
191

Performance-Oriented Software Architecture Engineering:
an Experience Report

Chung-Homg Lung Anant Jalnapurkar Asham El-Rayess
SEAL - Software Engineering Analysis Lab

Nortel, Ottawa, Ontario, Canada
flung, jalnapur, asham,@nortel.ca

Abstract
Current methods ,for software architecture analysis often

,fall short qf providing objective and quantitative perfor-
mance information. The paper describes how to bring
together techniques in software performance engineering
and software architecture analysis in order to supportper-
,formance-oriented software architecture engineering. The
paper presents a systematic approach derived from empir-
ical case studies in real-time telecommunications applica-
tions. The approach has been successfully applied to these
case studies to help product teams analyze and improve
the performance and other quality factors qf their systems.

1. Introduction

Many systems, especially real-time applications, fall
short of meeting the performance goals set by the design-
ers. Unfortunately, the problems are often discovered only
late in the application life-cycle. At this stage, a lot of
effort will be spent in tuning the performance or restruc-
turing the architecture or design. This effort usually results
in architecture erosion or drift. In other words, the imple-
mentation does not conform with the architecture, if there
exists one. This problem further complicates the already
time-consuming maintenance process for product evolu-
tion.

Software architecture analysis is an emerging field,
promoted by the increasing complexity of software sys-
tems and the need to reduce maintenance costs for evolu-
tion. A software architecture analysis group was
established in the Software Engineering Analysis Lab
(SEAL) in 1995. Since then, we have worked with various
Nortel product teams to evaluate their software architec-
tures. Our initially adopted methodology was the Software
Architecture Analysis Method (SAAM) [3]. Since many of
the applications we worked with were real-time telecom-
munication applications, new challenges, especially recur-
ring performance issues, have risen. These new challenges
necessitated creating extensions to our approach.

Recently, we have been focussing more on the perfor-
mance aspects during the evaluation process. Software
Performance Engineering (SPE) [9] enforces a perfor-
mance assessment step in the design stage before proceed-
ing. SPE emphasizes the performance model construction
and evaluation. However, SPE does not explicitly address
the software architecture issues and how to re-engineer a
system to improve performance. This paper describes a
Performance-Oriented Software Architecture Engineering
(POSAE) approach. POSAE integrates SPE and software
architecture practices. We have used the approach to aid
product teams in identifying potential bottlenecks and
improving the performance of their systems. Furthermore,
the approach also helped us look for opportunities to re-
engineer legacy systems, identify reusable components,
update documents, and build prototypes.

This paper reports empirical experiences and lessons
learned from practical applications of the method. This
paper can serve as a bridge between practitioners in soft-
ware architectures and performance engineering. This
paper supports practitioners in software architecture by
demonstrating an explicit and systematic approach to con-
ducting analysis and synthesis with performance as the
most critical factor. The paper also brings to the attention
of practitioners in performance engineering some of the
techniques used in software architecture.

The paper is organized as follows. Section 2 introduces
a set of architectural views adopted to support the analysis
and synthesis. Section 3 illustrates POSAE, including the
steps used and the types of artifacts produced. Some
results and lessons learned from empirical studies are pre-
sented Section 4. Lastly, Section 5 provides concluding
remark.

2. Architectural Views

The development of a complex software system always
involves diverse stakeholders. Different stakeholders have
different perspectives and needs. The description of an

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. TO copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee”.
WOSP98, Santa Fe, NM. (c) 1998 ACM l-58113-060-O/98/00... $5.00

http://crossmark.crossref.org/dialog/?doi=10.1145%2F287318.287359&domain=pdf&date_stamp=1998-10-01

architecture requires multiple viewpoints at various stages
in the life cycle to meet the stakeholder’s objectives.

SEAL has adopted various architectural views that are
critical for POSAE. The set of views, as demonstrated in
Figure 1 [5 1, includes a static view, a map view, a dynamic
view, and a resource view. These architectural views are
developed to support insightful understanding of the sys-
tem and to facilitate communications among various stake-
holders. The next section discusses how these views are
applied to POSAE. Each view and some commonly used
methods for the view are briefly described below.

View

Figure 1. Software architectural views

l Static view. The static view shows the overall topology
of system components and their interconnections. The
methods that can be used for this view include logical
diagram, structure diagram, object diagram, and mod-
ule diagram. The static view can also be represented at
various levels of detail, depending on the stakeholder’s
objectives.

l Map view. The map view identifies the architectural
styles, patterns, and design violations. The identitica-
tion of the styles or patterns helps us focus on the con-
trol and communication mechanisms. In addition, this
view also identities the mapping between components
and functions or features. The mapping is used to clus-
ter related components into cohesive modules.

l Dynamic view. The dynamic view addresses the
behavioral aspects of a system. This view can be sup-
ported by mnctional diagram, causal diagram, messag-
ing diagram or message sequence chart, object
interaction diagram, state machines, and Petri nets.

l Resource view. The resource view deals with the utili-
zation of system resources. Various techniques can be
used, including the identification of mapping of soft-

ware onto hardware, performance modeling, measure-
ments, parallel or concurrent processing, and
simulation.

The development of the views does not have to be car-
ried out in a strict sequence. Rather, the process is iterative
and incremental. Furthermore, not all views are needed for
each evaluation and each view is not constrained by a par-
ticular method or notation. Selection of appropriate views
and suitable methods depends on the specific application
environment and values of the stakeholder.

3. Performance-Oriented Software Architec-
ture Engineering

This section describes the POSAE approach. We have
applied this approach to various applications in the tele-
communications problem domain. This section describes
the process and some approaches used. We also correlate
the process with the architectural views discussed in the
previous section. Note that the process is also iterative and
incremental in nature. The process involves the following
steps. More elaboration on the steps as well as some of the
derived lessons follow.
1. Develop or capture a software architecture.
2. Identify most frequently used scenarios, with focus on

real-time scenarios.
3. Identify execution paths for the scenarios.
4. Apply performance modeling, analysis, and measure-

ments.
5. Perform architecture analysis based on the results of

step 4.
6. Conduct trade-off analysis between performance and

other quality attributes, and among design alternatives.
7. Build a prototype, based on the analysis, to improve the

performance or other quality attributes.

1. Develop or capture the software architecture. This
step corresponds to the static view shown in Figure 1. The
main components and their interactions are captured. For
complex systems, it is unlikely that people will continu-
ously remember all the details. An explicit software archi-
tecture is a useful vehicle for communication among
various stakeholders. In some cases, even the static view
could display potential performance impact due to com-
plex interconnections among components.

For legacy systems, reverse engineering of existing
implementation is often necessary. A few commonly used
approaches are adopted together in the process to extract
the architecture. Those approaches are read documents,
interview designers, use reverse engineering CASE tools,
and walk through source code.

Reading documents and interviewing designers are good
starting points. The approach gives a quick overview of the

192

system, but the approach usually only captures the high
level view. Also, the documents may not be kept up-to-
date. Using a reverse engineering tool facilitates the tra-
versal of source code and capture of different views. How-
ever, for complex object-oriented software, existing tools
may not generate complete or correct artifacts. Further-
more, human intervention and evaluation are often neces-
sary to capture more semantic information and domain
knowledge. Source code represents the actual implementa-
tion of the system. Walking through the code validates the
captured architecture. These approaches are used itera-
tively. By applying these approaches, we often could
develop artifacts of different levels of abstraction. Those
artifacts are valuable information for the designers as most
of them are only working on a certain specific area.

2. Identify most frequently used scenarios, with focus
on real-time scenarios. Obviously, the most frequently
used scenarios have direct impact on the overall system
performance. For example, the basic phone call for two
parties is the most frequently used scenario for the call
processing system. Other features are actually built on top
of it. Therefore, evaluation of the basic phone call scenario
is a must for the call processing system. This step usually
can be conducted in parallel with step 1.

For some applications, it is also important to identify
scenarios that address non real-time impact on real-time
processes. These scenarios may add unexpected perfor-
mance overheads, but are often neglected in performance
evaluation. We have used a systematic approach to gener-
ate scenarios based on the Objective/Scenario/Metric para-
digm [5,6]. For each objective, a tree-like structure of
scenarios are developed. Each node in the tree is either a
specific or a generic scenario class which in turn is a col-
lection of scenarios or scenario classes. This approach is
useful in determining scenario coverage and balance, and
in deciding when to stop generating scenarios.

3. Identify execution paths for the scenarios identi-
fied in step 2. This step corresponds to the dynamic view
shown in Figure 1. Once the architecture is developed or
captured, and the critical scenarios are identified, we
traverse the architecture with the scenarios. The concept is
similar to the SPE approach.

Various approaches have been used to model the
dynamic aspects of a system. Among these, we have used
message sequence charts, causal structures, and Use Case
Maps (UCMs) [I]. There are advantages and limitations
for each approach. Detailed comparisons of these
appraises are beyond the scope the this paper. We have also
used an approach that is similar to UCMs. The UCM nota-
tion facilitates the visual representation of execution paths,
but the approach does not include rich semantics. This can
be remedied with causal structures [2,5]. Figure 2 and 3
show a simplified example of how these two approaches

are used together to represent dynamic behaviors and exe-
cution paths. Each block in Figure 3 could present infor-
mation on object (in italics), method, or data that are
involved. The combination of these two approaches is use-
ful to show component interactions and execution paths,
especially early in the preliminary analysis process.

n Process --D+ Corltrol Flow - execution

0 Computation path

Figure 2. Example of Architecture walk-through

Liygz;pe;face Digit Collector
---b collect4

Di~~~$yollector

Digit Collector digits digits io
Service Controller

t
Translator Translator Service Controller

returns +--- trans!ates r+- invokes
digits to dig1 ts Xunslator

Service Controller

t Selector
Service Controller Selector returns

invokes & selects --+ a route to
Selector a route Service Controller

Figure 3. Causal representation of architecture
walk-through

4. Apply performance modeling, analysis, and mea-
surement. This step is related to the resource view
depicted in Figure 1. The key idea is to examine the utili-
zation of resources to improve or maximize system perfor-
mance. This step provides quantitative information for
system performance at various levels.

The application of SPE approach, including modeling,
analysis, and measurement, to the software design cycle
has been hindered by a variety of factors:

Time constraints often force project managers to focus
merely on functionality. Performance engineering in such
projects is restricted to code-level optimization. Code-level
optimization is necessary but not sufficient for complex
systems. The existence of software bottlenecks in such
systems may result in disastrous performance results.

SPE requires special skills in a domain that might be dif-
ferent from the project domain. The integration of SPE
into the project requires knowledge of both domains.

193

Instrumentation /
-@ Data Collection

Reverse
Engineering

Simulation /
Analysis Tools t

Capacity Planning

Load Balancing

Bottleneck Analysis

Etc...

Figure 4. Overview of the Model Automatic Generation Environment

Our approach to solving these hurdles is to automate parts
of the SPE process. We are working on the development of a
Model Automatic Generation Environment (MAGE). MAGE
(Figure 4) is a tool to be used for automatic generation of
simulation and/or analysis models from existing applications
or application prototypes.

The tool user (software programmer) embeds a set of data
collection APIs at specific points inside the application code.
These APIs measure, capture, and gather the architectural
and performance characteristics of the application. The tool
includes a mode1 generator that can make use of the data to
automatically build performance models for a variety of sim-
ulation and analysis tools. The models are used by the soft-
ware performance engineer to perform bottleneck analysis,
capacity planning, load balancing, and other performance
related tasks. Software designers can also use Rapid Applica-
tion Development tools to produce a prototype that can be
similarly used to generate initial performance models.

By automating the process of constructing performance
models, we de-skill and reduce the time needed for the inte-
gration of SPE methodologies into software development.

Depending on the types of applications, different modeling
techniques could be selected. We have applied the Layered
Queuing Network (LQN) model [7, lo] to client-server archi-
tectures in order to identify potential software bottlenecks,
investigate the impact of size of critical sections on perfor-
mance and the optimal number of concurrent processes for
maximal performance for multiprocessing systems. Detailed
discussion of the application is described in [8].

5. Perform architecture analysis based on the results of
step 4. The main purpose of this step is to evaluate the overall
software architecture. Some critical areas of focus include
elimination of redundant operations, reduction of execution
frequency of some paths or components, and avoidance of
levels of indirection. For examples, the initialization opera-
tion may be invoked repeatedly, redundant memory copy
operations may be performed, or a module may be a conten-

tion point or over-executed. All these operations have impact
on performance.

To achieve the goals of this step both top-down and bot-
tom-up approaches are used. We start at the architecture level
but validate from lower level artifacts, if available. The exe-
cution paths identified in step 3 are also refined in this step.
In other words, more detailed analyses are conducted. We
also identify architectural styles or design patterns. The
objective is to focus on the features of the styles or patterns.
The primary features consist of the control mechanism, com-
munication mechanism, registration mechanism, and other
quality factors. Violations of the styles and the rationale are
also explicitly captured. Some violations may be potential
areas for improvement.

The information could support the trade-off analysis,
which is described next. In addition, for some cases, we ana-
lyze if the components could be better partitioned or clus-
tered from the cohesion and coupling point of view. Figure 5
shows an example of improvement of modulization from (a)
to (b) by simply regrouping components [4]. Systems with
de-coupled modules can greatly improve evolution and could
also improve performance as well. This step is closely related
to the map view shown in Figure 1.

6. Conduct trade-off analysis between performance and
other quality attributes, or among design alternatives.
Performance usually is not the only concern of stakeholders.
We may need to consider other attributes such as maintain-
ability, scalability, and time-to-market. Some of these
attributes may contradict with the performance goals. The
development of a set of related and concrete scenarios, with
different views, helps the trade-off analysis.

Trade-off analysis could also be applied to cases where
multiple design alternatives exist. Lung and Kalaichelvan [6]
propose an approach to support an objective and repeatable
evaluation. The idea is to break down the evaluation into
more fine grained levels and identify the sensitivity of the
attributes or design alternatives with respect to the key stake-
holder objectives.

194

Figure 5. Regrouping of components to reduce
coupling: an example

7. Build a prototype, based on the analysis, to
improve performance or other quality attributes. Iden-
tifying the performance bottleneck is an important step.
However, the actual value lies in the removal of the bottle-
neck. Based on the evaluation of the software architecture
and performance, we build prototypes to demonstrate how
to eliminate certain problems or to improve performance
and other system qualities. The approach has been used in
one instance to synthesize an architecture based on design
patterns for the problem area. The new design greatly
reduced coupling between some system components and,
at the same time, improved the overall performance.

4. Results and Lessons Learned

We have applied the above approach at Nortel’s SEAL
in order to perform end-to-end analysis on various real-
time telecommunication products. One specific example is
the Nortel Service Control Point (SCP) product. We con-
ducted performance analyses for the messaging system,
run-time environment, application framework, and the
high-level services and applications. The performance is
defined as system throughput under quality of service
(QoS) constraints. We also make concrete recommenda-
tions to the design teams, and demonstrate feasibility and
added values.

Some results and values of this approach include:
l Capturing various views at different levels of abstrac-

tion enables better understanding of the architecture by
the design teams

l Developing and perusing a variety of scenarios helps
identify risk areas

l Identification of synchronization points and potential
bottlenecks in a concurrent environment.

l Performance improvement of the run-time environ-
ment, application framework, and services and applica-
tions.

In short, we helped the design teams increase perfor-
mance and improve software quality. In one instance,
through use of the above approach, we managed to
improve the throughput of a certain system by 25%. In
another instance, the throughput of a certain application
has improved by 500%.

A 25% gain of system throughput was achieved for the
real-time toll-free telephone number look-up (l-800 ser-
vice). Based on the existing architecture, we first used the
techniques described in step 2 of POSAE to identify criti-
cal scenarios as query and update to the real-time database.
Analysis of the scenarios, as described in step 3, showed
that the main application process remains in a critical sec-
tion for approximately 25% of the time required for pro-
cessing a query. A 4-processor system was used to
implement the product and there were four such applica-
tion processes. Modeling techniques were then used [8] to
determine the optimal length of the critical section. Based
on the critical section analysis results, appropriate design
changes were suggested to reduce the length of the critical
section. This resulted in 25% improvement in the system
throughput without affecting the quality of service.

A 500% gain of performance was achieved on an intelli-
gent network application implemented in a unit-processor
environment. Analysis of key scenarios in this application
revealed a critical interaction among query, update, and OS
scheduling mechanism. Update processing, in this case,
was 50 times more expensive compared to query process-
ing. The application process performing updates did not
relinquish the CPU for the entire quanta (1 second). This
resulted in loss of queries. The update processing algo-
rithm was optimized with the help of the design team and
it was run at a lower priority. This resulted in 500%
improvement of the system throughput.

We have also learned many lessons from the actual field
experiences. These lessons include:

Software architecture is a critical asset for the designers.
Quite often the designers’ focus is on one specific area of
the system. With an architecture in place, the designers can
appreciate the overall system components and how they
work together. An explicit software architecture helps
designers understand the system and facilitates communi-
cation among the various design teams. On the other hand,
current software architecture analysis practices often stop
at the reverse engineering and problem identification
stages. Design teams often react better to explicit remedial

195

recommendations. These recommendations, as such, have
a better chance influencing the system. In addition to pure
analysis, software architecture should support an engineer-
ing discipline.

To benefit the most, SPE must be closely tied to soft-
ware architecture. Performance and other quality attributes
may be constrained by a software architecture. Traditional
SPE methodologies promote the construction of a perfor-
mance model early in the design cycle. Efforts are under-
going for automatic generation of performance models
from high-level design descriptions such as UCMs. These
models help provide crude estimates that can be useful, for
example, in identifying critical application paths.

In order to refine and validate the constructed models,
application response time and resource usage information
should be also provided. In simple centralized systems
estimates based on expert intuition were often sufficient
for constructing useful models. We have found that this is
not often true for complex distributed systems. For this
purpose we advocate the rapid construction of a functional
skeletal prototype using the technology of choice for the
application. The prototype is instrumented using MAGE
instrumentation APIs (See Step 4 in Section 3). MAGE
automatically generates a performance model that can be
used for architecture assessment, feasibility analysis, and
capacity planning.

Prototype development is also useful in demonstrating
design alternatives and showing values. The design teams
are usually tied up with deliverable products. Assessing a
system and identifying hot spots or bottlenecks may not be
sufficient to solve the problem or have a great impact.
Often, we need to provide the designers with partial solu-
tions to evaluate concrete impacts before they actually
modify the design.

Domain knowledge plays a critical role in re-architect-
ing or re-engineering a system. There is no replacement for
it. We usually need to spend a lot of time understanding the
problem domain to make contributions. We may also need
to spend a lot of time building the performance model and
conducting analysis. This process needs to be shortened to
provide prompt feedback to the designers.

5. Conclusion

In this paper, we described an approach called POSAE.
The main contribution of this paper is to put together some
existing ideas in software architecture and software perfor-
mance engineering. We presented a systematic approach to
the performance assessment of software architectures
either at an early stage in the design cycle or at the re-engi-
neering stage. POSAE also emphasized the role of re-
architecting or re-engineering rather than pure analysis or
simply reverse engineering.

There are still other challenges that lie ahead in this area.
One challenge is to develop robust tools to construct pre-
cise call graphs for object-oriented software and to gener-
ate reliable performance measurements. Tools are essential
to automate the reverse engineering process to capture the
current architecture, especially software architecture
evolves over time. The results generated by existing com-
mercial tools are often incomplete or incorrect. We also
found that different tools generate dif‘ferent results. Similar
results are also observed for performance measurement
tools.

The ultimate goal of this approach is to aid design teams
to reduce time-to-market and to meet the stakeholders
objectives. We are building tools that automate the process
of capturing performance and architectural characteristics
of systems, making it easier to integrate the SPE methodol-
ogy into software development. We are also investigating
and characterizing the performance of design patterns. Pat-
terns provide opportunities to produce high-quality
designs in shorter time periods. However, they are still
immature and more information is needed to guide devel-
opers to select the appropriate patterns. Adequate training
is also required to support the process.

References
[I] R. Buhr and R.S. Casselman, Usr Case Maps for Ohject-
Oriented Systems, Prcnticc Hall, 1996.

[2] G.J. Holzmann, D.A. Peled, and M.H. Redberg, “Design tools
for requirements engineering”, Bell Labs Tech. J., pp. 86-95,
1997.

[3] R. Kazman, G. Abowd, L. Bass, and P. Clements, “Scenario-
based analysis of software architecture”, IEEE Sofiware, Nov
1996.

[4] C.-H. Lung, “Effective software partitioning through
clustering techniques”, Nortel Des&n Forum, Oct. 1997.

[5] C.-H. Lung, S. Bot, K. Kalaichelvan, and R. Kazman, “An
approach to software architecture analysis for evolution and
reusability”, Proc. of CASCON, pp. 144-154, 1997.

[6] C.-H. Lung and K. Kalaichelvan, “An approach to quantitative
software architecture sensitivity analysis”, to appear in Proc. qf
the Int ‘1 Conf on Software Eng. and Knowledge Eng., 1998.

[7] J.A. Rolia and K.C. Sevcik, “The method of layers”, IEEE
Trans. on SE, 21 (8), pp. 689-700, 1995

[8] D. C. Petriu, C. Shousha, A. Jalnapurkar, and K. Ngo,
“Applying performance modeling to a telecommunication
system”, To appear in Proc. of Int’l Worbhop on Sojiware and
Performance, 1998.

[9] C. Smith, Performance Engineering qf Sofiware Sy.stems,
Addison-Wesley, 1990.

[lo] J.E. Neilson, C.M. Woodside, D. C. Petriu, and S. Majumdar,
“Software bottlenecking in client-server systems and rendezvous
networks”, IEEE Trans. on SE, 21 (9), pp. 776-782, Sept. 1995.

196

