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Abstract 

Mark and sweep garbage collectors (GC) are classi- 
cal but still very efficient automatic memory man- 
agement systems. Although challenged by other 
kinds of systems, such as copying collectors, mark 
and sweep collectors remain among the best in 
terms of performance. 

This paper describes our implementation of an 
efficient mark and sweep garbage collector tailored 
to each program. Compiler support provides the 
type information required to statically and auto- 
matically generate this customized garbage collec- 
tor. The segregation of objects by type allows the 
production of a more efficient GC code. This tech- 
nique, implemented in SmallEiffel, our compiler for 
the object-oriented language Eiffel, is applicable to 
other languages and other garbage collection algo- 
rithms, be they distributed or not. 

We present the results obtained on programs 
featuring a variety of programming styles and com- 
pare our results to a well-know and high quality 
garbage collector. 

1 Introduction 

In the last few decades, automatic memory man- 
agement gradually and constantly improved, and 
now seems t,o be preferred to manual memory 
management in most modern programming lan- 
guages. Numerous and efficient techniques [Wi192, 
WSNB95, JL96] have been developed, providing a 
wide range of solutions to language implementors. 

Nonetheless, some developers still consider that 
the best, performance can be reached only by re- 
lying on manual memory management. Indeed, 
they believe it, enables them to better address the 
specific memory requirements of their application. 
However, the garbage collection community has 
been working on the customization of the GC to 
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each application for a long time, thus address- 
ing the concerns of proponents of manual memory 
management. 

Many of these customized collectors [BarSO, 
Ede92, BS93, AFI95] still require some kind of in- 
tervention from the developer. In this paper, we 
present our experience with the implementation of 
a completely automatic system in which compiler 
support allows the generation of a customized GC 
without requiring any additional work from the ap- 
plication developer. 

The GC we integrated to SmallEiffel -- The 
GNU Eiffel compiler - is a classical partially con- 
servative [Boe93] mark and sweep collector. We 
use an efficient type inference algorithm [CCZ97] 
to analyze the class relations at compile time. This 
algorithm provides the required information to seg- 
regate objects by type and statically customize 
most of the GC code. Thus, memory management 
relies heavily on type-accurate, efficient routines. 

The remainder of this paper is organized as fol- 
lows. Section 2 explains the overall method used to 
customize the GC code thanks to compiler support 
and then details the management of fixed-size ob- 
jects. Resizable objects are considered in section 3. 
Section 4 briefly describes more specific, language- 
dependant optimizations. Performance measure- 
ments are presented in section 5. Finally, section 
6 reviews related work and section 7 concludes. 

2 Fixed-size object management 

2.1 Allocation 

The allocator we implemented takes advantage of 
object structure information, provided by the type 
inference process [CCZ97] of SmallEiffel. Because 
it statically knows which kinds of objects are al- 
located, fixed-size objects are segregated by type, 
rather than by size as in most. other segregated 
algorithms [WSNB95]. 

A specific collection of typed chunks is dedi- 
cated to each inferred live type. This way, a chunk 
holds only one type of objects (see figure l), whose 
size is known at compilation time and hard-coded 
wherever it is needed. Thus, the SmallEiffel GC 
does not need any extra word to store the object 
size. Each chunk is a memory area which contains 
a fixed number of slots for objects - not references 
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Figure 1: Overview of Memory Layout 

~~~ of the corresponding concrete type. A chunk 
header comprises some other type-specific infor- 
mation like pointers giving access to customized 
marking and sweeping functions. 

After trying and benchmarking some configura- 
tions, we found that fixed-size chunks of 8Kb were 
a good tradeoff between fast allocation and tight 
memory footprint. 

Each type has its own customized allocation 
method and is associated to a Linear Allocation 
Chunk (LAC). The latter is a chunk managed in 
a stack-like way, with a Free-Space Pointer (FSP) 
pointing to the beginning of the free space avail- 
able for objects of this type. When an object must 
be created, its type allocation method t,ries to allo- 
cate it directly from the corresponding LAC, just 
by incrementing the FSP for this type by the ob- 
ject size. Such a linear segregated allocation is 
probably the fastest one can imagine. 

When not enough memory is available in the 
LAC, the allocation method looks in the type free 
list, which chains free slots across all the chunks 
of tlie corresponding t,ype (see figure 2). If the list 
is riot empty, the first slot it refers to is removed 
from the list and used for the new object. The seg- 
regation of objects by type thus makes it possible 
to look for a free slot with a constant, low cost. 

If no room can be found in any of the chunks 
corresponding Lo this type, a garbage collection 
cycle can be triggered, which should reclaim un- 
used objects and thus provide a slot for the new 
object. In case the GC cycle does not provide the 
necessary memory, a new LAC for objects of the 
required type has to be malloc’d. 

ln order not, to trigger a full GC cycle when- 
ever no free room can be found either in the LAC 
or in the type list of free objects, an additional cri- 
terioii, the memory “ceiling” is coiisidered. It rep 
resent,s the headroom for fixed-size objects, that is 
the amount of allocated memory under which no 
garbage collection is requested, but a new chunk 
is rnalloc’d inst,ead. 

Thanks to the type inference performed at com- 
pile time, an initial value can be assigned to the 
ceiling by considering the number of live types in 
the system. For example, a program with a few 
concrete live types has a lower ceiling than another 
one with many live concrete types. In practice, the 
ceiling is equal to four times the number of live 
concrete types, which means each type is expected 
to use four chunks on average. Some Eiffel objects 
having specific properties in the system (unique- 
ness for example) are managed in a particular way 
(see section 4). 

The constant ceiling incrementation is of course 
too simplistic to provide good performance, partic- 
ularly because it does not consider the amount of 
memory previously allocated. Polynomial extrap- 
olation seems well adapted because it is able to 
update the ceiling according to the previous evo- 
lution of memory requirements, even when a very 
steep increase occurs. However, we obtained the 
best results, both in t,erms of speed and memory 
footprint, with a simple, constant growing factor 
of thirty per cent. Thus, after each garbage collec- 
tion cycle, the program is allowed to allocate new 
chunks representing up to thirty per cent of the 
amount of used chunks, in order to ensure it. has 
enough headroom. 

Figure 3 illustrates the behavior of this ceiling 
in a test program which features three different ex- 
ecution phases. In the first phase (GC cycles 0 to 
9), it allocates a lot of memory. During this phase, 
the ceiling is quickly increased (it is doubled after 
each GC call when the allocated memory is less 
than lOMb, and increased by thirty per cent after 
this limit). In the second phase (GC cycles 10 to 
14), the program allocates objects without keep- 
ing references to them: the ceiling is not updated 
because the GC recycles enough memory chunks. 
Finally, t,he program enters a new allocation phase 
(GC cycles 15 to 18) which leads to a new series 
of 30% ceiling updates. 

15.5 
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Figure 2: Detail of a fixed-size object chunk 

2.2 Marking 

The marking process requires the addition of 
some information to each object in order to know 
whether it is marked or not. This extra infor- 
mation is implemented with a one-word long GC 
header for each object. It holds the mark-bit, 
which we implemented as an integer flag for the 
sake of simplicity. In future releases, we plan a 
more compact implementation using bitmap head- 
ers associated to each chunk. 

The mark phase relies on two different steps 
depending on where object references are found: 
root pointers in the stack or internal pointers in 
object structures -- in SmallEiffel C code, pointers 
may not be located in static areas. 

2.2.1 Finding the roots 

Of all the data contained in the stack, only refer- 
ences to objects are of interest for marking. 

In Eiffel, normal objects are always allocated in 
the heap and, in case a normal object is referenced 
from a local variable or argument, only a pointer 
to its location is pushed into the stack. However, 
Eiffel’s expanded objects [Mey94] may be allocated 
directly in the stack. They may hold non-reference 
objects, and also references. 

Thus, examining the whole stack should allow 
all references to live heap objects to be retrieved. 
Finding internal references to other live objects 
will be explained later. 

The stack depth’ is an important factor to take 
into consideration. A good computation of the 
stack area to be analyzed may save some word 
arlalysis at each call to the GC. SmallEiffel con- 
siders the address of the object associated to the 
root class as the bottom of the stack, and the last 
local variable allocated as its top. 

Since stack elements may be directly stored 
in processor internal registers, references to ob- 
jects may remain outside the stack. Thus, 
beside the stack scanning process, another 
one is needed to access the processor regis- 
ters. People interested in details may want to 
look at SmallEiffel source code, accessible from 
http://www.loria.fr/SmallEiffel. 

‘We consider here that addresses increase as the stack 
grows. But of course, SmallEiffel analyzes the dirtxtion of 
stack growth and handles both increasing and decreasing 
addresses. 

When accessing any stack (or register) word, 
one does not know whether it is an Eiffel reference 
or another data type (a properly-aligned bit pat- 
tern). Consequently, all stack words are a priori 
considered possible references [BWSS]. We thus 
need to efficiently identify genuine references: as 
in [Cha92] and [KID+SO], four successive filters are 
used to reduce cases of misidentification. 

Let r be the candidate reference, and N the to- 
tal number of chunks (whatever the type). We note 
[BZ, E,], with x E [l, N] the range of addresses in- 
cluded in chunk x, and ObjectSize the size of 
the slots in chunk x. 

1 - Because the addresses of all created chunks 
are sorted in the main table (as shown in figure l), 
we immediately have the range of acceptable ad- 
dresses for an object reference: r is an acceptable 
reference if and only if r E [Bl , EN]. 

2 - Check if the potential pointer is included in 
the address range of an existing chunk: 
3i E [l,N] 1 r E [B,,E,]. 

3 - Check if the pointer actually refers to (the 
beginning of) an object in this chunk i. This is 
quickly done by a specialized function associated 
to the chunk, which verifies whether the pointer 
value corresponds to an offset, from the beginning 
of the chunk by an integer multiple of the object 
size of the chunk: 
3k E Nt 1 r = B, + k x ObjectSize( 

4 - Check whether the pointed address corre- 
sponds to an unmarked allocated object, thanks 
to the object mark flag. 

If the candidate reference passes these four 
tests, it is considered a valid root reference and 
the pointed object is marked live, using the GC 
header extra word. 

It should be noted that after the above four 
tests we still do not know for sure whether a 
pointer from the stack really is a reference to an 
object or not. A coincidence might occur where a 
stack word contains a bit pattern which is a valid 
address, although the word is not a pointer at all. 
In this misidentification case, the object is main- 
tained live when it should not be, and its mem- 
ory block cannot be reused until the address dis- 
appears from the stack. This may cause a slight 
increase in memory use, but is the only safe pol- 

icy, because it guarantees the completeness of the 
marking algorithm. In [Boe93], Boehm experi- 
ments on test programs showed that misidentifi- 
cations caused memory retention of about 10% for 
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Figure 3: Updating the memory allocation ceiling. 

fully conservative collectors. Memory retention is 
likely to be lower for our partially-ConserwativeGC, 
because misidentifications can only occur when 
marking from t.he stack. 

2.2.2 Following internal references 

When an object is reached and marked live, the 
marking process must continue on all objects re- 
ferred from it, (its suppliers [Mey94]). A mark- 
ing process that would know nothing of the object 
apart from its size would have to perform the same 
kind of reference identification as previously de- 
scribed for root detection. Of course, in probably 
all implementations of object-oriented languages, 
objects hold information about their dynamic type 
(if only to be able to perform late binding), in 
the form of a pointer to an object descriptor or 
as a type ID used to access a type descriptor ta- 
ble. The marking process is thus able to access 
the object description, and then follow each in- 
ternal reference, without having to check whether 
the reference is a valid one or not. Many potential 
memory leakages [Boe93] are avoided in this way. 

SmallEiffel, thanks to its type inference and 
code customization capacities, implements this in- 
ternal pointers processing in a very efficient way. 

Indeed, SmallEiffel - relying on important 
code customization - generates a specialized 
mark function for each object type. Such a func- 
tion exactly knows where to find valid references 
to other objects and what their type is. So after 
the first blind jump from the stack into a chunk 

c, the customized marking function associated to 
chunk c (see figure 1) is called. Since it is a typed 
customized function, the marking process follows 
unambiguous, typed pointers and statically calls 
marking functions until a leaf (a childless object) 
is reached. 

Assume for example that part of a system is 
composed of TRIANGLE objects which contain an 
INTEGER representing their color and three refer- 
ences to POINT objects, the latter holding two DOU- 
BLES as their coordinates. The marking function 
markTRIAUGLE looks like this: 

void markTRIABGLE(Triangle *triangle) I 
if (triangle->mark-flag!=HARKED-FLAG){ 

triangle->mark-flag=NARKED_FLAG; 
if (triangle->pointl != NULL) 

markPOIBT(triangle->pointl); 
if (triangle->point2 != NULL) 

markPOINT(t.riangle->point2); 
if (triangle->point3 != NULL) 

markPOINT(triangle->point3); 
1 

) 

As can be seen, since attribute color of class 
TRIANGLE is known to be a non-reference field, 
no code needs to be generated for its marking in 
markTRIAHGLE. 

Since class POINT has only two DOUBLE at- 
tributes, and does not hold any reference attribute, 
no marking code needs to be generated for chil- 
dren: 

void markPOINT(Point *point) ( 
point->mark-flag=HARKED_FLAG; 

1 
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Also note that the absence of children makes it 
unnecessary to test whether the flag is marked or 
not. 

Of course, because of polymorphism, the con- 
crete type of a given supplier may be any descen- 
dant of its static type, and a late binding on the 
correct marking method is required. SmallEiffel 
type inference mechanism [CCZ97] makes its pos- 
sible to significantly reduce the cost of late binding, 
by narrowing the number of possible types to those 
which are actually live, ensuring a fast late bind- 
ing. Assume for example that the abstract class 
FRUIT has two concrete living types: APPLE and 
PEACH. The implementation of late binding on 
rnarking functions for objects of static type FRUIT 
is as follows: 

void markFRUIT(Fruit *fruit) { 
switch (fruit->id) ( 

APPLEid: markAPPLE((Apple*)fruit); break; 
PEACHid: markPEACH((Peach*)fruit); break; 

As for any late binding function, such a method 
is in fact implemented using binary branching 
code, which results in very fast execution, as shown 
in [ZCC97]. 

2.2.3 Avoiding recursive marking 

As usual in recursive marking algorithms, deeply 
nested structures such as very long linked lists 
tend t,o make the execution stack grow drarnati- 
tally, eventually causing stack overflow. The clas- 
sic technique for solving this problem is to trans- 
form recursive calls into iterative loops and auxil- 
iary data structures. 

Since the SmallEiffel compiler knows object 
structures, it can reorder the marking of their fields 
in the most efficient order, avoiding the use of any 
extra data structure when only one of these fields 
is the beginning of a long chain of references. For 
example, a linked list of INTEGERS is marked in 
this way: 

void markLINK(Link *link) { 
do { 

if (link->mark-flag!=HARKED-FLAG){ 
link->mark-flag=MARKED_FLAG; 
link = link->next; 

) while (link != NULL); 

We did not implement this technique for more 
complexe recursive structures, where more than 
one field belong to long chains of references. We 
believe however that the generalization to such 
cases is possible, and will still imply the use of 
an extra data st,ructure, whose size will be limit,ed 
and known thanks to the SmallEiffel type inference 
algorithm. This work is still under progress. 

2.3 Sweeping 

The next, phase, sweeping, consists in looking at 
all allocated objects in order to collect the memory 
used by those which have not been marked live. 

WC thus have to scan all the chunks of the main 
t,able (see figure 1) to collect the objects that are 

no longer referenced and whose flag has been left 
unmarked. This is efficiently done in SmallEiffel 
with sweeping functions customized for each type. 
Hence, t,he addresses where the flags are to be 
found can easily be computed, thanks to the fact 
that all obiects in a chunk have the same prede- 
fined size. -The continuous nature of the mkmory 
held bv a chunk is also likelv to guarantee a better 
data locality when scanning thechunk than with 
chained, scattered memory blocks. Here is a sim- 
plified example of a sweeping function customized 
for the TRIANGLE chunks: 

void sweepTRIANGLEchunk(TriangleChunk *tc) ( 
Triangle*tp; 
for (tp=tc->first; tp <= tc->end; tp++)( 

if (tp->mark-flag!=MARKED_FLAG) 
addToFreeListOfTRIABGLE(tp); 

else 
tp->mark-flag=UNMARKED-FLAG; 

1 
1 

Each type has its own free list comprising all 
the free slots associated to this type, whatever 
chunk they are in. When an unmarked object is 
found, it is linked ahead of the type free list. This 
free list does not incur any space overhead, since 
the GC header extra word previously used to mark 
whether the object was live or not is now reused 
to chain the object, to the free list. 

All objects marked live are unmarked when the 
chunks are swept, readying the object graph for the 
next garbage collection. 

When a chunk contains only free slots, it is put 
back in the list of free chunks. The latter is un- 
typed, which allows a better recycling of chunks, 
since they all have the same size. 

2.4 Finalization 

Before an Eiffel object is collected, a finalization 
routine [Hay921 may be called on this object. 

Finalization routines in the SmallEiffel GC 
are generated like all other user-defined routines. 
Thus, they are produced only for objects which 
actually define an effective finalization routine. 

Since all these routines are known at compile 
time, the GC can be adapted to generate the corre- 
sponding calls when appropriate. Thus there is no 
need to check whether each object has to be final- 
ized. Only the chunks holding objects which have 
to be finalized need to be examined, and in these 
chunks, it is easy to consider only the objects which 
have been marked to-finalize. In this way, the 
overhead incurred by finalization management is 
very limited and does not lower the program per- 
formance. 

Although these ideas have not been imple- 
mented yet in SmallEiffel, future versions of our 
GC will feature such a customized finalization 
mechanism. 

3 Resizable object management 

Resizable objects are implemented in a very similar 
way to fixed-size objects. However, because the 
size of resizable container objects (arrays, strings) 
is not computable at compile time, these objects 
are more difficult to manage. 
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Figure 4: Detail of a resizable object chunk 

Small resizable objects are allocated like fixed- 
size objects (see section 2.1), in fixed-size typed 
chunks (see figure 4). The size of the latter, how- 
ever, has been extended to 32Kb, in order to take 
int,o account the fact that resizable objects are gen- 
erally larger than fixed-size ones. Resizable object, 
allocation maintains its own ceiling, which is man- 
aged is the same way as that of fixed-size objects, 
except that t,he ceiling initial value is four times 
the number of statically computed live concrete 
types. Very large resizable objects which are larger 
than the normal size of these chunks are handled 
differently. Each of them constitutes a single “one- 
big-slot chunk”, whose size is simply the resizable 
object size. 

The number of elements contained by the r(:- 
sizable object is kept in its header. This makes it 
possible to mark the container contents, if they are 
references to objects. This also allows the sweep- 
ing of resizable object chunks, since the position 
of each of the resizable objects in the chunk can 
easily be computed. 

The marking mechanism is very similar to that, 
of fixed-size objects. However, for each element of 
a resizable container, there is no extra data at all. 
Instead, a single common extra word is associated 
to the container. Thus, in arrays and the like, a 
memory slot fits exactly the contained object to 
which it is allocated. 

As for fixed-size objects (see figure I), there 
is one specific, customized marking function fol 
each live concrete type corresponding to a resiz- 
able container. Thus, since ARRAY[INTEGER] and 
ARRAY [TRIANGLE] are two distinct concrete types, 
they require different marking functions. 

When the container holds reference objects, the 
generated marking function must propagate the 
marking process to each element. For example, 
the marking function for a container of TRIANGLES 
consists of a loop which propagates the marking 
process to the elements: 

void markContainerOfTRIABGLE(Trianglas *c) ( 
int i; 
if (c->mark-flag!=HARKED_FLAC)( 

c->mark-flag=MARKED-FLAG; 
for (ix->count - I; i >= 0; i--) { 

Triangle *t. = c->storageCil; 
if (t != NULL) markTRIANGLE( 

1 
t 

) 

Since this function has been customized it is 
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very efficient. Indeed, the most appropriate code 
for the element type is used instead of a generic 
one: direct calls to markTRIANGLE are made while 
marking a container of TRIANGLES. 

For a container holding non-reference objects, 
such as an array of integers, no further marking is 
needed. Hence, the marking funct,ion ,just marks 
the container itself and returns: 

void markContainerLlfIBTEGER(Integers *c) ( 
c->mark-flag=MARKED-FLAG; 

) 

On such a container, the SmallEiffel cus- 
tomized marking algorithm is faster than that of a 
conservative garbage collector. 

Sweeping of resizable objects is similar to that 
of fixetl-size objects, except that t.he former must 
take into account the actual size of each container 
object in the chunk. Since this process does not 
rely on the element type of the container, the same 
sweeping function is used for all resizable ol)ject 
chunks. 

When a resizable object is collc&d, it is put in 
the free list corresponding to its type. As for fixed- 
size objects, a completely free chunk is put in an 
untyped free list of chunks and may be reused for 
any type. 

When a very large resizable object is freed, the 
corresponding chunk is also put in this free list. 
This chunk may then be split to be used as a 
normal-size chunk for small resizablc object,s. A 
consequence of this splitting is that the remain- 
der may constitute a smaller than normal chunk. 
To avoid excessive fragmentation, a coalescing is 
periodically triggered on these chunks. 

4 Specific optimizations 

The peculiarities of some kinds of objects result in 
various specific customizations. 

4.1 The root object 

The root object, the first object created, on which 
the root method of the system is called, lives as 
long as the program. Thus, it cannot. be garbaged 
and always remains marked. However, since its 
attributes may change during the program execu- 
tion, marking them is still necessary. 

Furthermore, since the root object is frequently 
the only object of its type in the system, it is not 



allocat,ed in a normal chunk, but apart, to avoid 
wasting memory. 

4.2 Once function results 

Once roklt,incs [Mey94] are a specificity of Eiffel. 
The body of such a routine is executed only once 
in the program lifetime, the first time the routine is 
called. Subsequent calls return withont executing 
the rolltine body. 

When the once routine is a function, it>s resull 
is computed the first, I,ime the rout,ine is called, and 
retllrned at, each subsequent call. 

Ilcnce, objects returned by once functions, or 
ot~cc objec~ta, live from the time t,hey were allocated 
till the end of the program. ‘l’hus, exactly like the 
root object, a once object, must always be consid- 
ered as marked by the collector, and may not be 
collected. 

Once object management can thus be opt- 
mized by relying on specific marking and con- 
pletely avoiding sweeping. This is currently being 
implement,ed in SmallEiffel. 

For some simple once functions, it is possiblt 
to unambiguously know t,he t,ype of the result) at, 
compile t,irne. Such results can t,hus be precorn- 
plited, that is crcatccl at the vc’r-y beginning of tllc 
program [ZCC97]. Further opt,imizations, such its 
not checking whether the object is NULL, can be 

performed in the GC when dealing with these ob- 
ject.s. 

4.3 Manifest strings 

A manifest string is a st,ring whose value appears 
directly in the source code. A manifest string is 
not a constant string; it is a reference to a rrsiz- 
able container of characters. Indeed, in Eiffel, l.he 
developer does not normally have direct access to 
a rcsizable object itself, but to a fixed-size object 
which encapsulates the behavior of the rrsizable 
object in a portable way and hides its implemen- 
t.ation from t,he user [Mey94]. 

A manifest string can thus be considered as a 
special type of once function whose value is pre- 
computable at compile time. Consequently, all 
the manifest strings are allocated in specific mern- 
ory areas, are 110~ subject t,o sweeping, and have a 
marking process customized and optimized as de- 
scribed for pre-computable once functions. This is 
currently implemented in SmallEiffel. 

5 Performance 

In order t.o evaluate t,he performance of our im- 
plcmentation of a cust,omized mark and sweep 
garbage rollrcbor, we chose to brnchmark several 
implementations of an Othello (or Reversi) game. 
‘.L’hese programs had I)een designed by 24 teams of 
students using t,he previous version of SmallEiffel, 
without a GC. They enable us to compare real pro- 
grants performing the same kind of task, with var- 
ious programming styles and algorithms, resulting 
in different execution behaviors, especially with 
respect to memory. We also benchmarked small 
programs featuring a range of synthetic e.cecutaon 
~<~tferns, as well as I,hc SmallEiffel compiler it self. 

These results are coherent, wit,11 t,he o,les WC presettt 
hereafter. 

TWO of t,he 24 Othello programs were irlcorrcct, 
(failing because of assertion violat,ions) and t,hns 
could not be used. The 2’, remaining programs 
can be split in two cat,egorics: non-leaky programs, 
where memory has been sk’aringly managed, and 
leaky ones, with many &or,-lived objects. 

Being generated in ANSI C, our GC is 
platform-independent and has been test.ed on a 
wide range of UNIX, Macintosh and Windows 
plat,forms. For the sake of brevit,y, we only present 
here the results we obtained with the aforemen- 
t.ioncd programs on one lrNlX l)latform. The re- 
sult)s on the oLher platforms were similar and lead 
to the same conclusions. 

5.1 Benchmarking platform 

We compared the heap-accurate, customized 
mark-sweep GC generated by SmallEiffel t,o the 
Boehm-Demers-Wciser CC (RDW) [BWXX]. The 
BDW CC is a renowned fully conservative GC 
which has been a topic of numerous research pa- 
pers, e.g [Boe93, Zor93, DDZ94]. It, has also heel1 
developed for a long time on UNIX systems and is 
thus very mature. Implemented in real-life sys- 
tems, it. is a fast, robust, and slim GC, thanks 
to highly optimized algorithms and efficient data 
st,ructures. The BDW GC is t,hus a very valuable 
rcferencc syslem. 

Furthermore, it. has been used successfully for 
some time in conjunction with SmallEiffel, because 
the latter did not provide its own GC until version 
-0.81”. 

ln might also have been interesting t.o COII- 
pare our heap-accurate GC with a “typed” BDW. 
Indeed, in [BS93], Boehm and Shao show t,hat 
some performance improvements over the classical 
fully-conservative BDW seem possible. However, 
as they pointed out, it is unclear whether these 
improvements would scale up to large programs. 
Furthermore, in this study, we want,ed to compare 
our purtially conservntive GC implementation to 
a fully con.Tcrvative one. Wc thus only considered 
the classical BDW GC. 

Since version -0.81, SmallEiffel is able lo pro- 
duce the C code adapted to an application with or 
without generating the C code corresponding to 
the customized GC, depending on whether option 
-no-g= has been selected or not. When the GC is 
also gellerated, instantiation instructions rely on 
t,he whole GC described in sections 3 to 4. Con- 
versely, with -no-g=, the allocation routine of a 
IICW object (e.g IMTRIANGLE) calls the standard C 
library malloc. This makes it easy t,o include an 
external GC library redefining malloc and free, 
like t,he BDW GC, or to use no GC at all. 

We report, here the results we obtained on a 
SUN Spare IJltra Enterprise wit,11 512 Mb of RAM, 
rlmning Solaris- 2.6. The large amolmt of memory 
of t,his machine made it possible for all the bcllch- 
nlarks - even the most memory-hungry ~~~ to rnn 
entirely in RAM wit,hout being swapped lo disk. 

‘The first version of SmallEitfel wns n~lmt)c~rrd -0.99; 
version -0.80 is the 20th 
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SmallEiffel -0.80 was used with optimiza- 
tion options -boost and -no-split to gen- 
crate t,he (: code. Of course, -no-gc was 
added when producing the C code to be linked 
with the BDW 4.12 library (for which option 
-Dali-interior-pointers was disabled). The C 
code was compiled with egcs- 1.0. 1 (a variant of 
gee), using optimization option -06. 

Because of t,he differences of complexity be- 
tween the various game algorit,hms used by the dif- 
ferent teams, and because of the major differences 
in the efficiency of the implementation of these al- 
gorithms, WE had to benchmark them on different 
board sizes in order to gel t,he most meaningful re- 
srrlts. Of course, each program was benchmarked 
with the same board size without any GC, with 
BDW and wit,h SmallEiffel. Our figures for each 
benchmark were obtained by running it 4 consecu 
t,ive times, rmder a constarrt workload, and taking 
t,he avrrage on the last, 3 runs. 

5.2 Exccutablo size 

Silrcc the BDW GC is a very compact self- 
cont,ained library, its executable size overhead is 
a const,ant one, about 45 Kb. The SmallEiffel GC, 
on the contrary, generates additional, customized 
GC code for each live type. Obviously, this in- 
trinsic drawback of the method may be a concern 
for programs featuring a very large number of live 
types. On the SmallEiffel compiler itself, which 
features as many as 270 live types, the extra size 
incurred by t,hc GC code is about 440 Kb (or 45%). 
However, one should be aware that the overhead 
measured on various kinds of programs, represems 
only about 1.5 l<b per live type, which seems rea- 
sonable. 

5.3 Non-leaky programs 

Fourteen of the Othello programs were non-leaky 
ones, featuring rather careful object instantiations 
and reuse of objects whenever possible. ‘I‘his is 
consistent with the fact they were designed at a 
time when SrnallEiffel did not provide its own CC 
mechanism Figrue 5 shows the results obtained 
on tlrcse programs. 

5.3.1 Memory footprint 

As could be expected, for all these non-leaky 
programs, the maximum memory foot,print was 
roughly the same without GC and with either the 
Bl)W or thr SmallEifFcl GC. One of the 14 Othello 
produced a memory footprint around 2 Mb, all the 
ot,hers using about, 1 Mb only. 

In all cases, rmlning the Othello program with- 
out any G(: lead t.0 the smallest memory footprinl,. 
Indectl, with norm-leaky programs, a GC can collect, 
very few ~~ if any ~~ garbage objects, whereas it 
does take space, since it requires extra code and 
d&a striictinrs. 

On 6 of the Othello programs, SmallEiffel in- 
curs it smaller memory footprint than BDW, by 
1 t,o 7%, whrrcas BDW has an advantage of I to 
9 % 011 7 t)rograrns. Both generally need about. 
25% lrlorf~ memory t,han the -no-gc version, which 

represents roughly 300 Kb on our benchmark pro- 
grams. The performances achieved by the BDW 
and SmallEiffel garbage collectors are thus very 
similar, which indicates the validity of onr ap- 
proach. 

5.3.2 Execution time 

On these non-leaky programs, execution times 
without any GC or with either GC are generally 
alike. 

Overall, the -no-gc version is the fastest, since 
it outperforms bot,h GC versions in 6 out of 14 
cases, with an advantage of up to 8% over the 
faster of the two GC versions. The BDW GC ver- 
sion is the quickest in 1 only case, whereas Small- 
Eiffel scores first in 4 cases. 

These results confirm t,hat, for non-leaky pro- 
grams, it is better not to use a GC at all, and that 
using either SmallEiffel or BDW generally result,s 
iu a speed decrease, although a limited one. 

When only the BDW and SmallEiffel are con- 
sidered, the former is faster in 7 cases, by up t,o 
20% (program #9). On the other hand, SmallEif- 
fel offers a speed advantage of up to 22% (program 
#14) in 5 cases. ‘f’his shows that the overhead in- 
curred by the GC on non-leaky programs tends to 
be lower in BDW than in SmallEiffel. This can 
be explained by the fact that the SmallEiffel CC 
is still in its early days, and offers room for opt- 
mization. 

5.4 Leaky programs 

We also benchmarked 8 different leaky Othello pro- 
grams, among which sloppy memory allocations 
and deallocations cause very import,ant memory 
leaks - 37 to 194 Mb ~- in 6 cases. We think 
these programs constitute a benchmark which is 
more representative of typical memory usage when 
the developer relies on an automatic GC. Figure 6 
shows the results obtained. 

5.4.1 Memory footprint 

The usefulness of a GC clearly appears on t,hese 
leaky programs. Although the -no-gc versions 
take bet,wcen 2 and 194 Mb of memory, all pro- 
grams using either the BDW or the SmallEiffel GC 
feature a very reasonable memory footprint (be- 
tween 1 and 2 Mb), similar to t,hat of non-leaky 
programs. This demonstrates t,he effectiveness of 
both collectors. 

When only BDW and SmallEiffel are consid- 
ered, their performance in t,erms of memory foot- 
print are alike. However, BDW generally has an 
advant,age of 136 to 552 Kb, which on these pro- 
grams featuring small optimal memory footprints 
translates to 10 to 31%. 

5.4.2 Execut,ion time 

Overall (5 cases out of 8), both the BDW and 
SmallEiffel GC are faster than the -no-gc version. 
‘I’his is because less memory has to be allocated 
thanks to the recycling of dead objects by the sys- 
tcm. The only case where t,he -no-gc version is 
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Figure 5: ISxecut,ion time and memory footprint comparisons of non-leaky programs under UNIX 

111~. I’aslest ~~ program #I9 ~ also confirms t,he 
prrvious stat.ement,. Indeed, this program is by far 
the one where memory leakage is the smallest, less 
than I Mb, which thus limits t,he gain a GC can 
reap. On most, programs, t,his gain is about 10% 
for both GC versions, and cvcn reaches about, 30% 
on the “leakicsi.” benchmark (team #lC, with a 193 
M t) leak). 

‘l’hus, on lraky programs the SmallEiffel GC 
performs ralhcr well when compared to the BDW 
CC. The latter out,performs SmallEiffel in 3 cases, 
wit,11 an execut,ion time advantage of up to 17% 
(011 program -f/22), whereas SmallEiffel is faster in 
-5 casts, by up to 11% (program #16). 

behavior of the SmallEiffel CC (SE). The number 
of GC calls with BDW is given as a reminder of 
the program memory activity. As can be seen, the 
SmallEiffel GC is called 3 to 7 times less often than 
BDW. The former, being non-incremental, is thus 
likely to cause longer GC pauses in the program. 
The average time per GC call (mark-and-sweep cy- 
cle), which ranges from 0.9 to 3.3 millisecond, ap- 
pears reasonable for most programs but hard-real 
lime ones. 

Overall, the total GC time (including alloca- 
t,ions and mark-and-sweep cycles but excluding GC 
structures initializations3) takes from as low as 

Table I allows us to show more precisely the 3These initializations, as well as decreased locality 
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Team 11 #15 1 #16 1 #17 1 #lS 1 #19 1 #20 1 #21 1 #22 1 

Table 1: Behavior of the SmallEiffel GC on leaky programs under UNIX 

0. tYo and as much as 20.6% of the program ex- 
ecution time. The important difference between 
these extremes is easily explained by the behavior 
of the underlying programs, as shown by figure 6. 
Indeed, program #16 is an extremely leaky one 
since it produces about 193 Mb of dead objects, 
well above 150 times the maximum size of the data 
it needs at one time, which requires a very heavy 
work from the GC (20.6%). On the contrary, pro- 
gram #19 produces about 1 Mb of dead objects, 
which does not require much work from the GC 
(0.1%). This is confirmed by similar results ob- 
tained on the non-leaky programs. 

On all these programs, the SmallEiffel GC 
takes on average 4.6% of the program execution 
time, which is a correct score [JL,96]. 

Consequently, although it does not have the 
maturity of the BDW GC, the SmallEiffel GC ap- 
pears quite promising and compares well with this 
much renowned and very efficient automatic mem- 
ory management system. 

6 Related work 

The research carried out by Detlefs and al. 
[DDZ94] tends to prove that conservative garbage 

pn’pertles, lnay also be part of the perCcxmance difference 
between the -no-g= and the SmallEiffel GC versions. 

collector performances compare quite well with ex- 
plicit memory deallocation. 

But although classic conservative collectors 
perform well, a little extra information about spe- 
cific memory patterns is likely to significantly im- 
prove the results. This information may be pro- 
vided by different sources: profiling, developer, 
type analysis, 

Grunwald and al. describe in [GZ93] their 
CUSTOMALLOC system. After the profiling of a 
program, CUSTOMALLOC produces a customized 
memory allocator (malloc) and a customized mem- 
ory deallocator (free) which are able to handle 
more efficiently the most frequent object sizes. 
Their work indeed shows on a variety of commonly 
used programs that a few classes of object sizes -- 
generally small sizes - represent almost all the 
allocated memory. Unlike CLJSTOMALLOC, Small- 
Eiffel generates not only customized memory allo- 
cator and deallocator, but a complete, customized 
GC system. Furthermore, since in our system 
only static analysis is used to provide the infor- 
mation needed for customization, no pre-run is re- 
quired. It seems nonetheless possible that Small- 
Eiffel might benefit from using profiling informa- 
tion, especially to predict resizable object, sizes and 
the most common classes of fixed-size objects. 

In [BS93], Boehm and Shao studied the per- 

163 



formance of an enhanced version of BDWGC in- 
volving type inference during the collection phases, 
thanks to a user-typed malloc. At runtime, they 
sample the first several objects allocated for each 
type and infer a type map. This extra information 
allows a more efficient marking of the memory and 
speeds up garbage collection in some cases. 

Bartlett’s Mostly Copying collector [Bar881 is 
a hybrid conservative and copying collector. It as- 
sumes no knowledge of register or stack area lay- 
outs, but it does assume that all pointers in heap- 
allocated data can be found accurately thanks to 
the registration of all internal roots [BarSO] by the 
developer. 

Other experiments around garbage collector 
customization were carried out in [AF94] and 
[AFI95]. Their Customizable Memory Manage- 
ment (CMM) allows users to customize object 
management by specifying at each object alloca- 
tion which policy to adopt for its storage, and by 
providing the optimal traversal routines for each 
type. The major interest of the latter kind of man- 
ual customization is that it allows type-accurate 
memory management. 

In Edelson’s garbage collector for C++ [Ede92, 
Ede93], the marking functions are automatically 
produced by a preprocessor which generates a call 
to a marking function for each pointer in the 
class. This syntactical substitution reduces inter- 
nal pointer misidentifications and speeds up the 
marking process. 

In [BL71] Branquart and Lewi describe a 
method relying on compile-time type information 
to automatically produce tables mapping stack lo- 
cations to the appropriate garbage collection rou- 
tines, in an Algol-68 implementation. 

Diwan and al. [DMH92], as well as Age- 
sen and Detlefs [AD97], describe related and im- 
proved kinds of compiler-supported garbage collec- 
tion which allow accurate (or exact) collection. To 
be able to find pointers in the stack and in regis- 
ters at run-time, their compilers statically generate 
tables which encode the location of these point- 
ers at any point where a collection might occur. 
At garbage collection time, the return addresses of 
stack frames give access to these tables. 

Goldberg’s work [Go1911 also studies an effi- 
cient search of roots in the execution stack thanks 
to specific routines. Althought related to Bran- 
quart and Lewi’s method, Goldberg’s features an 
important difference, since it avoids tables to map 
the stack. Specific routines can be generated for 
each function in order to trace local pointer vari- 
ables in each activation record (frame). By follow- 
ing the return address pointers stored in the stack, 
it is possible to determine all the frames stacked at 
a given time, and call for each of the corresponding 
function the appropriate marking routine. 

An important difference between SmallEiffel 
and most previously described research is that 
SmallEiffel automatically generates typed, cus- 
tomized memory management functions. Thanks 
to the static type inference performed by SmallEif- 
fel, no additional information, provided either by 
the developer or by pre-executions, is required. 

7 Conclusion 

In this paper, we described an implementation 
in an Eiffel compiler of a compiler-supported GC 
customization technique for a classical mark and 
sweep algorithm Unlike many previous works, 
this customization is completely and automati- 
cally performed by the compiler, without any in- 
tervention from the developer. Most of this tech- 
nique is not specific to our system and is likely 
to be applicable to other class-based languages 
and other garbage collection algorithms, even dis- 
tributed ones. 

The set of benchmarks we described in section 
5, featuring various programming styles, allowed 
us to evaluate the performance of the GC on dif- 
ferent memory patterns. The results obtained on 
these various execution patterns clearly show the 
validity of the approach both in terms of memory 
footprint and execution time. 

Although the SmallEiffel GC performs well, it 
could benefit from the addition of some features. 
Incrementality, for example, may be an important 
asset in some situations and is thus worth explor- 
ing. 

Our future work is likely to focus on improv- 
ing the performance of our GC. The addition of 
flow analysis or profile-guided analysis to SmallEif- 
fel would provide the GC with more information 
on memory requirements, such as the most fre- 
quent size classes, thus helping to better tune the 
GC, and would allow an increased degree of cus- 
tomization of the GC routines. Deferred sweeping 
and coalescing of memory chunks is also likely to 
improve the GC behavior, by delaying operations 
which are not immediately necessary. 
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