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Abstract  

We describe an object-oriented architecture for 
intelligent tutoring systems. The architecture is 
oriented around objects that represent the various 
knowledge elements that are to be taught by the tutor. 
Each of these knowledge elements, called bites, 
inherits beth a knowledge organization describing the 
kind of knowledge represented and tutoring 
components that provide the functionality to 
accomplish standard tutoring tasks like diagnosis, 
student modeling, and task selection. We illustrate 
the approach with several tutors implemented in our 
lab. 

1. Introduction 

We are developing a general intelligent tutoring 
system (ITS) shell using the object-oriented 
programming language LOOPS (see Stefik and 
Bobrow [1986] for a description of LOOPS). Called the 
Bite-Sized Tutor, it provides the curriculum 
independent part of an intelligent tutor and specifies 
an organization for the curriculum knowledge to be 
supplied by a domain expert. Our goal is an interface 
where the curriculum could be supplied by a domain 
expert who is not a programmer. 

The Bits-Sized Tutor exploits the expert system 
approach currently being applied in many ITS 
projects. First a domain is analyzed and novices are 
observed while learning that domain. The results 
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from those studies supply a "cognitive task analysis" 
of the domain and a "bug catalog" of common novice 
problems in the domain. ("Cognitive task analysis" is 
a phrase coined at LRDC. It implies an analysis 
beyond a behavioral "rational task analysis" and 
specifically includes attention to the underlying 
cognitive skills and representations involved in a 
performance). From this base, various knowledge 
engineering techniques are used to construct an ITS. 
Although, many projects are extending these ideas to 
build tutors based on more detailed theories of human 
learning and inference of cognitive states (diagnosis) 
(see, for example, Bonar and Cunningham [1986], 
Ohlssen and Langley [1984] and Van Lehn [1984]), 
there is an enormous potential for tutors based on task 
analyses and bug catalogs. In particular, such tutors 
can exploit the wealth of cognitive science research on 
performance in a variety of domains. 

Widespread implementation of tutors based on 
task analyses and bug catalogs will require an ITS 
architecture and supporting development tools. In 
this ffaper we describe our first steps toward such an 
architecture. 

We first discuss problems with current ITS 
architectures and an overview or our approach. We 
also discuss the rationale for using the object-oriented 
programming paradigm. The architecture itself is 
then detailed, focusing on structure and flow of 
control. We illustrate this architecture with several 
example from our ITS projects. We conclude with 
future research directions. 

2. Rat ionale  

Most current ITS implementations are complex 
and unwieldy. Similar information repeats in several 
places and information that ought to .be closely related 
is spread apart. Furthermore, ITS components (e.g. 
student model, diagnoser), whose roles can be quite 
clearly delineated in an abstract description of the 
system, end up implemented with code diffused 
through many parts of the system. Overall, the 
systems are not modular. In particular, they do not 
allow for addition of new domain knowledge or new 
approaches to the pedagogical tasks. We want to 
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emphasize that this discussion is not a crit/cism of any 
particular ITS implementation, but a general problem 
that appears in many ITS. 

It might appear that these difficulties are simply 
a matter of prototype implementations, written 
without" concern for detailed software engineering 
issues. While this is part of the problem, there is a 
more fundamental design flaw, related to the use of 
knowledge within the ITS. ITS are usually conceived 
as a series of semi-independent compor~ents like 
"explainer", "diagnoser", "tutor", and "user modeler". 
The problem is that each of these components need to 
share many diverse pieces of knowledge. The 
knowledge needed for different components is at least 
overlapping, and often closely related. 

The WEST tutor [Brown and Burton, 1982] 
provides an example of these problems. As one of the 
most intellectually important "classic" ITS, it serves 
as a useful foil for this discussion. It can be viewed in 
two ways: by its "issues" (the fundamental items for 
which the system is prepared to instruct the student) 
and by its components (e.g. "expert", "differential 
modeler", "tutorial selector", etc.). In the actual 
Interlisp-D implementation of the tutor, the program 
is organized by components. This results in a system 
with unnecessary duplication and complexity in 
multiple, overlapping representation of issue 
knowledge. Besides obscuring knowledge 
organization, the current implementation of WEST 
makes it difficult to reuse and extend parts of the 
tutor. Given the many open research issues for ITS, 
this is a serious problem. 

In general, we need a tool that enables the 
development of tutoring systems much more rapidly 
than now possible. We also need a tool that allows a 
subject domain expert or a teacher (who is not 
necessarily a programmer) to modify the tutor-student 
interaction and the domain knowledge without 
reimplementing the system at each step. Finally we 
need a tool to make it easier for those developing 
tutors to test their systems as they are designed. 

3. An  Ob jec t -Or i en t ed  ITS A r c h i t e c t u r e  

We propose an architecture where every 
different kind of thing that the system can understand 
and talk to the user about (such things are often 
refered to as "issues", from the usage in the WEST 
tutor) is represented by a class (in the object-oriented 
programming sense) in the system. Everything the 
system knows is stored in a class. Of the different 
classes representing the domain, many will share 
common substructure. For such classes, the standard 
inheritance mechanisms of object-oriented 
progrnmmlng are appropriately used. The critical 
point is that every thing the system will interact with 
the user about is a separate class. We call these 
domain knowledge classes Bites. They are all 
subclasses of the class Bite. 

Given that we organize the system based on the 
things that the system knows about, where are we to 

put components of the tutor like the "diagnoser", 
"student model", and "task selector"? We provide 
these components in a generic form as high level 
classes. So, for example, there are classes that contain 
the functionality to implement a component like a 
diagnoser. In this case, the class Diagnoser will 
specify the local data needed to perform the diagnosis 
function as instance variables and algorithms to use 
that data as methods. The Diagnoser class 
specificat/on does not specify any particular diagnosis 
to be done, only the general procedure and data 
required for doing a diagnosis. 

The specific data needed for performing an actual 
diagnosis are provided when the general component 
classes (e.g. the Diagnoser class just discussed) are 
inherited by the Bite classes that actually need to use 
them. Similarly, the other standard ITS components 
are implemented as classes and inherited by the Bites. 
Consider an example where there were two kinds of 
diagnosers to accomplish two styles of diagnosis. This 
would be handled by having the general properties of 
diagnosers in a class Diagnoser with the specific 
properties contained in two subclasses DiagnoserA 
and DiagnoserB. Bites are specified to inherit their 
diagnosis capability from DiagnoserA or DiagnoserB 
as appropriate. 

The proposed architecture solves the problems 
described in Section 2 by making the system highly 
modular. Each curriculum element is represented 
explicitly as a class. To the extent that curriculum 
elements share structure, that sharing is explicitly 
represented in the inheritance among the classes 
representing these elements. Similarly, each of the 
key tutoring components is represented as a class 
object. These component classes are used to provide 
tutoring functionality to the domain classes. Like the 
domain element classes, component classes use 
inheritance to represent shared structure. 

3.1 The Curr iculum Elements:  Bites 

The structure of the classes represent/ng 
curriculum element bites is defined by inheritance 
from two kinds of classes. Tutoring component classes, 
such as the student model and the d/agnoser, provide a 
framework in which data must be supplied by the 
implementer or curriculum designer. We plan to build 
a non-progrr)mmlng interface to facilitate defining 
these bites. Bites also inherit structure based on the 
kind of knowledge they represent. ,We have defined 
several classes of bites: Abstraction Hierarchy Bites, 
Definition Bites, I/O Bites, and Discovery Bites. In 
this section we discuss each in detail. 

An abstraction hierarchy represents an ordering 
of concepts in the curriculum. In this hierarchy 
specific versions of a concept appear at the lowest level 
of the hierarchy and more abstract versions of that  
concept appear higher in the hierarchy. An example of 
th/s is shown in Figure I. There we see the abstraction 
hierarchies for Ohm's Law and Kirchoff's Law from 
our electricity tutor. The two highlighted nodes show 
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Figure I. Abstraction Hierarchy from the Electricity Tutor 

the relationship between the specific concept, "current 
is unchanged across an uninterupted wire", and the 
more abstract concept, "K/rchoWs Law". The 
I=SeriesUnintWirn bite is a specific version of 
KlrchoffsLaw bite and thus is shown at a lower 
position in the hierarchy. 

Abstraction hierarchy bites play an important 
organizing ro le /n  the tutors. These bites exercise a 
range of simpler ideas in the curriculum. In 
electricity, for example, understanding KirchoiTs Law 
implies understanding a collection of more 
fundamental ideas: circuit geometry (e.g. parallel vs. 
ser/es), resistor behavior, battery behavior, current, 
resistance, and voltage. Because of this organizing 
role, the problems generated from abstraction 
hierarchy bites are critical in diagnosis of student 
performance. Only abstraction hierarchy bites have 
sui~cient perspective (i.e. connection to other bites 
representing fundamental ideas), to test the students 
performance in problems that integrate across several 
bites. Implementing this perspective is a current area 
of active research. Our intial work is presented in the 
section on tutoring components. 

Definition Bites represent concepts that the 
student is to learn without being taught much 
background. Examples of this would be things like 

gravitational force used in our tutor for hydrostatics 
(Archimedes's Principle). Its important for the student 
to understand how gravity works when dealing with 
buoyancy, but it's not relevant why it works that way. 

I/O Bites represent concepts that have a 
black-box behavior. The student needs to know that 
certain inputs produce certain outputs and the rule 
(formula) descr/bing the behavior. The student does 
not need to know the justification for the behavior. The 
behavior of a resistor in an electric circuit is best 
represented in an I/O bite. 

Several of our tutors combine the ideas of 
discovery microworlds with those of ITS to provide a 
directed discovery environment. These tutors provide 
a m/croworld which simulates some aspect of real life. 
This simplifies the discovery of concepts that are 
useful for understanding the "real" world by 
elim/nating the deviations from the model that 
inevitably occur in "real" life. Because many students 
are lost in a purely discovery microworld, we want to 
provide the possibility of a more guided learning 
environment using ITS techniques. Ideally, the ITS 
allows the student to freely explore unUl it detects 
floundering, then it makes a suggestion. 
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Successfully exploration in computer 
microworlds requires the use certain scientific inquiry 
skills. Discovery Bites represent these skills. They 
enable the tutor to recognize when a student is 
floundering in his exploration and respond 
accordingly. An example of this type of bite is "vary 
only one variable while holding all else constant". This 
rule is necessary in the beginning of an exploration. 
[Shuts and Bonar, 1986]. 

3.2 Tutor ing  Components :  Dlagnoser  

There are three main tutoring components of the 
bite-sized tutoring architecture: the Diagnoser, the 
Student Model, and the Task Selector. We discuss 
each component in turn. The Diagnoser is invoked by 
some event that occurs during the tutoring session. 
What events invoke the Diagnoser is determined by 
the implementer of a specific tutor. In particular, we 
want to allow for different grain-sized observations of 
the student, ranging from a diagnosis only when a 
student completes a problem to a diagnosis based on 
the student's movement of the mouse every N 
milliseconds. 

The Diagnoser class is best illustrated in our 
implementation of the Electricity tutor and the 
diagnesis associated with abstraction hierarchy bites. 
Consider what happens when a student responds to a 
problem constructed at some intermediate bite in the 
K/rchoiTs Law abstraction hierarchy. That  problem 
has been constructed from a number of component 
bites representing the fundamentals needed to 
understand the abstraction hierarchy bite. For 
e-Ample, a bite in the Kirchofrs Law abstraction 
hierarchy constructs problems based on component 
bites concerning resistors, current, circuit geometry, 
etc. 

Once the system has a student response to a 
problem, the abstraction hierarchy bite begins a 
diagnosiL Using functionality provided by the 
Diagnoser class, the bite sends a message to each 
component bite asking if the domain knowledge in the 
component bite is relevant to the student's response, 
current tutoring goals, and the current tutoring mode. 

If it is, the Diagnoser then checks to see if the student 
is misusing the concept taught by this bite. "Misuse" is 
defined by a specific diagnosis algorithm operating on 
the specific data of that bite. The Diagnoser then 
updates the student model accordingly. Note that the 
data for the student model are, of course, stored in the 
bites. When the Diagnoser has completed updating 
the bites, it invokes the Task Selector to choose what it 
should do next. 

3,1 Tutor ing  Components:  The S tudent  
Model 

The Student Model maintains several 
components relevant to representing student 
performance. First, the Student Model contains a 
record of the events of the session. This is stored in a 
class variable of the Bite class so that all curriculum 
bites (which are instances of subclasses of Bite) have 
access to one copy of it. In addition, the Student Model 
specifies a series of instance variables that represent 
student performance on individual bites. We currently 
use a differential modeling scheme where we keep 
three seperate measures of the student's success with 
each bite. One i8 a measure over the entire tutoring 
session, one is a measure over the the last five events, 
and the last a measure of the last (or current) event. 
These measures are ratios of how many times the 
concept of each bite was used appropriately by the 
student divided by how many times it should have 
been used as determined by the Diagnoser. 

3.4 Tutor ing  Components :  The  Task Selector  

The basic flow of control of the tutor is based on 
Tutorin~Mode objects stored in a stack located in a 
global object TutoringSession. TutoringMode 
instances set the local state for a series of instructional 
tasks. The TutoringMode has two instance variables 
useful to the Task Selector. One indicates criteria for 
the mode being satisfied, and one indicates some 
threshold for deciding that  the student is floundering 
and currently unable to learn the current concept in 
the eurrent mode. 

Each mode object defines several messages. The 
Initialization message initializes the two instance 
variables mentioned above, based on the current 
student model. A Process message teaches the relevent 
bites in a manner consistent with the current mode 
(see below). A Satisfaction message will determine if 
the current mode is satisfied and what steps are to be 
taken when it is. It  usually means popping the present 
mode instance off the TutoringSession stack and 
pushing a new mode instance on the stack. A 
Threshold message decides what actions to take when 
the student shows evidence of not being able to satisfy 
the mode object. This will usually initiate pushing 
some remedial mode object onto the stack. 

The Task Selector first examines the stack. If it 
is empty the Task Selector creates a new instance of 
some default mode and sends the local Initialization 
message to the mode. The Task Selector then returns 
the control to the student. If the stack is not empty, the 
Task Selector sends the Satisfaction message. I f  the 
current mode is not satisfied, the Threshold message is 
then sent. Finally, if the threshold condition is not met 
the Process message is sent. 
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Tutoring modes describe the type of 
tutor-student interaction that  is currently being used. 
We are implementing six ofthese modes: 

Explorat ion -- The student is obtaining 
information from the microworld in order to refine and 
complete developing hypotheses. 

Exper imenta t ion  -- The student is performing 
some actions designed to confirm or differentiate 
hypotheses, whether explicitly stated or recognized by 
the tutor. 

E labora t ion  -- The student is testing some 
previously confirmed hypothesis. 

Didactic -- The tutor is driving the interaction 
by proposing problems for the student. 

Demonst ra t ion  -- The tutor takes over and 
demonstrates some concept explicitly. 

Coaching - The tutor provides some hints that  
will help the student understand the bites in question. 

4. E x a m p l e  Bi te -S ized  I n t e l l i g e n t  T u t o r s  

4.1 Bridge: An Intel l igent  Tu to r  for  
P r o g r a m m i n g  

Bridge is a tutor that  teaches computer 
progr_~_ mining. In Bridge, the student user is presented 
with problems which are of such complexity that  they 
could be presented in the first ten weeks of an 
introductory programming course. Currently, the 
student passes through three phases while solving the 
problems. 

In the first phase, the student constructs a set of 
step-by-step instructions using informal English 
phrases. In the next phase, the student matches these 
phrases to programming schemata we call "plans" 
[Soloway, et. al. 1982]. A program is built using a 
representation of these schema. In the final phase, the 
student matches the schemata to programming 
language constructs and uses these to build a 
programming language solution to the original 
problem. Currently the only language implemented in 
Bridge is Pascal, although other programming 
languages could be tutored using the same approach. 

In the current Bridge implementation (see Bonar 
and Cunningham [1986]) the curriculum dependent 
bites are the programming plans and the plan 
specializations needed for each problem that  Bridge 
can tutor. These plans fit into an abstraction hierarchy 
with the problem specific programming plans at the 
lowest level of the hierarchy. The Diagnoser 
determines whether a particular bite is not being used 
appropriately by comparing the student's current 
program with the requirements specified for that  plan 
in the current phase. This information is represented 
by a requirements language. This language defines a 
group of operators which indicate various things about 

the plans, the correct order of their appearance, and 
their relationships to each other. Figure 2 shows an 
example of this language. This example shows some of 
the requirements of the Counter Variable Plan in 
Phase I for the Ending Value Averaging Problem. 

Some of the requirements language operators we 
have found useful are: 

Sequence  -- this describes the order that  the 
plans should appear in the program. Figure 2 shows 
three such sequence requirements. The '...' that  
seperates some plans indicates that  zero or more plans 
can come between them in the student's solution. 

Exists? -- This operator indicates that  the plan 
mentioned must  appear in the program. In figure 2, 
the Counter Variable Plan is required to be in the 
program. 

AnyOf  -- this is the equivalent of an OR 
operator. I t  is satisfied if any of it's arguments is 
satisfied. 

All -- this is the equivalent of an AND operator. 
I t  is satisfied only if all of it's arguments are satisfied. 

Not -- this is the usual NOT operator. I t  is 
satisfied only if it's argument is not satisfied. 

PushToHighest -- This manages several 
requirements at once and selects a hint dealing with 
the first unsatisfied plan. 

4.2 The Invisible Hand: An Exp lo ra to ry  
Mlcroworld  for  Economics  

Our economic microworld simulates an 
imaginary town which conforms to the laws of supply 
and demand. The student controls several variables, 
e.g. population, income per capita, interest rates, 
consumer preferance, number of suppliers, and 
weather. The student changes one or more of these 
variables and observes the resultant change on the 
other variables of the microworld. The student has 
several tools to aid this discovery, e.g. a notebook to 
record the changes observed in the variables and a 
graph package to observe relationships between 
variables. In addition to teaching an economics 
curriculum, the tutor teaches scientific discovery 
skills, so some of it's bites will be discovery bites (see 
Figure 3). The economics curriculum bites will teach 
about the patterns in the data collected by the 
students as they explore the microworld. 

4.2 Ohm: A Tu to r  for  Basic Electrici ty 

The Electricity Tutor is designed to assist 
students with learning and developing basic problem 
solving skills in a learning-by-discovery environment. 
I t  teaches about voltage, current, and resistance in 
simple D.C, Circuits. I t  also teaches the process of 
discovery. The basic flow of the tutor is to pose 
problems that  require a successively more 
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Edit of  e~ )r~:ssior 
(PushToHighest (EVAPCounterVar iab lePlan 

Ex i s t s?  
( H i n t s  ( I n  o rder  to  compute the average, 

you v i11 need to  d i v i d e  the sum 
o f  the i n t e g e r s  by the number o f  
I n t e g e r s  read tn, I nc lude  a p lan  
to  read in  the number of  
i n t e g e r s . )  

(To compute the average,  you must 
d i v i d e  the sum of  a l l  the 
i n t e g e r s  read in by the count o f  
the number o f  i n tegers ,  Inc lude  
the %'Keep count o f  . , .  %" p lan  
now.))) 

(EVAPCounterVerieblePlan Sequence , . ,  
EVAPlnputNevValueVar iab lePlan . . .  
EVAPCounterVar lablePlan . . .  
(H in t s  ~You have to  acqu i re  the numbers 

BEFORE you can count them,,) 
(Put the step you use to acqu i re  the 

numbers above the step you use to  
count them.) 

(Put %"Keep count o f  . . .%" p lan  below 
the %'Read in . , ,%"  

or %"~et . . . .  %" p l a n . ) ) )  
(AnyOf (EVAPCounterVariableP1an Sequence . . .  

EVAPCounterVar iab lePlan . . .  
EVAPResultOutputPlan . . . )  

(EVAPCounterYar iab lePlan Sequence . . ,  
EVAPCounterVartablePlan . . .  
EVAPResultValuePlan . . . )  

(H in t s  (You must count the numbers BEFORE you 
can compute the ave rage . )  

(Put the s ta tement  you use to count 
the numbers h tgher  than the one 
you use to  compute the a v e r a g e . ) )  

)) 

Fillure 2. Requirementa Langua p fi'om Bridge 

sophisticated grasp on the basic concepts. Initally, 
students can solve problems with very weak models of 
the underlying phenomenon. As instruction proceeds, 
the problems require more accurate understanding. 
The problems focus on the application of Ohm's and 
Kirehhoffs Laws. 

After successfully solving a problem the student 
is asked to fill in a skeleton sentence describing the 
principle they have used. This allows the tutor to 
determine if the student is understanA;ng a bite that  
was successfully used to solve a problem. If  the 
sentence is filled in correctly a new bite is g/ven 
control. I f  the sentence is filled in incorrectly, the tutor 
develops another problem based on the current bite. 

The tutor is constructed with Abstraction 
Hierarchy bites. We are currently expanding this to 
include other kinds of bites, providing us with the 
means to cover a wider range of electronics and more 
other kinds of tutoring tasks. Some of the bites to be 
integrated into the Electricity Tutor are AC cireuite, 
capacitors, and inductore. Some of the tutoring tasks 

to be added are a "construction mode" where students 
are asked to build c/rcuite and a metaphor mode where 
students can be shown certain phenomenon in a 
simpler metaphorical way. 

4.4 Eureka :  A Tu to r  fo r  Hydros ta t i c s  
P rob l ems  

Eureka employs an exploratory microworld 
environment that  demonstrates the principles of 
buoyancy pertinent to Archimedes Principle [Klopfer, 
1985]. The mode of learning is very similar to the 
econom/es tutor. The student explores the microworld, 
makes hypotheses when he or she d/scorers some 
relationship, and then tests those hypotheses with 
subsequent experiments. The student has the ability 
to change several var/ables in the "laboratory" 
environment: the mass of the block, the densiW of the 
liquid, the gravitational Force, etc. He has the same 
tools available to aid his exploration that  were 
described above in the economies tutor. 
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Fib, ure 3. Bite-Sized Hierarchy from the Economics Tutor 

Figure 4 shows the inheritance lattice for 
Eureka. This tutor is very simihu" in structure to the 
economics tutor. It uses discovery bites to tutor useful 
scientific skills. It has bites that teach about 
observeable patterns in the data collected during the 
session. 

5. Conc lud ing  R e m a r k s  

We have illustrated a generic architecture for 
building intelligent tutoring systems. In particular, 
we have focused on techniques for domain independent 
representat/on of the knowledge to be taught. The key 
idea is to organize the tutor around objects that 
represent the knowledge to be taught, not around the 
various components of the tutor. 

Although, each of the tutors discussed is 
implemented, very little code is actually shared 
between them. We are currently reimplementing 
several of the tutors to share code for all the basic 
components and knowledge organizations. We have 
also begun working with non-programming domain 
experts in designing an interface to let them design 
the tutor's curriculum. We are excited and encouraged 
as the experience and practical aspects of one tutor 
carry over into the implerhentation of the next. 
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Alan Lesgold, Stellsn Ohlsson and Robert (}laser have 
all made important contributions to the ideas 
developed here. 
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Figure 4. Bite-Sized Hierarchy from the Eureka Tutor 

F41689-84-D-0002, Order 0004. Any opinions, 
findings, conclusions, or recommendations expressed 
in this report are those of the authors, and do not 
necessarily reflect the views of the U.S. Government. 
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