
A Field Guide to Personalized Reserve Prices

Renato Paes Leme Martin Pál Sergei Vassilvitskii

February 26, 2016

Abstract

We study the question of setting and testing reserve prices in single item auctions
when the bidders are not identical. At a high level, there are two generalizations of the
standard second price auction: in the lazy version we first determine the winner, and
then apply reserve prices; in the eager version we first discard the bidders not meeting
their reserves, and then determine the winner among the rest. We show that the two
versions have dramatically different properties: lazy reserves are easy to optimize, and
A/B test in production, whereas eager reserves always lead to higher welfare, but their
optimization is NP-complete, and naive A/B testing will lead to incorrect conclusions.
Despite their different characteristics, we show that the overall revenue for the two
scenarios is always within a factor of 2 of each other, even in the presence of correlated
bids. Moreover, we prove that the eager auction dominates the lazy auction on revenue
whenever the bidders are independent or symmetric. We complement our theoretical
results with simulations on real world data that show that even suboptimally set eager
reserve prices are preferred from a revenue standpoint.

1 Introduction

A key part of auctions is setting the minimum price at which the seller is willing to part
with the item. The so called reservation, or, reserve, price is critical to maximizing revenue,
as proven by Myerson in his Nobel prize winning work [Mye81]. In the online advertising
scenario, setting the reserve price is a non-trivial exercise—the auctions are repeated, hence
agents may be adapting their behavior to influence the learning [ARS13, MM14, CGM15],
only a glimpse into the buyers’ valuations is known [DRY15], and there is a heterogene-
ity in the sophistication level of the bidders. On the other hand, as observed by Celis et
al. [CLMN14], many of the auctions have very few bidders (the median number of bidders
is six in their dataset), thereby exacerbating the need for good reserve prices to maximize
revenue.

The fact that reserve prices are a good idea comes from Myerson’s seminal work [Mye81]
which shows that if the valuations are drawn independently and identically (iid) from a
distribution satisfying a certain regularity assumption, then the optimal auction takes the
form of a second price auction with a reserve price. Myerson’s result generalizes past the
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iid setting: if agents are independent but not identical, the optimal auction involves sorting
the agents by a function of their bid (called the virtual value) and assigning the item to the
agent with largest non-negative virtual value.

In practice, the optimal auction is complicated to implement, since it involves learning
the distributions of valuations in a robust enough manner to allow the computation of virtual
values. And even if this computation were feasible, in the spirit of Wilson doctrine [Wil85],
simple detail-free mechanisms are often preferred in complex environments in order to mit-
igate the risks introduced by assumptions of the model. In the spirit of designing simpler
auctions for the non-iid setting, Hartline and Roughgarden [HR09] show that if players are
independent and their distribution obey the monotone hazard rate condition, then there ex-
ist a vector of personalized reserve prices that generates revenue which is at least half of the
optimal revenue. Both assumptions (independence and monotone-hazard-rate) are necessary
for their result.

In this work, we revisit the topic of setting personalized reserve prices in second price
auctions from the perspective of a practitioner: How to compute them? How to make sure
they are computed correctly? How to apply them in an efficient manner? While asking this
question, we avoid (in most of our results) making any assumptions about the shape of the
bid distributions.

Evaluation. In practice computing a reserve price that behaves well in offline simulations
is only the first part of the process. A successful experimental evaluation is key in proving
that assumptions made in theory are reasonable, and do not lead to unintended consequences.

Testing reserve prices is a separate research challenge in and of itself. We distinguish
between short term studies, where the goal is to measure the immediate benefit of the reserve
prices, and long term studies that intend to capture the strategic interactions between the
bidders and auctioneer. Here we focus on the short term studies, and observe that testing
personalized reserve prices, even in this, relatively simple, setting, is non-trivial, and can
lead to incorrect conclusions.

1.1 Our Contributions

We show that the problem of computing and applying personalized reserve prices is nuanced,
and has paradoxical behavior, particularly when testing the efficacy of reserves in an A/B
test. Our empirical evaluations show that the paradoxical behavior is not limited to theory,
but does occur in practice as well.

We begin by describing two different approaches to applying personalized reserve prices:
lazy and eager, and show that while sometimes one approach dominates another on revenue,
they are always within a factor of two of each other (Theorem 3).

We then identify two mildly restrictive settings (those of symmetric bidders, and inde-
pendent bidders) and show that in these situations optimal eager reserve prices always yield
more revenue (Theorems 6 and 7).

Turning to computational issues in setting the optimal lazy and eager reserve prices, we
show that a simple nearly linear time algorithm can compute the optimal lazy reserves from
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previous history, while computing the optimal eager reserves is NP-hard (Propositions 10
and 11).

We show that naive A/B testing of eager reserve prices always leads to a drop in revenue,
even when the reserve prices are set correctly! (Theorem 13) We observe that lazy reserves
do not suffer from this problem, and behave in an intuitive manner.

Finally, we present an empirical evaluation of our findings on real world data, and show
that the performance of the algorithms is much better than the large approximation factors
guaranteed by the theory (Section 7).

2 Preliminaries

We consider the standard setting of single item auctions. Let A = {1, 2, . . . , n} be the set
of agents interested in the item. Each agent i has a value vi for the item, and submits a
bid bi to the auctioneer. Given a vector of bids b = (b1, b2, . . . , bn), we denote by b(1) the
highest bid, and b(2) the second highest bid. We will denote by r = (r1, r2, . . . , rn) the vector
of personalized reserve prices.

We assume that the valuation of each agent is drawn independently from an unknown
distribution with CDF F and PDF f . To ease the exposition we assume that the distributions
F are regular, in that the virtual value function φ(v) = v− 1−F (v)

f(v)
is monotone non-decreasing.

In the case when all of the distributions are identical and known to the seller, F1 = F2 =
. . . = Fn, Myerson proved the following characterization of the optimal auction:

1. Collect bids b1, b2, . . . , bn.

2. Discard all bids that are below φ−1(0).

3. Allocate the item to the agent with the highest bid, and charge her the maximum of
φ−1(0) and b(2).

Note that φ−1(0) acts as a reserve price for the auction: this is the minimum bid any
agent must submit to win, and also acts as a lower bound on the revenue to the seller.

In this work our focus is on the non-identical setting. In this case Myerson proved that
the optimal auction is:

1. Collect bids b1, b2, . . . , bn.

2. For each agent, discard bid bi if it is lower than φ−1i (0).

3. Allocate the item to the agent with the highest virtual value, φi(bi), and charge her
the maximum of φ−1i (0) and φ−1i (φj(bj)), where j is the agent with the second highest
virtual value.

There are two major differences from the identical setting. First, instead of having
a universal reserve price φ−1(0), each agent now has a personalized reserve price φ−1i (0).
Second, the winner is determined as the agent whose bid has the highest virtual value, not
the one who has the highest bid.
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While the first auction is easily implemented in practice, the latter is much more prob-
lematic. First, the virtual value functions depend critically on the value distributions, which
themselves are not always known and must be estimated. Second, the auction is counterin-
tuitive to outsiders, as the agent with the highest bid does not always win the item.

2.1 Personalized Reserve Prices

To combat the potential bid inversion that comes with ordering by virtual values, Hartline
and Roughgarden [HR09] proposed keeping the personalized reserve prices aspect of the
optimal auction, but ordering items by bid instead. They show that with monopoly reserves
φ−1i (0), this auction yields a 2-approximation to the revenue of the optimal auction when
agents are independent and follow the monotone hazard rate condition.

This natural approach leads to two possible flavors of second price auctions, which were
first introduced by Dhangwatnotai et al. [DRY15]. Informally, in the eager regime, we first
discard all of the bids that do not meet their personalized reserve prices and then run the
second price auction on the remaining bids. In the lazy regime, we always try to allocate
the item to the agent with highest bid. If her bid is below the reserve price the good goes
unallocated, otherwise the agent is charged the maximum between her reserve price and the
second highest bid. We describe these two auctions more formally in Section 3.

2.2 Estimating Value Distributions

Myerson’s theoretical analysis requires us to know the cumulative density function F , as well
as the PDF, f , to compute the virtual value function φ(·). In practice this is a tall order. In
the online advertising context, the auctions are repeated, and thus we can observe a number
of draws from the distribution. For example, we observe the sequence of bids for agent i:
b1i , b

2
i , b

3
i , . . ., from which we can compute empirical estimates F̂ and f̂ for F and f .

In this work we focus on the computational complexity of computing optimal personalized
reserve prices from the previous bids. In particular we show that the optimization question
for eager and lazy auctions has very different profiles, one being solvable in polynomial time,
and the other being NP-complete.

3 Lazy and Eager Auctions

Insisting that advertisers are ranked by bid leads to two flavors of second price auctions. As
before, let b = (b1, b2, . . . , bn) be the bids submitted to the auctioneer, and assume without
loss of generality that b1 ≥ b2 ≥ b3 . . . bn. Let r = (r1, r2, . . . , rn) be the vector of reserve
prices, with reserve price ri applying to bidder i.

Following the work of Dhangwatnotai, Roughgarden and Yan [DRY15], we define second
price auctions with lazy and eager reserves.

Lazy Reserves:

• If b1 < r1 then there is no winner and the item goes unsold.
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• if b1 ≥ r1, allocate the item to bidder 1 and charge her max(r1, b2).

Eager Reserves:

• Let S = {i : bi ≥ ri} be the set of bidders who bid above reserve.

• Let j be bidder with the highest bid in S (ties broken by the original ordering).

• Allocate the item to bidder j and charge her the maximum of her reserve and second
highest bid in S: max(rj,maxi∈S−{j} bi).

Observe that when the reserve prices are identical, r1 = r2 = . . . = rn, then both of
these approaches implement the standard second price auction. We denote by RevL(b; r)
and RevE(b; r) the revenue obtained by running the lazy and eager auctions on the same
set of bids and reserve prices.

Both versions of the auction are incentive compatible and individually rational, since,
whenever player i wins with bid bi, she still wins with all bids b′i ≥ bi. Moreover, in either
case, the payment of i correspond to her critical bid, i.e., the infimum of the bids for which
he wins.

3.1 Example

To demonstrate the difference between the two approaches and show why in general the
revenues are incomparable, consider the following two examples.

Example 1 (Eager Dominates Lazy). Consider an auction with three bidders A, B, and
C, who bid 7, 5, and 3 respectively. Suppose the vector of reserve prices is 8, 1 and 2.
The auction with lazy reserves tries to allocate the item to A since she has the highest bid.
However, since her bid is lower than her reserve price, the item goes unallocated, and the
seller collects no revenue. The auction with eager reserves first filters out A, allocates the
item to B and collects revenue of 3.

Example 2 (Lazy Dominates Eager). As above let A, B, and C be the three bidders bidding
7, 5, and 3. Suppose the vector of reserve prices is 2, 6 and 1. The auction with lazy reserves
allocates the item to A since her bid is above her reserve and charges her 5 (the second highest
bid). On the other hand, the auction with eager reserves first removes B from consideration
(since his bid is below reserve). A still wins the item, but is charged only 3.

Intuitively, eager reserve prices lead to higher revenue when the highest bid is priced out;
whereas lazy reserve prices lead to higher revenue when the second highest bidder is priced
out.

4 Comparing Lazy and Eager Reserve Prices

The second price auctions with eager and lazy reserves are identical when all agents are sub-
ject to the same reserve price. If the reserve prices are personalized, however, the outcomes
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of the auctions can be very different. In terms of welfare, it is easy to see that the auction
with eager reserves always dominates the auction with lazy reserves. The auction with lazy
reserves allocates the item only if the highest bidder is above her reserve price. In such cases,
the auction with eager reserves also allocates the item. This fact alone makes a second price
auction with eager reserves more attractive to sellers that care about match rate.

As we saw in examples in Section 3, in general the revenue gains due to lazy and eager
reserve prices are incomparable. In this section we provide a tighter characterization, and
identify broad classes where one mechanism dominates another.

We begin with Theorem 3 and prove that for any (possibly correlated) bid distribution
no auction generates more than twice the revenue of the other, and give two examples to
show this bound is asymptotically tight.

Then, in Section 4.2 we show that the revenue of the optimal eager mechanism dominates
that of the optimal lazy mechanism whenever either (i) the bidders are symmetric (the joint
bid distribution doesn’t change when bidders are permuted), or, (ii) the bidders’ bids are
drawn from independent (not necessarily identical) distributions.

Theorem 3. Let D be any distribution over bid vectors b. Also, let RevL(b; r) and
RevE(b; r) denote the revenue of the lazy and eager auctions under bid vectors b and per-
sonalized reserves r. Let:

r∗L = arg max
r

Eb∼D[RevL(b, r)],

r∗E = arg max
r

Eb∼D[RevL(b, r)].

Then
Eb∼D[RevL(b, r∗L)] ≤ 2 · Eb∼D[RevE(b, r∗E)],

Eb∼D[RevE(b, r∗E)] ≤ 2 · Eb∼D[RevL(b, r∗L)].

Proof. For the first inequality, consider running the eager second price auction with r∗L.
For any bid vector b, if the highest player is below the reserve then: RevL(b, r) = 0 ≤
RevE(b, r). If the highest player is above the reserve and her payment in the lazy auction is
her reserve, then both auctions generate the same revenue. The final case is the case where
the highest bidder is above the reserve and the payment in the lazy auction is the second
highest bid. In this case, the revenue of the eager auction might be lower if the second
highest bidder is below her reserve. For that bid vector, however, the revenue of the lazy
auction is the second highest bid, which is equal to the revenue of the auction with no reserve
prices. Therefore:

RevL(b, r∗L) ≤ max[RevE(b, r∗L),RevE(b,0)]

≤ RevE(b, r∗L) + RevE(b,0)

Taking expectations over b we obtain the first inequality:

E[RevL(b, r∗L)] ≤ E[RevE(b, r∗L) + RevE(b,0)]

≤ 2 · E[RevE(b, r∗E)]
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For the second inequality, consider running a lazy second price auction with r∗E. If for
any bid vector b, the highest player is above her reserve, the lazy auction is guaranteed to
generate more revenue than the eager auction. If not, then the eager auction generates at
most revenue equal to the bid of the second highest bidder (since revenue is dominated by
welfare), which is the revenue of the second price auction with no reserves. Therefore:

RevE(b, r∗E) ≤ max[RevL(b, r∗E),RevL(b,0)]

≤ RevL(b, r∗E) + RevL(b,0)

We obtain the second inequality by again taking expectations over b:

E[RevE(b, r∗E)] ≤ E[RevL(b, r∗E) + RevL(b,0)]

≤ 2 · E[RevL(b, r∗L)]

4.1 Lower Bound Examples

The following examples complement the bounds in Theorem 3. First, we show an example
where revenue from the eager mechanism is almost twice the revenue from the best lazy
mechanism.

Example 4. There is an instance with n bidders with valuations drawn independently from
the same distribution, where the best eager mechanism generates 2−o(1) times more revenue
than the best lazy mechanism.

Proof. Consider n identical bidders, with each bidder choosing to bid bi = n with probability
1/n2 and with probability 1 − 1/n2 bidding bi = 1. (Each bid is drawn independently. To
break ties, each bid is perturbed by adding a noise term drawn independently from [0, ε] for
infinitesimally small ε)).

With probability 1− 1/n+O(n−2), all bidder valuations will be 1, and with probability
1/n−O(n−2), some bidder will have a valuation of n. Thus, the optimal welfare given these
valuations is 2−O(n−2).

We claim that a lazy pricing mechanism extracts at most 1 revenue. By symmetry each
buyer is equally likely to be the winner. Now consider the reserve price for an individual
bidder i.

• If ri < 1+ ε, revenue will be bounded by 1+ ε unless both bidder i and another bid bid
high (probability of O(n−2)), in which case revenue is bounded by n. The expected
revenue is then 1 + o(1).

• If ri > 1+ε, revenue is only earned if bi = n, and is bounded by n. Since the probability
of a high bid is less than n−1, the expected revenue is bounded by 1.

7



On the other hand, we claim that an eager mechanism can earn 2 − o(1) revenue. This
can be done by imposing a high reserve price ri = n for i = 2, . . . , n (all buyers except one)
and a low reserve price r1 = 1 on the remaining bidder. With this setup:

• With probability 1/n−o(n−2), one of bidders 2, . . . , n will submit a high bid, generating
revenue n−O(1).

• With the remaining probability, the auction is guaranteed to clear because b1 ≥ r1 = 1
and will generate at least 1 in revenue.

The overall expected revenue is thus 1
n
· (n− o(1)) + (1− 1

n
) · 1 = 2− o(1).

Next, we show an example where the lazy mechanism generates twice the revenue of the
best eager mechanism. This example requires both that bidders are not symmetric, and that
their bids are correlated.

Example 5. There is an instance with two correlated heterogenous bidders where a lazy
mechanism generates 2− o(1) times higher revenue than the best eager mechanism.

Proof. Let M be a sufficiently large constant, and consider the following joint distribution
of bids of two bidders.

• With probability logM
M

, bidder 1 bids 0 while bidder 2 bids b2 = M .

• With probability 1− logM
M

, first bidder’s bid b1 is drawn from a truncated equal revenue
distribution F (b) = 1− 1

b
for b ∈ [1,M) and F (M) = 1 and the second bidder’s bid is

set to b2 = (1− ε)b1 for some arbitrarily small ε.

Lazy reserve prices r1 = 0, r2 = M extract the full surplus as ε→ 0, achieving expected
revenue of

logM

M
·M +

(
1− logM

M

)
(1− ε)

(∫ M

1

bf(b)db+
M

M

)
= logM +

(
1− logM

M

)
(1− ε) · (logM + 1)

= (2− o(1)) logM.

Suppose the eager mechanism imposes reserves of r1 and r2. With probability logM/M
the revenue is r2. For the remaining case, we condition on whether the second bidder bid
above reserve. In the case b2 < r2, bidder 1 is competing against his reserve price, r1,
generating revenue of at most:

r1(1− F (r1)) ≥ r1

[
1−

(
1− 1

r1

)]
= 1.
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If, on the other hand, when b2 ≥ r2, the total revenue is bounded by:∫ M

r2

bf(b)db = logM − log r2 = log(M/r2)

Putting these together the overall revenue is at most :

r2
logM

M
+

(
1− logM

M

)
·
(

1 + log
M

r2

)
≤ 1 + r2

logM

M
+ logM − log r2

This function is convex in r2, thus achieving its maximum at the endpoints of the interval.
It obtains its maximum value of (1 + o(1)) logM at r2 = 1.

4.2 Restricted Settings

Above we proved that while the revenue from lazy and eager auctions is always within a fac-
tor of two of each other, an unconditional bound is impossible in general. Here we consider
two restricted settings, first of symmetric bidders, and then of independent bidders. In both
cases we show that eager auctions dominate lazy auctions.

Symmetric Bidders. We say that bidders are symmetric (sometimes also called ex-
changeable) if the bid distribution is invariant under permutations. Formally, for every
permutation π : [n]→ [n] let bπ be the vector (bπ(1), bπ(2), . . . , bπ(n)). A distribution is sym-
metric if the distribution of bπ is the same as the distribution of b. Notice that iid implies
symmetry, but symmetry is more general—for example, consider the bid distribution ob-
tained by choosing in each time one buyer at random and letting her bid H and letting every
other buyer bid L. The distribution is clearly symmetric, but it is not independent (since
there is always exactly one buyer bidding H).

Theorem 6. If bidders are symmetric the optimal eager mechanism yields at least as much
revenue as the optimal lazy mechanism.

Proof. Proposition 10 tells us that the optimal lazy reserve price for bidder i is a function of
the joint distribution of winning bids and prices conditioned on bidder i winning. If bidders
are symmetric, the optimal lazy reserve prices are the same for all bidders; r1 = r2 = · · · = rn.
If all reserve prices are the same, lazy and eager mechanisms behave identically. (It is however
possible that a different reserve price vector yields higher revenue for the eager mechanism,
as in Example 4.)

Independent Bidders. We show that if each bidder draws her value independently,
auctions with eager reserves are always at least as good auctions with lazy reserves.

Theorem 7. If bidder valuations are drawn independently (not necessarily from identical
distributions), the optimal eager mechanism yields at least as much revenue as the optimal
lazy mechanism.
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To prove the theorem we will exhibit a method that, given any vector r of lazy reserve
prices, produces a vector rE such that E[RevE(b; rE)] ≥ E[RevL(b; r)]. The construction
will rely heavily on the independence of the bids. A key concept in the proof is that of
trimmed distributions:

Definition 8 (trim). Consider a non-negative random variable X distributed according to
some distribution D, and a real number r ≥ 0. We use trim(D) to denote the distribution of
the random variable X ′ = X · 1{X ≥ r}, i.e.. random variable that is equal to X if X ≥ R
and is zero if X < r.

This definition allows us to define the main lemma. In the following proofs, we will
abbreviate Eb∼D[Rev(b, r)] by Rev(D, r).

Lemma 9. Given independent bid distributions Di, D = D1 × . . .Dn and a reserve price
vector r, there exists a vector of reserve prices r′ such that:

RevL(D, r) ≤ RevL(D′, r′)

where D′ = D′1 × . . .×D′n and D′i = trim(Di; r′i).

First we show how to use Lemma 9 to prove Theorem 7:

of Theorem 7. Let r′ and D′ be as in Lemma 9. Notice that for b ∼ D′, Pr[0 < bi < ri] = 0.
Since a bidder is never blocked by the reserve, the revenue in both the eager and lazy
auctions is the maximum of the second highest bid and the reserve of the highest bidder.
This implies that RevE(D′, r′) = RevL(D′, r′). Since D stochastically dominates D′, there
is a distribution on pairs of vectors (b′,b) such that the marginals are D′ and D and b′i ≤ bi
for all i for every realization of the random variables. Hence, RevE(b′; r′)] ≤ RevE(b; r′).
Taking expectations we conclude that

RevE(D′, r′) ≤ RevE(D, r′).

Putting this together with the inequality from Lemma 9:

RevL(D, r) ≤ RevL(D′, r′) = RevE(D′, r′) ≤ RevE(D, r′)

Now, all is left to do is to prove Lemma 9:

of Lemma 9. Assume that the bidders are sorted such that r1 ≥ r2 ≥ . . . ≥ rn. We will
define an algorithmic procedure that iterates through bidders 1 to n and at each iteration i,
trims the distribution of the i-th bidder and possibly increases the reserves of agents j > i.
It is useful to think of r and D = D1 × . . .×Dn as variables that are updated in the course
of the procedure.

The procedure will keep the following invariants: (i) RevL(D, r) cannot decrease; (ii) for
all bidders already processed, their distribution is trimmed at their reserve, i.e., Pr[0 < bi <
ri] = 0. (iii) the reserve prices will continue to be sorted.
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Now, we are ready to describe each iteration. When we process bidder i, we perform the
following procedure:

Choose x < ri such that:

ED[RevL(b; r)|bi = x] ≥ ED[RevL(b; r)|bi < ri]

Set Di = trim(Di, ri) and rj = max(rj, x) for j > i.

Clearly we maintain invariants (ii) and (iii). Now, we only need to argue that invariant (i)
is also maintained. It is convenient to write RevL(b, r) =

∑
j RevjL(b, r) where RevjL(b, r)

is the revenue obtained from bidder j.
First notice that ED[ReviL(b; r)] = ED′ [ReviL(b; r′)] since the lazy auction just extracts

revenue from i when she is the highest bidder and above her reserve (and those events are
unaffected by trimming). Also, in the lazy auction, the reserves on bidders other than the
highest bidder do not affect the outcome.

For all other j 6= i, notice that ED[RevjL(b; r)|bi ≥ ri] = ED′ [RevjL(b; r′)|bi ≥ ri].
Conditioned on bi > ri the only thing changing in the two scenarios is that the reserve
price of j is now r′j = max(rj, x); since x < ri, it cannot be binding as bidder i is bidding
bi > ri. (Notice that for bidders j < i, their reserve price was already at least ri, so
r′j = rj = max(rj, x) since x < ri < rj.)

Finally, ED′ [RevjL(b; r′)|bi < ri] = ED[RevjL(b; r)|bi = x], since in the first case i must be
bidding zero and j is subject to reserve rj = max(rj, x), but this reserve can be implemented
by having i bid x.

Combining all of the expressions, we get:

ED′ [RevL(b, r′)]

= ED′ [ReviL(b, r′)]

+
∑
j 6=i

ED′ [RevjL(b, r′)|bi ≥ ri] Pr(bi ≥ ri)

+
∑
j 6=i

ED′ [RevjL(b, r′)|bi < ri] Pr(bi < ri)

= ED[ReviL(b, r)]

+
∑
j 6=i

ED[RevjL(b, r)|bi ≥ ri] Pr(bi ≥ ri)

+
∑
j 6=i

ED[RevjL(b, r)|bi = x] Pr(bi < ri)

Since ED[ReviL(b; r)|bi < ri] = 0, x was picked such that∑
j 6=i

ED[RevjL(b; r)|bi = x] ≥
∑
j 6=i

ED[RevjL(b; r)|bi < ri]
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Plugging this into the last expression, we get that:

ED′ [RevL(b, r′)] ≥ ED[RevL(b, r)]

5 Computing Optimal Reserves

In this section we investigate the computational complexity of computing the optimum re-
serve prices in the eager and lazy settings. We assume that the input to the problem is given
as a set of bids submitted to previous auctions. Since the number of auctions run daily is
extremely large, it is important for this procedure to be linear, or nearly linear in the size of
the input.

We prove that from a computational perspective, lazy and eager auctions are vastly
different. Computing the optimal vector of lazy reserves r∗L can be done in linear time. On
the other hand, computing the optimal vector of eager reserves r∗E is NP-hard.

Proposition 10. The optimal vector of lazy reserves r∗L can be computed in nearly linear
time in the size of input logs.

Proof. Given bids {bi,t}, for each query t, let wt correspond to the agent that would win if
no reserve prices were set. For any given vector of reserves r, either wt wins query t or no
agent wins. Let Qi be the queries for which wt = i. Then we can write the revenue for the
vector r of reserves as:

RevL(b; r) =
∑
i

∑
t∈Qi

1{b(1)t ≥ ri} ·max(ri, b
(2)
t )

where b
(1)
t b

(2)
t are respectively the highest and second highest bid for query t. The previous

expression shows that for lazy reserves, the problem of computing reserve prices can be
decoupled for every i. Also, the optimal reserve price should be of the form b

(2)
t or b

(1)
t for

some t. If not, we can increase it to the next point and the revenue can only increase.
This observation gives an algorithm for computing the optimal vector of reserves with

running time O(
∑

i |Qi|2). In order to turn it into a nearly linear time algorithm, notice that

if we sort the bids appropriately, we can compute the revenue for setting each ri = b
(1)
t and

ri = b
(2)
t in constant time.

In order to do so, construct an array with all the bids b
(1)
t and b

(2)
t for t ∈ Qi and annotate

each entry of weather it is a highest bid or a second highest bid. If ni = |Qi|, this is an
array of 2ni numbers. Sort the array by bids in increasing order, which takes O(ni log ni),
and call its elements r1 ≤ r2 ≤ . . . r2ni

. Assume for simplicity that all elements are distinct.

Given a certain rj, we can write the revenue associated with it R(rj) =
∑

t∈Qi
1{b(1)t ≥

rj} ·max(rj, b
(2)
t ) as rj · kj + sj where sj =

∑
t∈Qi

b
(2)
t · 1{rj ≤ b

(2)
t }.

If we show how to compute (sj+1, kj+1) from (sj, kj) in constant time, we have a nearly-
linear time algorithm. Doing it is easy. This can be done in two cases:
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• rj = b
(1)
t for some t. Therefore increasing the reserve past b

(1)
t will make query t to be

unallocated. All other queries are unaffected. Set kj+1 = kj − 1 and sj+1 = sj.

• rj = b
(2)
t for some t. Therefore increasing the reserve past b

(2)
t will cause the reserve

price to bind for query t, instead of the second highest bid. Update: kj+1 = kj + 1,
sj+1 = sj − rj.

Since we can reconstruct the revenue for each value in the array, we can choose the optimal
vector of reserves in time O(

∑
i |Qi| · log |Qi|). It is not hard to see that this algorithm still

works if values of the array are repeated.

Proposition 11. Computing the optimal vector of eager reserves r given the bids from a set
of previous auctions is NP-hard.

Proof. We give a reduction to the independent set problem. Let L and H be constants that
we will chose later. Given a graph G = (V,E), we map the independent set problem on this
graph to the following instance of the reserve price problem with eager reserves: consider
|V | agents and |E| + |V | queries. For each edge e = (u, v) consider queries where bu = L,
bv = L and all other agents bid zero. And for each node u, consider queries with bu = H
and all other agents bid zero. We select L and H such that L < H < 2L.

Clearly, for the optimal vector of reserves, ri ∈ {L,H}. Also, notice that in the optimal
solution, the set of nodes I = {u ∈ V ; ru = H} must form an independent set. Indeed, if
there is an edge e = (u, v) with ru = rv = H, then there is zero revenue from the queries
corresponding to edges e. If we switch either u or v to have reserve L, then we gain L revenue
from edge e and lose H − L from node u. Since L > H − L, this is a profitable deviation.

The revenue associated with setting u ∈ I to H and other nodes to L is given by

L · (|E|+ |V |) + (H − L) · |I|

So the optimal vector of reserve prices would give a solution to the maximum independent
set problem.

Combining the proof of Theorem 3 and Proposition 10 we get a 2-approximation to the
optimal revenue obtained by running an eager second price auction.

We remark that the algorithm proposed in Proposition 10 is different from the heuristic
proposed by Hartline and Roughgarden in [HR09]: their heuristic consists in choosing the
vector of monopoly reserve prices rM such that rMi = arg maxr≥0

∑T
t=1 r · 1{bi,t ≥ r}. They

observe that while this is a very good choice when the valuations are independent and follow
the monotone hazard rate condition, this can be arbitrarily far from the revenue of the
optimal auction if either condition is violated. We complement the observation showing that
this vector can also be arbitrarily far from the optimal revenue of the second price auction
with personalized reserves (which is a weaker benchmark than the optimal auction).

Claim 12. For every constant C, there is a distribution of bids such that Rev(b; rM) ≤
1
C
Rev(b; r∗) for both the eager and lazy auctions.

13
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Figure 1: RevE(k) in red and RevL(k) in blue for n = 5 agents with iid uniform distributions

Proof. Consider 2 bidders and consider a distribution on bids that sets b1 = b2 = 2k−1 with
probability 1

2k
probability, for k = 1, . . . , K − 1, and b1 = b2 = 2K−1 + ε with probability 2

2K
.

The monopoly reserve prices are rMu = 2K−1 + ε generating revenue 1 + ε ·21−K . The optimal
vector of reserves is zero for both eager and lazy reserves: Rev(b; 0) = K + ε · 21−K .

6 A/B Testing

In the previous sections we described auctions with eager and lazy reserve prices, and
compared the differences in welfare, revenue, and computational complexity of the two ap-
proaches. The theoretical models are clean and elegant, and allow us to abstractly reason
about the benefits of one approach over another; however they do not capture the messy
realities of setting reserve prices in practice.

Before releasing a new model into the wild, a key step is measuring the impact of its
change on a small sample of traffic. This too is a non-trivial step, and requires a lot of care
both in setting up the experiments [KHS07] and effectively measuring long term, as well as,
short term impacts [HOT15],

One way to test reserve prices is to partition all of the auctions into treatment and
control, and then only apply reserves in treatment scenarios. However, such a test gives
a biased estimate of the revenue lift—since the effect on an individual buyer is small (as
the test applies only to a small fraction of the auctions), the buyer is unlikely to react
strategically, for example changing her bidding behavior, or looking for alternative places to
buy the impressions.

A different approach is to partition the bidders into treatment and control groups, and
only apply reserve prices to the bidders in treatment. It is easy to see that applying reserve
prices to only a fraction of the bidders will reduce the overall revenue gains, however since
a single buyer is now subject to reserve prices on all of her auctions, she is more likely to
update her behavior in response.

It is natural to expect that applying a vector of optimal reserves to a subset of the
buyers would yield an improvement in revenue that would allow us to evaluate the impact of
applying reserves to all of the buyers. Counterintuitively, we show that even in the simplest
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possible setting (iid buyers with regular distributions), applying the Myerson reserve price to
a subset of the bidders is worse than not applying any reserve prices at all! In other words,
as we add bidders to the treatment group, the total revenue decreases, and it is only when
all of the bidders are treated that we realize the revenue gains. As we show in Section 7, this
phenomenon is not a purely theoretical construct, but is also not uncommon in practice.

We state the results formally.

Theorem 13. Assume agents are iid with regular distribution F and let RevE(k) be the
revenue obtained from applying the Myerson reserve price eagerly to k out of n agents and
applying no reserve to the remaining agents. Then:

RevE(0) ≥ RevE(1) ≥ RevE(2) ≥ . . . ≥ RevE(n− 1)

Proof. Since agents are iid we can sample agents according to the following procedure: draw
n iid samples from F and take a random assignment from them to agents. This is equivalent
to drawing the valuation vi for each agent and then choosing k out of n at random players
to apply reserve prices. We will denote by v(t) the t-th largest bid.

We consider two scenarios: (i) the highest bidder is above the reserve. In this case, she
will be allocated the good. (ii) the highest bidder is below the reserve. In this case, the agent
to whom we allocate the good is the highest agent for whom no reserve price is applied.

Let MaxRt(z1, z2, . . . , zn) be the expected maximum of a uniformly random subset of t el-
ements drawn from {z1, z2, . . . , zn}. Notice that for any vector z, the function MaxRt(z1, z2, . . . , zn)
is monotone non-decreasing in t. Second, observe that if zi are drawn iid, then:

E[max{z1, . . . , zt}] = MaxRt(z1, z2, . . . , zn).

For k < n, by the Myerson Lemma:

RevE(k) = E[φ(v(1)) · 1{v(1) ≥ r}]+
E[MaxRn−k(φ(v1), . . . , φ(vn))|v(1) < r] · Pr(v(1) < r)

(?)

We finish by noticing that when vi < r then φ(vi) < 0. Therefore the second term above
is negative and non-increasing in k by the monotonicity of the MaxR operator. For k = n,
however, the second term disappears and we recover the optimal auction.

We now show that the auction with lazy reserve prices does not suffer from this kind of
paradoxical behavior.

Theorem 14. Assume agents are iid with regular distribution F and let RevL(k) be the
revenue obtained from lazily applying the Myerson reserve price to k out of n agents and
applying no reserve to the remaining agents. Then

RevL(k) = k
n
RevL(n) +

(
1− k

n

)
RevL(0)
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Proof. As in the previous theorem, we sample the agents by drawing n iid samples from F
and taking a random assignment from them to agents.

In the second price auction with lazy reserves, we will choose the agent with bid v(1) and
declare her as the winner if v(1) is at least the reserve price, which is r with probability k/n
and 0 with the remaining probability. By Myerson’s lemma:

RevL(k) = E[φ(v(1)) · 1{v(1) ≥ r(1)}]

where r(t) denotes the personalized reserve of agent with the t-th highest bid. Therefore:

RevL(k)

=
(
1− k

n

)
E[φ(v(1))] +

(
1− k

n

)
E[φ(v(1)) · 1{v(1) ≥ r}]

=
(
1− k

n

)
RevL(0) +

(
1− k

n

)
RevL(n)

To better understand the detrimental effect of eager reserve prices, it’s useful to write
equation (?) in explicit form so that we can evaluate the impact of applying reserves to a
subset of buyers for particular distributions:

Lemma 15. In the setting of Theorem 13:

RevE(k) =

∫ 1

r

φ(x) · nF (x)n−1f(x)dx

− 1{k < n}F n(r)

∫ r

0

(
F (x)

F (r)

)n−k
φ′(x)dx

Proof. For the first term, notice that the distribution of v(1) is given by nF (x)n−1f(x) since
Pr(v(1) ≤ x) =

∏
Pr(vi ≤ x) = F (x)n. For the second term, since the agents are iid, the

maximum of n−k randomly chosen agents from among n buyers is identical to the maximum
of n− k buyers. By the principle of deferred decisions, we can first sample n− k buyers and
then draw their values.

Since in the second expression we condition their value to be at most r, we can simply
compute the maximum over n − k buyers with density f(x)/F (r) for 0 ≤ x ≤ r. By the

same argument as before the density of the maximum is (n− k) · f(x)
F (r)
·
(
F (x)
F (r)

)n−k−1
. Using
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this fact, We can write the second term as:

F (r)n ·
∫ r

0

[
(n− k) · f(x)

F (r)
·
(
F (x)

F (r)

)n−k−1]
φ(x)dx

= 1{k < n} · F n(r)

{
φ(x) ·

(
F (x)

F (r)

)n−k ∣∣∣∣r
0

−
∫ r

0

(
F (x)

F (r)

)n−k
φ′(x)dx

}

= −1{k < n} · F n(r)

∫ r

0

(
F (x)

F (r)

)n−k
φ′(x)dx

6.1 Case study: Uniform distribution

To get some intuition about Theorem 13 we look at the setting with n iid bidders distributed
according to the [0, 1]-uniform distribution, for which φ(x) = 2x− 1 and r = 1/2:

RevE(k) =

∫ 1

1/2

(2x− 1)nxn−1dx

− 1{k < n} ·
(

1

2

)n
·
∫ 1/2

0

(2x)n−k · 2dx

=
n+ 2−n − 1

n+ 1
− 1{k < n} · 2−n

n− k + 1

In Figure 5 we plot the revenue values for RevE(k) and RevL(k) with n = 5.

7 Experimental Results

In the previous sections we discussed versions of the second price auction with personalized
reserve prices: the eager (E) and lazy (L) auction, and proved that while the two notions of
reserve prices are incomparable, eager reserves dominate lazy reserve, except for non-identical
and non-independent settings, and in all of the settings total revenue of one is always within
a factor of two of another. Further, we showed that applying the eager reserve prices to
a subset of the bidders is non monotonic, and applying reserves to more bidders may (in
theory) lead to lower revenues. In this section we validate these findings by simulating the
effect of reserve prices on real world data.

Data. We collect bids sent to a large advertising exchange over the course of part of
a day, and then restrict our attention to five ad slots with the highest traffic volume. Each
of the ad slots has the bids submitted for hundreds of thousands of auctions. We report the
results for each of the ad slots individually.
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Figure 2: Revenue gain obtained by applying the optimal lazy reserve prices to a percentage
of the buyers in the auction. Note that the revenue of the lazy auction is monotone non-
decreasing, while the eager auction doesn’t have this property.

7.1 Non-monotonicity

Recall that in Section 6 we considered the standard setting where each bidder i draws an
independent bid from bid distribution Fi. In the case of eager reserve prices, applying reserves
to only a subset of the bidders leads to a decrease in the overall revenue to the auctioneer.

In this section we show that this scenario is not restricted to theory. We consider a set
of auctions and compute the optimal lazy reserve price for each bidder. We then apply this
reserve price in both lazy and eager fashions to a subset of the bidders and plot the overall
revenue. The results are shown in Figure 7.

We confirm our theoretical findings: while the revenue in the auction with the lazy reserve
pricing strategy is monotonically increasing in the number of bidders subject to the reserve,
the same cannot be said for the greedy reserve pricing strategy. The overall trend is positive,
but it is non monotonic, and at times increasing the number of bidders subject to the optimal
reserve price decreases the overall revenue.

7.2 Revenue Gains

Our second set of experiments addresses the question whether eager or lazy reserve prices
lead to higher revenues in practice. For the best comparison, we simulate the auctions
under both lazy and eager strategies while applying the optimal lazy reserve prices r∗L (see
Proposition 10) and the monopoly reserve prices rM (see the discussion following the proof
of Proposition 11).

We compute the revenue lifts due to personalized reserves under four strategies:

∆L(r∗L) = E[RevL(b; r∗L)]− E[Rev(b; 0)]
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Table 1: Revenue Lift Comparison. The units are normalized so that ∆L(r∗L) = 1

∆E(r∗L) ∆L(rM) ∆E(rM)
1.13204 0.892116 1.18965
1.24867 0.958164 1.28977
1.16233 0.942408 1.09623
1.19286 0.886347 1.11872
1.14805 0.942208 1.08097

∆E(r∗L) = E[RevE(b; r∗L)]− E[Rev(b; 0)]

∆L(rM) = E[RevL(b; rM)]− E[Rev(b; 0)]

∆E(rM) = E[RevE(b; rM)]− E[Rev(b; 0)]

where the expectation E[·] denotes the average over all historical queries.
We normalize the lifts by setting the revenue of the lazy reserve auction with optimally

set reserve prices to 1 (∆L(r∗L) = 1 ), and report multiplicative improvement over this setting.
Table 1 shows that the eager auction outperforms the lazy auction in practice both when

the optimal lazy reserves are used and when monopoly reserves are used. We also observe
that there is no clear winner between using optimal lazy reserves or monopoly reserves in
the eager auction. For 3 out of 5 slots, the vector of optimal lazy reserves outperforms the
monopoly reserves. In practice one may want to start with any of those two vectors and
perform local updates to improve the performance of the eager auction.

Another axis along which it makes sense to compare the eager and lazy auctions is the
welfare loss of the allocation, i.e., how much welfare is lost due to the application of reserve
prices. If WL(b; r) and WE(b; r) are respectively the welfare of the lazy and eager auctions
when reserve price r are applied, we define the quantities:

∆̃L(r∗L) = E[W(b; 0)]− E[WL(b; r∗L)]

∆̃E(r∗L) = E[W(b; 0)]− E[WE(b; r∗L)]

∆̃L(rM) = E[W(b; 0)]− E[WL(b; rM)]

∆̃E(rM) = E[W(b; 0)]− E[WE(b; rM)]

which are the analogues for social welfare of the quantities described in Table 1.
As expected, Table 2 shows that the welfare loss in the eager auction is larger than the

welfare loss in the lazy auction. Similarly to what occurs for revenue, there is no clear winner
between the optimal lazy reserves and the monopoly reserves for the eager auction.

8 Conclusion

The results in this work follow two major themes. The first lies in devising methods for
testing new strategies, be they reserve prices, bidding agents, or mechanisms, in competitive

19



Table 2: Welfare Loss Comparison. The units are normalized so that ∆̃L(r∗L) = 1

∆̃E(r∗L) ∆̃L(rM) ∆̃E(rM)
0.689856 1.34808 0.896388
0.70264 1.16671 0.814005
0.602512 1.046 0.695923
0.616777 1.0458 0.647172
0.636252 0.995548 0.671452

environments [CHN14]. As we saw in Section 6 these can have counterintuitive effects, and
robust experimental design and analysis is required for making correct decisions.

The second is in foregoing the assumption that bidders’ value distributions are known
and investigating the computational complexity of optimizing from previously observed
data. Whether designing new mechanisms in these environments [CR14], understanding
the amount of past data needed [MR15], or, providing approximation algorithms, as we do
in this work, this is a rich and exciting open area.

References

[ARS13] Kareem Amin, Afshin Rostamizadeh, and Umar Syed. Learning prices for re-
peated auctions with strategic buyers. In Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Information Processing
Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 1169–1177, 2013.
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