
O b j e c t - O r i e n t e d C o n c u r r e n t P r o g r a m m i n g in A B C L / 1

Akinori Yonemwa Jean.Pierre Brlot and £tsuya Shibayama

Department of Information Science
Tokyo Insdmte of Technology

Ookaymna, Meguro-ku, Tokyo 152
(03)-726-1111 ext. 3209

Abstract

An object-oriented computation model is presented which is
designed for modelling and describing a wide variety of con-
current system. In this model, three types of message passing
are incorporated. An overview of a programming language
called ABCL/I, whose semantics faithfully reflects this compu-
tation model, is also presented. Using ABCL/I, a simple
scheme of distributed problem solving is illustrated. Further-
more, we discuss the reply destination mechanism and its
applications. A distributed "same fringe" algorithm is
presented as an illuslration of both the reply destination
mechanism and the future type message passing which is one
of the three message passing types in our computation model.

1. Introduction

Parallelism is ubiquitous in our problem domains. The
behavior of computer systems, human information processing
systems, corporative organizations, scientific societies, etc. is
the result of highly concurrent (independent, cooperative, or
contentious) activities of their components. We like to model
such systems, and design AI and software systems by using
various metaphors found in such systems [Smith 1985] [Spe-
cial Issue 1981] [Yonezawa and Tokoro 1986] [Brodie et al.
1984]. Our approach is to represent the components of such a
system as a collection ofobjecvs [Stefik and Bobrow 1986] and
their interactions as concurren: message passing among such
objects. The problem domains to which we apply our frame-
work include distributed problem solving and planning in AI,
modelling human cognitive processes, designing real-time sys-
tems and operating systems, and designing and constructing
office information systems ['rschritzis 1985].

This paper first presents an object-based model for paral-
lel computation and an overview of a programming language,
called ABCL/I [Yonezawactal. 1986] [Shibayama and
Yonezawa 1986a], which is based on the computation model.

Permiss/on to copy without fee all or part of this material is snmted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyrisht notice and the title of the publication and its date appear,
and notice is given that copying is by permission of'the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee snd/
or specific permission.

© 1986 ACM 0-89791-204-7/86]~)00.0258 75¢

Then, schemes of distributed problem solving are illustrated
using ABCL/I. Though our computation model has evolved
from the Actor model [Hewitt 77] [Hewitt and Baker 1977],
the notion of objects in our model is different from that of
actors.

2. Objects
Each object in our computation model has its own (auto-
nomous) processing power and it m y have its local persistent
memory, the contents of which mpcesent its state. An object is
always in one of three modes: dormant, active, or waiting. An
object is initially dormant. It becomes active when it receives
a message that satisfies one of the specified patterm and con-
straints. Each object has a description called script (or a set of
methods) which specifies its behavior: what messages it
accepts and what actions it perfomm when it receives such
messages.

When an active object completes the sequence of actions
that are performed in response to an accepted message, if no
subsequent messages have arrived, it becomes dormant again.
An object in the active mode sometimes needs to stop its
current activity in order to wait for a message with specified
patm'ns to arrive. In such a case, an active object changes into
the waiting mode. An object in the waiting mode becomes
active again when it receives a n~quired message. For instance,
suppose a buffer object a,:__~_ m two kinds of messages: a [:get]
message from a consumer object requesting the delivery of one
of the stored products, and a [:put <product>] message from a
producer object requesting that a lXOduct (information) be
stored in the buffer. When the buffer object receives a [:get]
message from a consumer object and finds that its storage,
namely the buffer, is empty, it must wait for a [:put <product>]
message to arrive. In such a case the buffer object in the active
mode changes into the waiting mode.

An active object can perform meal symbolic and numeri-
cal computations, make duchdom, tend messages to objects
(including itself), create new objects and update the contents of
its local memory. An object with local memos 7 cannot be
activated by more than one message at the same time. Thus,
the activation of such an object takes place one at a fim~

As mentioned above, each dormant object has • fixed set
of patterns and constraints for messages that it can accept and
by which it can be activated. To define the behavior of an
object, we must specify what computations or actions the
object performs for each message pattern and constraint. To

~8 OOPSI,.A '86 Prooe~lin~ Seplember 1966

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28697.28722&domain=pdf&date_stamp=1986-06-01

write a definition of an object in our language ABCL/I, we use
the notation in Figure 1. Figure 2 shows a skeletal definition of
an object.

[object objeeto~Ir~
(state representation.o~.local.mtmory)
(~ p t
(-> me.tinge-pattern whe~ co&Ttra/~

...act/on...)

[object Buffet
(state ...)
(script
(-> [.'pet...] ...)

(-> [:get] ...))l

(.> ~mssa~-pauern where com~ra/n:
. . . ~ , , , -))]

Figure 1. Object Definition Figure 2. Buffer

(state ...) declares the variables which represent the local per-
sistent memory (we call such variables state variables) and
specifies their initialization, object.nmne and the construct
"where constralnt' are optional. If a message sent to an object
defined in the notation above satisfies more than one pattern-
constraint pair, the first pair (from the top of the script) is
chosen and the corresponding sequence of actions is per-
loaned.

An object changes into the waiting mode when it per-
forms a special action. In A B (~ I , this action (Le., the transi-
tion of an object from the active mode to the waiting mode) is
expressed by a select-construct. A select construct also
specifies the patterns and constraints of messages that are able
to reactivate the objecL We call this a selective message
receipt.

(select
(.> ~,~uage-patum where comma~u ... aczloa ...)

(-> w..ua&#.pauem whae cotturat,u ... action ...))

Figme 3. Select Commgt

As an example of the use of this construct, we give, in Figure
4, a skeleton of the definition of an object which behaves as a
buffer of a bounded size.

[object Buffet
(state declate.dte.swmg~or-~er)

(=> [:put sProd'.-_u2~-] ; sPmduct b a pattern vsriable.
(if z~-swase~-ftd/
then (select ; then waits for • [:set] me~gge.

(->[:tet]
remve.a.prod~t.J~m.d,e.smrage.~md-retura-i:)))

s~e.aProdect)

(-> [:getl
(if t~-storas*-/.t~mpry

then Oelect ; then waitt for • [:put ...] message.
(-> [:pet sProdect]
send.aProduct.to.zbt.objsct-wldch-sent-l : &et Y-messa&G))

else remow.a-prod~t-~'om-d~-stora&#-and-rczt~,,-lz)))l

Pigtme 4. An Eumple of the Use of Select Comemcts

Suppose a [:put <product>] arrives at the object Buffer. When
the storage in the object Buffer is found to be full, Buffer waits
for a [:get] message to arrive. When a [:get] message arrives,
Buffer accepts it and returns one of the stored products. If a
[:put] message arrives in th~ waiting mode, it will not be
accepted (and put into the message queue for Buffer, which

will be explained in §3). Then, Buffer continues to wait for a
[:get] message to arrive. A more precise explanation will be
given in the next section.

As the notation for a select construct suggests, more than
one message pattern (and constraint) can be specified, but the
ABCL/I program for the buffer example in Figure 4 contains
only one message pattern for each select construct.

3. Message Passing

An object can send a message to any object as long as it knows
the name of the target object. The "knows" relation is
dynam/c: if the name of an object T comes to be known to an
object 0 and as long as 0 remembers the name of T, 0 can
send a message to T. I f an object does not know or forgets the
name of a target object, it cannot at least directly send a mes-
sage to the target object. Thus message passing takes place in
a point-to-point (object-to-object) fashion. No message can be
broadcast.

All the message transmissions in our computation model
ere asynchronous in the sense that an object can send a mes-
sage whenever it likes, irrespective of the current state or mode
of the target object. Though message passing in a system of
objects may rake place concurrently, we assume message
arrivals at an object be linearly ordered. No two messages can
arrive at the same object simultaneously. Furthermore we
make the following (standard) assumption on message arrival:

[Assumption for Preservation of Transmission Ordering]

When two messages are sent to an object T by the same
object O, the temporal ordering of the two message
transmissions (according to O's clock) must be preserved
in the temporal ordering of the two message arrivals
(according to T's clock).

This assumption was not made in the Actor model of computa-
tion. Without this, however, it is difficult to model even simple
things as objects. For example, a computer terminal or display-
ing device is difficult to model as an object without this
assumption because the order of text lines which are sent by a
terminal handling program (in an operating system) must be
preserved when they are received. Furthermore, descriptions
of distributed algorithms would become very complicated
without this assumption.

In modelling various types of interactions and information
exchange which take place among physical or conceptual com-
ponents that comprise parallel or real-time systems, it is often
necessary to have two distinct modes of message passing: ordi-
nary and express. Correspondingly, for each object 1", we
assume two message queues: one for massages sent to T in the
ordinary mode and the other for messages sent in the express
mode. Messages are enqueued in arrival order.

[Ordinary Mode Message Passing]

Suppose a message M sent in the ordinary mode mrives at
an object T when the message queue associated with T is
empty. If T is in the dormant mode, M is checked as to
whether or not it is acceptable according to T's script.
When M is acceptable, T becomes active and starts per-
forming the actions specified for it When M is not accept-
able, it is discarded. If T is in the active mode, M is put at
the end of the ordinary message queue associated with T.

September 1966 OOPSLA '86 Proceedings 259

If T is in the waiting mode, M is checked to see if it
satisfies one of the pattern-and-constraint pairs that T
accepts in this waiting mode. When M is acceptable, T is
reactivated and starts performing the specified actions.
When M is not acceptable, it is put at the end of the mes-
sage queue.

In general, upon the completion of the specified actions of an
object, if the ordinary message queue associated with the
object is empty, the object becomes dormant. If the queue is
not empty, then the first message in the queue is removed and
checked as to whether or not it is acceptable to the object
according to its script. When it is acceptable, the object stays
in the active mode and starts performing the actions specified
for the message. If it is not acceptable, the message is dis-
carded and some appropriate default action is taken (for
instance, the message is simply discarded, or a default failure
message is sent to the sender of the message). Then if the
queue is not empty, the new first message in the queue is
removed and checked. This process is repeated until the queue
becomes empty. When an object changes into the waiting
mode, if the ordinary message queue is not empty, then it is
searched from its head and the first message that matches one
of the required pattern-and-constraint pairs is removed from
the queue. Then the removed message reactivates the object.
If no such message is found or the queue itself is empty, the
object stays in the waiting mode and keeps waiting for such a
message to an'lye. Note that the waiting mode does not imply
"busy wait".

[F.zpress Mode Message Passing]

Suppose a message M sent in the express mode arrives at
an object T. If T has been previously activated by a mes-
sage which was also sent to T in the express mode, M is put
at the end of the express message queue associated with T.
Otherwise, M is checked to see if it satisfies one of the
pattern-and-constraint pairs that T accepts. If M is accept-
able, T starts performing the actions specified for M even if
T has been previously activated by a message sent to T in
the ordinary mode. The actions specified for the previous
message are suspended until the actions specified for M are
completed. If so specified, the suspended actions are
aborted. But, in default, they are resumed.

An object cannot accept an ordinary mode message as long as
it stays in the active mode. Thus, without the express mode
message passing, no request would be responded to by an
object in the active mode. For example, consider an object
which models a problem solver working had to solve a given
problem (cf. §7). If the given problem is too hard and very lit-
tle progress can be made, we would have no means to stop him
or make him give up. Thus without the express mode, we can-
not monitor the state of an object (process) which is confine-
ously, in operation and also cannot change the course of its
operation. More discussion about the express mode will be
found in §5.3, §I0.2, and] I0.3.

As was discussed above, objects are autonomous informa-
t/on processing agents and interact with other objects only
through message passing. In modelling interactions among
such autonomous objects, the convention of message passing
should incorporate a natura/model of synchronization among
interacting objects. In our computation model, we distinguish

three types of message passing: past, now, and furore. In what
follows, we discuss each of them in turn. The following dis-
cussions are valid, irrespective of whether messages are sent in
the ordinary or express mode.

[Past Type Message Passing] (send and no wait)
Suppose an object O has been activated and it sends a mes-
sage M to an object T. Then O does not walt for M to be
received by T. It just continues its computation after the
transmission of M (if the transmission of M is not the last
action of the current activity of O).

We call this type of message passing past type because sending
a message finishes before it causes the intented effects to the
message receiving object. Let us denote a past type message
passing in the ordinary and the express modes by:

[T<-M] and t'T<<-M],

respectively. The past type corresponds to a situation where
one requests or commands someone to do some task and simul-
taneously he proceeds his own task without waiting for the
requested task to be completed. This type of message passing
substantially increases the concurrency of activities within a
system.

[Now Type Message Passing] (send and was0

When an object O sends a message M to an object 1", O
waits for not only M to be received by T, but also waits for
T to send some information back to O.

This is similar to ordinary function/procedure calls, but it
diffm in that T's activation does not have to end with sending
some information back to O. T may continue its computation
after sending back some information to O. A now type mes-
sage passing in the ordinary and express modes are denoted by:

[T o - M] and t'r <<,.,. M],

respectively. Returning information from T to O may serve as
an acknowledgement of receiving the message (or reques0 as
well as reporting the result of a requested task. Thus the mes-
sage sending object O is able to know for certain that his mas-
sage was received by the object T though he may waste time
waiting. The returned information (certain values or dgnals) is
denoted by the same notation as that of a now type message
passing. That is, the above notation denotes not merely an
action of sending M to T by a now type message passing, but
also denotes the information returned by T. This convention is
useful in expressing the assignment of the returned value to a
variable. For example, Ix := [T <-= M]].

Now type message passing provides a convenient means
to synchronize concurrent activities performed by independent
objects when it is used together with the parallel construct.
This construct will not be discussed in this paper. It should be
noted that recursive now type message passing causes a local
deadlock.

[Future Type Message Passing] (reply to me later)

Suppose an object O sends a message M to an object T
expecting a certain requested result to be returned from T.
But O does not need the result immediately. In this situa-
tion, after the transmission of M, O does not have to wait
for T to return the result. It continues its computation
immediately. Later on when O needs that result, it checks
its special priva:e object called future object that was

260 OOPSLA '86 Proceedings September 1986

specified at the time of the transmission of M. If the result
has been stored in the future object, it can be used.

Of course, O can check whether or not the result is available
before the result is actually used. A future type message pass-
ing in the ordinary and express modes are denoted by:

[T<-MSx] and [T<<-M$ x],

respectively, where x stands for a special variable called furore
variable which binds a future object. We assume that a future
object behaves like a queue. The contents of the queue can be
checked or removed solely by the object O which performed
the future type message passing. Using a special expression
"(ready? x)", O can check to see if the queue is empty. O could
access to the first element of the queue with a special expres-
sion "(next-value x)", or to all the elements with "(all-values
x)". If the queue is empty in such cases, O has to wait. (Its
precise behavior will be given in §6.2.).

A system's concurrency is increased by the use of future
type message passing. If the now type is used instead of the
future type, O has to waste lime waiting for the currently
unnecessary result to be produced. Message passing of a
somewhat similar vein has been adopted in previous object-
oriented programming languages. Actl, an actor-based
language developed by H. Lieberman [1981] has a language
feature called "future," but it is different from ours. The three
types of message passing are illustrated in Figure 5.

PAST NOW F ~ R £

uad~r ~ i w r :eu~r r~,iwr

• ; f d , ; , ? "

T
_ _ . , ,

• rr, dcr rGe#iwr

l acctpt
raza~; I acc,pr

Figure 5. The Three Message Passing Types

Though our computation model for object-oriented con-
current programming is a descendant of the Actor computation
model which has been proposed and studied by C. Hcwitt and
his group at MIT [I-Iewitt 1977] [Hcwitt and Baker 1977]
[Yonczawa and Hcwitt 1979] [Licberman 1981], it differs from
the Actor computation model in many respects. Por example,
in our computation model, an object in the waiting mode can
accept a message which is not at the head of the message
queue, whereas, in the actor computation model, a (serialized)
actor can only accept a message that is placed at the head of the
message queue. Furthermore, now type and future type mes-
sage passing are not allowed in the Actor computation model.
Therefore, an actor A which sends a message to a target actor T
and expects a response from T must terminate its current
activity and receive the response as just one of any in~ming
messages. To discriminate T's response from other incoming

messages arriving at A, some provision must be made before
the message is sent to T. Also the necessity of the termination
of A's current activity to receive T's response causes unnatural
breaking down of A's task into small pieces.

4. Messages

Wc will consider what information a message may contain. A
message is composed of a singleton or a sequence of ta&s,
parameters, and/or names of objects. Tags are used to distin-
guish message patterns. (In the buffer example mentioned in
Figure 4, :get and :put are tags, and "aProduct" denotes a
parameter in the [:put ...] message.) Object names contained in
a message can be used for various purposes. For example,
when an object O sends a message M to an object T requesting
T to do some task, and O wishes T to send the result of the
requested task to a specified object CI, O can include the name
of C1 in the message M. Objects used in this way correspond
to "continuation" (or customer) in the Actor computation
model. Also, when O requests T to do some task in coopera-
tion with a specified object C2, O must let T know the name of
C2 by including it in the message M.

Besides the information contained in a message itself, we
assume two other kinds of information can be mmsmitted in
message passing. One is the sender name and the other is the
reply destinmion. When a message sent from an object O is
received by an object T, it is assumed that the name of the
sender object O becomes known to the receiver object T. (We
denote the sender name by "&sender" in ABCIJI.) This
assumption considerably strengthens the expressive power of
the model and it is easy to realize in the implcmentution of our
computation model. A receiver object can decide whether it
accepts or rejects an incoming message on the basis of who (or
what object) sent the message.

When an object T receives a message sent in a now or
future type message passing, T is required to reply to the mes-
sage or return the result of the requested task (or just an ack-
nowledgemont). Since the destination to which the result
should be returned is known at the time of the message
transmission, we assume that such information about the desti-
nation is available to the receiver object T (and this informa-
tion can be passed around among objects). We call such infor-
mation the reply destination. To specify the object to which
the result should be returned, the reply destimztion mechanism
provides a more uniform way than simply including the name
of the object in the request message. This mechanism is com-
patible with the three types of message passing, and enables us
to use both explicit reply destinations in case of past type mes-
sage as we]l as implicit ones in case of now or future type mes-
sages (cf. ~6 and §9). Furthermore, the availability, of the reply
destination allows us to specify continuations and implement
various delegation mechanisms [Lieberman 1986] uniformly.
This will be discussed in the 18.

The fact that sender names and reply destinations can be
known to message receiving objects not only makes the com-
putation model powerful, but also makes it possible that the
three different types of message passing: past, now, and future,
be reduced to just one type of message passing, namely the
past type message passing. In fact, a now type message pass-
ing in an object T can be expressed in terms of past type mes-
sage passing together with the transition into the waiting mode

Sef3tember 1986 OOPSLA '88 Proceedings 261

in the execution of the script of the object T. An~ :t future type
message passing can be expressed in terms of past and now
type raessage passing, which are in turn reduced to past type
message passing. These reduetlons can be actually demon-
strated, but to do so, wa need a formal language. Since the
prolFanuning language ABCL/I to be introd,_,__~'~_ in the subso-
qmmt sections can also serve this ~ we will give an
actual demonstration after the explanatien of ABCL/I (cf.]6).
The reply destination mechanism plays an important role in the
demonstration.

$. An Overview of the Language ABCL/I

$.1. Design PHnciples

The prima~ design principles ofonr language, ABCL/I, are:

[1] [Clear Semantics of Message Passing] The semantic8 of
message passing among objects should be transpat~t and
faithful to the underlying computation model.

[2] Wrucer~ty] Intentionally, we do not pursue the approach
in which every single concept in mmputation should be
represented purely in t cms of objects and message pass-
ing. In d,'tcribing the object's behavior, basic values,
data s ~ (such as numbers, 8trinss, lisa), and invo-
cations of ope~ions manipulating them may be assumed
to exist as they me, not necessarily as objects or message
passing. Control structures (such as g-then-ebe and loop-
ins) used in the deseript/on of the behavior of an object
are not nec~sarily based upon messaf~ passing (though
t h ~ can of course be interpreted in ~nns of message
passing).

Thus in ABCL/I, inter-object message passing is entirely
based on the underlying object-oriented computation model,
but the representation of the behavior (script) of an object may
contain conventional appl~..ad~ and imperative features,
which we believe makes ABCL/I programs easier to read and
write from the viewpoint of c o m ~ o ~ ~ Since
we are ~ying to gnwp and exploit a complicated phenomenon,
namely parallelism, • md~r consem~ve appmuch is taken in
___de~-ri_ "bing the intenutl behavior of individual objects. Vadons
applicative and hnperative features in the current version of
ABCL/I axe expressed in ternm of Lisp-like parenthesized
prefix notations, but that is not essential at all; such features
may be written in other notations employed in various
languages such as C or ~ .

$.2. Creating Objects and Returning Mmsal~
In our computatinn model, objects can be dynamically created.
Usually, when an object A needs a new object B, A sends, in a
now or furore type message passing, some irdtial information
to a certain object which create; B. Then B is returned u the
value (or result) of the now/future type message passing. This
way of creating an object is often described in ABCL/I u fol-
lows:

(.ar~
(,o/wem-for-~m~-~fo ttob~t _ l))l

where [object] is the definition of an object newly created
by the object CrenteSomething. The CreateAlarmClock object
defined in Figure 6 creates and returns an alarm clock object
when it rece/ves a [:new ...1 message containing the person
(object) to wake. The time to ring is set by sending a [:wake-
me-at ...] message to the alarm clock object. It is supposed to
keep receiving [:tick ,,.] messages from a clock object (called
the Ticker and which will be de£med in the next subsection),
When the time contained in a [:tick ,..] message is equal m the

to ring, the alarm clock object sends a [:~me-is-up] mes-
sage to the person to wake in the express mode.

[obJem CremAZarn~ock
(,cdW
(.> [:new Pmon.m-wake]

I[object
(ram [time-to-tin8 :- nil])
(sc~pc
(.> [:tick Time]
(it (- Time eme-m-r/ng)

then [Fmon.to-wake <<- [:tlme-ls-up]]))

(-> [:wake.me.at T]
[time.m-tins :- 13))]))]

Fisure 6, Definition of CreaeeAlarmCIock Object

Note that the "Person-to-wake" variable in the script of the
alarm clock object to be created is a free variable (it is not a
state variable nor a message parameter). It will be "closured"
when creating this object, which implies that the scope rule of
ABCL/1 is lexical. The notation using ~ is often used in
ABCL/I to express an event of returning or sending back a
value in response to a request which is sent in a now or future

message passing. In the following fragment of a script:

(.>pmt~'n-for-requcs; ... le,xpre..~ ...),

where is the value of expression returned? In fact, this notation
is an abbreviated form of a more explicit description which
uses the reply destination. An equivalent and more explicit
form is:
(-> pe~tem~or.reqv, e;t @ d,e;F,~tiom .. [~bmdom <. ~ a n ~] ..)

where destination is a pattern variable which is bound to the
reply destination for a message that matches pattern-for
reque.n. When a message is sent in a past type message pass-
ing, if we need to specify the reply destination, it can be
expressed as:

['r ,.- v.qw;r @ n f ~ I.
Note that rep/y-d~t/nat/on denotes an object, In fl~ case of
now or future type message passing, pattern variables for reply
destination are matched with certain objects that the semantics
of now/future type message passing defines. (See ~6.) Thus the
programmer is not allowed to explicitly specify reply destina-
tions in now or future type message passing. So the following
exlxenions [target < - - message @ reply.desdmotion], and

, [tarstt <= me~a&e @ reply.destination $ x] are WeguL
There is another way to create an object. That is, an

object can be obtained by copying some object. We can use
the copy lnmntiation model [Briot 1984] after defining e pro-
totype [L i e ~ 1986], rather than defining a geuemtor
object (analog to a class). Each object can invoke a wimitive
function "self-copy" whose retum/ng value is a copy of the
object itself (Me), which will be exemplified in §9.

OOPSLA '66 P r o ~ S ~ 1986

$.3. Ordinary Mode and Express Mode in Message Passing
The difference between the ordinary mode and express mode in
message passing was explained in §3. The notational distinc-
tion between the two modes in message transmission is made
by the numbe~ of "<", one for the ordinary mode and two for
the express mode (namely <= and <==, vs. <<= and <<==).
The same distinction should be made in message reception
because a message sent in the ordinary mode should not be
interpreted as one sent in the express mode. To make the dis-
tinction explicit, we use the following notation for expressing
the reception of a message sent in the express mode.

(->> m, naft,.pattem where co~m~n: ... acdon ..,).

The reception of a message sent in the ordinary mode is
expressed by the following notation as explained above:

(-> menase.pattern where constraint ... action ...)

This notational distinction protects an object from unwanted
express mode messages because the object accepts only mes-
sages that satisfy the patterns and constraints declared after the
notation "(=>>". Express mode messages which do not satisfy
such patterns and constraints are simply discarded.

Suppose a message sent in the express mode arrives at an
object which has been currently activated by an ordinary mode
message. If the script of the object contains the pettem and
constraint that the message satisfies, the current actions are
temporarily terminated (or suspended) and the actions
requested by the express mode message are performed. If the
object is accessing its local persistent memory when the
express mode message arrives, the current actions will not be
terminated until the current access to its local memory is com-
pleted. Also, if the object is performing the actions whose
script is enclosed by "(atomic" and ")" in the following
manner:

(atomic ... acllon ...),

they will not be terminated (or suspended) until they are com-
pleted. And if the actions specified by the express mode mes-
sage are completed and no express mode messages have
arrived yet at that time, the temporarily terminated actions are
resumed by defaulL But, if the actions specified by the express
mode message contains the "non-resume" command, denoted
by:

(non.resume).

the temporarily terminated actions are aborted and wi l l not be
performed any more.

Note that, in the above explanation, the actions tem-
porarily terminated by an express mode message are the ones
that are activated (specified) by an ordinary mode message.
When an object is currently performing the actions specified by
an express mode message, no message (even in the express
mode) can terminate (or suspend) the cun~cnt actions.

To illustrate the use of express mode, we give the
definition of the behavior of a clock object Ticker which sends
[:tick ...] messages to all the alarm clocks he knows about (the
value of its state variable "alarm-clocks-list"). The definition
of the Ticker object is given in Figure 7. The two state vari-
ables of Ticker, "time" and "alarm-clocks-list", respectively
conta/n the current time and a list of alarm clocks to be
"ticked". When Ticker receives a [:start] message, it starts
ticking and updating the contents of "time".

[alarm-clocks-list <= [:tick...]]
means sending [:tick ,..] messages to each member of "alarm-
clocks-list" simultaneously. We call this way of sending mes-
sages muhicast. When Ticker receives a [:stop] message sent in
the express mode, it stops ticking by the effect of (non-
resume). This message must be sent in the express mode
because Ticker always stays in the active mode to keep ticking
(in the while loop). An [:add ...] message appends new alarm
clock object to the "alarm-clocks-list" in Ticker. This message
also should be sent in the express mode for the same reason.

[object Ticker
(state [time :- 0] [alarm-clocks.list :- nil])
(sc~pt
(.> [:start)
(while t do

(if alarm-clocks-list
then (alttm-docl~-list <= (:tick t inll))

(time :- (t+ dine))))

(->> (:add AlmaCIock]
[lllnn.clocla.lbt :- (corn AlarmCkck alarm-clocla-lil0])

(->> (:stop] (non.rmume))))
Figure 7. De6nidon of Ticker Object

The definition of the C~eateAlannObject (which appeared in
Pigure 6) should be slightly changed in order for a newly
created alarm clock object to be known by Ticker. The descrip-
tion of an alarm clock object is the same as in Figure 6, but
when created it will now be bound to a temporary variable
"AlarmClock". Then, after the created object is sent to Ticker
to be appended to Ticker's "alarm-clocks-list", it is returned to
the sender of the [:new ...] message as in the case of Figure 6.

(object ~ X h m n ~ k r , k
(tulpt
(-> [:new Prom.to-wake]
(tempoe~y
[AlarmClock :,, (object &,scrIl~ion of an alarm clock object]])

[Ticker <<- [:add AlmnClock]]
fAlmnCkr.k))]
Figure 8. New DeOnidm ofCRa~eAlarmClock ob.kct

6. A Minimal Computation Model
Below we will demonstrate that
[1] A now type message passing can be reduced to a combina-

tion of past type message passing and a selective message
reception in the waiting mode, and

[2] A future type message passing can also be reduced to a
combination of past type message passing and now type
message passing.

Thus both kinds of message passing can be expreesed in terms
of past type message passing and selective message reception
in the waiting mode, which means that now type message pass-
ing and future type message passing are derived concepts in
our computation model. (The rest of this section could be
skipped if one is not interested in the precise semantics of
"now" and "future" types message passing.)

6.1. Reducing Now Type
Suppose the script of an object A contains a now type message
passing in which a message M is sent to an object T. Let the
object T accept the message M and return the response (i.e.,
send the response to the reply destination for M). This situa-

September 1986 OOPSLA ~6 Proceedings 263

fion is described by the following definitions for A and T writ-
ten in ABCL/I.

[object A

i pt
o o o

1.> , , i e .m~e-p~m ... ['r <.-M] ..) ..)]

[object T

(script

"('-> p~rn-for.M @ R ... l i t < . e x p ' , ~ n l ...) ...)]

** Note that the script of T can be abbreviated u:
(.>pauevn-j'ov-M ... l ~ ...)

We inW~duce a new object "Hew-object" which just
passes any received message to A, and also in~xluce a select-
construct which receives only a message that is sent from
"New-object". The behavior of the object A can be redefined
without using now type message passing as follows:

[object A
(script

(tmnpor'm~ [New-object : - [object (script (-> m y (A <- anyD)) l)

ri:'<- M @ " e w ' ~ !
(select

(-> value where (- &se~k,r New-object)
..value...)) . .) . .)]

Note that the message M is sent by a past type message passing
with the reply destination being the newly created "New-
object." Immediately after this message mmsmisaion, the
object A changes into the waiting mode 8nd waits for a rues-
•age that is passed by the "New-object". The conslraint

"where (- &sender New-object)"
in the select-construct means that the messages sent by New-
Object can only be accepted. "New-object" urn'yes as a unique
identifier for the message mummisaion from A to T in past
type: (I" <= M @ New-object].

6.2. Reducin 8 Future Type

Suppose the script of an object A contains a future type mes-
sage passing as follows:

(objea A
(sum ..)
(futm . . x ..) ;dedmd~ofa f.Weva~blex.
(ec,~

i~.> ~ , ~ r , - p , u ~ m
.. [' r<.MSx] ..
.. (m..~y? x) . . (next-vdue x) .. (- ' - v d u a x) ..) ..)]

Then we comider the fu ture variable x in A to be a state
variable binding a special object created by an object CreateFu-
tureObjccL On general, such a object, namely a future object, is
created for each future variable if more than one future variable
is declared.) Also we rewrite the accesses to x by now type
message passing to x as follows:

[obJect A
(state ... (z :- (Cream~emeObject <-- [.'new Me]]] ...)
(scdpe

('-'> m~mg,.pau, rrn
.., Cr <- M @ x] .. [x <-- ['.mdy?]] ...
... [x < - - [.-Mxt.v-~,e]] . . Ix < - - [:d l .vahm]] ...) ...)l

Note that the future type message passing IT < - M $ x] is
replaced by a past type message passing IT <= M @ x] with
the reply destination being x. Thus, the future type message
passing is eliminated. The behavior of the future object is
defined in Figure 9. As mentioned befog, it is essentially a
queue object, but it only ac~-pts message satisfying special
pattem-end-onnsmdnt pairs. A queue object created by
CreateQ accepts four kinds' of messages: [:empty?],
[:enqueue...], [:dequeue], and [:all-elements].

[object CmateFun~reObject
(~ p c
(.> [:new tremor]

flobject
(sum [box := [CreateQ <-- [:newlll)
(sc~pt

(-> [:ready?] where (- &sender Cmmm) ; if [:mdy?] is umt
l(nm [box <== [:empty?]])) ; by the Cnmor,

; and If the bo0(b non-empty, t is retmaed.

(-> (:next-value] @ i t where (- &sender Creator)
(i f [box <=- [:empq,?]]

them (select ; waim for • rummage to come, not sere by the
(=>rnm,~o w h a ~ (m t (. , k J m d ~ C n , m x)) ;Cre~or.

[It <,- mmmge])) ; It is returned
; to the reply dest/nation for • [:next-value] me.age.

else I[box <- [:~,e,e]]))
; removes Ihe tint element in dm queue and retunu it

(-> (:~ l -v~uu] @ It where (. ~ C re~ r)
(i f [box <-- [:mnpe/71]
then(select ; wa/m for a memge m come, not sent by the

(->me~,~e w h m (m t (- & m x ~ O , , m x)) ;Cmmm'.
~ <- [mm~e]])) ; m~ds a ~ I~.

else I['oox <-- [:sU-elmnenm]]))
; removes dl the elem~m b~ the queue md returm the llst of the~

(-> nm.'ned-val.e
[box <- (: ~ i u m m ~ m e d - v , ~ l])) l))]

ei~m 9. ~ of P.~um o b ~

Note the fact that the contents of the queue object stored in
"box" can be check~ or removed sole/y by the object which is
bound to the pattern variable "Create ' . Fur tbemm~ if the
queue is empty, the object which sends messages [:ueXtoValue]
or [:all-values] has to wait for some value to arrive.

7. Project Team: A Scheme of Distributed Problem Solving

In this section, we pn~ent a sL-nple scheme of disUibuted ix'ob-
lem solving described in ABCL/1. In doing so, we would like
to show the adequacy of ABCL/I as a modelling and program-
ruing language in the concurrent object-oriented paradigm.

S u ~ a manager is requested to create a project team to
solve a cerudn problem by a certain deadline. I-Ie t int scares a
project team onmp~ed of the project leader and multiple prob-
lem solve•, each having a differeat IXoblem solving slrategy.
The project leader dispatches the same problem to each pmb-
lent solve. For the sake of simplicity, the problem solven am
assumed to work independently in parallel. When a problem
solver has solved the problem, it sends the solution to the pro-
ject leade~ immediately, We assume the project le_~_er also

264 OOPSLA '86 ProcHdlr~ September 1986

tries to solve the problem himself by his own strategy. When
either the project leader or song problem solvers, or both, have
solved the problem, the project leader selects the best solution
and sends the success report to the manager. Then he sends a
s top message to all the problem solvers. If nobody has solved
the problem by the deadline, the project leader Agkl the
numager to extend the deadline. If no solution has been found
by the extended deadline, the project leader sends thc failure
report to the manager and commits suicide. This problem solv-
ing scheme is easily modeled and described in ABCL/I
without any structural distortions. (Sec Figure I0.)

i I IT A T £

Figure 10. A Schmne for Distributed Problem Solvin 8

The definition of the project leader object is given in Fig-
ure 11. Initially it creates an alarm clock object which will
wake the project le~__,~r_, and keeps it in a state variable "time-
keeper". "Me" is a reserved symbol in ABCL/I which denotes
the innermost object whose definition contains the e c c u m c e
of'IVle". We assung that the Tic l~ defined in Figure 7 is now
ticking. When the project leader object receives a [:solve...]
message from the manager object, it requests its alarm clock
(time-kecper) to wal~ itself at certain time. Then, the project
;ea~,~ler object nudt/casts to the project team members a message
that contains the problem description. Note that dispatching the
problem to each problem solver is expressed as a mult icast of
the problem specifications and also the message passing is of
future type. If a problem solver finds a solution, it sends the
solution to the future object bound tb "Solutions" of the project
leader object. While the project leader engages himself in the
problem solving, he periodically checks the variable by execut-
ing "(ready7 Solutions)" as to ff it may contain solutions
obtained by problem solvers. Note that there is a fair chance
that mine than one problem solver sends their solutions to the

future object bound to "Solutions". As defined in the previous
section, solutions sent by problean solvers are put in the queue
rewesenfing the future object in the order of arrival. "(all.
values Solutions)" evaluates to the list of all the elmnents in the
queue. Noto that the sequence of actions from selecting the
best solutions to m'minating the team member ' tasks is
enckazcd by"(atomle" and")" in Figure II. Thus, the sequence
of actions is not terminated (or suspended) by an express mode
message.

[object Projecti.t.ader
(state [tem-membaz := nil] [bestSolution := nil]

[time-keeper :- [CgeateAlarmOocJIc <-- [:new Me]]])
(futem Solutions)
(scdpt
(-> [:add-a-h-am-member M]
[team.membm :. (corn M team-members)I)

(-> [:solve SPEC :by TIME]
(temporary [mysolutioa :- nil]) ; temporary variable

[time-keeper <- [:wake-me-at (- TIME 20)]]
[tesm.memb¢~ <- [:solve SP~"] $ Solutions]

; multicast in future type
(while (and (not (ready? Solutions)) (null mySoluticm))

do ... #ry to aolw tAc probbm by Ais ov~
Mrategy and sWre Ai$ solution in mySolution ...)

(atomic
[l~tsolutiOn :- (¢hocz~best mySolufion (all-valuer Solutions))]
[Manager <<. [:found bestsolutioo|]
[teem-members <<- [:zmp-your-mk]]))

(->> [:time.is-up] where (- &sender time-keeper)
(tempom7 new-deadline)

(if (nuU bestsolutioo)
then
[new-deadllne :- [MmmSer <<-- [:cso-exmnd.doadline?lll
(if (null new-dmtdline)

then [tegm.membexz <<= [:stop-yoor-teak]] 0mkide)
else [rime-keeper <. [:wake-me-at new.dmdline]])))

(->> [:you-zn-mo-lam] where (- &sender
(if(null bestSolutim)
then [mun-membem <<- [:stop-your-mskll (suicide))))l

Figure t t. DeBnition of Pmjectt.ea~ Object

If no solution is found within the ring limit the project
leader himself has set, a [:time-is-up] message is sent by his
time keeper (an alarm clock objec0 in the e ~ r e ~ mode. Then,
the project leader asks the manager about the possibility of
extending the deadline. If the manager answers "no" (i.e.,
answers "nil"), it sends a message to stop all the problem
solvers and commits suicide.

Though the definition of the manager object (denoted by
"Manager" in Figut~ 11) and problems solvers are easily writ-
trn in ABCL/I, we omit them here.

8. Delegation
T h e reply dest ination mechanism explained in §4 and used in
§6 is the basic tool to provide various delegation su'ategies
[Lieberman 1986]. The explicit use of pattern variables for
reply destinations enables us to write the script of an object
which delegates the responsibility of returning a requested
result to another object.

Below w¢ define an object A, and an object B which will
delegate all unknown messages to A. The patm'n variable
"any" will retch any message not matched by the other pat-
terns in the script of B (this is analog to the last clause with
lwcdicate t in a Lisp ¢ond consmgt). The variable R will
match the reply d~t~t ion . So any kind of mcuage, namely
past type with or without reply destination, or now type, or
future type message, will be matched and fully dedagated to the
object A, which could in turn, also delegate it to another object.

September 1966 OOPSLA ~6 Proceedings 265

[object A [object B
(state ...) (state ...)
(script (script

(-> pmrernAs (-> pmternBs
...) ...)

(.'~ pmter~, (.~, pmttr, mp
...))1 ...)

(->any @R [A <- any @ Rl))]

This is illuslrated by Figure 12, showing an answer is
delivered directly to the asker without coming back through B.

Figure 12. llluslxafion of Basic Deleptioo

9. A Distributed Algorithm for the Same Fringe Problem

The same fringe problem is to compare the fringes of two trees
(Lisp lists). We will present a solution of the same fringe
problem in ABCIJI, which will permit us to illustrate the use
of both future type messages and rep/y d~t/nat/ons.

Our approach to the problem is similar to the one pro-
posed by B. Sex~ette in [Serpette 1984]. Basically, there are
three objects in this model:
• two Iren extractors, extracting recuraively the fringe of each

tree,
• one comperator, comparing the successive elements of the

two fringes.

These tluee objects will work in parallel. (See Figure 13.)

• 0 °

\ ,
t \ ;

Figure 13. The SamePringe: TmeExnctmz mdCompm~

The two tree extractors are linked to the comparator through
two dashed arrowt. Each one represents the data-flow of the
successive elements of the fringe extracted by each tree extrac-
tor.

The Compezator object, defined in Figure 14, owns two
state variables: "Extractorl" and "Extractor2" binding the two
tree extractors, and two future variables "inputl" and "input2"

which are used for receiving the fringes from these two extrac-
tort. "Ex~'~ctorl" will be bound to the object TreeExtractor
defined in Figure 15, the second extractor CFattractor2") will
be created by requesting TrenBxeractor to copy itself. When the
Comperator object receives the [treel :and tree2] message, it
will send a future type message [:fringe tree] to each TreeEx-
tractor in order to request it to compute the fringe of each of
the Crees. Comparator assumes that Exu'actorl and Extractor2
will reply the successive elements of the. fringes, which will be
enqueued in the future objects bound to inputl and input2,
respectively.

[object Ccxnpmto¢
(state
[Fat~t~t :- T r e e g x ~]
[Exm, cm~ :- [TmeEmnc~ <-- [:copy]]])

(future [npgtl/nput2)
(zcdpt

(-> [creel :rod eee2]
~xtractogl <- [:fringe treel] $ inputl]; future type message
[Extrzcto~ <, [:fringe urn2] $ input2]; future type message
[Me <- [:eq (next-value inputl) :with (next.value iApuO)]])

(-> [:eq atoml :with atom2]
(if (eq moral atom2)

then (it (eq zmmt 'EOT)
then (l~nt'same fringe')
else [Me <- [:eq (next.value Inpetl)

:wlth (next.value Inpu¢2)]l)
else (;wlnt'frlnges d/ffe~))))1

Figure 14. The Same Fringe Compmtor

When two values from the two extract~m become available to
Compamtor through inputl and input2, Comparator sends an
[:eq (next-value inputl) :with (next-value input2)] message to
itself. Note that if one of the two queues (i.e., the future
objects bound to variables inputl and input2) is empty, Com-
parator has to walt until both queues become non-empty. (See
the definition of a future object in g6.2.) If the two elements are
equal, Comparator will compare next elements unless they
were equal to the special atom EOT (as End Of Tree), which
indicates the end of the extraction. If both are EOT, the two
fringes are declared to be the same. On the other hand, if the
two elements differ, Comparator will declare the two fringes to
be differenL

We could have defined a CreateTreeExtractor object, as
generator of the Iren extracton, but (to show a diffm~-nt way of
creating objects) we will rather define the prototype object
TreeExtractor, and later copy it to create the u~,ond tree extrac-
tor we need. The TreeExtragtor object, defined in Figure 15,
owns a single state variable "output" to remember the reply
destination to which it has to tend the successive elements of
the fringe during the extraction.

The script [:copy] will return a copy of itself. This will be a
pure (exact copy of the original object) copy of TreeExtractor.
The [:fringe tree] script will bind the reply destination to the
variable "Pipe". This reply destination is a future object which
was bound to the future variable "inputr' or "input2" of Cons-
parator. It will be assigned to the state variable "output", thus
connect/ngt its "output" with one "inpuf' of the Comparator
(like in the Figure 13). Then it will send to itself the message
[:extract tree] with itself being the reply dest/nat/on.

f like the communicatim pipes in the ObjPive model [.Seq~.. 1984], in-
spired b]~ the.Un*x pi.pes. In c . o~ t , these "pnpes" a'e vineal (no assan~
ttoe of snarea memory/.

266 OOPSLA ~6 PreceKlings Sep~mber 1966

[object TreeExnctor
(state cutp,0
(u~pt

(-> [:copy] !(self-copy))

(-> [:fringe tree] @ Pipe
[o~ut := Pipe]
[Me <- [:extract eree] @ Me])

(-> (:exuact tree) @ C
(cmd

((null free) [C <- [. ' ~ u e]])
((atom tree) [output <- tree] [C <- [:cominee]])
(t [Me <- [:extract (car tree))

@ [object
(state LExtn,cu~ :- Me])
(SCdlX

(-> [:cm~ue]
OZxu'acux <- [:exnct (c~" tree)] @ C]))]])))

(-> [:cm~ue] [output <- 'POT]))]

Figure 15. The Same Fringe TreeExu-actor

To extract the fringe of a tree, the continuation-based pro-
gramming style is adopted, which is in contrast to iterative or
recursive ones. This model was initiated by Carl Hewitt
[Hewitt et al. 1974], who gave a solution of the same fringe
problem using continuations in a coroutine style. In contrast,
our algorithm is fully parallel. The "[:extract tree] @ C" mes-
sage script will bind the variable C to the reply destination,
which represents the continuation, i.e., the object which will do
the following:

• If the tree is null, the tree extractor just activates the con-
tinuation C, by sending it the message [:continue].

• If the tree is atomic, then this element is sent to the output,
(so the corresponding "inputl/2" of Comparator will receive
a new element) and the continuation will he activated.

• The last case means that the tree is a node (a Lisp cons). We
have to extract its left son (car), and then its right son (cdr).
This second part to be performed later is specified in a
dynamically created object (a new continuation), which will
request the tree extractor to extract the cdr of the tree, when
receiving the [:continue] message. The bindings of vari-
ables "tree" and "C' are memorized in the new continuation
because of the lexical scoping of ABCL/1.

When the tree extractor receives the [:continue] message, that
means the end of the exlraction. So it will send F.OT to the
output, and stop there.

Note that in this algorithm if the two fringes are found to
be different, the two extraction processes go on. Comparator
could then send a stop message to either "freeze" or kill them.
To deal with such a situation, we could devise various stra-
tegies which are related to the issues of objects' "capability"
and garbage collection. This will he a subject for further study.

10. Concluding Remarks

10.1. Importance of the Waiting Mode

The computation model presented in this paper has evolved
from the Actor computation model. One of the important
differences is the introduction of the waiting mode in our com-
putation model. As noted at the end of §3, without now type
(and/or future type) message passing, module decomposition in

terms of a collection of objects tends to become unnatural.
Thus the now type message passing is essential in structuring
solution programs. In our computation model, the now type
message passing is derived from the waiting mode and the past
type message passing in a simple manner as demonstrated in
§6.1. In contrast, the realization of a now type message pass-
ing in the Actor computation model forces the unnatural
decomposition of actors and requires rather cumbersome pro-
cedures for identifying a message that corresponds to the return
(reply) value of now type message passing.

10.2. Express Mode M~_~ge Passing

We admit that the introduction of the express mode message
passing in a high-level programming language is rather
unusual. The main reason of inU~lucing the express mode is
to provide a language facility for nan~al modelling. Without
this mode, the script of an object whose activity needs to he
interrupted would become ve,~ complicated. When an object
is continuously working or active, if no express mode message
passing is allowed, throe is no way of interrupting the object's
activity or monitoring its state. One can only hope that the
object terminates or suspends its activity itself and gives an
interrupting message a chance to he accepted by the object.
But this would make the structure of the script of the object
unnatural and complicated. It should also be noted that the
express mode message passing is useful for debugging because
it can monitor the states of active objects.

10.3. Interrupt vs. Non.Interrupt

Our notion of express mode message passing is bated on a very
simple inlerrupt scheme. Even in this simple scheme, we must
sometime protect the activity of an object from unwanted
interruptions by using the "(atomic ...)" construct. (See the
script of ProjectLeader in Figure I I.) Appropriate uses of this
construct sometimes requires skills.

An alternative scheme wight he what we call the nu~l
priority model. In this model, objects are not interrupted dur-
ing their activities. An express mode message sent to an object
arrives at the express queue without intexrupting the objecL
When the object is ready to check its message queues, it
always first consult its express queue (with first priority), and
consult its ordinary queue only when there is no (more) mes-
sage in the express queue. How there is no fear of bad interr-
uptions that the progranmter has to take care of. But, on the
other hand, as noted in the previous subsection, the activity of
an object cannot be stopped or monitored when it is in pro-
gr~s. To alleviate this situation, we can introduce a built-in
primitive, say "(check-~xpress)", with which an object can
check to see whether an express mode me ,age has arrived
while the object is carrying out its actions. "(check-express)"
can he placed in the script of an object and it is invoked as one
of the actions performed by the object. When it is invoked, if a
message is in the express queue and it satisfies one of the
pattern-and-constra/nt pairs in the script, the execution of the
actions specilied for the message pattern intervenes.

Since both schemes have various advantages and disad-
vantages and they depend on the application areas of our
language, we need more experiments to draw a firm .conclu-
sion.

September 1986 OOPSLA '86 Proceedings 287

10.4. Parallelism and Synchronization

Let us review the basic types of parallelism provided in
ABCL/I:

[1] Concurrent activations of independent objects.

[2] Parallelism caused by past type and future type message
passing.

[3] Parallelism caused by the parallel constructs [Yonezawa
et al. 1986] (we did not explain in this paper) and main'-
casting (cf. §5.3 and §7).

Furthermore. ABCLJI provides the following four basic
mechanisms for synchronization:

[I] Object: the activation of an object takes place one at a
dine and a single ftrst-come-fu'st-se~ved message queue
for ordinary messages is associated with each object.

[2] Now type message passing: a message passing of the now
type does not end undl the result is returned.

[3] Select conslruct: when an object executes a select con-
struct, it changes into the waidng mode and waits only for
messages satisfying specified pattem-and-conslraint pairs.

[4] Parallel construct: see [Yonezawa et al. 1986].

10.5. Relation to Other Work

Our present work is related to a number of previous research
activities. To distinguish our work from them, we will give a
brief summary of ABCL/I. Unlike CSP [Hoare 1978] or other
languages, ABCL/I has characteristics of dynam/c nature:
objects can be created dynamically, message Iransmission is
asynchronous, and the "lmows"-relation among objects (i.e.,
network topology) elumges dynamically. An object in our
computation model cannot be activated by more than one mes-
sage at the same time. This "one-at-a-time" nature is similar to
that of Monitors [Home 1974], but the basic mode of commun-
ication in programming with monitors is the call/return bila-
teral communication, whereas it is unilateral in ABCIJI.

10.6. Other Program Examples

A wide variety o f example programs have been written in
ABCL/1 and we are convinced that the essential part of
ABCL/I is robust enough to be used in the intended m . The
examples we have written include parallel ditcrete simulation
[Yonezawa et al. 1984] [Shibay, ama and Yonezawa 1986],
inventory control systems [Kerridge and Simpson 1984] [Shi-
hayama et al. 1985] k la Jackson's example [Jackson 1983],
robot arm control, mill speed control [Yonezawa and
Matsumoto 1985], concurrent access to 2-3 trees and distri-
bated quick sort [Sbibayama and Yonezawa 1986].

Acknowledgements

We would like to thank Y. Honda and T. Takada for their
implementation efforts on Vax/lls, Sun workstations, and a
Symbolics.

References

[Bdo(1984] Bdot, J-P., Instanclmion et Hb~e dmus lea ~es Objete,
(thine de 3Eme cycle), LITP Research RelPO~ No 8.5-21, IJTP -
Universij Pads.VI, Pads, 15 December 1984.

IBrodie et al. 1984] Brodle, M., J. Mylopoulos, I. Sclunldt (Ede.), On Con-
cepeu~ MoaeUing, S~nger. 1984.

[HtwiU et al. 1974] Hew&it, C., et al., BthavioroJ Semantics of Nonrecur$iv*
Control Structures, Proc. Colloque sur Is Programmation, Paris, April,
19"/4.

[HewiU 1977] Hewitk C., Viewing Control Structures as Patterns of Pasx-
blg Messa&es, Journal of Artificial Intelligence, Vol. 8, No. 3 (19"/7),
pp.323-301.

[Hewiu and Baker 1977] Htwitt, C., H, Baker, l, awsfor Parallel Communi.
catln 8 Processes, Proc, fi=IP-77, Toronto, 19"7"/.

[Hoere 1974] Hoere, C.A,R., Monitors: An Oporotin& System Structuring
Concept, Communications of the ACM, Vol. 17, No. l0 (1974),
pp.549-558.

[Hoare 19781 Hoe, re, C.A.R., Communicating Sequential Proccssea, Com-
munication& of the ACM, VoL 21 No. 8 (1978), pp.(~)6-677.

[Jackson 1983] Jackson, M., System Development, Prentice. Hall, 1983.

[Kenidse and Simpson 1984] Kenidge, J. M., D. Simpson, Tkree $olmions
far a Robot Arm Controller Usin& Pascal.Plus, Occam and Edison,
Software - Practice and Experience. VoL 14, (1984), pp.3-15.

[Lieberman 1981] IAeberman" H., A Preview of Act-I, AI-Memo 625,
Artificial Intelligence Laboratory, MIT, 1981.

[Lieberman 1986] Lieberman, H., D¢le&a6on and inheritance: Two
Mechanisms for Sharing Knowledge in Object-Oriented Systems, Proc.
of 3rd Workshop on Object-Oriented Languages, Bigre+GIobule, No.
48, Paris, January 1986.

[scrpet~e 1984] &erpette, B., Contextes, Processus, Objet$. Stquenceurs:
FORMF.S, (thee de 3~rne cycle), LITP Research Report, No. 85-5,
LITP. Universir~ Paris-VI, Paris, 30 October 1984.

[$hibayama et al. 1985] Shibayama, E., M. Matsuda, A. Yoneamwa, A
Description of an Inventory Control System Based on an Object.
Orientt~! Concarrcnt Programmbti Medtodoioiy , Jouhon-Shori, VoL
26, No. 5 (1985), ppA60-468. (in Japunem)

[Shibayurm and Yme~awa 1986] Shibayama, E., A. Yonezawa, Dbtrib,,,ed
Comp~ln& In ABCLII, in "Object-Oriented Com:uttent Programming"
edited by A. Yonegawa and M. Tokom, MIT Preu, 1986.

[Sldbayama md Ymexawa 1986a] Shibayama, E., A. Yone~nva, ABCU!
U~eF x Manual, Imemal Memo, 1986.

[Smith 1985] Smith, R. O., Report on the 1984 Distrib~ed Art~clal Intelli-
gence Worksbop, The AI Magazine Fall, 1985.

[Special Issue 1981] Special Issue on Dis~buted Problem Solving, ruFF.
Trans. on Systentl, Man, and Cybernetics, VoL SMC-II, No.l. 1981.

[Special Issue 1982] SpeciM Issue on Rapid Prototyping, ACM SIG
Software Engloecdag Notes Vol. 7, No. & December 1982.

[Ste~ aad Bobmw 1986] &teflk, M. K., D. O. Bobrow, Objeez-Orionted
Progranunln&: Themes and Variat/on, The AI Magazine, 1986

[Tscl~t~ds 1985] Tschdtzb, D. (Ed.), O.Oice Automation, Springer, 1985.

['Yonezawa and Hewltt 1979] Yonezawa, A., C. Hewitt, Modelling Distri.
/naed Systems, Machine Intelligence, VoL 9 (1979), pp.4 !-50.

[Yonezawa et al. 1984] Yoemzawa, A., H. Matsuda, E. Shibayama, Discrete
Event Simulation Bawd on an Object.Oriented Parallel Computmion
Modal, Research Report C-64, Dept. of In&ruination Science, Tokyo
Institute of Technology, November 1984.

fYom~awa et al. 1985] Yonezawa, A., Y. Matsumoto, Object-Oriented
Conearrent Pro&ro~min& and Industrial Software Prod~tlon, Lec-
ture Notes in Computer Science, No.186, Springer-Yetis&, 1985.

Wonezawa et al. 1986] Yonezawa, A., E. Sin'oayame, T. Takada, Y. Honda,
Modellb~ and Pro&ramnu& ia an Object-Orio~d Co~'urrou
Lan&uage ABCUI. in "Object.Oriented Concurrent ~ "
editedby A. YonezawssndM. Tokom, MITPmu, 1986.

[Yoemmwa and Tokoro 1986] Yoneuwa, A., M. Tokom (Ede.), Object-
Odeated Concurrent Pt'o~n$. MIT Press 1986 (in peem).

268 OOPSLA '86 Proceedings Septembe¢ 1986

