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Abstract

An object-oriented computation model is presented which is
designed for modelling and describing a wide variety of con-
current systems. In this model, three types of message passing
are incorporated. An overview of a programming language
called ABCL/1, whose semantics faithfully reflects this compu-
tation model, is also presented. Using ABCL/1, a simple
scheme of distributed problem solving is illustrated. Further-
more, we discuss the reply destination mechanism and its
applications. A distributed "same fringe” algorithm is
presented as an illustration of both the reply destination
mechanism and the future type message passing which is one
of the three message passing types in our computation model.

1. Introduction

Parallelism is ubiquitous in our problem domains. The
behavior of computer systems, human information processing
systems, corporative organizations, scientific societies, etc. is
the result of highly concurrent (independent, cooperative, or
contentious) activities of their components. We like to model
such systems, and design Al and software systems by using
various metaphors found in such systems [Smith 1985] [Spe-
cial Issue 1981} [Yonezawa and Tokoro 1986] [Brodie et al.
1984). Our approach is to represent the components of such a
system as a collection of objects [Stefik and Bobrow 1986] and
their interactions as concurrent message passing among such
objects. The problem domains to which we apply our frame-
work include distributed problem solving and planning in Al,
modelling human cognitive processes, designing real-time sys-
tems and operating systems, and designing and constructing
office information systems [Tschritzis 1985].

This paper first presents an object-based model for paral-
lel computation and an overview of a programming language,
called ABCL/1 {Yonezawaetal. 1986) [Shibayama and
Yonezawa 1986a], which is based on the computation model.
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Then, schemes of distributed problem solving are illustrated
using ABCL/1. Though our computation model has evolved
from the Actor model [Hewitt 77) [Hewitt and Baker 1977},
the notion of objects in our model is different from that of
actors.

2. Objects

Each object in our computation model has its own (auto-
nomous) processing power and it may have its local persistent
memory, the contents of which represent its srate. An object is
always in one of three modes: dormant, active, or waiting. An
object is initially dormant. It becomes active when it receives
a message that satisfies one of the specified patterns and con-
straints. Each object has a description called script (or a set of
methods) which specifies its behavior: what messages it
accepts and what actions it performs when it receives such
messages.

When an active object completes the sequence of actions
that are performed in response to an accepted message, if no
subsequent messages have arrived, it becomes dormant again.
An object in the active mode sometimes needs to stop its
current activity in order to wait for a message with specified
patterns to arrive. In such a case, an active object changes into
the waiting mode. An object in the waiting mode becomes
active again when it receives a required message. For instance,
suppose a buffer object accepts two kinds of messages: a [:get]
message from a consumer object requesting the delivery of one
of the stored products, and a [:put <product>] message from a
producer object requesting that a product (information) be
stored in the buffer. When the buffer object receives a {:get]
message from a consumer object and finds that its storage,
namely the buffer, is empty, it must wait for a [:put <product>]
message to arrive. In such a case the buffer object in the active
mode changes into the waiting mode.

An active object can perform usual symbolic and numeri-
cal computations, make decisions, send messages to objects
(including itself), create new objects and update the contents of
its local memory. An object with local memory cannot be
activated by more than one message at the same time. Thus,
the activation of such an object takes place one at a time.

As mentioned above, each dormant object has a fixed set
of patterns and constraints for messages that it can accept and
by which it can be activated. To define the behavior of an
object, we must specify what computations or actions the
object performs for each message pattern and constraint. To
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write a definition of an object in our language ABCL/1, we use
the notation in Figure 1. Figure 2 shows a skeletal definition of
an object.

{object object-name [object Buffer
(state representation-of-local-memory ) (state ... )
(script (script
(w> message-pattern where constraint (=>[put...] .. )
waction... )

(=> [:get] ... )]

('-> message-patiern where consiraint
...action... }))

Figure 1. Object Definition Figure 2. Buffer

(state ...) declares the variables which represent the local per-
sistent memory (we call such variables state variables) and
specifies their initialization. object-name and the construct
"where constraint’ are optional. If a message sent to an object
defined in the notation above satisfies more than one pattern-
constraint pair, the first pair (from the top of the script) is
chosen and the comresponding sequence of actions is per-
formed.

An object changes into the waiting mode when it per-
forms a special action. In ABCL/], this action (i.c., the transi-
tion of an object from the active mode to the waiting mode) is
expressed by a select-construct. A select construct also
specifies the patterns and constraints of messages that are able
to reactivate the object. We call this a selective message
receipt,

(select
(=> message-paitern where constraint ... action ...)

(=> »;euagc-patm where constraint ... action ...))

Figure 3. Select Construct
As an example of the use of this construct, we give, in Figure

4, a skeleton of the definition of an object which behaves as a
buffer of a bounded size.

[object Buffer
(stase declare-the-storage-for-buffer )
(script ‘
(=> [:put aProduct) ; aProduct is a pattern variable.
(if the-storage-is-full
then (select ; then waits for a [:get]) message.
(=> [:get]
remove-a-product-from-the-storage-and-return-it )))
store-aProduct )
(=> [:get]
(if the-storage-is-empty
then (select ; then waits for a [:put ...] message.
(=> [:put aProduct]

send-aProduct-to-the-object-which-sens-[:get]-message ))
else remove-a-product-from-the-storage-and-return-it)) )}

Figure 4. An Example of the Use of Select Constructs

Suppose a [:put <product>] arrives at the object Buffer. When
the storage in the object Buffer is found to be full, Buffer waits
for a [:get] message to arrive. When a [:get] message arrives,
Buffer accepts it and returns onc of the stored products. If a
[:put] message arrives in rhis waiting mode, it will not be
accepted (and put into the message queue for Buffer, which
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will be explained in §3). Then, Buffer continues to wait for a
[:get] message to arrive. A more precise explanation will be
given in the next section.

As the notation for a select construct suggests, more than
one message pattern (and constraint) can be specified, but the
ABCL/1 program for the buffer example in Figure 4 contains
only one message pattern for each select construct.

3. Message Passing

An object can send a message to any object as long as it knows
the name of the target object The "knows" relation is
dynamic: if the name of an object T comes to be known to an
object O and as long as O remembers the name of T, O can
send a message to T. If an object does not know or forgets the
name of a target object, it cannot at least directly send a mes-
sage to the target object. Thus message passing takes place in
a point-to-point (object-to-object) fashion. No message can be
broadcast.

All the message transmissions in our computation model
are asynchronous in the sense that an object can send a mes-
sage whenever it likes, irrespective of the current state or mode
of the target object. Though message passing in a system of
objects may take place concurrently, we assume message
arrivals at an object be linearly ordered. No two messages can
arrive at the same object simultaneously. Furthermore we
make the following (standard) assumption on message arrival:

[Assumption for Preservation of Transmission Ordering]

When two messages are sent to an object T by the same
object O, the temporal ordering of the two message
transmissions (according to O's clock) must be preserved
in the temporal ordering of the two message arrivals
(according to T’s clock).

This assumption was not made in the Actor model of computa-
tion. Without this, however, it is difficult to model even simple
things as objects. For example, a computer terminal or display-
ing device is difficult to model as an object without this
assumption because the order of text lines which are sent by a
terminal handling program (in an operating system) must be
preserved when they are received. Furthermore, descriptions
of distributed algorithms would become very complicated
without this assumption.

In modelling various types of interactions and information
exchange which take place among physical or conceptual com-
ponents that comprise parallel or real-time systems, it is often
necessary to have two distinct modes of message passing: ordi-
nary and express. Cormrespondingly, for each object T, we
assume two message queues: one for messages sent to T in the
ordinary mode and the other for messages sent in the express
mode. Messages are enqueued in arrival order.

[Ordinary Mode Message Passing]

Suppose a message M sent in the ordinary mode arrives at
an object T when the message queue associated with T is
empty. If T is in the dormant mode, M is checked as to
whether or not it is acceptable according to T’s script.
When M is acceptable, T becomes active and starts per-
forming the actions specified for it. When M is not accept-
able, it is discarded. If T is in the active mode, M is put at
the end of the ordinary message queue associated with T.
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If T is in the waiting mode, M is checked to see if it
satisfies one of the pattern-and-constraint pairs that T
accepts in this waiting mode. When M is acceptable, T is
reactivated and starts performing the specified actions.
When M is not acceptable, it is put at the end of the mes-
sage queue.

In general, upon the completion of the specified actions of an
object, if the ordinary message queue associated with the
object is empty, the object becomes dormant. If the queue is
not empty, then the first message in the queue is removed and
checked as to whether or not it is acceptable to the object
according to its script. When it is acceptable, the object stays
in the active mode and starts performing the actions specified
for the message. If it is not acceptable, the message is dis-
carded and some appropriate default action is taken (for
instance, the message is simply discarded, or a default failure
message is sent to the sender of the message). Then if the
queue is not empty, the new first message in the queue is
removed and checked. This process is repeated until the queve
becomes empty. When an object changes into the waiting
mode, if the ordinary message queue is not empty, then it is
searched from its head and the first message that matches one
of the required pattern-and-constraint pairs is removed from
the queue. Then the removed message reactivates the object.
If no such message is found or the queue itself is empty, the
object stays in the waiting mode and keeps waiting for such a
message to arrive. Note that the waiting mode does not imply
"busy wait",

[Express Mode Message Passing]

Suppose a message M sent in the express mode arrives at
an object T. If T has been previously activated by a mes-
sage which was also sent to T in the express mode, M is put
at the end of the express message queue associated with T.
Otherwise, M is checked to see if it satisfies one of the
pattern-and-constraint pairs that T accepts. If M is accept-
able, T starts performing the actions specified for M even if
T has been previously activated by a message sent to T in
the ordinary mode. The actions specified for the previous
message are suspended until the actions specified for M are
completed. If so specified, the suspended actions are
aborted. But, in default, they are resumed.

An object cannot accept an ordinary mode message as long as
it stays in the active mode. Thus, without the express mode
message passing, no request would be responded to by an
object in the active mode. For example, consider an object
which models a problem solver working hard to solve a given
problem (cf. §7). If the given problem is too hard and very lit-
tle progress can be made, we would have no means to stop him
or make him give up. Thus without the express mode, we can-
not monitor the state of an object (process) which is continu-
ously in operation and also cannot change the course of its
operation. More discussion about the express mode will be
found in §5.3, §10.2, and §10.3.

As was discussed above, objects are autonomous informa-
tion processing agents and interact with other objects only
through message passing. In modelling interactions among
such autonomous objects, the convention of message passing
should incorporate a aarural model of synchronization among
interacting objects. In our computation model, we distinguish
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three types of message passing: past, now, and future. In what
follows, we discuss each of them in turn. The following dis-
cussions are valid, irrespective of whether messages are sent in
the ordinary or express mode.

(Past Type Message Passing] (send and no wait)

Suppose an object O has been activated and it sends a mes-
sage M to an object T. Then O does not wait for M to be
received by T. It just continues its computation after the
transmission of M (if the transmission of M is not the last
action of the current activity of O).
We call this type of message passing past type because sending
a message finishes before it causes the intented effects to the
message receiving object. Let us denote a past type message
passing in the ordinary and the express modes by:
[T<eM] and ([T<<nM],
respectively. The past type corresponds to & situation where
one requests or commands someone to do some task and simul-
taneously he proceeds his own task without waiting for the
requested task to be completed. This type of message passing
substantially increases the concurrency of activities within a
system.

[Now Type Message Passing] (send and wait)

When an object O sends a message M to an object T, O
waits for not only M to be received by T, but also waits for
T to send some information back to O,

This is similar to ordinary function/procedure calls, but it
differs in that T's activation does not have to end with sending
some information back to O. T may continue its computation
after sending back some information to O. A now type mes-
sage passing in the ordinary and express modes are denoted by:
[T<==M] and [T <<c== M],

respectively. Returning information from T to O may serve as
an acknowledgement of receiving the message (or request) as
well as reporting the result of a requested task. Thus the mes-
sage sending object O is able to know for certain that his mes-
sage was received by the object T though he may waste time
waiting. The returned information (certain values or signals) is
denoted by the same notation as that of a now type message
passing. That is, the above notation denotes not merely an
action of sending M to T by a now type message passing, but
also denotes the information returned by T. This convention is
useful in expressing the assignment of the returned value to a
variable. For example, [x := [T <== M]].

Now type message passing provides a convenient means
to synchronize concurrent activities performed by independent
objects when it is used together with the parallel construct.
This construct will not be discussed in this paper. It should be
noted that recursive now type message passing causes a local
deadlock.

(Future Type Message Passing] (reply to me later)

Suppose an object O sends a message M to an object T
expecting a certain requested result to be returned from T.
But O does not need the result immediately. In this situa-
tion, after the transmission of M, O does not have to wait
for T to return the result. It continues its computation
immediately. Later on when O needs that result, it checks
its special private object called future object that was
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specified at the time of the transmission of M. If the result
has been stored in the future object, it can be used.

Of course, O can check whether or not the result is available
before the result is actually used. A future type message pass-
ing in the ordinary and express modes are denoted by:
[T<=M$x} and [T<<eM$x)],

respectively, where x stands for a special variable called future
variable which binds a future object. We assume that a future
object behaves like a queue. The contents of the queue can be
checked or removed solely by the object O which performed
the future type message passing. Using a special expression
“(ready? x)", O can check to see if the queue is empty. O could
access to the first element of the queue with a special expres-
sion "(next-value x)", or to all the elements with "(all-values
x)". If the queue is empty in such cases, O has to wait. (Its
precise behavior will be given in §6.2.).

A system’s concurrency is increased by the use of future
type message passing. If the now type is used instead of the
future type, O has to waste time waiting for the currently
unnecessary result to be produced. Message passing of a
somewhat similar vein has been adopted in previous object-
oriented programming languages. Actl, an actor-based
language developed by H. Lieberman [1981] has a language
feature called “‘future,’”’ but it is different from ours. The three
types of message passing are illustrated in Figure 5.

PAST NOW FUTURE
sender receiver sender receiver sender receiver
O requist lquu? O Feguist
V wait v ¥
T accept accept accept
ready?
Io vahie™ - valie

Figure 5. The Three Message Passing Types

Though our computation model for object-oriented con-
current programming is a descendant of the Actor computation
model which has been proposed and studied by C. Hewitt and
his group at MIT [Hewitt 1977] [Hewitt and Baker 1977]
[Yonezawa and Hewitt 1979] [Lieberman 1981], it differs from
the Actor computation model in many respects. For example,
in our computation model, an object in the waiting mode can
accept a message which is not at the head of the message
queue, whereas, in the actor computation model, a (serialized)
actor can only accept a message that is placed at the head of the
message queue. Furthermore, now type and future type mes-
sage passing are not allowed in the Actor computation model.
Therefore, an actor A which sends a message to a target actor T
and cxpects a response from T must terminate its current
activity and receive the response as just one of any incoming
messages. To discriminate T’s response from other incoming
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messages arriving at A, some provision must be made before
the message is sent to T. Also the necessity of the termination
of A’s current activity to receive T’s response causes unnatural
breaking down of A’s task into small pieces.

4. Messages

We will consider what information a message may contain. A
message is composed of a singleton or a sequence of tags,
parameters, and/or names of objects. Tags are used to distin-
guish message patterns. (In the buffer example mentioned in
Figure 4, :get and :put are tags, and "aProduct” denotes a
parameter in the [:put ...] message.) Object names contained in
a message can be used for various purposes. For example,
when an object O sends a message M to an object T requesting
T to do some task, and O wishes T to send the result of the
requested task to a specified object C1, O can include the name
of C1 in the message M. Objects used in this way comespond
to "continuation" (or customer) in the Actor computation
model. Also, when O requests T to do some task in coopera-
tion with a specified object C2, O must let T know the name of
C2 by including it in the message M.

Besides the information contained in a message itself, we
assume two other kinds of information can be transmitted in
message passing. One is the sender name and the other is the
reply destination. When a message sent from an object O is
received by an object T, it is assumed that the name of the
sender object O becomes known to the receiver object T. (We
denote the sender name by "&sender” in ABCL/L.) This
assumption considerably strengthens the expressive power of
the model and it is easy to realize in the implementation of our
computation model. A receiver object can decide whether it
accepts or rejects an incoming message on the basis of who (or
what object) sent the message.

When an object T receives a message sent in a now or
future type message passing, T is required to reply to the mes-
sage or return the result of the requested task (or just an ack-
nowledgement). Since the destination to which the result
should be returned is known at the time of the message
transmission, we assume that such information about the desti-
nation is available to the receiver object T (and this informa-
tion can be passed around among objects). We call such infor-
mation the reply destination. To specify the object to which
the result should be returned, the reply destination mechanism
provides a more uniform way than simply including the name
of the object in the request message. This mechanism is com-
patible with the three types of message passing, and enables us
to use both explicit reply destinations in case of past type mes-
sage as well as implicit ones in case of now or future type mes-
sages (cf. §6 and §9). Furthermore, the availability of the reply
destination allows us to specify continuations and implement
various delegation mechanisms [Lieberman 1986) uniformly.
This will be discussed in the §8.

The fact that sender names and reply destinations can be
known to message receiving objects not only makes the com-
putation model powerful, but also makes it possible that the
three different types of message passing: past, now, and future,
be reduced to just one type of message passing, namely the
past type message passing. In fact, a now type message pass-
ing in an object T can be expressed in terms of past type mes-
sage passing together with the transition into the waiting mode
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in the exccution of the script of the object T. Anc : future type
message passing can be expressed in terms of past and now
type message passing, which are in turn reduced to past type
message passing. These reductions can be actually demon-
strated, but to do so, we need a formal language. Since the
programming language ABCL/1 to be introduced in the subse-
quent sections can also serve this purpose, we will give an
actual demonstration after the explanation of ABCL/1 (cf. §6).
The reply destination mechanism plays an important role in the
demonstration.

5. An Overview of the Language ABCL/1

§5.1. Design Principles

The primary design principles of our language, ABCL/1, are:

{1] [Clear Semantics of Message Passing] The semantics of
message passing among objects should be transparent and
faithful to the underlying computation model.

[2] [Practicality) Intentionally, we do not pursue the approach
in which every single concept in computation should be
represented purely in terms of objects and message pass-
ing. In describing the object’s behavior, basic values,
data structures (such as numbers, strings, lists), and invo-
cations of operations manipulating them may be assumed
to exist as they are, not necessarily as objects or message
passing. Control structures (such as if-then-else and loop-
ing) used in the description of the behavior of an object
are not necessarily based upon message passing (though
they can of course be interpreted in terms of message
passing).

Thus in ABCL/1, inter-object message passing is entirely

based on the underlying object-oriented computation model,

but the representation of the behavior (script) of an object may
contain conventional applicative and imperative features,
which we belicve makes ABCL/1 programs easier to read and
write from the viewpoint of conventional programmers. Since
we are trying to grasp and exploit a complicated phenomenon,
namely parallelism, a rather conservative approach is taken in
describing the internal behavior of individual objects. Various
applicative and imperative features in the current version of

ABCL/1 are expressed in terms of Lisp-like parenthesized

prefix notations, but that is not essential at all; such features

may be written in other notations employed in various
languages such as C or Fortran.

§.2, Creating Objects and Returning Messages

In our computation model, objects can be dynamically created.
Usually, when an object A needs a new object B, A sends, in a
now or future type message passing, some initial information
to a certain object which creares B. Then B is returned as the
value (or result) of the now/future type message passing. This
way of creating an object is often described in ABCL/1 as fol-
lows:

{object CreateSomething
(script

(=> patiern-for-initial-info  {object ... 1))]
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where [object ....] is the definition of an object newly created
by the object CreateSomething. The CreateAlarmClock object
defined in Figure 6 creates and retums an alarm clock object
when it receives a [:new ..] message containing the person
(object) to wake. The time to ring is set by sending a [:wake-
me-at ...] message to the alarm clock object. It is supposed to
keep receiving [:tick ...] messages from a clock object (called
the Ticker and which will be defined in the next subsection).
When the time contained in a [:tick ...] message is equal to the
time to ring, the alarm clock object sends a [:time-is-up] mes-
sage to the person to wake in the express mode.
[object CreateAlarmClock
(script
(=> [:new Person-to-wake)
1{object
(state {time-to-ring := nil])
(script
(=> [:tick Time)
(if (= Time time-to-ring)
then [Person-to-wake <<= {:time-is-up}]]))

(»> [:wake-me-at T]
(time-to-ring := T]) )] ) )]

Figure 6. Definition of CreateAlarmClock Object

Note that the "Person-to-wake" variable in the script of the
alarm clock object to be created is a free variable (it is not a
state variable nor a message parameter), It will be "closured”
when creating this object, which implies that the scope rule of
ABCL/1 is lexical. The notation using ! is often used in
ABCL/1 to express an event of returning or sending back a
value in response to a request which is sent in a now or future
type message passing. In the following fragment of a script:

(=> pattern-for-request ... lexpression ... ),
where is the value of expression returned? In fact, this notation
is an abbreviated form of a more explicit description which
uses the reply destination. An equivalent and more explicit
form is:
(=> pasernfor-request @ dastinasion ... [destination <= expression) ... )
wheze destination is a pattern variable which is bound to the
reply destination for a message that matches partern-for-
request. When a message is sent in a past type message pass-
ing, if we need to specify the reply destination, it can be
expressed as:

[T <= request @ reply-destination ).

Note that reply-destination denotes an object. In the case of
now or future type message passing, pattern variables for reply
destination are matched with certain objects that the semantics
of now/future type message passing defines. (See §6.) Thus the
programmer is not allowed to explicitly specify reply destina-
tions in now or future type message passing. So the following
expressions [target <== message @ reply-destination}, and
{target <= message @ reply-destination $ x] are illegal.

There is another way to create an object. That is, an
object can be obtained by copying some object. We can use
the copy instantiation model [Briot 1984] after defining a pro-
totype [Licberman 1986], rather than defining a generator
object (analog to a class). Each object can invoke a primitive
function "self-copy” whose returning value is & copy of the
object itself (Me), which will be exemplified in §9.
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5.3. Ordinary Mode and Express Mode in Message Passing

The difference between the ordinary mode and express mode in
message passing was explained in §3. The notational distinc-
tion between the two modes in message transmission is made
by the number of "<", one for the ordinary mode and two for
the express mode (namely <= and <==, v5. <<= and <<==),
The same distinction should be made in message reception
because a message sent in the ordinary mode should not be
interpreted as one sent in the express mode. To make the dis-
tinction explicit, we use the following notation for expressing
the reception of a message sent in the express mode.

(=>> message-paitern where constraint ... action...),

The reception of a message sent in the ordinary mode is
expressed by the following notation as explained above:

(=> message-pattern wheve constraint ... action ...)

This notational distinction protects an object from unwanted
express mode messages because the object accepts only mes-
sages that satisfy the patterns and constraints declared after the
notation “(=>>". Express mode messages which do not satisfy
such patterns and constraints are simply discarded.

Suppose a message sent in the express mode arrives at an
object which has been currently activated by an ordinary mode
message. If the script of the object contains the pattern and
constraint that the message satisfies, the current actions are
temporarily terminated (or suspended) and the actions
requested by the express mode message are performed. If the
object is accessing its local persistent memory when the
express mode message arrives, the current actions will not be
terminated until the current access to its local memory is com-
pleted. Also, if the object is performing the actions whose
script is enclosed by "(atomic” and ")" in the following
manner:

(atomic ... action ...),

they will not be terminated (or suspended) until they are com-
pleted. And if the actions specified by the express mode mes-
sage are completed and no express mode messages have
arrived yet at that time, the temporarily terminated actions are
resumed by default. But, if the actions specified by the express
mode message contains the "non-resume” command, denoted
by:
(non-resume),

the temporarily terminated actions are aborted and will not be
performed any more.

Note that, in the above explanation, the actions tem-
porarily terminated by an express mode message are the ones
that are activated (specified) by an ordinary mode message.
When an object is currently performing the actions specified by
an express mode message, no message (even in the express
mode) can terminate (or suspend) the current actions.

To illustrate the use of express mode, we give the
definition of the behavior of a clock object Ticker which sends
[:tick ...] messages to all the alarm clocks he knows about (the
value of its state variable "alarm-clocks-list”). The definition
of the Ticker object is given in Figure 7. The two state vari-
ables of Ticker, "time" and "alarm-clocks-list", respectively
contain the curmrent time and a list of alarm clocks to be
"ticked". When Ticker receives a [:start] message, it starts
ticking and updating the contents of “"time".
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[alarm-clocks-list <= [:tick...]}
means sending (:tick ...] messages to each member of "alarm-
clocks-list" simultaneously. We call this way of sending mes-
sages multicast. When Ticker receives a (:stop] message sent in
the express mode, it stops ticking by the effect of (non-
resume). This message must be sent in the express mode
because Ticker always stays in the active mode to keep ticking
(in the while loop). An [:add ...] message appends new alarm
clock object to the "alarm-clocks-list" in Ticker. This message
also should be sent in the express mode for the same reason.
[object Ticker

(state [time := 0] [alarm-clocks-list := nil])

(script

(=> [:start]

(while t do
(if alarm-clocks-list
then [alarm-clocks-list <= [:tick time]])
[time ;= (1+ time)]))
(=>> [:add AlarmClock]
[alarm-clocks-list :» (cons AlarmClock alarm-clocks-list)])

(=>> {:8t0p] (non-resume)) )]
Figure 7. Definition of Ticker Object

The definition of the CreateAlarmObject (which appeared in
Figure 6) should be slightly changed in order for a newly
created alarm clock object to be known by Ticker. The descrip-
tion of an alarm clock object is the same as in Figure 6, but
when created it will now be bound to a temporary variable
"AlarmClock". Then, after the created object is sent to Ticker
to be appended to Ticker's “alarm-clocks-list", it is returned to
the sender of the [:new ...] message as in the case of Figure 6.
[object CreateAlarmClock
(script
(=> [:new Person-to-wake)

(temporary
{AlarmClock := [object description of an alarm clock object 1))

[Ticker <<= [:add AlarmClock]]
1AlarmClock) ))

Figure 8. New Deflnition of Create AlarmClock Object

6. A Minimal Computation Model
Below we will demonstrate that

[1] A now type message passing can be reduced to a combina-
tion of past type message passing and a selective message
reception in the waiting mode, and

[2] A future type message passing can also be reduced to a
combination of past type message passing and now type
message passing.

Thus both kinds of message passing can be expressed in terms

of past type message passing and selective message reception

in the waiting mode, which means that now type message pass-
ing and future type message passing are derived concepts in
our computation model. (The rest of this section could be
skipped if one is not interested in the precise semantics of
“now" and "future” types message passing.)

6.1. Reducing Now Type

Suppose the script of an object A contains a now type message
passing in which a message M is sent to an object T. Let the
object T accept the message M and retumn the response (i.c.,
send the response to the reply destination for M). This situa-
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tion is described by the following definitions for A and T writ-
ten in ABCL/1.

[object A
(script
(-> mlessage-pattern
[object T

v [Te<n=M] .. )

(script
(=> patternforM @R ... [R <mexpression] .. ) ...))

«¢ Note that the script of T can be abbreviated as:
(=> pattern-for-M ... lexpression ..)

We introduce a new object "New-object” which just
passes any received message to A, and also introduce a select-
construct which receives only a message that is sent from
“New-object”. The behavior of the object A can be redefined
without using now type message passing as follows:

[object A
(script
(:> message-pattern
(temporary [New-object := [object (script (=> any [A <=any])] ])

T<=M@ NGW-d)j&l]
(select
(=> value where (= &sender New-object)
« value .. ) [ T )|

Note that the message M is sent by a past type message passing
with the reply destination being the newly created "New-
object.” Immediately after this message transmission, the
object A changes into the waiting mode and waits for a mes-
sage that is passed by the "New-object”. The constraint
"where (= &sender New-object)”

in the select-construct means that the messages sent by New-
Object can only be accepted. "New-object” serves as a unique
identifier for the message transmission from A to T in past
type: [T <= M @ New-object).

6.2. Reducing Future Type

Suppose the script of an object A containg & future type mes-
sage passing as follows:
[object A
(state ... )
(future .. x ... )
(script

i:> message-pattern
w [T<aM$1] ...
« (ready?x) ... (next-value x) ... (all-valuesx) ... ) .. )}

; declaration of a future varisble x.

Then we consider the future variable x in A to be a state
variable binding a special object created by an object CreateFu-
tureObject. (In general, such a object, namely a future object, is
created for each future variable if more than one future variable
is declared.) Also we rewrite the accesses to x by now type
message passing to x as follows:
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[object A
(state ... [x := {CresteFutureObject <== [:new Me]]] ... )
(script

(-> message-pastern
w [T<eM@x) ... [x <o= [:ready?]] ...
v [X <cum [:next-value]] ... [x <== (:all-values]] ... ) ... )]

Note that the future type message passing [T <= M § x] is
replaced by a past type message passing [T <= M @ x] with
the reply destination being x. Thus, the future type message
passing is eliminated. The behavior of the future object is
defined in Figure 9. As mentioned before, it is essentially a
queue object, but it only accepts message satisfying special
pattern-and-constraint pairs. A queue object created by
CreateQ accepts four kinds' of messages: [:empty?],
[:enqueue...], [:dequeue], and [:all-elements).
[object CreateFutureObject
(script
(=> [:new Creator]
![object
(state [box ;= [CreateQ <== [:new]]])
(script
(=> [:ready?] where (= &sender Creator)  ; if [:ready?] is sent
Y(not {box <== [:empty7]])) ; by the Creator,
; and if the box is non-empty, t is returned.
(=> [:next-value] @ R where (= &sender Creator)
(if [box <w= {zempty7]
then (select ; waits for a message to come, not sent by the
(=> message where (not (» &sender Creator)) ; Creator.
(R <= message})) ; it is returned
; to the reply destination for a [:next-value] message.
else ![box <= [:dequeue]]))
; removes the first element in the queue and returns it.
(=> [:all-values} @ R where (= &sender Crestor)
(if (box <e= [:empty?]]
then (select ; waits for a message to come, not sent by the
(=> message where (not (= &sender Creator)) ; Creator.
[R <= [message]])) ; sends a singleton list.
else 1{box <= [:all-elements]]))
; removes all the elements in the queue and retumns the list of them.
(=> returned-value
{box <= [:enqueue returned-valuel]) )] ) )]

Figure 9. Definition of Future Object

Note the fact that the contents of the queue object stored in
"box" can be checked or removed solely by the object which is
bound to the pattern variable "Creator”. Furthermore, if the
queue is empty, the object which sends messages [:next-value]
or [:all-values] has to wait for some value to arrive.

7. Project Team: A Scheme of Distributed Problem Solving
In this section, we present a simple scheme of distributed prob-
lem solving described in ABCL/1. In doing so, we would like
to show the adequacy of ABCL/1 as a modelling and program-
ming language in the concurrent object-oriented paradigm.
Suppose a manager is requested to create a project team to
solve a certain problem by a certain deadline. He first creates a
project team comprised of the project leader and multiple prob-
lem solvers, each having a different problem solving strategy.
The project leader dispatches the same problem to each prob-
lem solver. For the sake of simplicity, the problem solvers are
assumed to work independenty in parallel. When a problem
solver has solved the problem, it sends the solution to the pro-
ject leader immediately, We assume the project leader also
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tries to solve the problem himself by his own strategy. When
cither the project leader or some problem solvers, or both, have
solved the problem, the project leader selects the best solution
and sends the success report to the manager. Then he sends &
stop message to all the problem solvers. If nobody has solved
the problem by the deadline, the project leader asks the
manager to extend the deadline. If no solution has been found
by the extended deadline, the project leader sends the failure
report to the manager and commits suicide. This problem solv-
ing scheme is easily modeled and described in ABCL/1
without any structural distortions. (See Figure 10.)

Ticker

problem
solverl

alarm-clock) alarm-clock?

problem

Proj der solveri

problem
solvern

Figure 10. A Scheme for Distributed Problem Solving

The definition of the project leader object is given in Fig-
ure 11. Initially it creates an alarm clock object which will
wake the project leader, and keeps it in a state variable "time-
keeper”. "Me" is a reserved symbol in ABCL/1 which denotes
the innermost object whose definition contains the occurrence
of "Me". We assume that the Ticker defined in Figure 7 is now
ticking. When the project leader object receives a [:solve...)
message from the manager object, it requests its alarm clock
(time-keeper) to wake itself at certain time. Then, the project
leader object multicasts to the project team members a message
that contains the problem description. Note that dispatching the
problem to each problem solver is expressed as a multicast of
the problem specifications and also the message passing is of
JSuture type. If a problem solver finds a solution, it sends the
solution to the future object bound to "Solutions" of the project
leader object. While the project leader engages himself in the
problem solving, he periodically checks the variable by execut-
ing “(ready? Solutions)" as to if it may contain solutions
obtained by problem solvers. Note that there is a fair chance
that more than one problem solver sends their solutions to the

future object bound to "Solutions”. As defined in the previous
section, solutions sent by problem solvers are put in the queue
representing the future object in the order of arrival. "(all-
values Solutions)” evaluates to the list of all the elements in the
queue. Note that the sequence of actions from selecting the
best solutions to terminating the team members’ tasks is
enclosed by "(atomic" and ")" in Figure 11. Thus, the sequence
of actions is not terminated (or suspended) by an express mode
message.
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[object Projectleader
(state [team-members := nil] [bestSolution := nil]
{time-keeper := [CreateAlarmClock <== [:new Me]]])
(future Solutions)
(script
(=> [:add-a-tcam-member M]
{team-members :« (cons M team-members)))
(=> [:s0lve SPEC :by TIME)
(temporary [mySolution := nil]) ; temporary variable
{time-] <= [:wake-me-at (- TIME 20)]]
[team-members <= {:s0lve SPEC] $ Solutions)
; multicast in future type
(while (and (not (ready? Solutions)) (null mySolution))
do ... try to solve the problem by his own
strategy and store his solution in mySolution ...)
(atomic .
[bestSolution := (choose-best mySolution (all-values Solutions))}
[Manager <<= [:found bestSolution])
[team-members <<= [:stop-your-task}]))
(=>> [:time-is-up] where (= &sender time-keeper)
(temporary new-deadline)

(if (nuil bestSolution)
then

[new-deadline := (Manager <<== [:can-extend-deadline?]]]
(if (null new-deadline)
then [team-members <<= [:stop-your-task]] (suicide)
else [time-keeper <= [:wake-me-at new-deadline]])))
(»>> [:you-are-t00-late] where (= &sender Manager)
(if (null bestSolution)
then [team-members <<= [:stop-your-task]] (suicide))) )]

Figure 11. Definition of ProjectLeader Object

If no solution is found within the time limit the project
leader himself has set, a [:time-is-up] message is sent by his
time keeper (an alarm clock object) in the express mode. Then,
the project leader asks the manager about the possibility of
extending the deadline. If the manager answers "no” (ie.,
answers "nil"), it sends a message to stop all the problem
solvers and commits suicide.

Though the definition of the manager object (denoted by
"Manager” in Figure 11) and problems solvers are easily writ-
ten in ABCL/1, we omit them here.

8. Delegation

The reply destination mechanism explained in §4 and used in
$6 is the basic tool to provide various delegation strategics
(Lieberman 1986). The explicit use of pattern variables for
reply destinations enables us to write the script of an object
which delegates the responsibility of retuming a requested
result to another object.

Below we define an object A, and an object B which will
delegate all unknown messages to A. The pattern variable
“any" will match any message not matched by the other pat-
temns in the script of B (this is analog to the last clause with
predicate ¢ in a Lisp cond construct). The variable R will
match the reply destination. So any kind of message, namely
past type with or without reply destination, or now type, or
future type message, will be matched and fully delegated to the
object A, which could in turn, also delegate it to another object.



{object A [object B
(state ... ) (state ... )
(script (script
(=> patternA1 (=> patternBi
) )
(-> paiternAs (-; patiernBp

w ) P
(=>any @R [A<=any @R))))

This is illustrated by Figure 12, showing an answer is
delivered directly to the asker without coming back through B.

pattern @ reply

Figure 12, Illustration of Basic Delegation

9. A Distributed Algorithm for the Same Fringe Problem

The same fringe problem is to compare the fringes of two trees
(Lisp lists). We will present a solution of the same fringe
problem in ABCL/1, which will permit us to illustrate the use
of both future type messages and reply destinations.

Our approach to the problem is similar to the one pro-
posed by B. Serpette in [Serpette 1984]. Basically, there are
three objects in this model:

* two tree extractors, extracting recursively the fringe of each
tree,

* one comparator, comparing the successive elements of the
two fringes.

These three objects will work in parallel. (See Figure 13.)

Figure 13. The Same Fringe: Tree Extractors and Comparator

The two tree extractors are linked to the comparator through
two dashed arrows. Each one represents the data-flow of the
successive elements of the fringe extracted by each tree extrac-
tor.

The Comparator object, defined in Figure 14, owns two
state variables: "Extractorl” and "Extractor2” binding the two
tree extractors, and two future variables “inputl” and "input2"

26 OOPSLA '86 Proceedings

which are used for receiving the fringes from these two extrac-
tors. "Extractor]” will be bound to the object TreeExtractor
defined in Figure 15, the second extractor ("Extractor2”) will
be created by requesting TreeExtractor to copy itself. When the
Comparator object receives the {treel :and tree2] message, it
will send a future type message [:fringe tree] to cach TreeEx-
tractor in order to request it to compute the fringe of each of
the trees. Comparator assumes that Extractorl and Extractor2
will reply the successive elements of the fringes, which will be
enqueued in the future objects bound to inputl and input2,
respectively.
{object Comparator
(state
[Extractor! := TreeExtractor]
[Extractor2 := [TreeExtractor <== [:copy]l})
(future inputl input2)
(script
(=> {treel :and tree2)
{Extractorl <= [:fringe tree1) $ inputl]; future type message
[Extractor2 <= [:fringe tree2] $ inpur2] ; future type message
[Me <= [:eq (next-value inputl) :with (next-value input2)]])
(=> [:eq atom1 :with atom2]
(if (eq atom1 atom2)
then (if (eq atom1 'EOT)
then (print "same fringe")
else [Me <= [:eq (next-value inputl)
:with (next-value input2)]])
else (print “fringes differ”))) )]

Figure 14, The Same Fringe Comparator

When two values from the two extractors become available to
Comparator through input! and input2, Comparator sends an
[:eq (next-value inputl) :with (next-value input2)] message to
itself. Note that if one of the two queues (i.e., the future
objects bound to variables inputl and input2) is empty, Com-
parator has to wait until both queues become non-empty. (See
the definition of a future object in §6.2.) If the two elements are
equal, Comparator will compare next elements unless they
were equal to the special atom EOT (as End Of Tree), which
indicates the end of the extraction. If both are EOT, the two
fringes are declared to be the same. On the other hand, if the
two elements differ, Comparator will declare the two fringes to
be different.

We could have defined a CreateTrecExtractor object, as
generator of the tree extractors, but (to show a different way of
creating objects) we will rather define the prototype object
TreeExtractor, and later copy it to create the second tree extrac-
tor we need. The TreeExtractor object, defined in Figure 15,
owns a single state variable "output” to remember the reply
destination to which it has to send the successive elements of
the fringe during the extraction.

The script [:copy] will return & copy of itself. This will be a
pure (exact copy of the original object) copy of TreeExtractor.
The [:fringe tree] script will bind the reply destination to the
variable "Pipe". This reply destination is a future object which
was bound to the future variable "inputl” or "input2” of Com-
parator. It will be assigned to the state variable "output”, thus
connecting? its "output” with one "input’ of the Comparator
(like in the Figure 13). Then it will send to itself the message
[:extract tree] with itself being the reply destination.

t like the communication pipes in the ObjPive model [Serpette 1984], in-

spired by the Un*x pipes. In contrast, these "pipes” are virtual (no assump-
tion of shared memory).
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{object TreeExtractor
(state output)
(script
(=> [:copy] !(self-copy))
(=> [:fringe tree] @ Pipe
{output := Pipe]
{Me <= [:extract tree] @ Me))
(=> [:extract tree] @ C
(cond
((null tree) [C <= [:continue]]))
((atom tree) ([output <= tree] [C <= [:continue]])
(t [Me <= [:extract (car tree))
@ [object
(state [Extractor ;= Me])
(script
(=> [:continue]
{Extractor <= [:extract (cdr tree)] @ C)] 1) ))
(> [:continue] [output <= "EOT}))]

Figure 15. The Same Fringe TreeExtractor

To extract the fringe of a tree, the continuation-based pro-
gramming style is adopted, which is in contrast to iterative or
recursive ones. This model was initiated by Carl Hewitt
[Hewitt et al. 1974}, who gave a solution of the same fringe
problem using continuations in a coroutine style. In contrast,
our algorithm is fully parallel. The "[:extract tree] @ C' mes-
sage script will bind the variable C to the reply destination,
which represents the continuation, i.c., the object which will do
the following:

o If the tree is null, the tree extractor just activates the con-
tinuation C, by sending it the message [:continue].

» If the tree is atomic, then this element is sent to the output,
(so the corresponding "input1/2” of Comparator will receive
a new clement) and the continuation will be activated.

* The last case means that the tree is a node (a Lisp cons). We
have to extract its left son (car), and then its right son (cdr).
This second part to be performed later is specified in a
dynamically created object (a new continuation), which will
request the tree extractor to extract the cdr of the tree, when
receiving the [:continue] message. The bindings of vari-
ables "tree” and "C" are memorized in the new continuation
because of the lexical scoping of ABCL/1.

When the tree extractor receives the [:continue] message, that
means the end of the extraction. So it will send EOT to the
output, and stop there.

Note that in this algorithm if the two fringes are found to
be different, the two extraction processes go on. Comparator
could then send a stop message to either "freeze" or kill them.
To deal with such a situation, we could devise various stra-
tegies which are related to the issues of objects’ "capability”
and garbage collection. This will be a subject for further study.

10. Concluding Remarks

10.1. Importance of the Waiting Mode

The computation model presented in this paper has evolved
from the Actor computation model. One of the important
differences is the introduction of the waiting mode in our com-
putation model. As noted at the end of §3, without now type
(and/or future type) message passing, module decomposition in
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terms of a collection of objects tends to become unnatural.
Thus the now type message passing is essential in structuring
solution programs. In our computation model, the now type
message passing is derived from the waiting mode and the past
type message passing in a simple manner as demonstrated in
§6.1. In contrast, the realization of a now type message pass-
ing in the Actor computation model forces the unnatural
decomposition of actors and requires rather cumbersome pro-
cedures for identifying a message that corresponds to the retum
(reply) value of now type message passing.

10.2. Express Mode Message Passing

We admit that the introduction of the express mode message
passing in a high-level programming language is rather
unusual. The main reason of introducing the express mode is
to provide a language facility for nanural modelling. Without
this mode, the script of an object whose activity needs to be
interrupted would become very complicated. When an object
is continuously working or active, if no express mode message
passing is allowed, there is no way of interrupting the object’s
activity or monitoring its state. One can only hope that the
object terminates or suspends its activity itself and gives an
interrupting message a chance to be accepted by the object.
But this would make the structure of the script of the object
unnatural and complicated. It should also be noted that the
express mode message passing is useful for debugging because
it can monitor the states of active objects.

10.3. Interrupt vs. Non-Interrupt

Our notion of express mode message passing is based on a very
simple interrupt scheme. Even in this simple scheme, we must
sometime protect the activity of an object from unwanted
interruptions by using the “(atomic ...)" construct. (See the
script of ProjectLeader in Figure 11.) Appropriate uses of this
construct sometimes requires skills.

An altemnative scheme might be what we call the mail
priority model, In this model, objects are not interrupted dur-
ing their activitics. An express mode message sent to an object
arrives at the express queue without interrupting the object.
When the object is ready to check its message queues, it
always first consult its express queue (with first priority), and
consult its ordinary queue only when there is no (more) mes-
sage in the express queue. Now there is no fear of bad interr-
uptions that the programmer has to take care of. But, on the
other hand, as noted in the previous subsection, the activity of
an object cannot be stopped or monitored when it is in pro-
gress. To alleviate thig situation, we can introduce a built-in
primitive, say "(check-express)”, with which an object can
check to sec whether an express mode message has arrived
while the object is carrying out its actions. "(check-express)”
can be placed in the script of an object and it is invoked as one
of the actions performed by the object. When it is invoked, if a
message is in the express queue and it satisfies one of the
pattern-and-constraint pairs in the script, the execution of the
actions specified for the message pattern intervenes.

Since both schemes have various advantages and disad-
vantages and they depend on the application areas of our
language, we need more experiments to draw a firm conclu-
sion.
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10.4. Parallelism and Synchronization

Let us review the basic types of parallelism provided in
ABCL/N:

[1] Concurrent activations of independent objects.

(2] Parallelism caused by past type and future type message
passing.

(3] Parallelism caused by the parallel constructs [ Yonezawa
et al. 1986) (we did not explain in this paper) and mulri-
casting (cf. §5.3 and §7).

Furthermore, ABCL/1 provides the following four basic
mechanisms for synchronization:

[1] Object: the activation of an object takes place one at a
time and a single first-come-first-served message queue
for ordinary messages is associated with each object.

{2] Now type message passing: a message passing of the now
type does not end until the result is returned.

(3] Select construct: when an object executes a select con-
struct, it changes into the waiting mode and waits only for
messages satisfying specified pattern-and-constraint pairs.

[4] Parallel construct: see [Yonezawa et al. 1986).

10.5. Relation to Other Work

Our present work is related to a number of previous research
activities. To distinguish our work from them, we will give a
brief summary of ABCL/1. Unlike CSP [Hoare 1978] or other
languages, ABCL/1 has characteristics of dyramic nature:
objects can be created dynamically, message transmission is
asynchronous, and the "knows"-relation among objects (i.e.,
network topology) changes dynamically. An object in our
computation model cannot be activated by more than one mes-
sage at the same time. This "one-at-a-time” nature is similar to
that of Monitors [Hoare 1974), but the basic mode of commun-
ication in programming with monitors is the call/return bila-
teral communication, whereas it is unilateral in ABCL/1.

10.6. Other Program Examples

A wide variety of example programs have been written in
ABCL/1 and we are convinced that the essential part of
ABCL/1 is robust enough to be used in the intended areas. The
examples we have written include parallel discrete simulation
[Yonezawa et al. 1984] [Shibayama and Yonezawa 1986],
inventory control systems [Kerridge and Simpson 1984) [Shi-
bayama et al. 1985] & l1a Jackson’s example [Jackson 1983],
robot arm control, mill speed control [Yonezawa and
Matsumoto 1985], concurrent access to 2-3 trees and distri-
buted quick sort [Shibayama and Yonezawa 1986).
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