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ABSTRACT
The Generalized Second Price (GSP) auction has appealing prop-
erties when ads are simple (text based and identical in size), but
does not generalize to richer ad settings, whereas truthful mecha-
nisms such as VCG do. However, a straight switch from GSP to
VCG incurs significant revenue loss for the search engine. We in-
troduce a transitional mechanism which encourages advertisers to
update their bids to their valuations, while mitigating revenue loss.
In this setting, it is easier to propose first a payment function rather
than an allocation function, so we give a general framework which
guarantees incentive compatibility by requiring that the payment
functions satisfy two specific properties. Finally, we analyze the
revenue impacts of our mechanism on a sample of Bing data.

General Terms
Algorithmic Game Theory; Mechanism Design; Revenue Optimiza-
tion

Keywords
Payment Framework; Incentive Compatibility; Online Advertising;

1. INTRODUCTION
Sponsored search is the main source of revenue for most search

engines, such as Google, Yahoo! or Bing. Search engines use
the Generalized Second Price (GSP) mechanism to select and price
ads. In GSP, advertisers are rank-ordered by decreasing bids (more
generally by rank score) and slots are assigned in this order. The
price of a slot is the minimum bid an advertiser has to make in
order to maintain that position, which equates to the next highest
bid in the simplest form of GSP. Payment is made when an ad is
clicked. The GSP auction’s equilibria, bidding strategies, and other
properties are well studied (see, e.g., [11, 21]).

However, online advertising is becoming more complex. There
may be different ad formats (e.g., text-ads or image-ads) with dif-
ferent sizes, multiple page-templates for search results, and other
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constraints on showing ads. For these settings, GSP is not well
defined and if generalized can be ill-behaved [8].

While such scenarios may be currently rare enough to make GSP
tolerable, this appears unlikely to be the case in the future. There-
fore, there is an incentive for migrating from GSP to another mech-
anism. Truthful mechanisms, such as the famous VCG mechanism,
are attractive as they gracefully handle such complex scenarios.
Truthful mechanisms also remove the computational burden of cal-
culating the optimum bid from advertisers, making the whole sys-
tem more transparent. Further, they simplify counterfactual analy-
sis (e.g. of auction parameter changes), and more naturally allow
the same bid of an advertiser to be used across multiple auctions.
Given these advantages, it is perhaps not surprising that Facebook
has decided to use VCG and that Google has adopted VCG for con-
textual ads [22].

The equilibria of GSP result in bid shading, where advertisers
bid below their true valuation. A major obstacle to migrating from
GSP to VCG is the requirement that advertisers must update their
bids, increasing them to their true valuations.

As Varian and Harris [22] note, Google “thought very seriously
about changing the GSP auction to a VCG auction during the sum-
mer of 2002.” One problem was that “the VCG auction required
advertisers to raise their bids above those they had become accus-
tomed to in the GSP auction.” GSP has become entrenched over
the past decade. If a switch to VCG were made today, advertisers
might not update their bids quickly and even if they did update, it
might not be to their true valuation.

We would expect there to be a continuum of advertiser reactions;
at one extreme, advertisers using sophisticated optimization tech-
niques would quickly understand the new system and adapt their
bids; at the other extreme, advertisers may not check their accounts
for months, leaving a pool of advertisers still using their old GSP
bids. Thus, for a long period of time there would be advertisers
using outdated bids, leading to significant revenue loss.

In this work we introduce a transitional mechanism that attempts
to mitigate these problems. Our mechanism operates in a stylized
model where there are two types of bidders corresponding to the
two extremes: adaptive bidders who play an optimal strategy given
the mechanism and non-adaptive bidders who are still using their
GSP bid and, at least in the short-term, do not react to the change
of mechanism. Thus, the mechanism is designed to be truthful for
adaptive bidders, but not necessarily for non-adaptive bidders who
are, after all, still playing as if they are in a non-truthful mechanism.

Of course this stylized model is insufficient for a real transition:
advertisers do not come identified as “adaptive” or “non-adaptive”.
Perhaps the simplest way to think about deploying our mechanism
in practice is as a way of doing a staged transition. Initially, the



search engine is running GSP. Then it picks some arbitrary set of
advertisers and classifies them as adaptive, while classifying all
others as non-adaptive. Over time, it classifies more and more ad-
vertisers as adaptive, until eventually all are adaptive and the search
engine is now using VCG. Thus the search engine can manage the
transition without dropping all of its price support at once, as a
straight transition to VCG would. Viewed this way, our mechanism
simply provides a way of implementing a reasonable auction at an
intermediate stage where some advertisers have been transitioned
to the new mechanism but not all have.

However, our results and nomenclature also suggest that the search
engine can do better than simply picking which advertisers to clas-
sify as adaptive arbitrarily. In particular, since our mechanism
promises good incentive properties for adaptive bidders but not nec-
essarily for non-adaptive ones, our approach will tend to be more
effective if bidders who show a tendency to update their bids fre-
quently are among the first to be classified as adaptive.

An ideal deployment would thus look something like first group-
ing advertisers based on their historical frequency of bid changes
and other such data the search engine may have. Then, classify the
most frequently changing group as adaptive and all others as non-
adaptive. After giving this group some time to adapt their bids,
the second most frequent group’s classification can be changed to
adaptive. This process can then be repeated until all groups are
adaptive, although the slower to adapt groups will need to be given
more time to adapt before reclassifying the next group.

Our Contribution: With the goal of designing a hybrid mech-
anism that earns good revenue and which encourages migration,
we propose a transitional mechanism which is designed to behave
exactly as the current auction when all advertisers are classified as
non-adaptive, exactly as VCG when all advertisers are classified as
adaptive, and behave sensibly at times in between.

The key difficulty then is to decide how to do the allocation and
pricing when some ads are treated as adaptive but others are not.
For example, if the bid of an adaptive ad is higher than the bid of
a non-adaptive ad, it does not necessarily mean that the adaptive
ad should have a better allocation, since we know the non-adaptive
ad is shading its bid downwards. The usual approach for design-
ing truthful mechanisms is to give a monotone allocation function
and then derive the unique payments using Myerson’s lemma [17].
However, in our setting it is not easy to give first an allocation func-
tion, as the bid of a nonadaptive ad implies that payments of ads
above him should be altered (since we want to treat him like a GSP
bidder, and GSP is fundamentally a payment rule). Instead, we
start by describing the payment rule we want, and then show how
to derive a suitable allocation rule.

In fact, we design a framework more general than simply han-
dling adaptive ads and GSP-style non-adaptive ads, which allows
for complexities present in real systems. For example, some ads
may arrive with pre-established contracts that result in a fixed pay-
ment if their ad is clicked. Or, some participants may represent in-
formation about non-strategic entities such as organic results which
the auction uses to affect the allocation and payments.

To describe this framework more formally, assume ad slots are
indexed from 1, the top slot, to n, the bottom one, and there are
n advertisers. The designer has to formulate a payment function
p(i) : Rn−i 7→ R for each i ∈ [n] which specifies the payment
of the advertiser assigned to position i given types of advertisers
assigned to positions below him. Our framework requires the pay-
ment function satisfy two simple properties: (i) Minimum Marginal
Increase (MMI): the payment has to be high enough so that truthful
bidders assigned to lower slots do not envy the winner of a higher
slot and (ii) Exact Marginal Increase (EMI): the marginal payment

increase of the slot directly above a truthful ad has to be equal to the
truthful ad’s bid. Given a set of payment functions satisfying MMI
and EMI, our framework shows how to construct an allocation rule
with truthful payments that are exactly those given by the payment
functions applied to the realized allocation.

While we primarily focus on deriving a practical rule for transi-
tioning from GSP to VCG, the set of ad auction mechanisms that fit
in our framework is quite general. In fact, we prove that by using
our framework one can design any truthful mechanism in which
the payment of an ad is derived solely from ads below that ad (sub-
ject to a few additional requirements). Equivalently, our framework
encapsulates mechanisms where raising the bid of an ad does not
affect the allocation of ads that were previously allocated below it.
More broadly, while the question of what properties of allocation
rules lead to truthful mechanisms has been intensively studied (see,
e.g., [4, 5, 13]), the question of what properties of payment rules
lead to truthful mechanisms has not, so our approach may be of
independent interest.

We design a large class of candidate hybrid mechanisms, and
then select a particular representative mechanism, analyzing it both
theoretically and via simulations using Bing data. On the theory
side, we show that transitional behavior is particularly nice if the
system starts in the lowest symmetric Nash equilibrium. Under a
stylized model, allocations and prices do not change, leading to a
painless transition.

In our simulations, we examine transitions both in our stylized
model and under somewhat more reasonable assumptions about the
transition process. We find that essentially all the costs of a tran-
sition are in terms of revenue—the welfare effects for both adver-
tisers and users are small. We also see that the hybrid mechanism
can have significant revenue benefits if bidders directly update to
true valuations, but these benefits decrease if the bidders fail to do
that for various reasons such as not knowing the true valuations,
not being utility maximizers, or not trusting the system.

To summarize, our three main contributions are:

1. a new framework for deriving truthful mechanisms from pay-
ment rules that satisfy MMI and EMI (Section 4),

2. a specific hybrid mechanism to enable transitioning from GSP
to VCG (Section 5),

3. an evaluation of the mechanism using Bing data (Section 6).

2. RELATED WORK
Sponsored search auctions are arguably the most successful re-

cent application of auction theory to a business environment. As a
result, much research has been conducted regarding the influence
of the mechanism used for the auction on social welfare and the
generated revenue. In the case where the VCG mechanism is used,
truthfulness is the dominant bidding behavior. However, the same
does not hold for the GSP auction and predicting bids in this case
is trickier.

A complete information analysis of GSP auctions is discussed
by Edelman et al. [11], Varian [21], and Aggarwal et al. [2]. A
common theme in this line of work is the equivalence between the
auctioneer’s revenue and bidders’ utility under a VCG auction and
under the lowest symmetric Nash equilibrium of a GSP auction
(which is sometimes referred to as the “bidder-optimal locally envy
free equilibrium”). Ashlagi et al. [6] generalize this, showing that
in many auction types in which the payments are a function of the
lowest ranked bids, there exists an equilibrium in which bidders’
utility is equivalent to their utility under the VCG auction. Roberts
et al. [19] generalize this along a different axis, showing that this



result also holds for a variety of rank score functions other than
simply ranking by highest bid.

Much of the research on equilibria in GSP auctions has focused
on symmetric Nash equilibria. Edelman and Schwarz [12] exam-
ined the revenue of different symmetric Nash equilibria, noting
that under a certain comparison to optimal revenue possible in the
Bayesian setting, the “lowest” equilibrium is the reasonable one. A
generalized auction proposed by Aggarwal et al. [1] allows adver-
tisers to specify not only a bid but also the positions they desire,
ruling out the bottom positions. They show that this auction has a
symmetric Nash equilibrium implementing the same outcome (i.e.,
allocation and pricing) as the VCG auction.

Complementary to studies on symmetric equilibria, several re-
searchers have studied the inefficiency that can result from asym-
metric equilibria [15, 9, 16]. Some studies of auction tuning have
also explored the full set of equilibria [20]

Taking a Bayesian perspective, Gomes and Sweeney [14] exam-
ined the existence and uniqueness of efficient Bayes-Nash equilib-
ria in a GSP auction. Several models have also been proposed for
inferring the valuations of advertisers based on the observed bid
data [18, 7]. The model by Pin and Key [18] considers advertisers
best responding in an uncertain environment in a repeated auction
setting, relating the bidding behavior to scenarios when the Bayes-
Nash Equilibria of Gomes and Sweeney [14] are known to exist.
The model of Athey and Nekipelov [7] starts directly from the
Bayes-Nash Equilibria, but has a different model of the informa-
tion available to the bidders. Instead, Vorobeychik [23] proposed a
framework based on agent simulation to approximate Bayes-Nash
equilibria in GSP auctions which relies on restricting the space of
bidding strategies.

The dynamics leading to the equilibrium outcomes in GSP auc-
tions are less studied. Cary et al. [10] consider dynamics under a
greedy bidding strategy, where each bidder chooses the optimal bid
for the next round assuming the other bidders do not change their
bids. They show this bidding strategy has a unique fixed point, with
payments identical to those of the VCG mechanism.

Closest to our work, Aggarwal et al. [3] propose a framework
that can implement both the GSP and VCG mechanisms in terms
of an assignment game with appropriate models of bidder utility.
In their model each bidder specifies a maximum price she is will-
ing to pay and a value for each item. The auctioneer also sets a
reserve price for each item. Aggarwal et al. [3] prove that there ex-
ist a unique bidder optimal stable assignment in this setting which
can be found in polynomial time. They use this assignment as their
proposed allocation. Here VCG can be modeled if each bidder sub-
mits her true valuation as the maximum price and value to their
mechanism. Similarly, GSP can be modeled if each bidder submits
her bid as the maximum price and a large number as her value.
Their framework can be used to derive a hybrid auction consist-
ing of truthful bidders and max price bidders. Here we cover more
general payment functions and allow arbitrary types of bidders.

3. PRELIMINARIES
We study the standard model of a sponsored search auction. There

is a set of {1, . . . , n} of ads, denoted by [n] . For notational conve-
nience, and without loss of generality, we assume that there are also
n ad positions, also called slots, where position i has CTR (Click-
Through-Rate) fi (again for convenience we assume that there are
no ad quality scores—the probability of any ad being clicked in slot
i is exactly fi). Without loss of generality we assume that the first
position has the highest CTR and the n-th position has the lowest
(0 < fn < . . . < f1 ≤ 1). From now on we treat each ad and
the bidder associated with the ad as synonymous. Ads can have

different characteristics. For example they could be:

• adaptive ads which bid optimally given the auction design
(which given our truthful design means they update their bids
to their valuations);

• Generalized Second Price (GSP) ads which assume that they
are participating in a GSP auction; or

• first price ads which pay a fixed amount upon being clicked.

We provide a framework for mechanism designers which only re-
quires a payment rule to be specified, and which places special con-
straints on the payments of adaptive (ADP) ads. Therefore, we
specially differentiate between ADP and non-ADP ads and assume
each ad has a type taken from set T = {ADP, non-ADP} × R+

that specifies the awareness attribute and bid. Here, non-ADP ads
can be of any nature and our framework does not limit the de-
signer’s ability for deciding their allocation and payments. This can
be thought of as modeling a situation where we are designing a sys-
tem for the ADP bidders, and therefore care about their incentives.
However, there will be some “legacy” bidders whose behavior does
not reflect the new system. Since the right way to treat these legacy
bidders will depend on their exact nature, we do not put any con-
straints on what they are charged (and indeed neglect modeling this
entirely in proving the theoretical results of Section 4). In section
E, we examine what happens when we look to maintain parity with
existing GSP prices for non-ADP bidders, and where the non-ADP
bidders behave as GSP bidders in equilibrium.

We denote an assignment of ads to slots by the permutation Π =
(π1, . . . , πn) where ad πi is assigned to position i. The (expected)
payment of ad πi is the cost per click for being in position i mul-
tiplied by the CTR of position i. Throughout the paper we work
with expected payments p(i),∀i ∈ [n] as opposed to cost per click.
Further, we assume that all ads have quasilinear utilities, i.e., if ad
πi is assigned to position i and pays p(i) then its utility will be
ui(Π, p) = fi ∗ v(πi)− p(i), where v(πi) is the (true) valuation of
ad πi. Throughout the paper, we use b(i) for the bid of ad i and, if
the ad type is ADP, we also use v(i) = b(i) to emphasize that the
bid and valuation are the same given that we seek to design truthful
auctions.

As discussed in Section 1, this model makes the stylized assump-
tion that ads come labeled as either ADP ads or non-ADP ads, i.e.,
the nature of each ad is known. Further, our model assumes away
the growing richness of the ad ecosystem that is part of the motiva-
tion for a mechanism switch. However, at this point basic text ads
still represent the bulk of ad impressions, so a solution that works
well for them would be useful to aid a near-term transition in antic-
ipation of this future richness.

4. TOP INTERFERENCE FREE PAYMENT
FRAMEWORK

In this section we introduce a framework for designing mech-
anisms in ad auction-like settings where it is easier to provide a
payment rule than to give an allocation rule. In other words, we
do not know exactly what we want the final allocation of ads to be,
but we do know what we want the payment for ad πi assigned to
position i in the overall assignment Π to be. More formally, we
explore the space of payment rules which are a set of n functions
P = {p(i)}i∈[n], where the function

p(i) :

n−i︷ ︸︸ ︷
T × . . .× T 7−→ R+



gives the expected payment of an ADP ad in slot i as p(i)(πi+1, . . . , πn).
(Recall that we allow the payments of non-ADP bidders to be arbi-
trary.) Note that p(i) is the expected payment of the ad assigned to
position i and p(i)/fi is its cost per click.

This formulation implicitly restricts the set of payment rules we
consider. Without loss of generality, the payment of an adaptive ad
does not depend on its own bid. However, with loss of generality,
we also assume that the payment does not depend on the bids of ads
assigned to slots above it. This is a natural restriction in a setting
without externalities, and indeed one that is satisfied by both the
GSP and VCG payment rules.

Our framework specifies two further intuitive properties which
we require the payment rule satisfy. We show that these two prop-
erties are necessary in the sense that any anonymous mechanism
whose payment rule for an ad depends only on ads below it can be
implemented using our framework. By anonymous, we mean that
permuting the input to the mechanism simply permutes the out-
put (up to tie breaking among ads with identical bids). In order
to specify these properties we need to restrict the domain of the
payment rules to exclude nonsensical inputs where the ADP bid-
ders are mis-ordered, e.g., where ADP ads are not assigned to slots
monotonically with respect to their bid.

Let Π = (π1, . . . , πn) denote the assignment of ads to positions.
We use the notation Π(k) = (πk, . . . , πn) to show the partial as-
signment of the last n−k+1 ads to positions k to n. In the follow-
ing we define what partial assignments are valid and thus form the
domain of payment rule {p(i)}i∈[n], using v(i) instead of b(i) to
emphasize that ADP bids are the true valuations — an assumption
that will be validated by Theorem 1 below.

DEFINITION 1 (VALID ORDERING). A partial assignment of
n− k+ 1 ads Π(k) is valid if and only if for any i, j ∈ {k, . . . , n}
such that πi and πj are ADP ads and i < j, we have v(πi) ≥
v(πj).

Recall that Myerson’s characterization of truthful mechanisms
asks a designer to give a monotone allocation rule and the pay-
ments are then uniquely derived from the area above the curve. A
monotone allocation rule, when seen from the payment perspective,
implies monotone marginal increases of the payments (see Figure
1). We first define the marginal increases:

DEFINITION 2 (MARGINAL OPERATOR ∇(i,j)). For two po-
sitions i, j ∈ [n] where i < j, the marginal increase of payment
rule P for a valid assignment Π is

∇(i,j)P(Π) =
p(i)(Π(i+1))− p(j)(Π(j+1))

fi − fj
.

Now we are ready to specify the first property the payment rule
P should satisfy.

DEFINITION 3 (EXACT MARGINAL INCREASE (EMI)). The
payment rule P satisfies EMI, if for any valid assignment Π and
position i ∈ [n− 1], if πi+1 is an ADP ad then

∇(i,i+1)P(Π) = v(πi+1).

The intuition behind the EMI requirement is that, since ADP ads
are shown in the order of their bid, the minimum bid ADP ad πi
needed to get shown above the ADP ad πi+1 is exactly v(πi+1).
Thus, the marginal payment he should make for being in slot i as
opposed to i+ 1 is exactly this minimum bid.

As there are non-ADP ads that can be placed between ADP ads,
we need a second property that generalizes EMI to ensure that the
payments for ADP ads remain incentive compatible.

CTR

value

allocation curve

Marginal Increase A

Marginal Increase B

Figure 1: The area above the allocation curve of a winner is his
payment. The two arrows show the marginal increase of the pay-
ment at different points. If the allocation curve is monotone the
marginal increases are also monotone.

DEFINITION 4 (MINIMUM MARGINAL INCREASE (MMI)).
The payment rule P satisfies MMI if for any valid assignment Π,
position i ∈ [n] such that πi is a ADP ad, and position j ∈
{1, . . . , i− 1} we have

∇(j,i)P(Π) ≥ v(πi).

Now we give our algorithm to derive the final allocation given
payment rule P which satisfies EMI and MMI. Our algorithm is
very simple and intuitive. It starts filling from position n all the
way up to position 1. The ADP ads get assigned to positions in
increasing order of valuation. Assume that the current ADP ad to
be assigned to a position is π. Our algorithm tries to fill all the
remaining positions by non-ADP ads which are not yet assigned,
choosing the ads sequentially such that the payment of the next po-
sition is minimized. Then, our algorithm puts ad π in the position i
for which its utility is maximized. The algorithm then takes the next
ADP ad and restarts from position i− 1, fixing all ads in positions
i and below. The formal description of our Allocation Algorithm
(AA) is given as Algorithm 1 in the appendix.

DEFINITION 5. A mechanism is Payment Derived if it arises
from applying the Allocation Algorithm (AA) to a set of payment
functions P = {p(i)}i∈[n] that satisfy EMI and MMI.

The following theorem shows payment derived mechanisms are In-
centive Compatible (IC) for ADP ads.

THEOREM 1. A Payment Derived mechanism is an incentive
compatible mechanism for ADP ads.

The proof is deferred to the appendix.
Having shown that every payment derived mechanism is truthful,

it is natural to characterize the mechanisms that are implementable
in our framework. We show that this class is characterized by three
natural axioms and one technical one.

First note that payment functions {p(i)}i∈[n] only use the bid and
nature of the ads and do not use the identity (index) of the ads to de-
termine payments1. This means that payment derived mechanisms
satisfy anonymity, defined formally below.
1This would appear to rule out current systems that incorporate



DEFINITION 6. [Anonymous Mechanism (AM)] A mechanism
M = (x, p) with allocation function x and payment function p is
anonymous if the following holds. Let θ and θ′ be two type profiles
that are permutations of each other (i.e. the set of natures and bids
are the same but the identities of ads are permuted) and have no
ties. Say θ = σ(θ′), for some fixed permutation σ. Then we have
x(θ) = σ(x(θ′)) and p(θ) = σ(p(θ′)). For type profiles with ties
we require permutations to permute the output, except that the pay-
ments and allocations of tied bidders can be exchanged arbitrarily.

Secondly, note that the payment of the ad assigned to position i
is specified by looking only at the ads that are assigned to positions
below i. Therefore, mechanisms in our framework also satisfy the
following property.

DEFINITION 7 (TOP INTERFERENCE FREE (TIF)). A mech-
anismM = (x, p) satisfies TIF, if when an ad changes its type and
gets a better position then the allocation of ads assigned to lower
positions remains unaltered. More formally, let x(θ) be the al-
location given by x on type profile θ = {θ1, . . . , θn} and x(θ′)
the allocation given by x on type profile θ′ where θ′h = θh, ∀h ∈
[1, . . . , k − 1, k + 1, . . . , n] and θ′k 6= θk. Assume that ad k is
in position i with allocation x(θ) and in position j with allocation
x(θ′) such that j < i. MechanismM satisfies TIF if the ads as-
signed to positions i+ 1 to n are the same in both allocations x(θ)
and x(θ′).

In the following theorem, we prove that our framework can im-
plement all mechanisms that are incentive compatible, anonymous,
and top interference free, as well as satisfying an additional tech-
nical axiom (2T), which essentially requires that the mechanism is
well-behaved when considering the top two slots (and one which
seems to be satisfied for reasonable mechanisms). Hence, requir-
ing EMI and MMI does not restrict the designer in ways that current
standard designs such as VCG and GSP do not.

THEOREM 2. A mechanism is Payment Derived if and only if it
satisfies IC (for ADP ads), AM, TIF, and 2T.

See Appendix C for a definition of the technical axiom (2T), a proof
of the theorem, and a discussion of 2T.

5. PRICING FUNCTIONS
In the preceding section, we designed a general framework. In

this section, we apply it to the desired special case of transitioning
from a GSP auction to a VCG auction. Here a GSP mechanism
simply assigns ads in the order of their rank score (determined
by a function y) and charges each ad the smallest bid for which
it maintains its assigned position (see [19, Eqn 2.1]). To do so, we
must decide how to price GSP (i.e., non adaptive) bidders, since our
framework is silent about how they should be charged. We make
the simplest decision, namely to charge them the same amount an
adaptive bidder would be charged in the same slot, and show that
this has several desirable properties. For a particular mechanism
GSP mechanism Gy with rank score function y, this results in a
mechanismM(Gy).

We begin by discussing what happens when all users are utility
maximizers but the mechanism classifies some as ADP and others
as (non-ADP) GSP bidders. When the hybrid mechanism is first put
into use, all bidders are classified as GSP bidders, but as time goes
on bidders will be reclassified. Given perfect rationality, this means

other information such as click probability and other quality mea-
sures into a rank score. However, our results still apply in this more
general setting as long as the rank scores are treated anonymously.

i’s bid changes from b(i) to v(i). We can then show that if GSP bid-
ders begin from the lowest revenue Symmetric Nash Equilibrium
(SNE) then the revenue and allocations are unaltered, provided a
particular hybrid pricing function is employed, irrespective of the
order in which users are selected for reclassification. (Since SNE
rank bidders in decreasing order of bid, in this section we assume
that ad i is in slot i.) Formally, we have the following proposition
whose proof is deferred to the appendix.

PROPOSITION 1. For any GSP mechanism Gy , if GSP bidders
bid as in the lowest revenue SNE and ADP bidders bid truthfully,
the revenue, allocation and prices paid inM(Gy) will be indepen-
dent of the number and identity of ADP and GSP bidders if and only
if the payment function satisfies MMI and EMI and further satisfies

p(i−1)(Π(i)) =


p(i)(Π(i+1)) + v(i)(fi−1 − fi)

if θi = (ADP, v(i))

b(i)fi−1 if θi = (GSP, b(i))
(1)

As long as Gy admits an SNE, the proposition applies. The fol-
lowing corollary results from applying a sufficient condition [19]
for this.

COROLLARY 1. Proposition 1 holds for any GSP mechanism
Gy that uses a rank score of the form

y(b, i) = max
(
0, g(i)b− h(i)

)
, (2)

where g and h are arbitrary non-negative values that can depend
on i.

The necessary and sufficient conditions only hold when we start
from the lowest SNE. For example if we are in another SNE, then
moving just one bidder i from GSP to ADP will not change the
position or prices paid by i or those below i, but potentially changes
prices (and hence positions) of bidder(s) above i (since Equality
(10) in the proof of the proposition does not hold for i−1 anymore).
Hence, we want to construct price functions that satisfy EMI and
MMI when other equilibria hold, and for more general non-truthful
prices. Specifically, we shall consider two natural examples, where
the pricing functions for ad i are the same for adaptive and non-
adaptive i. First,

A : p(i−1)(Π(i)) = max
(
p(i)(Π(i+1)) + vmax(Π(i))

(fi−1 − fi), bmax(Π(i))fi−1

)
(3)

where

vmax(Π(i))
def
= max {v(θj) : j ≥ i ∩ θj = (ADP, v(j))} (4)

bmax(Π(i))
def
= max {b(θj) : j ≥ i ∩ θj = (GSP, b(j))} (5)

are the largest ADP valuation and GSP bid at or below i, respec-
tively, and

B : p(i−1)(Π(i)) = max
(
p(arg max v(Π(i)))(Π(arg max v(Π(i))+1))

+vmax(Π(i))(fi−1 − farg max v(Π(i))), bmax(Π(i))fi−1

)
(6)

where

arg max v(Π(i))
def
= arg max

j
{v(j) : j ≥ i ∩ θj = (ADP, v(j)}

(7)
is the identity of the largest ADP ad at or below i.



Either of these hybrid auctions is consistent with Proposition 1,
and so in fact they are identical in this case. It is easy to see, how-
ever, that they do differ in other scenarios. In any “reasonable”
extension of GSP, an advertiser ought to pay at least the bid of a
GSP bidder below him, and B is the lowest set of prices consis-
tent with this, EMI, and MMI. At the other extreme, A may charge
GSP bidders prices higher than their bids, which B is guaranteed
not to. See Appendix E for further discussion. In our simulations,
we therefore use rule B.

6. SIMULATION RESULTS
We saw in Proposition 1 that if bidders always play the lowest

SNE, bidders adapt their bid immediately on reclassification, and
that adjustment consists of instantly switching to the advertiser’s
true value, then there would be no effect on efficiency or revenue
from switching to the hybrid auction. Of course, these assumptions
are not realistic. In this section, we discuss a variety of simula-
tions that analyze the practical effects of the hybrid auction in more
realistic scenarios.

6.1 Simulation Setup
We base our simulations on a non-random sample of Bing data

on 3984 auctions. It is a filtered subset of a larger random sample
that ensures the auctions are “interesting.” In particular, we wanted
thick auctions (with at least 12 participants), and with other prop-
erties such that techniques for inferring true values from GSP bids
could give reasonable answers. The metrics have been normalized.
Nevertheless, we believe the sample is representative enough to al-
low a meaningful exploration of our approach.

We restrict each auction to the top 12 participants, and only ac-
tually run an auction for the top three slots. In order to run our
simulations we need to have an estimate of true valuations of GSP
ads. One estimate of true valuations is to assume that GSP ads have
played the minimum symmetric Nash equilibrium and invert their
bids to their valuations. In this case, we would essentially be baking
in the first of the assumptions from Proposition 1, so unsurprisingly
the transition would happen without any changes as the allocation
and payment of ads remain identical at each point of time.

Instead, we use the stochastic formulation from Pin and Key [18].
This approach derives the valuations under the hypothesis that each
advertiser chooses her bid to maximize her expected net utility un-
der the assumption that she faces a stationary bid distribution. In
our calculations we assume that the CTRs are known, with the op-
posing bid distribution estimated from the opponents’ empirical bid
distributions.

We simulate the following four different mechanisms, re-running
the simulations 10 times to derive standard errors.

• GSP. The first mechanism is GSP run on the original set of
bids when no updates have happened. This represents the
current state of the world and serves as a benchmark to which
the other approaches can be compared.

• VCG-V. The second mechanism is VCG run on the final set
of true valuations when all the ads have updated their bids.
This represents the ideal end state when all bidders have tran-
sitioned to being truthful. It also serves as a sanity check on
the reasonableness of our value estimation (i.e. it should dis-
play similar performance to GSP).

• HYBRID. The third one is a payment derived mechanism,
using pricing rule B described in (6).

• VCG-B. Finally the last mechanism is VCG run on the cur-
rent set of bids when some ads have updated their bids and

some have not. This is the obvious alternative strategy for
transitioning: simply transition directly to VCG and wait for
bidders to catch up.

6.2 Perfectly Rational Bidders
In our first set of simulations, bidders are chosen in a random

order to be “active”. When an ad is active it (a) becomes classified
as ADP by HYBRID and (b) is perfectly rational and immediately
updates its bid to its true value under both VCG-B and HYBRID.
Thus, the primary assumption we are relaxing is that bidders are
playing the lowest SNE.

Figure 2 shows the normalized average revenue, welfare, and
click yield for different mechanisms during the transition. 95%
confidence intervals are also plotted. The estimated revenue from
ultimately running VCG (i.e. VCG-V) is close to GSP, which is
consistent with the reasonableness of our value estimation proce-
dure. Immediately switching to VCG (curve VCG-B) results in a
significant revenue drop, which is steadily recovered as more adver-
tisers update their bids. In contrast, there is a more modest revenue
drop under the hybrid mechanism (since bidders are not always fol-
lowing the lowest SNE). In particular, revenue always dominates
directly switching, substantially so in the initial time steps. In both
the estimated welfare and click yield there are no significant differ-
ences between VCG-B and Hybrid auction. The observation that
welfare and click yield do not differ much in the Hybrid auction
and in the VCG-B strengthens the importance of the revenue im-
provement that the former has over the latter because it is not com-
ing at the cost of other important metrics. Note also that, in the
worst case, the drop in welfare is less than 1.5% and the drop in
click yield is less than 0.3% from the optimal case. Thus, we focus
on revenue in our subsequent simulations.

6.3 Cautious Bidders
The second set of simulations relaxes the idea that bidders are

willing to immediately jump to their true value, no matter how large
a bid increase this implies. Instead we parameterize them with a
triple (p, q, i). At each time step, bidders decide randomly whether
to update their bid, doing so with probability p. If their consumer
surplus decreased in the last step (i.e. because the bid changes of
others changed their slot or increased their price) they update with
a higher probability q. This allows us to model advertisers who
are attentive only when needed. Finally, when they update, they
increase their bid by a percentage i until they reach their true value.
Bidders are treated as ADP as soon as they change their bid for the
first time.

Different parameterizations lead to somewhat different pictures,
but all share the same general trends as in Figure 2. Note however,
that the x-axes are on different scales since it now takes signifi-
cantly more than 12 rounds for all bidders to fully adapt. Figure 3,
with parameters (0.3,0.6,0.1) shows that these cautious updates hurt
the performance of the hybrid relative to a direct switch to VCG.
There is still a benefit for the first 8 rounds, but then essentially all
bidders are classified as ADP, so performance is the same as if we
had switched directly.

This observation is the basis for the approach we suggest in the
introduction, of transitioning bidders in an ordering based on how
active they are. Figure 4 shows that the benefits persist longer if
we have bidders who are lax about updating (unless something
bad happens) with parameters (0.1,0.9,0.1). Larger values of i (not
shown) lead to more of the benefits of the hybrid approach being
maintained, since the period when a bidder is not GSP but not yet
truthful is shortened.



Figure 2: Perfectly Rational Bidders

7. CONCLUDING REMARKS
Our motivation and focus is the sponsored search setting, where

ad-slots are auctioned off. We have examined a possible transi-
tion from a GSP based auction to a VCG auction, and noted that a
simple switch to the VCG mechanism is likely to cause a dramatic
loss of revenue, as some advertisers would keep using their old and
shaded GSP bid. We aimed to provide a pathway for migrating
from one non-truthful mechanism (GSP) to a truthful mechanism
whilst mitigating the revenue loss that would occur if there was
a switch to a truthful mechanism but bidders did not immediately
update (increase) their bids to their true valuation.

We have proposed a hybrid mechanism approach which allows
for a staged transition between a GSP auction and a VCG auction
in sponsored search settings, which in particular allows maintain-

Figure 3: Cautious Bidders

Figure 4: Cautious Bidders, Lax Updates

ing high revenue during the transition period. Our approach allows
rolling out the new mechanism to increasingly larger proportions
of the advertiser population; when all advertisers are considered
non-adaptive the mechanism behaves exactly as the current auction,
and when the transition is complete, and all advertisers are adap-
tive ones, the mechanism behaves exactly as a VCG mechanism; in
between these two points, the mechanism behaves sensibly so as to
maintain good revenue.

In contrast to the standard approach for designing truthful mech-
anisms, we do not start with a a monotone allocation function and
then derive the unique payments using Myerson’s lemma [17]. In-
stead, our key ingredient is a payment function, which maps the
bids for lower value goods to the payment for a higher value good,
and which needs to satisfy two properties. The two properties, EMI
and MMI relate solely to the bids of truthful agents, and place con-
straints on the discrete derivative of the payment function.

We have given details of a "bottom-up" allocation procedure,
which when used with an EMI and MMI payment function gives an
Incentive Compatible (IC) mechanism, and hence gives incentive
for bidders to change type to truthful. If in addition, the mechanism
is "Top Interference Free", TIF , then this characterization is both
necessary and sufficient for IC anonymous mechanisms which sat-
isfy an additional technical axiom. Any mechanism derived from
a "bottom-up" procedure, such as standard GSP or VCG, are all
examples of TIF mechanisms.



We have provided an empirical evaluation based on simulations
indicating that our approach does indeed mitigate the revenue loss
during the transition.

A number of questions remain open for future research. First,
can alternative transition mechanisms achieve a better revenue re-
tention during the transition? There are at least two obvious al-
ternatives to our approach. One option is to directly switch to
VCG, which was we have shown requires a much more dramatic
initial revenue loss at each stage of the transition. It is possible
that it could still lose less money overall, if it causes the transi-
tion to take less time, but this seems unlikely, particularly as our
approach appears to give stronger incentives for bidders classified
as ADP to update their bids. (For example, an immediate switch
to VCG keeps allocations unchanged with lower prices, relying on
the price signal to encourage advertisers to increase their bid while
in our mechanism becoming classified as ADP results in a drop
of both price and clicks.) Nevertheless, this is a simple approach
that has been successfully used in at least one instance [22]. An-
other option is to switch to VCG but add a layer that attempts to
effectively raise bids on behalf of legacy bidders through some es-
timate of their value. While this approach sounds appealing, there
are a number of difficulties in practice. What should we do if this
causes a bidder to end up with a payment larger than her bid? When
should we stop this prediction and how does this effect the incen-
tives of bidders to update their bid (particularly with regard to a
payment-capping style approach to resolving the first difficulty)?

Second, how easy is it to extend our approach to other auction
settings or richer domains? Our approach of deriving mechanisms
from payments seems quite general. Are there other natural settings
covered by our existing framework? Can it be extended to domains
that do not satisfy TIF by adding additional structure to the payment
rules or changing the allocation algorithm?

APPENDIX
A. ALLOCATION ALGORITHM (AA)

Description of the algorithm. Set T contains all the ADP ads
which are not yet assigned. Similarly set N contains all the non-
ADP ads which are not yet assigned. In Line 3 we initialize the
value of ` which keeps the index of current position to be filled. In
Line 5 we select a ADP ad with minimum value in order to assign it
to a position. In Line 7 we provisionally fill the next |N | positions
with non-ADP ads. In Lines 8 and 9 we find and assign a position
with the best profit for ADP ad π. In Line 10 we remove all the non-
ADP ads which are assigned permanently (appear after the position
i) from N . In Line 13 we fill the remaining positions by the rest of
non-ADP ads. Finally at Line 14 we set the payments of allocated
ads according to p(i).

Note that at Lines 5 and 19, we might have multiple valid choices,
in which case we break the ties by the choosing the ad with the
smallest index. The only other instance where a tie can happen is
at Line 8, when we select the largest feasible j.

B. PROOF OF THEOREM 1
PROOF. LetM be the resulting mechanism after applying AA

to a set of payment functions. Observe thatM assigns ADP ads to
positions in the increasing order of their value, i.e., the larger the
value of a ADP ad is, the higher position he receives. This follows
from Line 5 of AA.

In order to prove incentive compatibility of mechanismM, we
show that an arbitrary ADP ad gets the best utility when he bids

Algorithm 1: Allocation Algorithm (AA)

input : n ads {1, . . . , n} and payment rule {p(i)}i∈n.
output: assignment (π1, . . . , πn) of ads to positions and their

payments.

1 T ← Extract-ADP-ads({1, . . . , n});
2 N ← Extract-NonADP-ads({1, . . . , n});
3 `← n ;

4 while |T | > 0 do
5 Let π ∈ T be a ADP ad with minimum value ;
6 Remove π from T ;
7 Fill-With-NonADP-ads ;
8 i← arg maxj∈{`−|N|,`−|N|+1,...,`} fj · v(π)−

p(j)(πj+1, . . . , πn) ;
9 πi ← π ;

10 N ← N − {πi+1, . . . , π`} ;
11 `← i− 1;
12 end
13 Fill-With-NonADP-ads ;
14 Set the payment of πi to be p(i)(πi+1, . . . , πn);

/* Sub-procedure Fill-With-NonADP-ads
provisionally assigns all the
remaining non-ADP ads to next
available positions. At each step it
selects a non-ADP ad which makes the
next payment as small as possible. */

15 Fill-With-NonADP-ads:
16 begin
17 N ′ ← N ;
18 for i← ` downto `− |N | − 1 do
19 πi ← arg minπ∈N′ p(i−1)(π, πi+1 . . . , πn) ;
20 N ′ ← N ′ − {πi}
21 end
22 end

his true valuation. Assume that θ is an arbitrary type profile, M
outputs assignment Π = (π1, . . . , πn) for θ, and πk is a ADP ad.
We show that utility of πk does not increase if he bids v′ consid-
ering three cases: (1) he is considered in the same iteration of Al-
gorithm 1, (2) he is considered in a later iteration, and (3) he is
considered in an earlier one.

Case (1): Since he is considered in the same iteration, all that
changes is that Line 8 optimizes with respect to v′ rather than v,
giving him a weakly worse position. Thus, he does not benefit.

Case (2): Since he is considered in a later iteration, some other
ADP with value v′′ ≥ v is considered in his original iteration and
assigned to slot k′′. By MMI,∇(k′,k′′)P(Π′) ≥ v′′ ≥ v. Thus, his
marginal payment for all the clicks he gets beyond what he would
get in slot k′′ is at least his value, and he is no better off than he
would have been originally taking slot k′′, which is a contradiction.

Case (3): Without loss of generality, let πk be the bidder in the
lowest slot (according to π) who can benefit from lowering his bid.
Let k′′ be the highest slot below k such that πk′′ (with value v′′)
is ADP. By the taxation principle, there is a price that πk′′ faced
for every slot at or below k′′, and at those prices he preferred k′′.
πk could have faced those same prices by bidding v′′ − ε for suf-
ficiently small ε, and as v ≥ v′′ he too prefers slot k′′ among all
those options. By EMI, ∇(k′′−1,k′′)P(Π) = v′′ ≤ v. Thus, he
weakly prefers taking slot k′′ − 1 to taking slot k′′. Since slot



k′′ − 1 was one of his options, he weakly prefers slot k to it, a
contradiction.

C. PROOF OF THEOREM 2
Before we begin, we observe that our requirements ensure that

the mechanism allocates adaptive ads in increasing order of value.
Recall that in our framework IC only applies to ADP ads.

OBSERVATION 1. IfM satisfies IC, AM, and TIF then it allo-
cates ADP ads in increasing order.

PROOF. Suppose for contradiction that v1 < v2 but ad (ADP, v1)
got a better slot than ad (ADP, v2). By IC, if we replace (ADP, v1)
by another copy of (ADP, v2), its slot can only improve. By TIF,
this means that the slot of the original copy is unchanged. But
by AM, if the original ads had been permuted the ad with value
v1 could raise its bid to v2 and receive a worse slot, contradicting
IC.

We begin with sufficiency. LetM′ = (x′, p′) be a mechanism
with allocation function x′ and payment function p′ which satisfies
IC, AM, TIF. We use M′ to propose payment rule P such that a
payment derived mechanismM using P is equivalent toM′. In
order to deal with technicalities of ties, we assume that in the case
of tiesM′ use the same tie breaking rule as our framework.

Let Π(k) = (πk, . . . , πn) for k ∈ {3, . . . , n} be the assignment
of M′ for positions k to n. We say that ad i is less than j with
regard to Π(k) (show by i ≺Π(k) j), if there exist a type profile θ
such that

• The allocation x′(θ) is the same as Π(k) for positions k to n.

• i, j ∈ θ.

• Ad i is assigned to position k − 1 and ad j is assigned to a
position better than i (x′(i) > x′(j)).

Intuitively, i ≺Π(k) j means that fixing Π(k) allocation x′ prefers
to assign i to position k over j. In the following lemma we prove
that ≺Π(k) is a total order over all the ads which can be assigned
to position k − 1 fixing Π(k). It turns out that TIF is almost, but
not quite strong enough to prove this lemma. The difficulty is that
it has no “bite” when applied to the case of k = 3 (i.e. the final 2
slots). That is, ad in slot 2 has no (non-fixed) ads below it (so the
definition is vacuous), while an ad in slot 1 that changes type and
remains in slot 1 forces the other ad to stay in slot 2 (again making
the definition vacuous). Thus, we need a property that ensures the
mechanism is well-behaved in this case.

DEFINITION 8 (TWO TRANSITIVE(2T)). M is two transitive
if for all choices of Π(3) the relation ≺Π(3) is transitive.

Thus, we further assume for our proof of sufficiency thatM′ satis-
fies 2T.

LEMMA 1. The relation ≺Π(k) is antisymmetric (if i ≺Π(k) j
then j 6≺Π(k) i), total, and transitive.

PROOF. We prove the lemma by contradiction. To show anti-
symmetry, let θ be a type profile for which i ≺Π(k) j and θ′ be
a type profile for which j ≺Π(k) i. Consider a sequence of type
profiles that are intermediate between θ′ and θ in the sense that
the transition from one profile to the next results from changing
the type of a single ad from its value in θ′ to its value in θ. Let
θ′ = θ1, θ2, . . . , θa−1, θa = θ be the sequence of type profiles.

We show that this sequence maintains the following invariant:
the ad in slot k−1 is not i and has already changed its type. Clearly

this is true for θ′, since j is in slot k − 1 in x(θ′) and its type will
never change. Suppose it is true for θb, and let ad e be the ad that
changes type between θb and θb+1. By our invariant, e is not in slot
k − 1 of x(θb). Thus, by TIF, if the ad in slot k − 1 changes from
x(θb) to x(θb+1) it must be that in x(θb+1) the ad in slot k−1 is in
fact e, which is not i and has already changed its type. This shows
that i is not is slot k − 1 of x(θ), contradicting our assumption.

To see that the relation is total, take some θ and i and j. Create
θ′ by replacing all ads other than i and j shown in a slot above k in
x(θ) with a copy of either i or j. Thus, by an inductive argument
that shows this does not change the allocation below slot k − 1,
some copy of i or j must be allocated to slot k − 1.

Finally, transitivity follows via a similar construction. If k > 3,
simply transform θ to θ′ by replacing all ads above slot k with
copies of one of the relevant i, j, or `. If k = 3, transitivity is by
assumption (i.e. 2T).

Now we are ready to specify how we build set of payment func-
tions P = {p(i)}i∈[n] fromM′. Let Π(k) be a valid assignment of
ads to positions k to n. By Lemma 1 we have a total ordering of all
possible candidate ads for position k−1, so set p(k−1)(Π(k)) to be
the infimum of ADP ads among those candidates (i.e. the minimum
bid an ADP ad could make and be shown in this position).

Now we prove that the payment-derived mechanism using the
payment rule P we have constructed always gives the same allo-
cation and payments asM′ which finishes the proof of this suffi-
ciency.

LEMMA 2. The payment-derived mechanism M = (x,P) is
the same asM′ = (x′, p′).

PROOF. We need only verify thatM always gives the same al-
location asM′ as the fact that the payments are the same (at least
up to a constant) then follows via revenue equivalence (recall that
we only care about the payments of ADP bidders). (The constant
can be matched by changing p to p′′ to include this constant shift.)

Now we prove by contradiction that the allocation functions x
and x′ are the same. Let θ be a type profile for which x(θ) 6= x(θ′).
Let Π(k) = (πk, . . . , πn) be the largest common suffix of x(θ) and
x(θ′) and assume for now that p(k−1)(Π(k)) is finite. Let e be the
ad assigned to position k − 1 in x(θ) and e′ be the ad assigned to
position k − 1 in x′(θ). Note that

e′ ≺Π(k) e (8)

since x′(θ) assigned positions k − 1 to e′.
Because x(θ) assigns position k − 1 to e as opposed to e′ this

means that

p(k−2)(e, πk, . . . , πn) < p(k−2)(e′, πk, . . . , πn)

(Recall Lines 5 and 19 of algorithm AA). This means that there ex-
ists a ADP ad x with valuation ∇(k−2,k−1)P((e, πk, . . . , πn)) <

v(x) < ∇(k−2,k−1)P((e′, πk, . . . , πn)). Now if we replace the
rest of ads with ADP bidders with valuation v(x) then they appear
before e but after e′. This contradicts with Equation 8 and the fact
that ≺Π(k) is a total order for any Π(k).

Now we deal with the case where p(k−1)(Π(k)) is infinite. Intu-
itively, this is the case where only non-adaptive ads can be shown
before the suffix Π(k). Since prices are all infinite, we need a way
for the algorithm to match the order thatM′ chooses. We do this
by allowing prices of the form (∞, a), where a is the type of a
non-ADP ad. The total order ≺Π(k) then gives a well defined no-
tion of the lowest price as the one whose a is lowest according to
that ordering. With this enlarged set of prices, the proof proceeds
as before.



Finally, the necessary part is easy to prove. Let M be a pay-
ment derived mechanism. The AM and TIF properties follow by
the fact that in algorithm AA (see Algorithm 1) when assigning the
next ADP ad, AA uses only its value and neither its index nor the
value of higher ADP ads. The IC property of M is the result of
Theorem 1. 2T follows from the greedy nature of the allocation.

C.1 Discussion of Two Transitivity (2T)
Two transitivity is a technical assumption. The intuition is that

we require the mechanism to be well-behaved when considering
the top two slots, which TIF is not strong enough to enforce. If all
non-ADP ads are of the same nature, a sufficient condition is that
M′ is monotone for non-ADP ads (MN). That is, if a non-ADP ad
raises its bid, it gets a (weakly) better slot.

LEMMA 3. IFM satisfies IC, AM, TIF, and MN and all non-
ADP ads have the same nature then it satisfies 2T

PROOF. By AM and IC/MN, ≺Π(3) is transitive if all 3 ads are
ADP or non-ADP respectively. Thus, WLOG let 2 be ADP and 1
be non-ADP (replace IC by MN below if only 1 is ADP). There are
3 cases.

Case 1: N ≺ V1 ≺ V2. By IC, N ≺ V2 (otherwise an adaptive
ad V1 could raise its bid and go from slot 1 to slot 2).

Case 2: V1 ≺ N ≺ V2. By AM+IC, V1 ≺ V2 (otherwise an
adaptive ad V2 could raise its bid and go from slot 1 to slot 2 when
facing N ).

Case 3: V1 ≺ V2 ≺ N . By IC, V1 ≺ N (otherwise an adaptive
ad V1 could raise its bid and go from slot 1 to slot 2).

Such a nice sufficient condition is not obvious if there is more than
1 nature of non-ADP ad. Non-degenerate examples still appear to
satisfy 2T, but we do not know of a less technical way to explain
the way in which they are non-degenerate. To see why, consider
an example with 2 slots. If the bidders have at least one adaptive
ad, this becomes a form of second price auction. However, when
there are two non-adaptive ads of different natures, nothing obvi-
ously constrains the rule for determining the order in which they
are shown in a way that corresponds to enforcing transitivity. This
same example shows why we require MN in Lemma 3. Without it
we would be equally at a loss in this situation.

D. PROOF OF PROPOSITION 1
PROOF. Both directions of the proof follow almost directly from

the definitions of a lowest SNE, EMI and MMI. In order for pay-
ments of ADP and GSP bidders to be identical, the payment func-
tions p(i)(Π(i+1)) must be the same regardless of whether i is ADP
or GSP, and independent of the mix of bidder types in Π(i+1). Con-
sequently no GSP or ADP bidder wants to change bid or position,
since by the definition of an SNE(
v(i)− p(i)(Πi+1)

)
fi ≥

(
v(i)− p(j)(Πj+1)

)
fj for all i, j.

(9)
By standard arguments about the lowest SNE (see, e.g., [21, 19])
we in fact have that for all i,

b(i)fi−1 = b(i+ 1)fi + v(i)(fi−1 − fi). (10)

Thus, by induction, the two conditions of (1) are in fact equal at
the lowest SNE. This gives that the form is necessary and sufficient
for prices to coincide, as pricing must be equivalent to the case
θj = (GSP, b(j)) for all j ≥ i. As this outcome is equivalent to
the outcome of a truthful auction, it follows that EMI and MMI are
satisfied as well.

E. FURTHER DISCUSSION OF PRICING
RULES

OBSERVATION 2. When setting prices according to (3), GSP
bidders may pay more than their bid.

PROOF. Consider the following example. There are three non
adaptive advertisers (1, 2, and 3) whose bids are b(1) = 12, b(2) =
11, and b(3) = 10, and one adaptive advertiser (4) whose bid is
b(4) = v(4) = 22. There are four available positions, with f1 = 1,
f2 = 0.7, f3 = 0.6, and f4 = 0.5. The resulting allocation is
then Π = (1, 2, 3, 4). When setting prices according to (3), the
advertiser in the first position pays p(1) = 13.6, which is higher
than his bid. (The payments for the other positions are p(2) = 7,
p(3) = 2.2, and p(4) = 0.)

We say that an ADP bidder is indifferent between slots i+ 1 and
i if his utility is the same for both positions during the course of our
allocation procedure.

OBSERVATION 3. When setting prices according to either (3)
or (6), GSP bidders pay exactly their bid when an indifferent ADP
bidder is put immediately below them.

PROOF. Let b be the value of a GSP bidder that is assigned to
slot i and v be the value of an adaptive bidder assigned to slot i+1.
We have

fi(v − b) = fi+1v − p(i+1)(Π(i+2)).

Rewriting shows that the GSP bidder pays exactly his bid.

OBSERVATION 4. When setting prices according to (6), GSP
bidders never pay more than their bid.

PROOF. When bidder i is being priced by another GSP bidder
(i.e. the second branch of the pricing rule applies), this is trivially
true as GSP bidders are allocated in order of bid. Otherwise, let j =
arg max v(Π(i)). Let b be the value of the GSP bidder assigned to
slot i and v be the value of the ADP bidder assigned to slot j. Then

fi(v − b) ≤ fjv − p(j)(Π(j+1)).

Rewriting shows that the GSP bidder pays at most his bid.

Thus, we have seen that rule B possesses the desirable property
that GSP bidders never pay more than their bids. But at the cost
of charging both GSP and ADP bidders less than rule A in general.
The situations in which rule A causes a GSP bidder to pay more
than his bid are actually quite specific, and in unreported simula-
tions we found them to be rare. Since our primary goal is to miti-
gate revenue loss, there is a reasonable case to use rule A, perhaps
with a cap to ensure no bidder is ever charged more than his bid,
although this may have some incentive implications depending on
how bidders are classified as ADP vs GSP.

Finally, we note that this distinction between rules A and B shows
off the generality of our framework relative to previous work. It
turns out that the natural way of applying the approach of Aggar-
wal et al. [3] to accommodate both ADP and GSP bidders results in
rule B, while our approach allows the options of considering rule A
(and convex combinations of the two), as well as being adaptable to
other considerations like first-price bidders or organic results par-
ticipating in the allocation rule.
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