
Kölling, Michael and McKay, Fraser (2016) Heuristic Evaluation for Novice
Programming Systems. Transactions of Computing Education, 16 (3). ISSN
1946-6226.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/55885/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/2872521

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/55885/
https://doi.org/10.1145/2872521
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

ACM Transactions on Computing Education, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Heuristic Evaluation for Novice Programming Systems

MICHAEL KÖLLING, University of Kent
FRASER MCKAY, University of Kent

The last few years has seen a proliferation of novice programming tools. The availability of a large number
of systems has made it difficult for many users to choose between them. Even for education researchers,
comparing the relative quality of these tools, or judging their respective suitability for a given context, is
hard in many instances. For designers of such systems, assessing the respective quality of competing
design decisions can be equally difficult.

Heuristic evaluation provides a practical method of assessing the quality of alternatives in these
situations, and of identifying potential problems with existing systems for a given target group or context.
Existing sets of heuristics, however, are not specific to the domain of novice programming, and thus do not
evaluate all aspects of interest to us in this specialised application domain.

In this paper, we propose a set of heuristics to be used in heuristic evaluations of novice programming
systems. These heuristics have the potential to allow a useful assessment of the quality of a given system,
with lower cost than full formal user studies and greater precision than the use of existing sets of
heuristics. The heuristics are described and discussed in detail. We present an evaluation of the
effectiveness of the heuristics that suggests that the new set of heuristics provides additional useful
information to designers not obtained with existing heuristics sets.

• Human-centered computing~Heuristic evaluations • Social and professional topics~Computing education.

Additional Key Words and Phrases: HCI, heuristic evaluation, introductory programming tools

ACM Reference Format:

Michael Kölling, Fraser McKay, 2016. Heuristic Evaluation for Novice Programming Systems. ACM
Trans. Comput. Educ. 16, 3, Article 12 (June 2016), 30 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

 EVALUATING NOVICE PROGRAMMING TOOLS 1.
Software tools specifically designed for programming education have a long tradition
in our discipline. They take various forms, from languages to custom-made libraries
to micro-worlds and fully fledged integrated development environments (IDEs).

In the domain of languages, various systems, including Logo, Basic and Pascal,
were developed specifically for teaching and learning. In parallel, a small number of
libraries and micro-worlds became popular. Throughout the 1970s and 80s, a few
systems dominated the educational space. One of the most successful was Turtle
Graphics – an abstraction first implemented for the Logo language [Papert 1980] and
later ported and adapted to countless other languages [Caspersen and Christensen
2000; Python Software Foundation 2012; Slack 1990]. Turtle Graphics introduced the
concept of a micro-world, in this case with a single actor (a turtle) and the ability to
produce graphics.

Author’s addresses: M. Kölling, University of Kent, School of Computing, Canterbury, Kent, CT2 7NF, UK;
F. McKay, University of Kent, School of Computing, Canterbury, Kent, CT2 7NF, UK.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
© 2016 ACM 1539-9087/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

39:2 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

In 1981, Karel the Robot expanded on this idea, introducing a micro-world in
which a robot could be programmed to collect "beepers" [Pattis 1981]. Again, the
system was ported, with little change, to many languages.

With the popularisation of object orientation in introductory teaching from the
late 1990s, these tools were adapted to the new paradigm, and new teaching tools
started to appear. At the turn of the century, however, the choice was still fairly
limited. Teaching tools existed mostly in the form of these kinds of libraries;
educational languages had taken a backseat to the rise of the use of industry-
strength languages (such as C++, Java and Visual Basic) in education. Dedicated full
educational development environments were few and far between.

Since then, however, the situation has dramatically changed. Within just a few
years, a large number of educational environments were released, mostly supporting
the object-oriented paradigm, and often incorporating complete IDEs highly
specialised for rich media programming and interactive experimentation. An early
example was Blue [Kölling 1999], published in 1995, followed by BlueJ [Kölling et al.
2003] and GameMaker [Overmars 2004], both systems published in 1999; Alice
[Cooper et al. 2003], published in 2000; DrJava [Allen et al. 2002] published in 2002;
Jeroo [Sanders and Dorn 2003] published in 2003; Scratch [Maloney et al. 2010] and
Greenfoot [Kölling 2010], both published in 2006; StarLogo TNG [Begel and Klopfer
2007] from 2007 and Kodu [MacLaurin 2009], published in 2009.

The explosive proliferation of this type of educational system clearly indicates a
belief – at least on the part of the developers – in the benefit that those systems can
bring to the teaching of young beginners. Motivation is greatly increased through the
use of interactive graphical systems, dealing with the complexity of the underlying
language and system is made much easier, and programming principles are
understood much better. So, at least, go the hypotheses.

One of the major problems, from a point of view of programming education
research (with emphasis on the research part of this term) is that these hypotheses
have rarely been appropriately tested. Belief in the benefit of these kinds of system is
based much more on anecdotal folklore and individual experience than on formal
studies that could withstand scientific scrutiny.

Initially, the lack of scientific validation, or at least somewhat more formal
evaluation, did not pose a significant problem. With systems such as Logo and turtle
graphics, subjective teacher and learner satisfaction was high enough to be
convincing for a large number of instructors, and choosing to use such a system (or
not) was a manageable question.

With the proliferation of competing systems, however, the problem has become
more complicated. Not only should we ask the question whether such kinds of tools
are helpful at all (which many instructors strongly believe them to be, even in the
absence of hard evidence), but we need to decide which of a significant number of
competing systems is "better" for a given task in a given context. Educators have to
make choices, not only between using an educational IDE or not, but between a
number of direct competitors.

At the same time, it is time that designers of such systems take the questions of
suitability, usability and effectiveness more seriously. More and more schools and
universities use educational IDEs, and seat-of-the-pants design methods are
becoming increasingly hard to justify.

Studies evaluating the actual learning benefit of the use of a specific system are
rare. This is not for lack of interest or realisation of the usefulness of such studies,
but because they are difficult to conduct with a high degree of scientific reliability.

Heuristic Evaluation for Novice Programming Systems 39:3

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

A common experimental study setup of effects of pedagogical interventions
consists of a pre-test and post-test to measure learning effects and use of a control
group taught with different tools to compare to relevant alternatives. The study
would have to be conducted in a realistic setting (school, college or university class)
with users of the actual user group (i.e. actual students in real learning situations)
and compensate for other competing variables (such as different teachers, differences
in prior knowledge, age, motivation, etc.).

Running the two groups (experiment group and control group) in parallel is
usually difficult to resource: the teacher almost doubles the workload and has to
avoid bias. It also introduces an ethical problem: If we expect one variant to be
superior, and the setting is an actual examined part of a student's education, then we
would knowingly disadvantage a group of students. However, if we run the two trials
sequentially, it becomes very difficult to compensate for possible other factors
influencing the outcome, such as difference in teachers or populations.

In short: Using comparative experiments to study educational effects of
educational environments is often impractical, and other methods of study are
required to fill the gap. A number other approaches are available, including empirical
and qualitative studies and systematic, formal, or semi-formal evaluation following
various methods. Of the alternatives, heuristic evaluation is attractive as an early,
approximate method of analysis: while it does not reach the same level of reliability
in assessing the quality of a complete system as some other methods of evaluation
can do, it is relatively quick and easy to perform and – as a result – may be
performed more often in practice than other types of study.

Heuristic evaluations can give a good indication of many of the problems or
potential successes of a system, and they are able to collect some useful and reliable
information about the quality of a system design. Heuristic evaluation will not allow
us to draw conclusions about pedagogical benefits of a system, but it can help make
reliable judgements about usability and suitability of a tool. In the trade-off between
difficulty and usefulness of evaluative studies, heuristic evaluation advances to
becoming an attractive alternative method available to us.

We advocate a significant increase in more formal or semi-formal evaluations of
the quality of educational programming systems. With the increase in the number of
systems on the market, it is becoming increasingly important to be able to make
informed decisions, backed by formal argument, about the relative quality of these
tools.

Heuristic evaluation is a method that is both useful and practical to make such an
assessment of many aspects of educational programming systems. However, the state
of the art of heuristic evaluation for this specific purpose can be improved.

The quality of insights derived from heuristic evaluation depends on two variables:
The experience and background of the evaluators, and the quality of the heuristics
themselves. This paper is concerned with the latter.

Some of the most frequently used sets of heuristics are application-area neutral.
They specify goals and guidelines for software systems in general. However, results
of evaluations can be improved for specific application areas if the set of heuristics is
adapted specifically to the area under investigation. In that case, application-area
specific requirements can be included in the heuristics, and deeper insights might be
gained. This has been done for a variety of application areas (see our discussion in
Section 2) with good success.

In this paper, we propose a set of heuristics specific to novice programming
systems. This new set aims to improve evaluations of such systems by combining

39:4 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

general usability criteria with aspects relevant to our specific application domain,
such as motivational and pedagogical effects. After discussing some background of
heuristic evaluation and its variations we propose, describe and discuss the
heuristics, followed by an evaluation of their effectiveness.

 BACKGROUND 2.
 Heuristic evaluation 2.1

Heuristic evaluation was introduced as a “discount” method of analysing user
interfaces without full user testing [Nielsen and Molich 1990]. When performing a
heuristic evaluation, experts compare interfaces to sets of heuristics – general
principles that describe aspects of an ideal system. Nielsen lists ten separate
heuristics, formulated in the style of positive guidelines such as “The system should
always keep users informed about what is going on, through appropriate feedback
within reasonable time.” [Nielsen 2005].

Heuristics can also be used in designing interfaces. In this case, designers pay
conscious attention to the set of heuristics during the design process.

Nielsen’s heuristics are intended to be generally applicable to a wide variety of
software interfaces, but other authors have identified more specialised, domain-
specific sets of heuristics. Pane and Myers [1996] defined a set of heuristics aimed at
novice programming systems. These extend Nielsen’s set with additional heuristics
aimed at identifying issues with problems specific to this target domain.

Another area relevant to our work are heuristics for interaction in computer
games. Malone [1980] described heuristics for predicting “fun” in games. These
include notions of challenge (an important factor in one of our heuristics, described
later). Malone’s work has been further developed in the Structured Expert
Evaluation Method (SEEM), which combines heuristics for both usability and fun.
SEEM has subsequently been shown to be a useful way of predicting reactions to
children’s educational games [Bekker et al. 2008].

The research presented here, being concerned with programming, also
conceptually overlaps with the Cognitive Dimensions framework [Green 1989]. The
dimensions describe concepts relevant to cognition and Human-Computer Interaction
(HCI) in programming notations, but – contrary to heuristics – are not phrased as
instructions. The cognitive dimensions provide descriptions of concepts such as
“viscosity” (resistance to code changes) and “secondary notations” (such as colour and
spacing).

Heuristic evaluations rely heavily on human evaluators’ findings, and these
findings are driven by the set of heuristics provided. Therefore, it is critically
important that the heuristics are valid in themselves. While the concept of “validity”
is not usually well defined in terms of evaluating heuristics, it is generally taken to
mean “shown to be useful in uncovering actual usability problems”.

Pane and Myers’s heuristics, for example, are argued from the literature of the
time, but are not evaluated in practice. Nielsen and Molich’s original heuristics were
tested in user studies to refine them and to assess their validity [Nielsen and Molich
1990]. SEEM, based on Malone’s heuristics, has also been validated experimentally.
Hartson, Andre, and Williges [2001] present a method of comparing evaluation
methods, including three standard metrics (thoroughness, validity and reliability)
based on concepts named by Bastien and Scapin [1995] and further refined by Sears
[1997]. At the end of this paper, we discuss an experiment performed based on these
metrics to assess our own heuristics.

Heuristic Evaluation for Novice Programming Systems 39:5

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

 Novice programming tools 2.2
Novice programming tools take many different forms, and take up a large part of the
CS education literature. For younger learners, tools such as Scratch, Alice and
Greenfoot are among the major systems in wide-spread current use. However, the
novice/learner spectrum extends to “older” tools as well. BlueJ, for example, is
commonly used in universities. Mainstream programming languages, such as Java,
are often used, as well as custom ones aimed at education (e.g. [de Raadt et al. 2002;
Schulte and Bennedsen 2006]). BlueJ and Greenfoot, for example, both use standard
Java, while Alice and Scratch use their own, custom designed languages.

Many programming tools share broadly similar interaction styles – programs are
entered as streams of raw text from the keyboard, presented in a two-dimensional
text layout on screen, and stored in a text file. Some systems mark up the text with
“signalling” annotations (cues like colour, background and font), but the meaningful
program specification consists purely of text. Many novice systems use the same text-
based styles as standard industry languages, such as Java or C.

A popular alternative in early education are drag-and-drop block-based interfaces.
Scratch, Alice and StarLogo TNG are examples of this kind of interaction. Visual
blocks of code are stacked together like toy building bricks. This has the advantage of
preventing syntax errors, but the disadvantage of being less flexible than traditional
text. Program entry and manipulation is less efficient in these systems when writing
long programs.

 HEURISTICS FOR NOVICE PROGRAMMING SYSTEMS 3.
 Rationale 3.1

The need for a definition of new domain specific heuristics arose during an on-going
effort to design a novel beginners’ programming tool. To aid in the design of this new
system, we initially applied existing heuristics as design guidelines. We also
conducted evaluations using the cognitive dimensions framework, in their role as
discussion tools, to study some existing models. We observed a number of different
problems with these frameworks.

One drawback we encountered with Pane and Myers’s heuristics is their length.
Using them in depth, they produced very long – and quite cumbersome, thus less
useful – evaluations. In total, Pane and Myers have 29 heuristics, grouped under
eight of Nielsen’s headings. Differences between the heuristics were not always clear-
cut; there is duplication across some categories, and using them to categorise some of
the problems is distinctly difficult. Some problems seemed to fit two categories
equally well, and others did not neatly fit any. Yet, when using Nielsen’s original
heuristics, in order to avoid the length of Pane and Myers’, the evaluation missed
some crucial areas that we consider important for early learners’ programming
systems. While shorter, these heuristics do not achieve the same domain specific
precision.

This experience led to the definition of a new set of heuristics with a number of
specific goals of improvement. The goals were:

(1) Manageable length. The number of heuristics should be limited; it should be

much closer to Nielsen's 10 rules than Pane and Myers' 29.
(2) Domain specific focus. The heuristics should cover aspects specific to novice

programming.
(3) Avoidance of redundancy and overlap. As much as possible, problems should

fit clearly into a single category.

39:6 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

(4) Clarity of categorisation. The categories should be clear to evaluators, cover all
possible issues and be easily distinguished.

The new heuristics are neither sub- nor superset of any previously existing set, and
have been developed from scratch using well established principles for this specific
development domain.

 Development Methodology 3.2
The definition of the new set of heuristics followed a systematic methodology, based
on criteria defined to ensure usefulness and practicality of each heuristic, as well as
the set as a whole. Once defined, the heuristics were tested by the authors, followed
by tests with independent evaluators (described towards the end of this paper).

Given our experiences, we hypothesise that a smaller, more concise, more
orthogonal set of heuristics is easier to use than a large one. No evidence has been
presented in the literature about an ideal size of a heuristics set to be manageable.
This has to be balanced with the goal of approaching completeness (finding as many
faults as possible), which introduces a force towards larger sets.

The criteria for individual heuristics are:

— Each heuristic must be able to uniquely identify a set of actual known issues in
existing systems from the target domain.

— Each heuristic must be sufficiently orthogonal to the remaining set to avoid
ambiguity in classification of identified faults.

The criteria of the set as a whole are:

— The set of heuristics must be small enough to remain manageable.

— The set of heuristics must support identification of all major known problem areas
found in software systems of the target domain.

These criteria for the new set of heuristics were derived from experiences both

with the immediate evaluation of the software system under development, as well as
many years of experience of system design in this target domain. Each criterion is
the result of one or more specific problems encountered in actual practical experience
with the use of existing heuristic sets in the application domain, several of them
hinted at above. The first three criteria all address aspects of size, vagueness, overlap
and lack of clarity of heuristic categories. Our experience has shown that, as
heuristic sets grow in size, their usefulness suffers. Evaluators have increasing
difficulty in assigning observed problems to specific heuristics as categories overlap
or are unclear, leading to frustration and reduction of confidence of the evaluator.
Well fitting heuristics not only make the evaluators life easier in categorising
observed shortcomings, they also guide the observations of the tester: different
heuristics lead to different observations. The result of being unsure of a fitting
category leads to potential problems remaining unreported, while apparent overlap of
category leads to lack of confidence and reduction of progress of the evaluator, and
reports that are less clear than they should be lead to the danger of the designer
dismissing a point because of miscategorisation.

The last criterion addresses the observation that generic (non-application specific)
heuristics regularly overlook issues that are important to us, and that more specific
heuristic sets could pick up.

Heuristic Evaluation for Novice Programming Systems 39:7

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Candidates for heuristics were developed in various ways: Where heuristics from
existing sets proved useful and clear in practice, these were selected for inclusion.
Where existing heuristics seemed to overlap, these were either merged or reworded
to make them distinct. Heuristics from existing sets that were found not to be useful,
either because they were too rarely needed, could be subsumed into an existing
category without much loss of precision, or because they were unclear, were removed.
Finally, issues we discovered through experience and informal evaluation of our own
and other systems, and which we considered important in the design, but which were
not addressed by any existing heuristic, were translated into new, additional
heuristics.

After identifying these target candidates for heuristics, the authors evaluated the
resulting set by applying it to existing systems from the target domain. This process
resulted in observations about problems with the target heuristic set, including, at
times, overlap of categories, unclear wording, and missing aspects. The heuristics
were then adapted to address the problems.

This process was repeated over several iterations to refine and improve the set.
The systems used for systematic evaluation of the heuristics were Scratch, Alice,

BlueJ, Greenfoot and Visual Basic. Partial evaluations using the new heuristics have
also been carried out for Lego Mindstorms NXT, StarLogo TNG, Kodu, and C#. The
first group of systems are the ones that were used for testing each iteration of the
heuristics; the second group are systems that we have evaluated using the heuristics.
We have also used the heuristics to evaluate new designs, which we are working on
as part of a wider project to design a new system.

 Context 3.3
The heuristics assume a context of the learner and learning situation that influences
the content and focus of the heuristics themselves. It is assumed that the learner
uses the system with the intention of learning to program (as opposed to systems
that aim at quick achievement of specific implementation results without the need of
deeper understanding). The learning goal takes precedence over the characteristics of
the artefact under creation.

The learning situation may be a traditional, formal, teacher-led setting, or it may
be a self-guided, informal learning process. The heuristics assume that a system may
be used in both of these scenarios, and they evaluate characteristics accordingly.

It is assumed that the content at the core of the learning endeavour consists of
traditional programming concepts.

 The new heuristics 3.4
There are thirteen heuristics in our set. They are used to evaluate both the
programming environments and programming language.

They are:

(1) Engagement: The system should engage and motivate the intended audience
of learners. It should stimulate learners' interest or sense of fun.

(2) Non-threatening: The system should not appear threatening in its
appearance or behaviour. Users should feel safe in the knowledge that they can
experiment without breaking the system, or losing data.

(3) Minimal language redundancy: The programming language should
minimise redundancy in its language constructs and libraries.

39:8 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

(4) Learner-appropriate abstractions: The system should use abstractions
that are at the appropriate level for the learner and task. Abstractions should
be driven by pedagogy, not by the underlying machine.

(5) Consistency: The model, language and interface presentation should be
consistent – internally, and with each other. Concepts used in the
programming model should be represented in the system interface consistently.

(6) Visibility: The user should always be aware of system status and progress. It
should be simple to navigate to parts of the system displaying other relevant
data, such as other parts of a program under development.

(7) Secondary notations: The system should automatically provide secondary
notations where this is helpful, and users should be allowed to add their own
secondary notations where practical.

(8) Clarity: The presentation should maintain simplicity and clarity, avoiding
visual distractions. This applies to the programming language and to other
interface elements of the environment.

(9) Human-centric syntax: The program notation should use human-centric
syntax. Syntactic elements should be easily readable, avoiding terminology
obscure to the target audience.

(10) Edit-order freedom: The interface should allow the user freedom in the
order they choose to work. Users should be able to leave tasks partially
finished, and come back to them later.

(11) Minimal viscosity: The system should minimise viscosity in program entry
and manipulation. Making common changes to program text should be as easy
as possible.

(12) Error-avoidance: Preference should be given to preventing errors over
reporting them. If the system can prevent, or work around an error, it should.

(13) Feedback: The system should provide timely and constructive feedback. The
feedback should indicate the source of a problem and offer solutions.

Below, we name and formulate each heuristic in turn, followed by a presentation

and discussion of some relevant examples from existing systems and interfaces to
illustrate their main aspects. Examples are drawn both from development
environments and programming languages. As always in design work, there are no
clear right and wrong answers, and some of the heuristics present competing forces
that can contradict each other and must be weighed in specific design cases. These
competing forces are discussed where appropriate.

1 Engagement

The system should engage and motivate the intended audience of learners.
It should stimulate learners' interest or sense of fun.

Aspects of the system that are designed to engage the learner should be pitched at
the appropriate level – be that in terms of creativity, emotional/aesthetic appeal,
subject/theme, imagination (if appropriate) and the degree of challenge and/or
competitiveness against the computer or other learners. A system that is engaging to
one type of user is not always going to be engaging to others. It is therefore critical
that system designers have a clear idea of their target audience. Many systems aim
to appeal to beginners’ creative interests. Storytelling systems appeal to some groups
of learners – Alice, and Storytelling Alice in particular [Kelleher and Pausch 2007],
have shown success in engaging girls, fewer of whom have traditionally taken up
programming. Systems like Greenfoot and Kodu have a focus on developing games.

Heuristic Evaluation for Novice Programming Systems 39:9

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Scratch programs have been used for storytelling [Burke and Kafai 2010], as well as
games. There are a wide variety of systems, with different styles, and engaging to
different groups. One study of out-of-school Scratch users involved asking them what
school subject they would most associate Scratch with. Most related it to creative arts
subjects, rather than “traditional” maths or computer science classes. Most of the
users, when asked, had not made a connection between Scratch and computer
programming. However, these users enjoyed being actively engaged in creating
projects with Scratch [Maloney et al. 2008]. Thomas et al. [2003] refer to “code
warriors” and “code-a-phobes” being present together in one class – individual
personalities being a factor beyond age and educational setting. These students had
different interests and motivations from each other. Real-world usefulness is also
important for some students. Discovering that a language is used in one particular
system or website, or in a “cool” company (such as Google, or in one case the Star
Wars special-effects firm ILM), motivated some Greek high school pupils [Konidari
and Louridas 2010].

Programming is a challenging activity; an engaging system should provide
motivation for the beginner to overcome the challenges they are likely to face.
“Classic” programming systems like Karel The Robot were based heavily around
problem-solving tasks. Karel also featured a character for beginners to identify with.

2 Non-threatening

The system should not appear threatening in its appearance or behaviour.
Users should feel safe in the knowledge that they can experiment without
breaking the system, or losing data.

The system should not be intimidating in its apparent size or complexity. It should
use interactions that are familiar or natural, or that can be learned easily. It should
be a safe place where mistakes do not have drastic consequences. The beginner might
wonder, in a more threatening kind of system, whether their mistakes can be undone,
or if they should be sure before they commit to anything. They might also spend too
long concentrating on learning to navigate the environment, rather than thinking
about code. The interaction found in most programming systems – typing plain text
into a large editor (often without autocorrect options) – is not one that we would
expect young beginners to be familiar with. Drag-and-drop interactions, on the other
hand, are used in many other contexts. Similarly, the brick/block metaphor used in
some systems has a real-world counterpart in construction toys or jigsaw puzzles. If
an interaction style is not familiar, it should be easily learnable. Kodu [MacLaurin
2009] is unusual for using a game controller for program entry. On the Xbox 360,
Kodu works in a familiar environment; it is treated by the console’s interface in the
same way as any other game, accessed from the same menus and having the same
look and feel. It appears, for all intents and purposes, to be like any other “normal”
game.

Secondly, the user should not have to fear making a mistake. Actions should be
undoable, to facilitate easy exploration for a keen beginner. The novice should know
that they are “safe” – that they cannot accidentally break either their own work or
the computer. Microworlds, in particular, are usually sandboxed environments – a
Karel program, for example, is unlikely to need network or (programmatic) file
system access. Greenfoot users can upload their programs to the Greenfoot Gallery
website, but these run with fewer permissions than a native program running on the
user’s machine. A sandboxed high-score mechanism is provided to abstract away
details of file storage and network communication.

39:10 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

3 Minimal language redundancy

The programming language should minimise redundancy in its language
constructs and libraries.

The notional “ideal” beginners’ programming language should have one way – and
only one way – of achieving a particular task. The system should only include those
features that it actually needs. A language for school children can (and should) be
smaller than one for university students. In turn, a university-level development
environment should still be smaller than an enterprise IDE.

Redundancy, which can be an advantage for experts since it adds flexibility, is
usually a disadvantage for learners, who cannot choose between multiple, subtly
different alternatives. Choosing which feature to use can be a distraction. “Selection
barriers” – having to decide which, of many, features to use for part of the design –
are a difficulty in programming [Ko et al. 2004]. If there is a pedagogical reason for
having particular abstractions, to teach a data-structures course, for example, then
the system designer might need to reconsider how the alternative features are
presented – to at least make it clear what the differences are. .NET supports a large
number of collection classes, arrays, generic and non-generic lists, sets, etc. Scratch,
in the opposite extreme, represents all collections in one kind of list, with no arrays,
sets, or other collection types. Many languages have a range of number types
(signed/unsigned, single/double-precision, floating-point) that could represent the
values 1, -13, or 3.14.

4 Learner-appropriate abstractions

The system should use abstractions that are at the appropriate level for the
learner and task. Abstractions should be driven by pedagogy, not by the
underlying machine.

Mainstream programming languages have built up a range of reasonably common
abstractions, which may include ones the novice programmer does not need to use.
The abstractions a system uses should be selected carefully, based on the
programmer’s level of ability and the requirements for their programs.

Some abstractions closely match the programmer’s mental model. Others
represent lower levels of execution – they are useful for experienced programmers,
but require the programmer to understand the details of the machine. Some
languages’ abstractions are pragmatic, balancing “ideal” design with facilitating
transition to other languages. Many abstractions relate more to the language than
the editing environment.

Pane [2002] worked with children to record natural-language pseudocode in order
to identify abstractions novices use to reason about programming tasks. He found a
clear preference for use of sets and collections over indexed arrays in mental models
of young learners. The data structures were not assumed to be ordered. Built-in
sorting operations were expected to be available. The novices did not refer to storage
mechanisms, further supporting the idea of abstract sets rather than bounded arrays.
Scratch, matching this model, has a single list structure, rather than a “machine-
centric” array.

Pane also found that children expressed many of their pseudocode programs using
objects. However, these children’s programs were object-based, and did not make use
of classes or inheritance. There are times when the absence of a class construct
introduces viscosity; for instance, if changes to a logical kind of thing have to be made
manually to each instance. Design difficulties can occur when choosing whether to
use classes [Sanders and Thomas 2007; Thomasson et al. 2006], however, these could

Heuristic Evaluation for Novice Programming Systems 39:11

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

be explained as design or selection barriers (formulating a high-level approach to
solving a programming problem, and choosing which specific features to use to
implement the solution, respectively) [Ko et al. 2004] that might be overcome.

Pane found a mix of imperative and declarative styles, with declarative
statements used to “set up” the program, such as “There is a ball”. Events were then
used, to provide structure for imperative statements. That research found many (54%)
of the children’s programs were driven by events, more than any of the other styles
that were identified. The child-oriented systems HANDS (Pane’s own), Scratch and
Alice implement simple types of event. Frameworks like .NET and Java support
events, but there are often conceptual difficulties in teaching how they are
implemented and used [Bruce et al. 2001; Milner 2010]. Therefore, teaching systems
could make use of events, where domain-appropriate, but the Java-style “listener”
metaphor may be too complex.

5 Consistency

The model, language and interface presentation should be consistent –
internally, and with each other. Concepts used in the programming model
should be represented in the system interface consistently.

Consistency is included in most usability guidelines, for example in regards to user-
interface terminology, expected behaviours, layout conventions, and so on [Nielsen
2005]. In addition to these areas, this heuristic applies to the programming model,
libraries, the terminology used in the programming language, as well as the design of
the environment.

Consistency should feature in how, and when, a code editor makes use of
secondary notations (Heuristic 7) – text and background colour, typeface, and other
graphical and typographical features. A common example is keyword highlighting.
We would expect the colour scheme to be applied consistently, including consistency
with the programming model. That is, highlighting should match conceptual
abstractions rather than emphasise technical parsing detail.

Many object-oriented languages make a distinction between object types and
primitive types. The reasons for this are technical; the distinction does not benefit
users of a novice language. In Java, to compare two identical strings, one must use
a .equals() method. To compare two integers, the programmer uses the == operator.
There is a similar issue with switch/case statements, which in Java only handle
integers (or enumerations) but not object types (an exception being made since Java 7
for strings, introducing another inconsistency). The distinction adds another rule the
novice has to learn.

In many languages, statements are separated with a semicolon. However, this is
not consistently applied for all statements (for, if, for example, in C-type languages).
This forces a novice to learn (and remember) another exception to the usual rules of
the language.

6 Visibility

The user should always be aware of system status and progress. It should
be simple to navigate to parts of the system displaying other relevant data,
such as other parts of a program under development.

As with consistency, keeping the user informed – or at least, not hiding status
information where it will be hard to find – is a component in several wider usability
guides [Nielsen 2005]. In the domain of programming languages, the Cognitive
Dimensions refer to “dependencies” [Green 1989]: sections of code often refer to

39:12 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

others, with multiple complex relationships between segments spread-out throughout
the program. In these situations, it can be difficult to keep track of all these separate
statuses, and it is likely that they will not all be visible at the same time. Hidden
dependencies are those which the programmer is not made aware of by the system.
Poor visibility can result in errors – either because programmers do not know
something that they should (as with hidden dependencies), or because they are asked
to remember too much at a time, rather than being assisted with appropriate display
of relevant information.

Hidden dependencies should be avoided. Related pieces of code should be kept
close together (or linked by navigation aids, if not physically close), so that they can
be viewed together, or accessed with minimal effort. A programmer should be able to
navigate their code logically, not just by linear scrolling.

Where dependant code is not easily visible, changing one piece might have knock-
on effects on its non-local dependants [Green and Petre 1996]. One example is
C/C++’s use of separate header files, with forward declarations that are not visible at
the same time as their corresponding definitions. C# and Visual Basic also allow
“partial” classes to be split across more than one file (but still be treated as one class).
These mechanisms can make it more difficult to find related code. By contrast, Java
requires all of a class’s code to be put into one file. In Scratch, stacks belonging to the
same sprite are visible side-by-side, and can be rearranged on the screen.

Navigation is supported by text editors to varying degrees of sophistication, from
basic search support to a variety of more elaborate techniques. Related pieces of code
can be linked, allowing quick navigation from one location to a relevant other. Visual
cues – either graphical, or through structuring of the text – can be used as markers
to help recognizing relevant code. Display techniques include the use of fisheye,
bifocal, or "focus+" technology [Jakobsen and Hornbæk 2006] to emphasise a segment
on screen while retaining navigational visibility that places the code in context.
These involve a display with two areas, one of which is the normal editing space, and
another, a zoomed-out view that shows the whole document, with an indication of the
part the user is currently focussed on. The scroll bar is a common graphical user
interface (GUI) control, and it usually indicates where in the current file the user is
working. In a “fisheye” display, this could be replaced with a sidebar, containing a
scrollable thumbnail image. This shows an overview of the document’s content, in
addition to the usual position marker. This is already seen in other domains (Adobe
Reader, for example), and is used in the BlueJ and Greenfoot code editors. We are not
aware of it being common in other IDEs.

Another technique commonly used to support this goal is the provision of
navigation functionality to move from the use of an identifier to its definition (or vice
versa), independent of the locality of the target location.

However, though good visibility is necessary, the way in which it is incorporated
must be balanced with simplicity, avoiding cluttering an interface and making it
harder to use (Heuristic 8).

7 Secondary notations

The system should automatically provide secondary notations where this is
helpful, and users should be allowed to add their own secondary notations
where practical.

Secondary notations are auxiliary channels of information that are embedded in the
main program – either as an optional part of the primary notation, as written by the
programmer (whitespace, comments, layout, etc.), or by the system as part of the

Heuristic Evaluation for Novice Programming Systems 39:13

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

presentation (colour, size, typeface). They do not affect the computer’s understanding
of the program, but affect the ability to read the program text for the human
programmer. Secondary notations generated by the system are sometimes called
“signalling” [Pane and Myers 1996]. Signalling includes techniques such as auto-
indentation [Miara et al. 1983], colour [Rambally 1986], shape (in visual languages),
grouping, typeface and text size. Programmer-generated notations include comments,
whitespace, naming conventions, and layout on the page [Green and Petre 1996;
Pane and Myers 1996]. Media-rich comments have sometimes been added; for
example, images, videos and interactive animations that explain the program [Ko
and Myers 2006].

There are varying schemes regarding time and place of appropriate signalling. In
the novice context, highlighting should be applied to code that is conceptually
important to the student’s understanding, not to language keywords distinguished by
their token-type in the parser [Pane and Myers 1996]. The programmer should know
why one piece is highlighted and another is not – they should know that it is not
arbitrary. There should also be a clear distinction between the primary and
secondary notations. Pane and Myers [1996] also highlight the risk of novices
assuming that the secondary notation affects the computer’s understanding – there
might be a danger of the novice thinking that the computer will infer what to do with
a variable, for example, because it has been given a meaningful name (rather than
some arbitrary characters). It is also important that secondary notation does not
interfere with the visual aspects of readability and clarity (see Heuristic 8).

Programmer-generated secondary notations should be allowed were possible, if
they are of no consequence to the computer. Even if a naming convention is desired,
it seems counterproductive to force a “hard” error message if a legal (though
inadvisable) name is entered. This is a pedagogical issue, but not necessarily one that
has to result in a catastrophic error message from the compiler. Scratch makes heavy
use of secondary notations with its bold background colours. However, Scratch also,
effectively, blocks the use of whitespace within its scripts as a secondary notation.
Although individual stacks (groups of statements) can be laid out freely on a page,
there is no whitespace within a stack. This would make it difficult to leave space
around one particularly important line, for emphasis, for example, or difficult to
leave a temporary space where more code is to be added in future. The ability to
freely position complete stacks in relation to each other, however, provides an
important opportunity for programmer-generated secondary notation.

8 Clarity

The presentation should maintain simplicity and clarity, avoiding visual
distractions. This applies to the programming language and to other
interface elements of the environment.

This heuristic asks whether there is too much on the screen at once, whether there
are too many colours or interface elements, and how well different visual artefacts
can be told apart. Visual stress should be avoided, though this must be balanced, in
each case, with the need for visibility. This does not always mean that less visible
information is preferable, but designers must consider how they present things.

Blackwell [1996] addresses the assumption that pictures and diagrams are
inherently easier to understand (that visual programs were easier to read than
textual ones), observing that there is no actual evidence to support this, and that the
assumed verbal/visual distinction is not a correct application of the relevant

39:14 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

psychology. Visual notations should not be assumed to be clearer just because they
are visual.

The clarity of any interface can also be discussed in terms of visual “feature
channels” [Ware 2008]: these include the elements of size, shape, texture, colour,
alignment, sharpness and motion. If there is too much variation across too many
channels, the design becomes more visually stressful to process. If there is not
enough, however, it becomes difficult to “pick out” differences. For example, a colour
coding system is only useful if the colours are sufficiently different from each other
that they can be told apart. Colour systems are used, of course, in many secondary
notation schemes. Literature summarised by Ware [2008] suggests that no more than
twelve values can be usefully differentiated from each other in any colour-based
system. The most distinctive colours are those at the opposite ends of the three colour
channels: black and white, red and green, and yellow and blue. Scratch, as a highly-
graphically marked-up language with strong colours shows that bold colours work
well to emphasise elements of a small program with a few statements. However, as
the program gets longer, what was helpful information can turn into visual noise on
the screen, and the strong colours can introduce a distraction.

To reduce use of screen space, many large IDEs support code-folding, where small
sections of code can be minimised individually. However, this must be done carefully,
so that information visibility is not impeded.

Visual languages may also be less accessible, or not accessible at all, to screen-
reading or Braille software – a relatively fundamental accessibility problem
[Siegfried 2006]. Editors that appear, primarily, to be text-based can also have visual
features that are not accessible – GUI editors and class diagrams, for example. There
are various ways to overcome this, but the system must implement existing
standards to allow itself to be read by accessibility software.

9 Human-centric syntax

The program notation should use human-centric syntax. Syntactic elements
should be easily readable, avoiding terminology obscure to the target
audience.

Programming language keywords should be clear, simple, and easy to understand.
Nielsen’s heuristics encourage us to “speak the users’ language” [Nielsen and Molich
1990]. Additionally, symbols and punctuation should not be tedious to manipulate,
should be readable rather than confusing, and should exist for the benefit of the
programmer rather than the machine. This heuristic may lead to favouring keywords
over symbols for programming languages.

Constructivist theory tells us that novices bring their own understandings with
them when they approach programming for the first time [Ben-Ari 1998]. It is
beneficial if their preconceptions do not interfere with the learning of keywords that
have existing meaning in natural language. Compatibility with problematic
keywords should not be kept for solely historical or conventional reasons. Keywords
such as “final”, “static”, “void” and “explicit” are obscure in everyday language. “Print”
is redefined in programming in that it usually writes something to the screen, rather
than to paper. Scratch uses relatively simple words – “repeat” rather than “for”,
which is based on doing a thing for each value of a given counter, and is not an
obvious word choice for a non-programmer. Pane [2002] also suggests replacements
for particular keywords – that “afterwards” might be less ambiguous than “then”,
and “otherwise” less than “else”.

Heuristic Evaluation for Novice Programming Systems 39:15

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

It is important, however, to emphasise that the decision for a specific syntax is
highly dependent on the target group, and that no single right solution exists for all
types of programming. Many keywords – “afterwards”, for example – are longer than
their equivalents in more professionally oriented languages, such as C. Professionals
possess a different, richer vocabulary, and the use of concise symbols may be entirely
appropriate. Short syntax forms and operators like “++” take less time to code, and to
read, and they are usable once they have become part of one’s language. For
beginners, a more meaningful name is often required, but for experts, short names
might be the most appropriate design choice.

Some languages rely on “magic” phrases – “public static void main,” for example –
that have to be memorised and entered verbatim at a particular time or place. Ideally,
that formula would not be the first thing that we would teach in Java, but it is part of
every program. A format like Pascal’s program...begin...end at least uses more
apparently-meaningful words. Some languages have removed these completely, and
some more-abstracted editors can hide or auto-generate them. BlueJ, Greenfoot,
Alice and Scratch all hide these kinds of statement.

Novices [Denny et al. 2011; Konidari and Louridas 2010; Robins et al. 2006] and
more experienced programmers alike [Ko et al. 2005], can frequently introduce errors
when manipulating delimiter characters like brackets or semicolons. Some languages
separate statements with semicolons – something that really only exists in the world
of programming. Other text languages – such as Python and Visual Basic – take a
more human-language approach of using line breaks instead.

10 Edit-order freedom

The interface should allow the user freedom in the order they choose to
work. Users should be able to leave tasks partially finished, and come back
to them later.

Green describes edit-order flexibility as “decoupl[ing] the generative order from the
final text order” [Green 1989]. That is, the order in which sections are written should
not reflect where they have to fit in the final program. The user should be free to
write the program in whichever order they like – they should not have to complete
one task before moving on to another, and they should not have to complete them in
some fixed sequence. It should be possible to leave a fragment unfinished, as a
placeholder, stub or draft implementation. It should be easy to change one’s mind
after decisions have been made, especially without having to lose any changes made
since then.

New programmers can be classed as either “planners” or “tinkerers” (also called
“bricoleurs” [Turkle and Papert 1992]). The second group do not work to any
particular sequence, jumping about and experimenting by adding to the program in
chunks [Berland and Martin 2011]. Therefore, while planning support is important,
for those students who depend on it, the system must also accommodate
programmers who do not stick to a plan. It must be possible to tinker, or to change
the plan. In an object-oriented program, behaviour that is implemented in a class
does not need to be specified for each individual object of that type. However, in
instance-based systems where this is not available, as in earlier versions of Scratch,
it can take foresight to create a well-designed “master” object that can be statically
copied-and-pasted to be used more than once. Without this careful foresight, changes
have to be made individually to every copy of that object. This is an example where,
because late changes are difficult, there has to be a degree of certainty before
committing to copying and re-using a particular piece of code. Tinkering becomes

39:16 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

difficult. (This difficulty was recognised as a problem by the Scratch developers and
addressed with the provision of a programmatic copy operation in Scratch 2.) If
affected objects are referred to elsewhere in the program, it may also force the
programmer’s hand in planning which part has to be written before another – an
example of the abstractions discussed in Heuristic 4 affecting this writing flexibility.

Jadud [2006] observed students moving back and forth between different parts of
a program when they encountered an error. They left behind incomplete sections.
Birnbaum and Goldman [2005] show that a program should not need to be in a run-
ready state after every individual edit. This has implications for some error-
prevention constraints used in strict syntax-directed editors (see Heuristic 12).
Placeholders should be marked, but this can be done somewhat passively. It could be
achieved through highlighting, or an open space or slot (as in Scratch), or a metaphor
from outside programming, such as the red underline used to mark spelling mistakes
commonly seen in word processors [Birnbaum and Goldman 2005; Ko and Myers
2006]. Some systems make it difficult to leave code half-written when outlining. Alice
2, for example, requires that a condition be entered immediately when adding an if
statement. If the condition has not yet been set up, a dummy value has to be entered
even if it is not sensible, to satisfy the system constraints. This is an example of
error-prevention constraints forcing the programmer to follow a specific process. The
programmer will have to remember to change this later. Because this is forced to be
syntactically correct, there is no leftover marker to remind them that this is
incomplete.

11 Minimal viscosity

The system should minimise viscosity in program entry and manipulation.
Making common changes to program text should be as easy as possible.

Viscosity is a measure of local resistance to change [Green and Petre 1996].
Examples of viscosity in relevant systems are the amount of effort, or the number of
steps, needed to add a new statement to a program, to change the condition of, say,
an if-statement, or to find and delete a particular statement or group of methods.

Knock-on viscosity is incurred when a “primary” change has side-effects for other
parts of the program. Pane and Myers [1996] discuss BASIC line numbers as an
example. However, modern systems do not tend to use these. Knock-on viscosity
could occur when an object or method is renamed – every occurrence of the name
might have to be updated. Of the systems discussed in these heuristics, the larger
editing environments are more likely to employ refactoring functionality for these
knock-on changes, either automatically, or through a menu prompt. Another example
is that of renaming a class in Java – a language that requires the filename to be the
same as the class name. In addition to the effort of changing the class name every
time it is referenced in code, more viscosity is caused by having to rename the text
file accordingly.

As mentioned above, viscosity is more important for operations that are more
common in a given system. The kinds of operations that are counted as common may
vary in different kinds of system, and judging the importance of non-viscous aspects
requires a judgement about frequency and importance of the operation affected.

12 Error-avoidance

Preference should be given to preventing errors over reporting them. If the
system can prevent, or work around an error, it should.

Heuristic Evaluation for Novice Programming Systems 39:17

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Some program errors are relatively easy to prevent. The system should try to prevent
any errors that can easily be avoided – trivial, largely syntax-related errors are a
distraction from the broader concepts a new programmer has to learn. Firstly, the
system can use various editing constraints to reduce the likelihood of syntax errors.
Where these fail, or are not appropriate, the system can attempt to make use of some
reasonable default value, or behaviour. One attractive approach in some systems,
which aim to emphasise tinkering more than correctness, is a “fail-soft” approach
that involves finding a way around an error, and continuing.

The engineering principle of “poka-yoke” (Japanese, “mistake proofing”) (Shingō,
1986) creates a design that can only be manipulated in a certain, always-correct, way.
It is simply not possible to perform any “incorrect” action, because there is never any
opportunity to do it. Maloney et al. [2010] observe that a child playing with plastic
Lego bricks will not encounter error messages – either the blocks fit together, or they
don’t. Extending that analogy now, a Lego house could be said to be “syntactically”
valid if the blocks fit together, but it may, or may not, be a well-designed house. A
program may be syntactically correct and still do (from the programmer’s perspective)
the logically “wrong” – or an unexpected – thing. Poka-yoke constraints prevent one
important class of errors – syntax errors – that novices often struggle with.

Drag-and-drop block interfaces have been one attempt to implement this for
software development. Scratch, Alice and Star Logo TNG all have similar block-based
syntaxes, where only syntactically correct blocks can be put together. In the 1980s,
various attempts at designing syntax-directed editors had the same goal for text
based languages. Most never became very popular, in part because this goal
conflicted strongly with Heuristic 10, enforcing an edit order that felt restrictive to
many users.

At times it might be appropriate to make an educated guess about the
programmer’s intent. Cooper, Reimann, and Cronin [2007] refer to errors where the
system claims to know what is wrong, where, and why, and then tells the user this
without attempting to work around the problem, or simply offering to solve it. With
messages such as “; expected” (in Java, for example), it might be reasonable to infer
what it is the programmer meant, or at least to ask “would you like me to fix this?”
Another example originates in type systems. Implicit conversion from a short integer
to a long one, or from an integer to a floating-point, would be reasonable inference in
some scenarios. Auto-correcting, for some errors, and advisory “warnings” (as in
Visual Basic and C#) might be used to prevent hard errors. Office packages are
usually expected to use auto-correct, as are major search engines. Working around a
simple error does not need to encourage lazy programming practices – thinking the
computer will pick up the slack – and it can still emphasise the fact that a segment
has been autocorrected.

In preventing errors, there is also a danger that either the constraints become too
tight (a “dead” keyboard that does not react at all when invalid keys are pressed), or
that the system allows anything to be written, but then ignores it. Constraint must
be balanced with editing flexibility (Heuristic 10, the ability to “dip in” to part of the
program) and local viscosity. The level of constraint clearly depends on the user; a
more experienced programmer might feel more comfortable having enough latitude
to do something error-prone, that is not recommended, but that would not be certain
to fail. Entirely removing access to a certain threaded operation, for example, might
prevent a common error, but there might be times where it is perfectly appropriate to
carefully use threaded code. There are clearly different levels of constraint

39:18 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

appropriate for a university C++ student than for a beginning Scratch or StarLogo
programmer.

Constraints should be soft; they should guide the programmer in their writing,
but they should not force repeated “hard” modal error messages on the user when
they get something wrong. Scratch is notable for ignoring ambiguities in incomplete
code, such as an empty condition. In the first instance, it tries to insert a reasonable
default (which is visible in the code). If this is not appropriate, it carries on and
ignores the incomplete code. Though this means that there are no “hard” errors, it
does mean that there is no obvious solution when the error is logical, and the
program is auto-corrected to by syntactically valid but might behave unexpectedly.

13 Feedback

The system should provide timely and constructive feedback. The feedback
should indicate the source of a problem and offer solutions.

Two key elements of feedback are demand and helpfulness. Feedback should exist to
help the programmer. Feedback should be given as close to the source event as it can
be – in terms of both where and when it is shown. These considerations apply equally
to feedback originating from the environment and editing process, and feedback from
the compiler and runtime system. Novices frequently review their programs, so it
should be available at least as frequently as the programmer wants it [Green and
Petre 1996; Jadud 2006]. When feedback is requested, the system’s response should
be appropriately quick.

Continuous compilation is generally regarded as very useful, analysing program
text continuously in the background and offering feedback early and quickly. An
extension of this idea is continuous execution, which some systems provide in an
“immediate window” or sandbox. Hundhausen and Brown [2007] however, argue
against such a feature. BlueJ, Greenfoot and Scratch let the user invoke individual
segments of code directly, providing opportunities for earlier feedback through easier
– and thus potentially more frequent – testing.

The second element of feedback is helpfulness. Feedback should be specific about
what the problem is, where it is, and if possible, how to fix it. Unhelpful error
messages are a particular problem for novices [Ko et al. 2004]. Working in Java,
novices have been observed to often make repeated small changes, suggesting they
may not understand how to appropriately respond to an error message [Jadud 2006].
Messages such as “identifier expected”, or “class, interface or enum expected” have
been shown to be problematic, as they require prior knowledge. Novices have
problems deciphering their meaning. “Symbol not found” is clear only once the
programmer knows what a “symbol” actually is. In the context of DrRacket, a
beginners’ environment for programming in Scheme, Marceau, Fisler, and
Krishnamurthi [2011] have analyzed categories of errors that students struggle with
and error messages that are frequently not understood by students. They come to the
same conclusion: Error messages do not help, even if they are timely and technically
correct, if they are not understood by the users of the system. Failure to understand
error messages is a common occurrence in beginners’ programming system. Weinberg
[1998] laments, “how truly sad it is that just at the very moment when the computer
has something important to tell us, it starts speaking gibberish”.

Scratch differs from these systems in that it does not show error messages.
Instead, it uses a fail-soft policy (Heuristic 12). However, this behaviour is not
unproblematic either: The automatic and silent modification of the user's code to
circumvent an error may result in the program exhibiting unexpected behaviour that

Heuristic Evaluation for Novice Programming Systems 39:19

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

beginners then may struggle to understand. The absence of any messages in this case
can make the location of the problem more difficult to determine.

 EVALUATION 4.
It is hoped that use of the new set of heuristics provides better insight into the
quality of novice programming tools than use of previously existing heuristics sets
would yield. To test this hypothesis, the heuristics themselves must be evaluated.

Sears [1997] defines the concepts of thoroughness, validity and reliability for
evaluating inspection methods. Similar concepts are reviewed by Hartson et al.
[2001]. Thoroughness is a measure of how many of a given set of “reference problems”
a method finds. Validity is a measure of how many of the candidate problems found
are “real” problems (as opposed to false positives). Reliability measures consistency
in the number of (correct) problems found when different evaluators apply the
method.

Our method of evaluating these heuristics consists of two stages:

(1) In a first stage, the heuristics are applied in the evaluation of three different

educational programming systems by the authors themselves.
(2) The second stage consists of the evaluation of the heuristics using a group of

independent evaluators on a single system.

Both of these evaluations are described in this section.
The first stage is designed to test the hypothesis of increased effectiveness of the

new heuristics set. Of the effectiveness measures identified – thoroughness, validity,
and reliability – it is mainly thoroughness that will be assessed with this experiment
design. The evaluation of different systems by the authors, and comparison to a
known set of reference problems, can give a good indication of the number and kind
of problem that the set can potentially identify. Measures of validity are likely to be
too biased in this design to yield useful results, and reliability cannot be measured
with this experiment. However, another goal of the heuristics set design was
practicality, as expressed in ease of dealing with the set (and leading to the goal of
orthogonality of the heuristics as the measurable indicator). Orthogonality can be
measured with this stage of the experiment.

The second stage of the evaluation is designed to reduce the bias introduced by
the authors being involved in the evaluation. It extends the results from the first
stage by being able to measure thoroughness not only per evaluator, but also for a set
as a whole, across a number of individual evaluators, therefore leading to more
reliable results. Validity can then also be measured. Orthogonality can be evaluated
in this stage via interviews, which can also yield additional information about other
aspects of practicality.

 Evaluation Stage 1: Three Systems 4.1
A first evaluation of the heuristics by applying them to a number of known systems
with a known set of reference problems can give valuable first insights into the
suitability and effectiveness of the heuristics, and help direct the refinement of the
heuristics themselves. It is also useful in the preparation of the study in stage 2.
Thoroughness and – to a lesser extent – validity can be investigated this way. The set
of reference problems is known from various sources, including earlier evaluations of
the same systems using various different sets of heuristics, which were carried out in
early stages of this research to test and compare existing heuristic sets. More detail

39:20 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

is given below. Risks and limitations resulting from the authors’ own involvement in
performing the evaluation are stated below.

Method

For this stage of the evaluation, we collected and recorded interaction problems in
three systems: Greenfoot (Java), Scratch, and Visual Basic. The aggregate problem
sets were derived from the literature, from our experience of using these systems,
from predictive cognitive modelling (discussed in a separate paper [McKay 2012]),
and from the heuristic evaluations themselves. We recorded 65 possible problems in
Greenfoot (many in the Java language), 58 in Scratch, and 57 in Visual Basic. They
are representative of the kinds of problems that we would expect these heuristics to
find.

We had already conducted a Nielsen-type evaluation before the new heuristics
were developed, and then a further evaluation based on Pane and Myers’s extension
of Nielsen’s set. These problem sets therefore predate our new heuristics. As noted in
Section 3, difficulties using those sets inspired the new heuristics’ creation. We
applied the new heuristics, and then added new problems found by them to the
reference set. To mitigate for the fact that the new heuristics came last (and
therefore, we already knew of problems that we had uncovered with the other sets),
we took several passes through the evaluation reports, attempting to match the
newest problems to the existing sets. We attempted to show that problems could be
findable with Nielsen’s and Pane and Myers’s sets, even if we did not find them on
our first pass.

In Section 3, we stated that, as far as possible, we aimed for the heuristics to be
orthogonal, and that the set, as a whole, should cover all of the problem areas. We
therefore measured thoroughness (t), defined as the number of problems found,
divided by the total number of problems that we know to exist. We also counted
problems that indicated the heuristics were not orthogonal – that is, that the problem
overlapped one or more heuristics. For example, Java naming conventions seem to be
covered in more than one of Pane and Myers’s categories (signalling, misleading
appearances, and secondary notations). We measured the proportion of problems that
were not ambiguous, and refer to that measure here as orthogonality (o).

Results

The problem counts for Nielsen’s set, Pane and Myers’s, and the new heuristics,
are given in Table 1. The results of this experiment show that we could match more
problems to the new set than to the previous two (a total of 176 compared to 136 for
Nielsen and 134 for Pane and Myer). The new set is also more orthogonal, with
significantly more problems fitting clearly into one category. Thoroughness and
orthogonality are recorded in Figures 1 and 2, which show the individual ‘t’ and ‘o’
values for each system, as well as the overall totals.

Table 1: Number of problems identified with different sets of heuristics (Nielsen, Pane and New) in three

different systems (Greenfoot, Scratch, Visual Basic). (In parentheses: number of problems that were ambiguous,
i.e. could not clearly be assigned to one single heuristic.)

 Nielsen Pane New
Greenfoot/Java (out of 65) 52 (20) 50 (23) 62 (1)
Scratch (out of 58) 39 (17) 37 (10) 57 (0)
Visual Basic (out of 57) 45 (10) 47 (23) 57 (1)

Heuristic Evaluation for Novice Programming Systems 39:21

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Figure 1: Thoroughness of different sets (larger is better)

Figure 2. Orthogonality of different sets (larger is better)

Surprisingly – given that Pane and Myers’s set is presumed to be a domain-specific
improvement on Nielsen’s – the evaluations using Pane and Myers’s set seem
marginally less effective than those using Nielsen’s heuristics. However, the
difference is too small to present a useful result. It may be that the larger number of
heuristics in Pane and Myers’s set makes overlap more likely.

Limitations

An evaluation of the heuristics by the original authors is most likely biased, and
therefore does not provide conclusive evidence of the effectiveness of the heuristics in
general use by independent evaluators. The experiment measured mostly
thoroughness and orthogonality. Validity could theoretically be measured, but is
most likely significantly biased by the authors’ own involvement and the prior
knowledge of the reference set. It is clearly less likely to find false positives in this
study design, and therefore this study should not be taken as a useful measurement
of validity. (Thus, a measurement of validity has not been included in the results.)

0.800 0.769
0.954

0.672 0.638

0.983
0.789 0.825

1.000

0.000

0.500

1.000

1.500

2.000

2.500

3.000

Nielsen Pane New

Thoroughness (t)

VB

Scratch

Java

0.615 0.540
0.984

0.564 0.730

1.000 0.778 0.511

0.982

0.000

0.500

1.000

1.500

2.000

2.500

3.000

Nielsen Pane New

Orthogonality (o)

VB

Scratch

Java

39:22 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Reliability cannot be measured with this experiment.
To ameliorate these limitations, a second study was performed.

 Evaluation Stage 2: Multiple Evaluators 4.2
The second phase of evaluating the new heuristics consisted of an experiment where
several independent evaluators applied the heuristics to the same software system.1
Some evaluators used our new heuristics, while a control group used an existing set,
allowing us to compare the effectiveness of the new set relative to the existing one.

Method

The participant group consisted of undergraduate and postgraduate students from
the School of Computing at our university. They were recruited via an email to
undergraduate students who had completed an HCI module (which included study of
and exercises with heuristic evaluation), and a second email to all postgraduate
students. 13 students in total participated in this study (five undergraduate and
eight postgraduate). The students volunteered their time; the activity was not linked
to any study.

All participants had significant programming experience, and all had encountered
heuristic evaluation previously.

Participants were asked to perform a heuristic evaluation of Scratch, using a
given set of heuristics. All of the participants had heard of Scratch, however, only one
participant had experience in using Scratch.

A set of tasks was handed out, together with a set of the heuristics, and
participants were asked to evaluate the system and record any usability problems
they encountered. About half of the evaluators (N=6) were given Nielsen’s heuristics,
while the other half (N=7) used the new heuristics.

Participants were not told that the purpose of the study was to evaluate the
heuristics themselves. They were not aware that other participants might use a
different set of heuristics. Participants were given a short “refresher” talk on the
heuristic evaluation process as part of their instructions. Between one and three
participants at a time worked independently, in different parts of a large, quiet room.
A copy of the task and a list of the heuristics to use were made available on paper.
The new heuristics were presented as above (the short, summary form at the
beginning of section 3.3), and the existing set was taken from Nielsen [Nielsen 2005].
Both sets were formatted in the same plain style, were similar in length and level of
detail provided. Participants were asked to record usability problems on paper pre-
printed with columns for recording the problem and the heuristic violated by the
problem. We did not disclose until afterwards that the purpose of the study was to
compare two sets of heuristics.

At the end of the sessions, seven participants who had time (three using the new
set, four using Nielsen’s set) participated in short, informal individual interviews.
The subject of the interview were the heuristics themselves, rather than the system
under evaluation. The participants were asked open questions about ease or
difficulty to understand and apply the heuristics; how they would describe the

1 A subset of these results was reported by the authors in a workshop of the Psychology of Programming
Interest Group as McKay, F. and Kölling, M.: Evaluation of Subject-Specific Heuristics for Initial Learning
Environments: A Pilot Study, PPIG, London, 2012. The results presented here include and extend the
previous data.

Heuristic Evaluation for Novice Programming Systems 39:23

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

heuristics in their own words; and whether they thought any of the problems they
found would have fitted with none of the heuristics, or more than one.

Table 2 summarises the details of evaluators in this study.

Table 2: Reviewer profiles

Reviewer Study stage Scratch experience Heuristics Interview
A Undergraduate No New Yes
B Undergraduate No New Yes
C Postgraduate No New No
D Postgraduate No New Yes
E Postgraduate No New No
F Postgraduate No New No
G Undergraduate No New No
H Postgraduate No Nielsen Yes
I Postgraduate No Nielsen Yes
J Undergraduate Yes Nielsen Yes
K Undergraduate No Nielsen No
L Postgraduate No Nielsen No
M Postgraduate No Nielsen Yes

Results, Part 1: Number of Problems Found

The number of problems found by each group showed no statistically significant
difference.

Figure 3 is a diagrammatic representation of problems found per user. In the
figure, every column represents a usability problem, and every row represents one
reviewer. If that reviewer found the particular problem, the grid is marked with a
black square. The first seven evaluators used the new heuristics, and the last six
used Nielsen’s set (separated by a horizontal line). Similar diagrams are used in
Nielsen’s online material [Nielsen 2005b]. Problems to the left of the vertical centre-
line were found by more than one evaluator. Problems on the right were only found
by one person. Problems are numbered (horizontal, bottom).

39:24 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

 A
	 B
	 W

 C
	 E

 D
	 N e w

 E
	 F
	 G

N

 H
	 E

 I
	 S

 J

	 L K
	 E

 L
	 I M
	 N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
	 	

Figure 3.Problems identified per reviewer. Problems (horizontal) are numbered, and participants’ (vertical)
identifiers correspond to Table 2. Top: new heuristics; bottom: Nielsen’s. A black square marks a particular

problem as identified by a particular reviewer.

Results, Part 2: Effectiveness of Heuristics Sets

Figure 4 summarises the problems found by each heuristics set. Any problem which
was found at least once, for the given set of heuristics, is marked in black. Some
problems were found with only one set, and not the other. A total of 11 problems were
identified only with the new set (problems 6, 8, 10, 14, 15, 16, 17, 19, 21, 22, 23). Four
problems were found only with the Nielsen set (problems 12, 13, 18, 20). Of problems
which were identified by at least two evaluators, three were uniquely identified using
the new set (6, 8, 10), and none with Nielsen's set. This indicates that the new set
may be better able to identify some valid problems.

	 Unique * * * * * * * * * * *
	 New

	 Nielsen

	 Unique * * * *
	 	 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
	 	

Figure 4. Problems identified per heuristics set. Problems found uniquely with one set are marked.

To further interpret the results we used validation methods proposed by Sears [1997]
and Hartson et al. [2001], which rely on comparing “thoroughness” and “validity” per

Heuristic Evaluation for Novice Programming Systems 39:25

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

review(er). Using equations 1 and 2, thoroughness and validity can be calculated for
the issues identified by the reviewers.

Thoroughness varied little between the two groups (Table 3).
Calculating validity does not produce anything useful with these results – none of

the comments were clear false positives.

𝑡 =
𝑅𝑒𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 𝑓𝑜𝑢𝑛𝑑
𝑇𝑜𝑡𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑠𝑒𝑡

 𝑣 =
𝑅𝑒𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 𝑓𝑜𝑢𝑛𝑑

𝑆𝑢𝑔𝑔𝑒𝑠𝑡𝑒𝑑 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠 𝑓𝑜𝑢𝑛𝑑

Equation 1 and 2: Thoroughness (t) and validity (v)

Table 3: U-test of thoroughness (p=0.792)

Group N Median Avg Rank Min Max
New 7 0.175 5.166 0.065 0.290
Nielsen 6 0.163 4.672 0.065 0.264

Results, Part 3: Comments Made

While there was little significant difference in the raw number of issues detected
using the two sets of heuristics, we discovered another – and unexpected – difference:
The length and content of the comments made accompanying the issue reports varied
significantly.

In total, participants in the study made 71 written comments. 37 of these
comments were made by evaluators using the new set of heuristics and 34 were made
by those using Nielsen’s heuristics (Figure 5). The mean number of comments per
evaluator was 5.29 and 5.67 respectively.

39:26 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 5. Number of written comments made per reviewer (darker: comments including suggestions).

This data shows that the number of comments was broadly the same; however, the
length of comments – and the qualitative information supplied in these – differed
significantly. Table 4 shows the length of comments in characters. From this data we
can see that comments made by participants using the new set of heuristics are
significantly longer.

Table 4: Comment length by group (t-test p-value = 0.018)

Group N Mean Min Max
New 37 114.4 28 499
Nielsen 34 48.0 21 113

Two typical comments, from different reviewers, are,

“H8 simplicity. There is something strange with the way a whole block of
blocks is moved, and one has to separate the first of these in.” (Reviewer B)

“H10, 8. I can not delete an statement by right clicking it if it's in between a
sequence therefore I had to do 2 steps (separated them, deleted and put the
rest back together).” (Reviewer F)

The longest comments with the new heuristics are paragraph-length. For instance,

“H11. Dragging and dropping the blocks felt slow when doing a sequence of
10, doing the edit on both cars separately was annoying, and also replacing
blocks was annoying, though I found a trick that helped (first add the new
block beneath the old block, then drag it (and all thus all that follows it) to

Heuristic Evaluation for Novice Programming Systems 39:27

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

the right spot above the old block, then remove the old block which as it's the
last item, doesn't uncouple the other blocks). Still, a right-click--delete
option would have saved a lot of time.” (Reviewer D)

In contrast, a longer comment from the Nielsen group reads,

“H8. Some of the control colours are very similar, slowing down rate that you
can guess where commands are stored.” (Reviewer I)

We are aware that having longer comments, per se, is not the aim of the new
heuristics. However, in addition to being longer, the comments contained more
detailed and descriptive feedback. Below, the content of the comments is discussed in
more detail.

Types of comments and their content

All comments collected were coded for the problems they described and the nature of
the comment. The coding for types of comment was open – there were no
predetermined categories of response.

Even though not explicitly instructed to do so, many of the evaluators included
suggestions (sometimes quite detailed) in their problem reports. The following are
examples of suggestions, all from the new heuristics (emphasis added):

“Had to switch tabs a lot, process would be more efficient if they were
rearranged, or more visible at once”.

[About there being a work-around to shuffling blocks] “Still, a right-click
delete option would have saved a lot of time”.

“maybe have a way of integrating the left hand, e.g. by being able to switch
between block-menus (which is done by clicking a button in the top-left
square) with the key-board?”.

“[Would be] Easier to make changes then duplicate rather than editing each
one”.

“Maybe try, and balance the sprite pictures so there are a bit more girlish
ones…”

“When the last change is compiled the button is still active (even though
there is a state indicating). However it would be better to block it”.

Reviewers made roughly the same number of comments using each set. However, the
difference in suggestion frequency was significant. There were only two suggestions
made with the existing heuristics, out of 34 comments, while the 37 comments from
the new set included 14 suggestions. Only one reviewer using the new set did not
make a suggestion for improvement.

Some of the comments with the new set were phrased as cause-effect pairs. The
problems were described as in other reports, but was also linked to an underlying
issue or concept in the system. For example:

“No types on the variables, so string/int confusion of 90/ninety could not be
prevented”.

“[…] as it’s the last item, doesn’t uncouple other blocks”.

“The dragging blocks is very slow, [because] having to use the mouse a lot
makes me use the right hand a lot more than the left.”

39:28 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Post-experiment interviews

The post experiment interviews were semi-structured and lasted between 12 and 27
minutes. The interview questions and topics covered the nature of the heuristics,
problems with their use and interpretation, and ease (or otherwise) of their
application.

The qualitative data identified issues mostly related to wording of heuristics and
interpretation of some concepts or terms. The most relevant are:

— New set, Heuristic 11: The term or concept of “viscosity” was not clear to all
evaluators, and some found it more difficult to assess than other heuristics. The
reason was a lack of colloquial understanding of the term.

— New set, Heuristic 8 and 11: The trouble with the term “viscosity” crystallised
especially in some evaluators’ difficulty distinguishing it from simplicity (in the
sense of visual simplicity). One evaluator asserted there to be no difference.

— Nielsen’s set, Heuristic 8: “Aesthetic and minimalist design”. One evaluator did
not think that it was appropriate judge a violation of the guideline “Dialogues
should not contain information which is irrelevant or rarely needed” [Nielsen
2005] as a violation of this heuristic, and also had trouble finding a match using
any of the other heuristics.

— New set, Heuristic 1: The phrase “intended audience of learners” was criticised as
being ambiguous.

Overall, most comments in the interview were positive, and the evaluators felt
largely confident in applying the heuristics.

 FUTURE WORK 5.
The present data resulting from the evaluation of the heuristics, as described here, is
promising. The sample size, however, is still fairly small, and the interpretation of
the results was carried out by the authors. Both these aspects introduce risks to the
validity of the study.

To increase the confidence in the results, we plan to repeat the study using a
different software system and more evaluators. An additional goal is also to remove
the heuristics authors from the organisation and implementation of the experiment,
and from the interpretation of the results. This serves to remove possible
confirmation bias.

A yet more reliable result would be obtained by a study planned and carried out
entirely independently from the authors; we hope that others will be interested
enough to set up such an experiment.

In a future study, it may also be interesting to include severity ratings in the
investigation – part of the “canonical” heuristic evaluation method described by
Nielsen, but not included in all variants of heuristic evaluation. We did not use them
in our studies to simplify comparison and interpretation of results; inclusion of this
additional dimension would have added another variable that complicates the
analysis. However, we envisage the heuristics as also being used during a design
process, not only for evaluation after the fact. In that case, numerically rating
problems is much less important since the heuristics are typically applied by the
designers themselves.

 DISCUSSION AND CONCLUSION 6.
The authors' experience with using existing sets of heuristics to evaluate a number of
educational programming systems led to the hypothesis that heuristic evaluation for

Heuristic Evaluation for Novice Programming Systems 39:29

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

such systems could be improved with a new set of domain specific heuristics. Such a
set of heuristics was then developed, following a set of formulated goals for the
individual heuristics and the set as a whole. The goals aimed at maintaining both
effectiveness and practicality of the heuristics set, while the hope was that the
application of the new set of heuristics would be more effective for our target
application domain than using existing sets.

Effectiveness of the heuristics is measured in thoroughness, validity and
reliability. Following the formulation of the heuristics, the authors conducted two
evaluative studies: one by applying the new heuristics to a number of systems and
measuring the outcomes against a known set of reference problems, and a second one
comparing the new heuristics set to Nielsen’s heuristics using a group of independent
evaluators.

The outcome of the first study suggests that the new set of heuristics provides a
marked improvement in thoroughness and also shows a greater degree of
orthogonality. Reliability cannot be measured with this study.

There are several risks and limitations inherent in the study performed. Since the
study was performed by the authors of the heuristics, there is an implicit risk of bias.
The problems used as the reference set were known in advance, introducing further
risk of bias. Reliability cannot be measured without using a larger set of independent
evaluators.

The second study, using independent evaluators, showed that the new heuristics
set can be used to find actual verifiable problems at least as well as Nielsen’s set, and
possibly better.

While the raw number of issues reported was similar using both sets, the new
heuristics set uncovered more different problems and included more issues not
identified with Nielsen’s set than vice versa.

Descriptions of issues produced using the new set were significantly longer and
more detailed. Qualitative analysis of the issue reports identified significant amounts
of additional useful information included in the evaluations using the new set, which
were not found using Nielsen’s set. The useful information provided falls mainly into
two categories: suggested fixes and identification of cause-effect relationships.

While it is too early to assert the superiority of the new set over existing
heuristics – both general and domain specific – with a high degree of confidence
(because of the risk of confirmation bias), our results seem to indicate a clear
advantage, and we hope that others will replicate and confirm our findings.

REFERENCES

Allen, E., Cartwright, R., and Stoler, B. 2002. DrJava: a lightweight pedagogic environment for Java.

SIGCSE Bull. 34, 1 (2002), 137-141. DOI=http://dx.doi.org/10.1145/563517.563395
Bastien, J. M. C. and Scapin, D. L. 1995. Evaluating a user interface with ergonomic criteria. International

Journal of Human‐Computer Interaction, 7(2), 105-121. DOI:http://dx.doi.org/10.1080/
10447319509526114

Begel, A. and Klopfer, E. 2007. StarLogo TNG: An introduction to game development. Journal for E-
Learning, 2007.

Bekker, M. M., Baauw, E., and Barendregt, W. 2008. A comparison of two analytical evaluation methods
for educational computer games for young children. Cognition, Technology & Work, 10(2), 129-140.
DOI:10.1007/s10111-007-0068-x

Ben-Ari, M. 1998. Constructivism in Computer Science Education. Proceedings of the Twenty-Ninth
SIGCSE Technical Symposium on Computer Science Education, 257-261.
DOI:http://dx.doi.org/10.1145/274790.274308

Berland, M. and Martin, T. 2011. Clusters and patterns of novice programmers. The Meeting of the
American Educational Research Association, New Orleans.

Birnbaum, B. E. and Goldman, K. J. 2005. Achieving flexibility in direct-manipulation programming

39:30 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

environments by relaxing the edit-time grammar. IEEE Symposium on Visual Languages and Human-
Centric Computing, 259-266.

Blackwell, A. F. 1996. Metacognitive theories of visual programming: What do we think we are doing?
Visual Languages, 1996. Proceedings., IEEE Symposium on Visual Languages, 240-246. ISBN:0-8186-
7508-X

Bruce, K. B., Danyluk, A. P., and Murtagh, T. P. 2001. Event-driven programming is simple enough for
CS1. ACM SIGCSE Bulletin, 33(3), 4. DOI:http://dx.doi.org/10.1145/507758.377440

Burke, Q. and Kafai, Y. B. 2010. Programming & Storytelling: Opportunities for learning about coding &
composition. Proceedings of the 9th International Conference on Interaction Design and Children, 348-
351. DOI:http://dx.doi.org/10.1145/1810543.1810611

Caspersen, M. E. and Christensen, H. B. 2000. Here, there and everywhere-on the recurring use of turtle
graphics in CS1. Proceedings of the Fourth Australasian Computing Education Conference (ACE 2000),
34-40.

Cooper, S., Dann, W., and Pausch, R. 2003 Teaching objects-first in introductory computer science.
Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2003),
191-195, ACM. DOI:http://dx.doi.org/10.1145/792548.611966

Cooper, A., Reimann, R., and Cronin, D. (Eds.) 2007. About Face 3: The Essentials of Interaction Design.
Chapter 25, errors, alerts and confirmation. (pp. 529-550). Indianapolis: Wiley. ISBN: 0470084111

de Raadt, M., Watson, R., and Toleman, M. 2002. Language trends in introductory programming courses.
Informing Science: Where Parallels Intersect, 329-337.

Denny, P., Luxton-Reilly, A., Tempero, E., and Hendrickx, J. 2011. Understanding the syntax barrier for
novices. Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer
Science Education, 208-212. DOI:http://dx.doi.org/10.1145/1999747.1999807

Green, T. R. G. 1989. Cognitive dimensions of notations. People and Computers V: Proceedings of the Fifth
Conference of the British Computer Society Human-Computer Interaction Specialist Group, 443-460.

Green, T. R. G. and Petre, M. 1996. Usability analysis of visual programming environments: A 'cognitive
dimensions' framework. Journal of Visual Languages and Computing, 7(2), 131-174.

Hartson, H. R., Andre, T. S., and Williges, R. C. 2001. Criteria for evaluating usability evaluation methods.
International Journal of Human-Computer Interaction, 13(4), 373-410.

Hundhausen, C. D. and Brown, J. L. 2007. An experimental study of the impact of visual semantic
feedback on novice programming. Journal of Visual Languages and Computing, 18(6), 537-559.
DOI:http://dx.doi.org/10.1016/j.jvlc.2006.09.001

Jadud, M. C. 2006. Methods and tools for exploring novice compilation behaviour. Proceedings of the
Second International Workshop on Computing Education Research, 73-84.
DOI:http://dx.doi.org/10.1145/1151588.1151600

Jakobsen, M. R. and Hornbæk, K. 2006. Evaluating a fisheye view of source code. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 377-386.
DOI:http://dx.doi.org/10.1145/1124772.1124830

Kelleher, C. and Pausch, R. 2007. Using storytelling to motivate programming. Communications of the
ACM, 50(7), 58-64. DOI:http://dx.doi.org/10.1145/1272516.1272540

Ko, A. J., Aung, H. H., and Myers, B. A. 2005. Design requirements for more flexible structured editors
from a study of programmers' text editing. CHI'05 Extended Abstracts on Human Factors in
Computing Systems, 1557-1560.

Ko, A. J. and Myers, B. A. 2006. Barista: An implementation framework for enabling new tools, interaction
techniques and views in code editors. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 387-396. DOI:http://dx.doi.org/10.1145/1124772.1124831

Ko, A. J., Myers, B. A., and Aung, H. H. 2004. Six learning barriers in end-user programming systems.
IEEE Symposium on Visual Languages and Human Centric Computing, 199-206.
DOI:http://dx.doi.org/10.1109/VLHCC.2004.47

Kölling, M. 1999. The Design of an Object-Oriented Environment and Language for Teaching. PhD thesis,
University of Sydney, Basser Department of Computer Science.

Kölling, M. 2010. The Greenfoot Programming Environment. ACM Transactions on Computing Education
(TOCE), 10(4), 14. DOI:http://dx.doi.org/10.1145/1868358.1868361

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. 2003. The BlueJ system and its pedagogy. Journal
of Computer Science Education, Special Issue on Learning and Teaching Object Technology, 13(4), 249-
268.

Konidari, E. and Louridas, P. 2010. When students are not programmers. ACM Inroads, 1(1), 55-60.
DOI:http://dx.doi.org/10.1145/1721933.1721952

MacLaurin, M. 2009. Kodu: End-user programming and design for games. Proceedings of the 4th
International Conference on Foundations of Digital Games, 2.
DOI:http://dx.doi.org/10.1145/1536513.1536516

Malone, T. W. 1980. What makes things fun to learn? Heuristics for designing instructional computer

Heuristic Evaluation for Novice Programming Systems 39:31

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

games. Proceedings of the 3rd SIGSMALL Symposium and the First SIGPC Symposium on Small
Systems, 162-169. DOI:http://dx.doi.org/10.1145/800088.802839

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. 2010. The Scratch programming
language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.
DOI:http://dx.doi.org/10.1145/1868358.1868363

Maloney, J. H., Kafai, Y. B., Resnick, M., and Rusk, N. 2008. Programming by choice: Urban youth
learning programming with Scratch. Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, 367-371. DOI:http://dx.doi.org/10.1145/1352135.1352260

Marceau, G., Fisler, K., and Krishnamurthi, S. 2011. Measuring the Effectiveness of Error Messages
Designed for Novice Programmers. Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education, 499-504. DOI:http://dx.doi.org/ 10.1145/1953163.1953308

McKay, F. 2012. A prototype structured but low-viscosity editor for novice programmers. BCS-HCI '12
Proceedings of the 26th Annual BCS Interaction Specialist Group Conference on People and
Computers, 363-368.

Miara, R. J., Musselman, J. A., Navarro, J. A., and Shneiderman, B. 1983. Program indentation and
comprehensibility. Communications of the ACM, 26(11), 861-867. DOI:http://dx.doi.org/10.1145/
182.358437

Milner, W. W. 2010. A broken metaphor in Java. ACM SIGCSE Bulletin, 41(4), 76-77.
DOI:http://dx.doi.org/10.1145/1709424.1709450

Nielsen, J. 2005. Ten usability heuristics. Retrieved May 08, 2015 from http://www.useit.com/
papers/heuristic/heuristic_list.html

Nielsen, J. 2005b. How to conduct a heuristic evaluation. Retrieved May 8, 2015, from
http://www.useit.com/papers/heuristic/heuristic_evaluation.html

Nielsen, J. and Molich, R. 1990. Heuristic evaluation of user interfaces. CHI '90 Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems: Empowering People, 249-256.
DOI:http://dx.doi.org/10.1145/97243.97281

Overmars, M. 2004. Teaching Computer Science through Game Design. Computer 37, 4, 81-83.
DOI:http://dx.doi.org/10.1109/MC.2004.1297314

Pane, J. F. 2002. A programming system for children that is designed for usability. Doctoral dissertation,
Carnegie Mellon University, Pittsburgh, Pennsylvania.

Pane, J. F. and Myers, B. A. 1996. Usability issues in the design of novice programming systems. Carnegie
Mellon University, School of Computer Science Technical Report CMU-CS-96-132, Pittsburgh, PA,
August 1996, 85 pages.

Papert, S. 1980. Mindstorms: Children, computers, and powerful ideas. New York: Basic books. ISBN
0465046746

Pattis, R. E. 1981. Karel the Robot: A gentle introduction to the art of programming (1st ed.). New York,
USA: John Wiley and Sons. ISBN 0471597252

Python Software Foundation. 2012. Python standard library: Turtle graphics for tk. Retrieved May 08,
2015 from http://docs.python.org/library/turtle.html

Rambally, G. K. 1986. The influence of color on program readability and comprehensibility. Proceedings of
the 17th SIGCSE Symposium on Computer Science Education, 18(1) 173-181.
DOI:http://dx.doi.org/10.1145/953055.5702

Robins, A., Haden, P., and Garner, S. 2006. Problem distributions in a CS1 course. Proceedings of the 8th
Australian Conference on Computing Education, 165-173. ISBN 1-920682-34-1

Sanders, D. and Dorn, B. 2003. Jeroo: A tool for introducing object-oriented programming. Proceedings of
the 34th SIGCSE Technical Symposium on Computer Science Education, 201-204.
DOI:http://dx.doi.org/10.1145/792548.611968

Sanders, K. and Thomas, L. 2007. Checklists for grading object-oriented CS1 programs: Concepts and
misconceptions. ACM SIGCSE Bulletin, 39(3), 166-170. DOI:http://dx.doi.org/10.1145/1269900.1268834

Schulte, C. and Bennedsen, J. 2006. What do teachers teach in introductory programming? Proceedings of
the Second International Workshop on Computing Education Research, 17-28.
DOI:http://dx.doi.org/10.1145/1151588.1151593

Sears, A. 1997. Heuristic walkthroughs: Finding the problems without the noise. International Journal of
Human-Computer Interaction, 9(3), 213-234.

Shingō, S. 1986. Zero quality control: Source inspection and the poka-yoke system. Productivity Press, New
York, NY. ISBN 0915299070

Siegfried, R. M. 2006. Visual programming and the blind: The challenge and the opportunity. ACM
SIGCSE Bulletin, 38(1), 275-278. DOI:http://dx.doi.org/10.1145/1124706.1121427

Slack, J. M. 1990. Turbo Pascal with turtle graphics. St. Paul: West Publishing Co.
Thomas, L., Ratcliffe, M., and Robertson, A. 2003. Code warriors and code-a-phobes: A study in attitude

and pair programming. Proceedings of the 34th SIGCSE Technical Symposium on Computer Science
Education, 363-367. DOI:http://dx.doi.org/10.1145/792548.612007

39:32 M. Kölling and F. McKay

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Thomasson, B., Ratcliffe, M., and Thomas, L. 2006. Identifying novice difficulties in object oriented design.
Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education, 28-32. DOI:http://dx.doi.org/10.1145/1140123.1140135

Turkle, S. and Papert, S. 1992. Epistemological pluralism and the revaluation of the concrete. Journal of
Mathematical Behavior, 11(1), 3-33.

Ware, C. 2008. Visual thinking for design. Burlington, MA: Morgan Kaufmann Publishers.
Weinberg, G. M. 1998. The psychology of computer programming (2nd ed.). New York, USA: Dorset House

Publishing.

