula $C_{1} \wedge \quad \wedge C_{n}$ of $F$ that is maxmal ( 1 e , not immediately under another $\wedge$ ), if $x$ is fiee in $C_{\text {, and }}$ gen $\left(x, C_{3}\right)$ docs not hold, then there exists $C_{2}$ with $?<j$, for which gen $\left(2, C_{2}\right)$ does hold
Pioof The rewite iule in Step 2 of Alg 91 produces an equivalent formula because of the identity $A \wedge \neg B \equiv A \wedge \neg(A \wedge B) \quad$ Property (5) is achieved because the formula being operated upon is always allowed

Theorem 94 Alg 91 transforms any allowed formula into an equivalent RANF formula
Proof Straightforward from properties (1-5) established in Lemmas 92 and 93 In particular, if $C_{1} \wedge \wedge C_{n}$ is a subformula of $F$, then each prefix $C_{1}^{\prime} \wedge \wedge C_{2}$ for $2 \leq n$ is a $D$-formula

## 93 From RANF to Relational Algebra

The translation of a formula $F$ in relational algebra noimal form into an equivalent relational algebra expression is quite stianghtforwad, the basics are give il in [Ull80] However, it is unnecessaly to form the Dom relation mentioned there, which meludes all constants in query and the database Because $A \vee B$ only occurs when $A$ and $B$ have the same free varıables, we can simply use union (possibly after a column permutation) Also, negation only appears as $A \wedge \neg B$, where $B$ 's free varrables are a subset of $A$ 's, permitting the use of a generalized set difference operator

Definition 9.3. The relational operation generalized set difference, $P$ dift $Q$, yelds the set of tuples in $P$ whose projections are not in $Q$ That is,

$$
P \text { dıff } Q \equiv P-\pi(P \bowtie Q)
$$

where the (equi-)jom is on the components of $Q$ (which must be a subset of those of $P^{\prime}$ ), and the projection is onto the components of $P$ If $P$ and $(Q$ have the same arity, then $P$ diff $Q$ is simply $P-Q$, possibly after a permutation of columns

Although we have defined $P$ diff $Q$ in terms of primitive relational operators, it should be implemented as a primitive in its own ught, using techniques similar to those used for efficient joms (In fact we believe that diff is also called anti-join) Thus we heep diff in our final relational algebra expressions

We assume that the system builds (m effect) a temporary $\underline{q}$ relation for constants that appeat m the query, and treats $d=c$ as an $e d b$ predicate $2 \underline{q}$,

Example 9.2 We show below, for several allowed formulas (cf Example 9 1), the RANF and ielational algebra expression constructed by the abowe procidures

$$
\begin{aligned}
& P(2, y) \wedge(Q(\lambda) \vee R(y)) \\
\equiv & (P(x, y) \wedge Q(x)) \vee(P(x, y) \wedge R(y)) \\
\longrightarrow & \pi_{12}\left(P \bowtie_{1=1} Q\right) \cup \pi_{12}\left(P \bowtie_{2=1} R\right) \\
& P(x) \wedge \forall y(\neg Q(y) \vee \exists z R(x, y, z)) \\
\equiv & P(x) \wedge \neg \exists y(P(x) \wedge Q(y) \wedge \neg \exists z R(x, y, z)) \\
\longrightarrow & P-\pi_{1}\left(P \times Q-\pi_{12} R\right) \\
& P(x, y) \wedge \forall z(\neg Q(x, z) \vee R(y, z)) \\
\equiv & P(x, y) \wedge \neg \exists z(P(x, y) \wedge Q(x, z) \wedge \neg R(y, z)) \\
\longrightarrow & P-\pi_{12}\left(\pi_{124}\left(P \bowtie_{1=1} Q\right) \operatorname{diff}_{2,3=2,3} R\right)
\end{aligned}
$$

Theorem 95 Every allowed formula can effectively be translated into an equivalent iclational algebra expression
Proof. Theorem 94 and above discussion
Many smplifications of the relational algebra mpressions produred by the procedacs of thas setion can be made dumg their constrietion Allernatively, final expressions can be smplificd using, og, the methods in [Ull80]

## 10 Relation between Evaluable and Domain Independent Classes

In this section we show that the evaluable class is contained in the domam independent class and that
with the restriction to formulas with no repeated predicates evaluable is equivalent to domain indepeudent 'To do so, we use the fact that domain independent is equivalent to definte, which we now define [ND82]

Dcfinition 101 Let $I$ be an interpretation with doman $\mathbf{D}$ for a formula $F^{\prime}$, and let $p_{2}$ be the relations assigned by $\mathbf{I}$ to the ed $b$ piedicates $P_{1}$ that occur in $F$ Let * be a value not in $\mathbf{D}$ Then the *-extension of $I$ is the interpretation $I^{\prime}$ with domain $\mathrm{D}^{\prime}=\mathrm{D} \cup\{*\}$ that assigns the same relations $p_{1}$ to the predicates $P_{3}$ as dom $I$ We denote appropriate cross products of D and $\mathbf{D}^{\prime}$ by $\overrightarrow{\mathbf{D}}$ and $\overrightarrow{\mathbf{D}}^{\prime}$, respectively

Definition 10 2: A formula $F$ is called defintte if, for all interpretations $I, F$ is satisfied at the same points in $\mathbf{I}$ as in $\mathbf{I}^{\prime}$, where $\mathbf{I}^{\prime}$ is the $*$-extension of $\mathbf{I}$ In other words, $\vec{a}$ satisfies $F$ in $\mathbf{I}^{\prime}$ if and only if $\vec{a}$ satisfies $F$ in I

## 101 Evaluable For mulas are Domain Independent

We now show that every evaluable formula is domain independent This was proved originally in [Dem82] for evaluable formulas as defined there The statement needs to be re-examined because we have used an independent definition, and have incorporated equality

Our proof is significantly simpler because of Theorems 84 and 94 , which state that every evaluable formula has an equivalent RANF formula Hence it in suffucut to prove doman independence for RANF fomulas

Lemma 101 Let $F(x)$ be a fommula, possibly contaming other free variables besides $x$ Let $I$ be an imterpictation for $F$ with domain $D$ and *-extension $\mathrm{I}^{\prime}$ If $g \in n(x, F)$ holds, then $F$ does not hold in $\mathbf{I}^{\prime}$ for any assignment that assigns * to $x$
Pioof Use induction on formula size, which we define to be the number of atoms plus the number of quantifiers (negations are excluded) For the basis $F$ is an atom and not of the form $x=y$, the conclusion is immediate For the induction, one of the following cases apphes

- $F \stackrel{\text { def }}{=} A \wedge B$ One of $A$ and $B$ satısfies gen, and therefore by the inductive hypothesis, does not hold if $x$ is assigned *
- $F \stackrel{\text { def }}{=} A \vee B$ Both of $A$ and $B$ satisfy gen, and therefore by the inductive hypothesis, do not hold if 2 is assigned *
- $r^{\prime} \stackrel{\text { det }}{=} \% y A$ a satisfies $g e n$, and therefore by the inductive hypothesis, does not hold if $x$ is assigned *
- $F \stackrel{\text { def }}{=} \neg A$ If $A$ is an atom, the conclusion holds vacuously, since $\operatorname{gen}(x, F)$ is false Otherwise, push the $\neg$ down giving $G$ ( e , pushnot $(\neg A, G)$ holds) Now ether $G$ is an atom other than $2=v$, or one of the above cases applies to $G$


## 1

Lemma 102 If $F$ is an RANF formula, then $F$ is definte
Proof. In view of Lemma 101 , it is sufficient to show that gen holds for all free variables in every Dsubformula and in every G-subformula of $F$ This is straightforward by siructual induction For example, suppose $D$ is a D-formula If $D$ is of the form $A \wedge \neg B$, then the free variables of $B$ are a subset of those of $A$, and $A$ is a D-formula Also, if $D$ is of the form $A \wedge x=y$ or $A \wedge x \neq y$, then $A$ is a $D$ formula in which $x$ and $y$ are free In both cases all the free variables of $D$ are also free in $A$, and by the inductive hypothesis gen holds for them in $A$, hence in $D$ Other cases are similar

Theorem 103 If $F$ is evaluable, then $F$ is definte, and hence is domain independent
Proof. By Theorems 84 and 94 and Lemma 102 !

### 10.2 Evaluable Formulas with No Repeated Predicates

Essentially, the domain independent class is not iecursive because a given formula may have a subformula that is superficially not doman independent, but is unsatisfiable, hence (vacuously) doman independent But even though unsatisfiability is decidable for formulas with sufficiently simple quantifier structure [Ack68], we do not consider it practical to test subformulas for unsatisfiability as part of the piocedure that transforms them into relational algebra However, formulas in which no predicate symbol is repeated cannot possibly have unsatisfiable subformulas We show that formulas in this class (without equality) are evaluable if and only if they are doman independent This means that any extension to the class of evaluable formulas that remans domann mdependent must al leasl provide for simplifications based on common subexpressions ( $\mathrm{e} g$, subsumption tests), and should probably melude some form of inference capability (eg, resolution)

Lemma 10.4. Let $F$ be a formula in prenex-literal normal form (PLNF, see Def 41) Let $F$ have no repeated predicate symbols, no equality, and no disjunction If $F$ is not evaluable, then $F$ is not definite The same holds if $F$ has no conjunction

Pıoof (Shetch) Let $F \stackrel{\text { def }}{=} \% \vec{x} M(\vec{a}, \vec{y})$, where

$$
M \stackrel{\text { def }}{=} P_{1} \wedge \quad \wedge P_{n} \wedge \neg Q_{1} \wedge \quad \wedge \neg Q_{m}
$$

and each $P_{1}$ and $Q$, is an atom of a different predicate Let $\mathbf{D}=\{a\}$ We shall find an interpretation $I$ with domann $\mathbf{D}$ and *-extension $\mathbf{I}^{\prime}$ such that $F$ evaluates differently in I and $\mathbf{I}^{\prime}$

Theorem 105 Let $F$ be a formula with no repeated predicate symbols and no equality Then $F$ is definite if and only if $F$ is evaluable
Proof (Shetch) The " $\Leftarrow$ " part holds by Theorem 103 above By Cor 63 we may assume $F$ is in PLNF, and is given by

$$
F \stackrel{\text { def }}{=} \% \vec{x} M(\vec{x}, \vec{y})
$$

where $M$ is quantifier free We define the size of a formula to be the number of atoms plus the number of quantifies in it For the " $\Rightarrow$ " part, we show by induction on size that if $P$ is definite, then we can reduce to the case covered in Lemma 104

We conje cture thit thas theorem can be extended to . How sonte prexence of equality llowever, it cannot be extended much in other directions in view of the fact that (cf Example 6 2)

$$
F(x) \stackrel{\text { def }}{=} \forall y[(P(x) \wedge Q(y)) \vee(P(x) \wedge \neg R(y))]
$$

is domain independent but not evaluable

## 11 Acknowledgements

We would like to thank Robert Demolombe, who ongmated the evaluable class of formulas, for helpful discussions and comments on an early draft of this work We also thank Hendrik Decker for helpful discussions

## References

[Ach68] W Ackermann Solvable Cases of the Decision Problem North-Holland, Amsterclam, 1968
[Der86] II Decher Integrity cuforcement in deduchive databases In 1st Int'l Conference on Expert Database Systems, pages 271-285, 1986
[Dem82] R Demolombe Syntactical Characterization of a Subset of Domain Independent Formulas Techmical Report, ONERACERT, 1982
[DIP69] R A DiPaold The recursive unsolvability of the decision problem for the class of definte formulas $J A C M, 16(2) 324-324$, 1969
[Fag80] R Fagin Ioin clauses and databise
 on Throvy of Compulang, pugc 123 134, 1980
[Kuhb7] J L Kulims Ansurcang Qucsluons by Computer A Logical study 'lechnical Report RM-5428-PR, Rand Corp , 1967
[LT84] J W Lloyd and R W Topor Making Prolog more expressive Journal of Logic Programmang, 1(3) 225-240, 1984
[Mak81] J A Mahowsky Chaiacterizing data base dependencres In 8th Coll on Automata, Languages and Programming, Springer Verlag, 1981
[Man74] Z Manna Mathematical Theory of Computation McGraw-Hill, New York, 1974
[MUVG86] K Morris, J D Ullman, and A Van Gelder Design overview of the Nall system In Thud Int'l Conf on Logur Programmıng, July 1986
[ND82] J-M Nicolds and R Deinolombe On the Stabulaty of Relatoonal Qucrise 'Terlinucal Reporl, ONERA-('ER'I, I'88
[Nic82] J-M Nicolas Logic for mproving integnty checking in relational databases Acta Informatıca, 18(3) 227-253, 1982
[Top86] R Topor Domain Independent Formulas and Databases Technical Rcport 86/11, Univ of Melbourne, 1986 (To appear in Theoretical Computer Science)
[Ull80] J D Ullman Principles of Database Systems Computer Science Press, Rochville, MD, 1980 (Revised Ed 1982)

## A Equality Reduction and Wide Sense Evaluability

In this appendis, we descube transformations that normalize formulds with respect to equality ( $=$ ), which we call squalily reduction Many formulas contanung " quality do not salisfy the requisementfor evaluabitity mitally, but are evalualbe after equality reduction We say that such formulas are evaluable in the wade sense Wide sense evaluability is invariant under conservative transformations Since every wide sense evaluable formula is equivalent to an evaluable formula, it is also domain independent

Lemma A 1 Let $F \stackrel{\text { def }}{=} x=t \wedge A(x, t, \vec{y})$ ), where $t$ is either a variable or a constant, and is not required to appear in $A(x, t, \vec{y})$ Then

$$
\left.F \equiv F^{\prime} \stackrel{\text { def }}{=} x=t \wedge A(t, t, \vec{y})\right)
$$

$$
\begin{aligned}
F & \stackrel{\text { def }}{=} \exists z[P(\iota, z) \wedge(x=y \vee Q(x, y, z)) \wedge \neg(z=y \vee R(y, z))] \\
& \equiv \exists z[(z=y \wedge f a l s e) \vee(z \neq y \wedge P(x, z) \wedge(x=y \vee Q(x, y, z)) \wedge \neg R(y, z))] \\
& \equiv \exists z[z \neq y \wedge P(x, z) \wedge(x=y \vee Q(x, y, z)) \wedge \neg R(y, z)] \\
& \equiv(x=y \wedge \exists z[z \neq y \wedge P(y, z) \wedge \neg R(y, z)]) \vee(x \neq y \wedge \exists w[w \neq y \wedge P(x, w) \wedge Q(x, y, w) \wedge \neg R(y, w)]) \\
& \equiv(x=y \wedge A(x) \wedge A(y)) \vee(x \neq y \wedge \exists w[w \neq y \wedge P(x, w) \wedge Q(x, y, w) \wedge \neg R(y, w)]) \\
& \text { where } A(y) \stackrel{\text { def }}{=} \exists z[z \neq y \wedge P(y, z) \wedge \neg R(y, z)]
\end{aligned}
$$

Figure 6 Equality reduction of a wide sense evaluable formula

Paoof lin any a valtation, cither a is anghed the allime value as $t$ or both $l^{\prime}$ and $l^{\prime \prime}$ evaluate to falser

The lemma generalizes the transformations (E1314) in Fig 4 to free variables

## Algorithm A 1. Equality Reduction

input A relational calculus formula $F$ output An equivalent equality-reduced formula procedure
1 Apply the following transformation wherever possible
Let $A(x)$ be the maximal subformula of $F$ in which $x$ is free $A$ may have other free variables If $A$ contans an atom $x=t$, where $t$ is ether another free variable of $A$ or a constant, ${ }^{5}$ then
(a) Definc $A_{1}(t)$ to be the formula that lesults from replacing every occurrener of $x$ in $A$ by $t$, and then replacing $t=t$ by $t$ ut oud carrying out truth value sumplification ( 1 ) cl 82 )
(b) Define $A_{2}(x)$ to be the formula that results fiom replacing each occurrence of $x=t$ in $1(\mu)$ by Jalse, and carrying out truth value smplification (Bound varialles of $A$ are given different names in $A_{1}$ and $A_{2}$ )
(c) Replace $A$ by

$$
A^{\prime} \stackrel{\text { def }}{=}\left(x=t \wedge A_{1}(t)\right) \vee\left(x \neq t \wedge A_{2}(x)\right)
$$

(d) If $a$ is bound in $F$, then replace $\exists x A^{\prime}$ by

$$
A_{1}(t) \vee \exists x\left(x \neq t \wedge A_{2}(x)\right)
$$

2 Equality reduction can also be carried out on equalities between two constants, which may be introduced in Step 1 Suppose $c=d$ occurs, where $r$ and $d$ are distimet constants If the system

 mplicit in ${ }^{\prime}$ ', then we can make it explicit at the top level

$$
F \longrightarrow c \neq d \wedge F
$$

Now replace $c=d$ by falsc throughout $F$ and simplify, as in Step 1b Repeat until all equalities between constants are removed
3 At this point all equalities between two free variables of $F$ that remain can be put in the form of "case splits" at the top of the formula by appropriately "pushing ands" (E11) For any case of the form $x=z \wedge A(z)$, where $x$ is not free in $A$ and $\operatorname{gen}(z, A)$ holds, rewrite this case as

$$
x=z \wedge A(x) \wedge A(z)
$$

This typically arises when $A$ orignally contamed $x$ but it was substituted for in Stcp 1 above In an implementation, we would not actually do it this way, we would add a column replication prumitive to our relational algel)ra

The correctness of the algorthm follows from Lemma $\Lambda 1$ and elementary arguments

Defintion A. 1 A formula $F$ is sard to be wide sense evaluable if Alg A 1 transforms it into an evaluable formula as defined in Def 52

Example A.1: The formula in Fig 6 is unmotivated, but serves to illustrate the mechames of the algorthm

A better characterization of wide sense evaluable formulas is a topic for future research


[^0]:    *Supported by NSF grant IST-84-12791 and a grant of IBM Corp

[^1]:    ${ }^{1}$ By equivalent we shall always mean logically equivalent

[^2]:    ${ }^{2}$ The situation is not this simple, but this is the central idea

[^3]:    ${ }^{3}$ Prolog cognoscentz are warned not to take the syntax too seriously, $x$ and $y$ are still to be interpreted as variables

[^4]:    ${ }^{4}$ Quantified varıables in $A$ are given new names in $R$, of course

