
An Object-Oriented Architecture for
Intelligent Tutoring Systems

J e f f r e y B o n a r , R o b e r t C u n n i n g h a m , a n d J a m i e S c h u l t z

I n t e l l i g e n t T u t o r i n g S y s t e m s
L e a r n i n g R e s e a r c h a n d D e v e l o p m e n t C e n t e r

U n i v e r s i t y o f P i t t s b u r g h
P i t t s b u r g h , P e n n s y l v a n i a 15260

Abstract

We describe an object-oriented architecture for
intelligent tutoring systems. The architecture is
oriented around objects that represent the various
knowledge elements that are to be taught by the tutor.
Each of these knowledge elements, called bites,
inherits beth a knowledge organization describing the
kind of knowledge represented and tutoring
components that provide the functionality to
accomplish standard tutoring tasks like diagnosis,
student modeling, and task selection. We illustrate
the approach with several tutors implemented in our
lab.

1. Introduction

We are developing a general intelligent tutoring
system (ITS) shell using the object-oriented
programming language LOOPS (see Stefik and
Bobrow [1986] for a description of LOOPS). Called the
Bite-Sized Tutor, it provides the curriculum
independent part of an intelligent tutor and specifies
an organization for the curriculum knowledge to be
supplied by a domain expert. Our goal is an interface
where the curriculum could be supplied by a domain
expert who is not a programmer.

The Bits-Sized Tutor exploits the expert system
approach currently being applied in many ITS
projects. First a domain is analyzed and novices are
observed while learning that domain. The results

Pcrmi~on to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is b](permission of the Association fbr
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

1986 ACM 0-89791-204-7/86/0900-0269 75¢

from those studies supply a "cognitive task analysis"
of the domain and a "bug catalog" of common novice
problems in the domain. ("Cognitive task analysis" is
a phrase coined at LRDC. It implies an analysis
beyond a behavioral "rational task analysis" and
specifically includes attention to the underlying
cognitive skills and representations involved in a
performance). From this base, various knowledge
engineering techniques are used to construct an ITS.
Although, many projects are extending these ideas to
build tutors based on more detailed theories of human
learning and inference of cognitive states (diagnosis)
(see, for example, Bonar and Cunningham [1986],
Ohlssen and Langley [1984] and Van Lehn [1984]),
there is an enormous potential for tutors based on task
analyses and bug catalogs. In particular, such tutors
can exploit the wealth of cognitive science research on
performance in a variety of domains.

Widespread implementation of tutors based on
task analyses and bug catalogs will require an ITS
architecture and supporting development tools. In
this ffaper we describe our first steps toward such an
architecture.

We first discuss problems with current ITS
architectures and an overview or our approach. We
also discuss the rationale for using the object-oriented
programming paradigm. The architecture itself is
then detailed, focusing on structure and flow of
control. We illustrate this architecture with several
example from our ITS projects. We conclude with
future research directions.

2. Rat ionale

Most current ITS implementations are complex
and unwieldy. Similar information repeats in several
places and information that ought to .be closely related
is spread apart. Furthermore, ITS components (e.g.
student model, diagnoser), whose roles can be quite
clearly delineated in an abstract description of the
system, end up implemented with code diffused
through many parts of the system. Overall, the
systems are not modular. In particular, they do not
allow for addition of new domain knowledge or new
approaches to the pedagogical tasks. We want to

September 1986 OOPSLA '86 Proceedings 269

http://crossmark.crossref.org/dialog/?doi=10.1145%2F28697.28723&domain=pdf&date_stamp=1986-06-01

emphasize that this discussion is not a crit/cism of any
particular ITS implementation, but a general problem
that appears in many ITS.

It might appear that these difficulties are simply
a matter of prototype implementations, written
without" concern for detailed software engineering
issues. While this is part of the problem, there is a
more fundamental design flaw, related to the use of
knowledge within the ITS. ITS are usually conceived
as a series of semi-independent compor~ents like
"explainer", "diagnoser", "tutor", and "user modeler".
The problem is that each of these components need to
share many diverse pieces of knowledge. The
knowledge needed for different components is at least
overlapping, and often closely related.

The WEST tutor [Brown and Burton, 1982]
provides an example of these problems. As one of the
most intellectually important "classic" ITS, it serves
as a useful foil for this discussion. It can be viewed in
two ways: by its "issues" (the fundamental items for
which the system is prepared to instruct the student)
and by its components (e.g. "expert", "differential
modeler", "tutorial selector", etc.). In the actual
Interlisp-D implementation of the tutor, the program
is organized by components. This results in a system
with unnecessary duplication and complexity in
multiple, overlapping representation of issue
knowledge. Besides obscuring knowledge
organization, the current implementation of WEST
makes it difficult to reuse and extend parts of the
tutor. Given the many open research issues for ITS,
this is a serious problem.

In general, we need a tool that enables the
development of tutoring systems much more rapidly
than now possible. We also need a tool that allows a
subject domain expert or a teacher (who is not
necessarily a programmer) to modify the tutor-student
interaction and the domain knowledge without
reimplementing the system at each step. Finally we
need a tool to make it easier for those developing
tutors to test their systems as they are designed.

3. An Ob jec t -Or i en t ed ITS A r c h i t e c t u r e

We propose an architecture where every
different kind of thing that the system can understand
and talk to the user about (such things are often
refered to as "issues", from the usage in the WEST
tutor) is represented by a class (in the object-oriented
programming sense) in the system. Everything the
system knows is stored in a class. Of the different
classes representing the domain, many will share
common substructure. For such classes, the standard
inheritance mechanisms of object-oriented
progrnmmlng are appropriately used. The critical
point is that every thing the system will interact with
the user about is a separate class. We call these
domain knowledge classes Bites. They are all
subclasses of the class Bite.

Given that we organize the system based on the
things that the system knows about, where are we to

put components of the tutor like the "diagnoser",
"student model", and "task selector"? We provide
these components in a generic form as high level
classes. So, for example, there are classes that contain
the functionality to implement a component like a
diagnoser. In this case, the class Diagnoser will
specify the local data needed to perform the diagnosis
function as instance variables and algorithms to use
that data as methods. The Diagnoser class
specificat/on does not specify any particular diagnosis
to be done, only the general procedure and data
required for doing a diagnosis.

The specific data needed for performing an actual
diagnosis are provided when the general component
classes (e.g. the Diagnoser class just discussed) are
inherited by the Bite classes that actually need to use
them. Similarly, the other standard ITS components
are implemented as classes and inherited by the Bites.
Consider an example where there were two kinds of
diagnosers to accomplish two styles of diagnosis. This
would be handled by having the general properties of
diagnosers in a class Diagnoser with the specific
properties contained in two subclasses DiagnoserA
and DiagnoserB. Bites are specified to inherit their
diagnosis capability from DiagnoserA or DiagnoserB
as appropriate.

The proposed architecture solves the problems
described in Section 2 by making the system highly
modular. Each curriculum element is represented
explicitly as a class. To the extent that curriculum
elements share structure, that sharing is explicitly
represented in the inheritance among the classes
representing these elements. Similarly, each of the
key tutoring components is represented as a class
object. These component classes are used to provide
tutoring functionality to the domain classes. Like the
domain element classes, component classes use
inheritance to represent shared structure.

3.1 The Curr iculum Elements: Bites

The structure of the classes represent/ng
curriculum element bites is defined by inheritance
from two kinds of classes. Tutoring component classes,
such as the student model and the d/agnoser, provide a
framework in which data must be supplied by the
implementer or curriculum designer. We plan to build
a non-progrr)mmlng interface to facilitate defining
these bites. Bites also inherit structure based on the
kind of knowledge they represent. ,We have defined
several classes of bites: Abstraction Hierarchy Bites,
Definition Bites, I/O Bites, and Discovery Bites. In
this section we discuss each in detail.

An abstraction hierarchy represents an ordering
of concepts in the curriculum. In this hierarchy
specific versions of a concept appear at the lowest level
of the hierarchy and more abstract versions of that
concept appear higher in the hierarchy. An example of
th/s is shown in Figure I. There we see the abstraction
hierarchies for Ohm's Law and Kirchoff's Law from
our electricity tutor. The two highlighted nodes show

270 OOPSLA '86 Proceedings ~ 1966

,bstraction-Hierarch~
/ / I ~ V - - R

~ / " I~R'-V
/ OhmsLaw ~ V ~R--I

"" -"R I

/ / I=Series JResistor
/ / / , = S e r i e s Q I

- - / \ ~" InSeriesR / / - ~
/ / :~ I=SeriesUnintWire :

AbstractJonH ~ / • . . • • • • • • • • • • * • -*"
\ / ___---- I÷ParLowerlnComp
\ / / leParallel

/ / / ~ J+ParSums
~ m s m o a a u o e u • mpj~

=_ KJrchoffsLaw ~=-.~_~ ~ V+SerJesLowerlnComp
o e o l n e e l l l l l e a~ ~ " V+SerJes

~ V eSeriesSums
//V=ParComponentsR

/ j V:ParNotToCompn
_/~..~- V=ParComponentsQI

VsParallel ~
~ V=ParComponentsqt

'~ VsParNetToCompQI
VsParNetToComp0t

i i i

Figure I. Abstraction Hierarchy from the Electricity Tutor

the relationship between the specific concept, "current
is unchanged across an uninterupted wire", and the
more abstract concept, "K/rchoWs Law". The
I=SeriesUnintWirn bite is a specific version of
KlrchoffsLaw bite and thus is shown at a lower
position in the hierarchy.

Abstraction hierarchy bites play an important
organizing ro le /n the tutors. These bites exercise a
range of simpler ideas in the curriculum. In
electricity, for example, understanding KirchoiTs Law
implies understanding a collection of more
fundamental ideas: circuit geometry (e.g. parallel vs.
ser/es), resistor behavior, battery behavior, current,
resistance, and voltage. Because of this organizing
role, the problems generated from abstraction
hierarchy bites are critical in diagnosis of student
performance. Only abstraction hierarchy bites have
sui~cient perspective (i.e. connection to other bites
representing fundamental ideas), to test the students
performance in problems that integrate across several
bites. Implementing this perspective is a current area
of active research. Our intial work is presented in the
section on tutoring components.

Definition Bites represent concepts that the
student is to learn without being taught much
background. Examples of this would be things like

gravitational force used in our tutor for hydrostatics
(Archimedes's Principle). Its important for the student
to understand how gravity works when dealing with
buoyancy, but it's not relevant why it works that way.

I/O Bites represent concepts that have a
black-box behavior. The student needs to know that
certain inputs produce certain outputs and the rule
(formula) descr/bing the behavior. The student does
not need to know the justification for the behavior. The
behavior of a resistor in an electric circuit is best
represented in an I/O bite.

Several of our tutors combine the ideas of
discovery microworlds with those of ITS to provide a
directed discovery environment. These tutors provide
a m/croworld which simulates some aspect of real life.
This simplifies the discovery of concepts that are
useful for understanding the "real" world by
elim/nating the deviations from the model that
inevitably occur in "real" life. Because many students
are lost in a purely discovery microworld, we want to
provide the possibility of a more guided learning
environment using ITS techniques. Ideally, the ITS
allows the student to freely explore unUl it detects
floundering, then it makes a suggestion.

September 1986 OOPSLA ~6 Proceedings 271

Successfully exploration in computer
microworlds requires the use certain scientific inquiry
skills. Discovery Bites represent these skills. They
enable the tutor to recognize when a student is
floundering in his exploration and respond
accordingly. An example of this type of bite is "vary
only one variable while holding all else constant". This
rule is necessary in the beginning of an exploration.
[Shuts and Bonar, 1986].

3.2 Tutor ing Components : Dlagnoser

There are three main tutoring components of the
bite-sized tutoring architecture: the Diagnoser, the
Student Model, and the Task Selector. We discuss
each component in turn. The Diagnoser is invoked by
some event that occurs during the tutoring session.
What events invoke the Diagnoser is determined by
the implementer of a specific tutor. In particular, we
want to allow for different grain-sized observations of
the student, ranging from a diagnosis only when a
student completes a problem to a diagnosis based on
the student's movement of the mouse every N
milliseconds.

The Diagnoser class is best illustrated in our
implementation of the Electricity tutor and the
diagnesis associated with abstraction hierarchy bites.
Consider what happens when a student responds to a
problem constructed at some intermediate bite in the
K/rchoiTs Law abstraction hierarchy. That problem
has been constructed from a number of component
bites representing the fundamentals needed to
understand the abstraction hierarchy bite. For
e-Ample, a bite in the Kirchofrs Law abstraction
hierarchy constructs problems based on component
bites concerning resistors, current, circuit geometry,
etc.

Once the system has a student response to a
problem, the abstraction hierarchy bite begins a
diagnosiL Using functionality provided by the
Diagnoser class, the bite sends a message to each
component bite asking if the domain knowledge in the
component bite is relevant to the student's response,
current tutoring goals, and the current tutoring mode.

If it is, the Diagnoser then checks to see if the student
is misusing the concept taught by this bite. "Misuse" is
defined by a specific diagnosis algorithm operating on
the specific data of that bite. The Diagnoser then
updates the student model accordingly. Note that the
data for the student model are, of course, stored in the
bites. When the Diagnoser has completed updating
the bites, it invokes the Task Selector to choose what it
should do next.

3,1 Tutor ing Components: The S tudent
Model

The Student Model maintains several
components relevant to representing student
performance. First, the Student Model contains a
record of the events of the session. This is stored in a
class variable of the Bite class so that all curriculum
bites (which are instances of subclasses of Bite) have
access to one copy of it. In addition, the Student Model
specifies a series of instance variables that represent
student performance on individual bites. We currently
use a differential modeling scheme where we keep
three seperate measures of the student's success with
each bite. One i8 a measure over the entire tutoring
session, one is a measure over the the last five events,
and the last a measure of the last (or current) event.
These measures are ratios of how many times the
concept of each bite was used appropriately by the
student divided by how many times it should have
been used as determined by the Diagnoser.

3.4 Tutor ing Components : The Task Selector

The basic flow of control of the tutor is based on
Tutorin~Mode objects stored in a stack located in a
global object TutoringSession. TutoringMode
instances set the local state for a series of instructional
tasks. The TutoringMode has two instance variables
useful to the Task Selector. One indicates criteria for
the mode being satisfied, and one indicates some
threshold for deciding that the student is floundering
and currently unable to learn the current concept in
the eurrent mode.

Each mode object defines several messages. The
Initialization message initializes the two instance
variables mentioned above, based on the current
student model. A Process message teaches the relevent
bites in a manner consistent with the current mode
(see below). A Satisfaction message will determine if
the current mode is satisfied and what steps are to be
taken when it is. It usually means popping the present
mode instance off the TutoringSession stack and
pushing a new mode instance on the stack. A
Threshold message decides what actions to take when
the student shows evidence of not being able to satisfy
the mode object. This will usually initiate pushing
some remedial mode object onto the stack.

The Task Selector first examines the stack. If it
is empty the Task Selector creates a new instance of
some default mode and sends the local Initialization
message to the mode. The Task Selector then returns
the control to the student. If the stack is not empty, the
Task Selector sends the Satisfaction message. I f the
current mode is not satisfied, the Threshold message is
then sent. Finally, if the threshold condition is not met
the Process message is sent.

272 OOPSLA '86 Proceedings September 1988

Tutoring modes describe the type of
tutor-student interaction that is currently being used.
We are implementing six ofthese modes:

Explorat ion -- The student is obtaining
information from the microworld in order to refine and
complete developing hypotheses.

Exper imenta t ion -- The student is performing
some actions designed to confirm or differentiate
hypotheses, whether explicitly stated or recognized by
the tutor.

E labora t ion -- The student is testing some
previously confirmed hypothesis.

Didactic -- The tutor is driving the interaction
by proposing problems for the student.

Demonst ra t ion -- The tutor takes over and
demonstrates some concept explicitly.

Coaching - The tutor provides some hints that
will help the student understand the bites in question.

4. E x a m p l e Bi te -S ized I n t e l l i g e n t T u t o r s

4.1 Bridge: An Intel l igent Tu to r for
P r o g r a m m i n g

Bridge is a tutor that teaches computer
progr_~_ mining. In Bridge, the student user is presented
with problems which are of such complexity that they
could be presented in the first ten weeks of an
introductory programming course. Currently, the
student passes through three phases while solving the
problems.

In the first phase, the student constructs a set of
step-by-step instructions using informal English
phrases. In the next phase, the student matches these
phrases to programming schemata we call "plans"
[Soloway, et. al. 1982]. A program is built using a
representation of these schema. In the final phase, the
student matches the schemata to programming
language constructs and uses these to build a
programming language solution to the original
problem. Currently the only language implemented in
Bridge is Pascal, although other programming
languages could be tutored using the same approach.

In the current Bridge implementation (see Bonar
and Cunningham [1986]) the curriculum dependent
bites are the programming plans and the plan
specializations needed for each problem that Bridge
can tutor. These plans fit into an abstraction hierarchy
with the problem specific programming plans at the
lowest level of the hierarchy. The Diagnoser
determines whether a particular bite is not being used
appropriately by comparing the student's current
program with the requirements specified for that plan
in the current phase. This information is represented
by a requirements language. This language defines a
group of operators which indicate various things about

the plans, the correct order of their appearance, and
their relationships to each other. Figure 2 shows an
example of this language. This example shows some of
the requirements of the Counter Variable Plan in
Phase I for the Ending Value Averaging Problem.

Some of the requirements language operators we
have found useful are:

Sequence -- this describes the order that the
plans should appear in the program. Figure 2 shows
three such sequence requirements. The '...' that
seperates some plans indicates that zero or more plans
can come between them in the student's solution.

Exists? -- This operator indicates that the plan
mentioned must appear in the program. In figure 2,
the Counter Variable Plan is required to be in the
program.

AnyOf -- this is the equivalent of an OR
operator. I t is satisfied if any of it's arguments is
satisfied.

All -- this is the equivalent of an AND operator.
I t is satisfied only if all of it's arguments are satisfied.

Not -- this is the usual NOT operator. I t is
satisfied only if it's argument is not satisfied.

PushToHighest -- This manages several
requirements at once and selects a hint dealing with
the first unsatisfied plan.

4.2 The Invisible Hand: An Exp lo ra to ry
Mlcroworld for Economics

Our economic microworld simulates an
imaginary town which conforms to the laws of supply
and demand. The student controls several variables,
e.g. population, income per capita, interest rates,
consumer preferance, number of suppliers, and
weather. The student changes one or more of these
variables and observes the resultant change on the
other variables of the microworld. The student has
several tools to aid this discovery, e.g. a notebook to
record the changes observed in the variables and a
graph package to observe relationships between
variables. In addition to teaching an economics
curriculum, the tutor teaches scientific discovery
skills, so some of it's bites will be discovery bites (see
Figure 3). The economics curriculum bites will teach
about the patterns in the data collected by the
students as they explore the microworld.

4.2 Ohm: A Tu to r for Basic Electrici ty

The Electricity Tutor is designed to assist
students with learning and developing basic problem
solving skills in a learning-by-discovery environment.
I t teaches about voltage, current, and resistance in
simple D.C, Circuits. I t also teaches the process of
discovery. The basic flow of the tutor is to pose
problems that require a successively more

September 1986 OOPSLA '86 Proceedings 273

Edit of e~)r~:ssior
(PushToHighest (EVAPCounterVar iab lePlan

Ex i s t s?
(H i n t s (I n o rder to compute the average,

you v i11 need to d i v i d e the sum
o f the i n t e g e r s by the number o f
I n t e g e r s read tn, I nc lude a p lan
to read in the number of
i n t e g e r s .)

(To compute the average, you must
d i v i d e the sum of a l l the
i n t e g e r s read in by the count o f
the number o f i n tegers , Inc lude
the %'Keep count o f . , . %" p lan
now.)))

(EVAPCounterVerieblePlan Sequence , . ,
EVAPlnputNevValueVar iab lePlan . . .
EVAPCounterVar lablePlan . . .
(H in t s ~You have to acqu i re the numbers

BEFORE you can count them,,)
(Put the step you use to acqu i re the

numbers above the step you use to
count them.)

(Put %"Keep count o f . . .%" p lan below
the %'Read in . , ,%"

or %"~et %" p l a n .)))
(AnyOf (EVAPCounterVariableP1an Sequence . . .

EVAPCounterVar iab lePlan . . .
EVAPResultOutputPlan . . .)

(EVAPCounterYar iab lePlan Sequence . . ,
EVAPCounterVartablePlan . . .
EVAPResultValuePlan . . .)

(H in t s (You must count the numbers BEFORE you
can compute the ave rage .)

(Put the s ta tement you use to count
the numbers h tgher than the one
you use to compute the a v e r a g e .))

))

Fillure 2. Requirementa Langua p fi'om Bridge

sophisticated grasp on the basic concepts. Initally,
students can solve problems with very weak models of
the underlying phenomenon. As instruction proceeds,
the problems require more accurate understanding.
The problems focus on the application of Ohm's and
Kirehhoffs Laws.

After successfully solving a problem the student
is asked to fill in a skeleton sentence describing the
principle they have used. This allows the tutor to
determine if the student is understanA;ng a bite that
was successfully used to solve a problem. If the
sentence is filled in correctly a new bite is g/ven
control. I f the sentence is filled in incorrectly, the tutor
develops another problem based on the current bite.

The tutor is constructed with Abstraction
Hierarchy bites. We are currently expanding this to
include other kinds of bites, providing us with the
means to cover a wider range of electronics and more
other kinds of tutoring tasks. Some of the bites to be
integrated into the Electricity Tutor are AC cireuite,
capacitors, and inductore. Some of the tutoring tasks

to be added are a "construction mode" where students
are asked to build c/rcuite and a metaphor mode where
students can be shown certain phenomenon in a
simpler metaphorical way.

4.4 Eureka : A Tu to r fo r Hydros ta t i c s
P rob l ems

Eureka employs an exploratory microworld
environment that demonstrates the principles of
buoyancy pertinent to Archimedes Principle [Klopfer,
1985]. The mode of learning is very similar to the
econom/es tutor. The student explores the microworld,
makes hypotheses when he or she d/scorers some
relationship, and then tests those hypotheses with
subsequent experiments. The student has the ability
to change several var/ables in the "laboratory"
environment: the mass of the block, the densiW of the
liquid, the gravitational Force, etc. He has the same
tools available to aid his exploration that were
described above in the economies tutor.

274 OOPSLA '86 Proceedings September 1986

i f ~ , , . . . - t . . . - - L . . , ~ = , =

I v l w i ~ l s l i o n

T ~ l o r ~

I

Co,~.~ts~r .dmt

'/.~ n l l . : ¢ i

~ " l l ~ i w i t l o n

B igno le r y~

." ~-~-~ O ~

' l • l i i k iok lc l ,u t ..

1

/ l t l c c v i f y
/

I l i l ~ C e l l

\ Co l l l i i , . -n

l i f k i ~ k i n i l e

I

". ~ 13codclsdcmwitl~talm

~ U~ommmofl~V~il~

~ ~,al~mL~lrve
, / OWls, . ~ l m I; y J~om.mde4
~ " 11~4 ,Q~4ni~y. illlllilll

'~ Oqnn4~l.~Jtl

Fib, ure 3. Bite-Sized Hierarchy from the Economics Tutor

Figure 4 shows the inheritance lattice for
Eureka. This tutor is very simihu" in structure to the
economics tutor. It uses discovery bites to tutor useful
scientific skills. It has bites that teach about
observeable patterns in the data collected during the
session.

5. Conc lud ing R e m a r k s

We have illustrated a generic architecture for
building intelligent tutoring systems. In particular,
we have focused on techniques for domain independent
representat/on of the knowledge to be taught. The key
idea is to organize the tutor around objects that
represent the knowledge to be taught, not around the
various components of the tutor.

Although, each of the tutors discussed is
implemented, very little code is actually shared
between them. We are currently reimplementing
several of the tutors to share code for all the basic
components and knowledge organizations. We have
also begun working with non-programming domain
experts in designing an interface to let them design
the tutor's curriculum. We are excited and encouraged
as the experience and practical aspects of one tutor
carry over into the implerhentation of the next.

6. Acknowledgements

This article discusses a series of intelligent
tutors and educational computer environments
developed at the Learning Research and Development
Center. Many people at the center have contributed to
the educational and computational aspects of the work
discussed here. In particular, Valerie Shute developed
the subject matter content and pedagogy for the
Smithtown mieroeeonomics intelligent mieroworld.
Kalyani Raghsvan has extended the mieroworld work
of Valerie Shute and Peter Reimann in her
development of the Electricity microwor|d. Those
microworlds are experimental tools in a project to
characterize and improve discovery learning. Joyce
Ivill developed the non-exploratory pllrti of the
Electricity tutor. Cindy Cosic, Leslie Wheeler, Mary
Ann Quayle, Paul Resnick, and Gary Strohm have all
worked on the tutors discussed in the article. Finally,
Alan Lesgold, Stellsn Ohlsson and Robert (}laser have
all made important contributions to the ideas
developed here.

This work was supported by the Office of Naval
Research under contract numbers N00014-83-6-0148
and N00014-83-K0655 and the Air Force Human
Resources Laboratory under contract n~mber

September 1986 OOPSLA '86 Proceedings 275

/:;~*..] " . m s . , . i r , ~ u : ~ , , r ~ , t r . ~ m
I * I X ~ ~' "*" " ~ . . l t l b l n i l i ~ . i ~ l l

... ,,W
i , , ~ , ~ : .---- ~,,,i.,,,~,,,~., ~ \ ~ ." / \',,".. • ~ l . , , . , i . l ,o . , ,c - , .~ , i

._/1
" "" ~ ' ~ - ' ~ . lilloylnCy / / j " , /

• ~lm:lwaale~t

Figure 4. Bite-Sized Hierarchy from the Eureka Tutor

F41689-84-D-0002, Order 0004. Any opinions,
findings, conclusions, or recommendations expressed
in this report are those of the authors, and do not
necessarily reflect the views of the U.S. Government.

7. References

Bonar, J. & Cunningham, R. (1986). Bridge: An
Intelligent Tutor for Thinking About Programming.
Learning Research and Development Center
Technical Report.

Burton, R. R. & Brown, J. S. (1982). An
investigation of computer coaching for informal
learning activity. Appears in [ntelligent Tutoring
Systems, edited by Sleeman, D. and Brown, J.S.,
Academic Press.

Klopfer, L. E. (1985). Intelligent Tutoring
Systems in Science Education: The Coming
Generation of Computer-Based Instructional
Programs. Appears in Proceedings for the US-Japan
Conference on Science Education, Washington, D.C.

Shute, V. & Bonar, J. (1986). Intelligent
Tutoring Systems for Scientific Inquiry Skills.
Proceedings of the 1987 Conference of the Cognitive
Science Society, Amherst, MA.

Soloway, E. M., Ehrlich, K., Bonar, J. G., &
Greenspan, J. (1982). What Do Novices Know About
Programming? Appears in Directions in
Human.Computer Interaction edited by Shneiderman,
Ben and Badre, Albert, Ablex Publishing Company.

Stefik, M. & Bobrow, D.G. (1986) Object Oriented
Programming: Themes and Variations. AI Magazine,
Winter 1986 (6:4), pp. 40-62.

276
OOPSLA '66 Proceedings

S~tember 1986

