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Abstract 
Current methods ,for software architecture analysis often 

,fall short qf providing objective and quantitative perfor- 
mance information. The paper describes how to bring 
together techniques in software performance engineering 
and software architecture analysis in order to supportper- 
,formance-oriented software architecture engineering. The 
paper presents a systematic approach derived from empir- 
ical case studies in real-time telecommunications applica- 
tions. The approach has been successfully applied to these 
case studies to help product teams analyze and improve 
the performance and other quality factors qf their systems. 

1. Introduction 

Many systems, especially real-time applications, fall 
short of meeting the performance goals set by the design- 
ers. Unfortunately, the problems are often discovered only 
late in the application life-cycle. At this stage, a lot of 
effort will be spent in tuning the performance or restruc- 
turing the architecture or design. This effort usually results 
in architecture erosion or drift. In other words, the imple- 
mentation does not conform with the architecture, if there 
exists one. This problem further complicates the already 
time-consuming maintenance process for product evolu- 
tion. 

Software architecture analysis is an emerging field, 
promoted by the increasing complexity of software sys- 
tems and the need to reduce maintenance costs for evolu- 
tion. A software architecture analysis group was 
established in the Software Engineering Analysis Lab 
(SEAL) in 1995. Since then, we have worked with various 
Nortel product teams to evaluate their software architec- 
tures. Our initially adopted methodology was the Software 
Architecture Analysis Method (SAAM) [3]. Since many of 
the applications we worked with were real-time telecom- 
munication applications, new challenges, especially recur- 
ring performance issues, have risen. These new challenges 
necessitated creating extensions to our approach. 

Recently, we have been focussing more on the perfor- 
mance aspects during the evaluation process. Software 
Performance Engineering (SPE) [9] enforces a perfor- 
mance assessment step in the design stage before proceed- 
ing. SPE emphasizes the performance model construction 
and evaluation. However, SPE does not explicitly address 
the software architecture issues and how to re-engineer a 
system to improve performance. This paper describes a 
Performance-Oriented Software Architecture Engineering 
(POSAE) approach. POSAE integrates SPE and software 
architecture practices. We have used the approach to aid 
product teams in identifying potential bottlenecks and 
improving the performance of their systems. Furthermore, 
the approach also helped us look for opportunities to re- 
engineer legacy systems, identify reusable components, 
update documents, and build prototypes. 

This paper reports empirical experiences and lessons 
learned from practical applications of the method. This 
paper can serve as a bridge between practitioners in soft- 
ware architectures and performance engineering. This 
paper supports practitioners in software architecture by 
demonstrating an explicit and systematic approach to con- 
ducting analysis and synthesis with performance as the 
most critical factor. The paper also brings to the attention 
of practitioners in performance engineering some of the 
techniques used in software architecture. 

The paper is organized as follows. Section 2 introduces 
a set of architectural views adopted to support the analysis 
and synthesis. Section 3 illustrates POSAE, including the 
steps used and the types of artifacts produced. Some 
results and lessons learned from empirical studies are pre- 
sented Section 4. Lastly, Section 5 provides concluding 
remark. 

2. Architectural Views 

The development of a complex software system always 
involves diverse stakeholders. Different stakeholders have 
different perspectives and needs. The description of an 
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architecture requires multiple viewpoints at various stages 
in the life cycle to meet the stakeholder’s objectives. 

SEAL has adopted various architectural views that are 
critical for POSAE. The set of views, as demonstrated in 
Figure 1 [5 1, includes a static view, a map view, a dynamic 
view, and a resource view. These architectural views are 
developed to support insightful understanding of the sys- 
tem and to facilitate communications among various stake- 
holders. The next section discusses how these views are 
applied to POSAE. Each view and some commonly used 
methods for the view are briefly described below. 

View 

Figure 1. Software architectural views 

l Static view. The static view shows the overall topology 
of system components and their interconnections. The 
methods that can be used for this view include logical 
diagram, structure diagram, object diagram, and mod- 
ule diagram. The static view can also be represented at 
various levels of detail, depending on the stakeholder’s 
objectives. 

l Map view. The map view identifies the architectural 
styles, patterns, and design violations. The identitica- 
tion of the styles or patterns helps us focus on the con- 
trol and communication mechanisms. In addition, this 
view also identities the mapping between components 
and functions or features. The mapping is used to clus- 
ter related components into cohesive modules. 

l Dynamic view. The dynamic view addresses the 
behavioral aspects of a system. This view can be sup- 
ported by mnctional diagram, causal diagram, messag- 
ing diagram or message sequence chart, object 
interaction diagram, state machines, and Petri nets. 

l Resource view. The resource view deals with the utili- 
zation of system resources. Various techniques can be 
used, including the identification of mapping of soft- 

ware onto hardware, performance modeling, measure- 
ments, parallel or concurrent processing, and 
simulation. 

The development of the views does not have to be car- 
ried out in a strict sequence. Rather, the process is iterative 
and incremental. Furthermore, not all views are needed for 
each evaluation and each view is not constrained by a par- 
ticular method or notation. Selection of appropriate views 
and suitable methods depends on the specific application 
environment and values of the stakeholder. 

3. Performance-Oriented Software Architec- 
ture Engineering 

This section describes the POSAE approach. We have 
applied this approach to various applications in the tele- 
communications problem domain. This section describes 
the process and some approaches used. We also correlate 
the process with the architectural views discussed in the 
previous section. Note that the process is also iterative and 
incremental in nature. The process involves the following 
steps. More elaboration on the steps as well as some of the 
derived lessons follow. 
1. Develop or capture a software architecture. 
2. Identify most frequently used scenarios, with focus on 

real-time scenarios. 
3. Identify execution paths for the scenarios. 
4. Apply performance modeling, analysis, and measure- 

ments. 
5. Perform architecture analysis based on the results of 

step 4. 
6. Conduct trade-off analysis between performance and 

other quality attributes, and among design alternatives. 
7. Build a prototype, based on the analysis, to improve the 

performance or other quality attributes. 

1. Develop or capture the software architecture. This 
step corresponds to the static view shown in Figure 1. The 
main components and their interactions are captured. For 
complex systems, it is unlikely that people will continu- 
ously remember all the details. An explicit software archi- 
tecture is a useful vehicle for communication among 
various stakeholders. In some cases, even the static view 
could display potential performance impact due to com- 
plex interconnections among components. 

For legacy systems, reverse engineering of existing 
implementation is often necessary. A few commonly used 
approaches are adopted together in the process to extract 
the architecture. Those approaches are read documents, 
interview designers, use reverse engineering CASE tools, 
and walk through source code. 

Reading documents and interviewing designers are good 
starting points. The approach gives a quick overview of the 
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system, but the approach usually only captures the high 
level view. Also, the documents may not be kept up-to- 
date. Using a reverse engineering tool facilitates the tra- 
versal of source code and capture of different views. How- 
ever, for complex object-oriented software, existing tools 
may not generate complete or correct artifacts. Further- 
more, human intervention and evaluation are often neces- 
sary to capture more semantic information and domain 
knowledge. Source code represents the actual implementa- 
tion of the system. Walking through the code validates the 
captured architecture. These approaches are used itera- 
tively. By applying these approaches, we often could 
develop artifacts of different levels of abstraction. Those 
artifacts are valuable information for the designers as most 
of them are only working on a certain specific area. 

2. Identify most frequently used scenarios, with focus 
on real-time scenarios. Obviously, the most frequently 
used scenarios have direct impact on the overall system 
performance. For example, the basic phone call for two 
parties is the most frequently used scenario for the call 
processing system. Other features are actually built on top 
of it. Therefore, evaluation of the basic phone call scenario 
is a must for the call processing system. This step usually 
can be conducted in parallel with step 1. 

For some applications, it is also important to identify 
scenarios that address non real-time impact on real-time 
processes. These scenarios may add unexpected perfor- 
mance overheads, but are often neglected in performance 
evaluation. We have used a systematic approach to gener- 
ate scenarios based on the Objective/Scenario/Metric para- 
digm [5,6]. For each objective, a tree-like structure of 
scenarios are developed. Each node in the tree is either a 
specific or a generic scenario class which in turn is a col- 
lection of scenarios or scenario classes. This approach is 
useful in determining scenario coverage and balance, and 
in deciding when to stop generating scenarios. 

3. Identify execution paths for the scenarios identi- 
fied in step 2. This step corresponds to the dynamic view 
shown in Figure 1. Once the architecture is developed or 
captured, and the critical scenarios are identified, we 
traverse the architecture with the scenarios. The concept is 
similar to the SPE approach. 

Various approaches have been used to model the 
dynamic aspects of a system. Among these, we have used 
message sequence charts, causal structures, and Use Case 
Maps (UCMs) [I]. There are advantages and limitations 
for each approach. Detailed comparisons of these 
appraises are beyond the scope the this paper. We have also 
used an approach that is similar to UCMs. The UCM nota- 
tion facilitates the visual representation of execution paths, 
but the approach does not include rich semantics. This can 
be remedied with causal structures [2,5]. Figure 2 and 3 
show a simplified example of how these two approaches 

are used together to represent dynamic behaviors and exe- 
cution paths. Each block in Figure 3 could present infor- 
mation on object (in italics), method, or data that are 
involved. The combination of these two approaches is use- 
ful to show component interactions and execution paths, 
especially early in the preliminary analysis process. 

n Process --D+ Corltrol Flow - execution 

0 Computation path 

Figure 2. Example of Architecture walk-through 
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Figure 3. Causal representation of architecture 
walk-through 

4. Apply performance modeling, analysis, and mea- 
surement. This step is related to the resource view 
depicted in Figure 1. The key idea is to examine the utili- 
zation of resources to improve or maximize system perfor- 
mance. This step provides quantitative information for 
system performance at various levels. 

The application of SPE approach, including modeling, 
analysis, and measurement, to the software design cycle 
has been hindered by a variety of factors: 

Time constraints often force project managers to focus 
merely on functionality. Performance engineering in such 
projects is restricted to code-level optimization. Code-level 
optimization is necessary but not sufficient for complex 
systems. The existence of software bottlenecks in such 
systems may result in disastrous performance results. 

SPE requires special skills in a domain that might be dif- 
ferent from the project domain. The integration of SPE 
into the project requires knowledge of both domains. 
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Figure 4. Overview of the Model Automatic Generation Environment 

Our approach to solving these hurdles is to automate parts 
of the SPE process. We are working on the development of a 
Model Automatic Generation Environment (MAGE). MAGE 
(Figure 4) is a tool to be used for automatic generation of 
simulation and/or analysis models from existing applications 
or application prototypes. 

The tool user (software programmer) embeds a set of data 
collection APIs at specific points inside the application code. 
These APIs measure, capture, and gather the architectural 
and performance characteristics of the application. The tool 
includes a mode1 generator that can make use of the data to 
automatically build performance models for a variety of sim- 
ulation and analysis tools. The models are used by the soft- 
ware performance engineer to perform bottleneck analysis, 
capacity planning, load balancing, and other performance 
related tasks. Software designers can also use Rapid Applica- 
tion Development tools to produce a prototype that can be 
similarly used to generate initial performance models. 

By automating the process of constructing performance 
models, we de-skill and reduce the time needed for the inte- 
gration of SPE methodologies into software development. 

Depending on the types of applications, different modeling 
techniques could be selected. We have applied the Layered 
Queuing Network (LQN) model [7, lo] to client-server archi- 
tectures in order to identify potential software bottlenecks, 
investigate the impact of size of critical sections on perfor- 
mance and the optimal number of concurrent processes for 
maximal performance for multiprocessing systems. Detailed 
discussion of the application is described in [8]. 

5. Perform architecture analysis based on the results of 
step 4. The main purpose of this step is to evaluate the overall 
software architecture. Some critical areas of focus include 
elimination of redundant operations, reduction of execution 
frequency of some paths or components, and avoidance of 
levels of indirection. For examples, the initialization opera- 
tion may be invoked repeatedly, redundant memory copy 
operations may be performed, or a module may be a conten- 

tion point or over-executed. All these operations have impact 
on performance. 

To achieve the goals of this step both top-down and bot- 
tom-up approaches are used. We start at the architecture level 
but validate from lower level artifacts, if available. The exe- 
cution paths identified in step 3 are also refined in this step. 
In other words, more detailed analyses are conducted. We 
also identify architectural styles or design patterns. The 
objective is to focus on the features of the styles or patterns. 
The primary features consist of the control mechanism, com- 
munication mechanism, registration mechanism, and other 
quality factors. Violations of the styles and the rationale are 
also explicitly captured. Some violations may be potential 
areas for improvement. 

The information could support the trade-off analysis, 
which is described next. In addition, for some cases, we ana- 
lyze if the components could be better partitioned or clus- 
tered from the cohesion and coupling point of view. Figure 5 
shows an example of improvement of modulization from (a) 
to (b) by simply regrouping components [4]. Systems with 
de-coupled modules can greatly improve evolution and could 
also improve performance as well. This step is closely related 
to the map view shown in Figure 1. 

6. Conduct trade-off analysis between performance and 
other quality attributes, or among design alternatives. 
Performance usually is not the only concern of stakeholders. 
We may need to consider other attributes such as maintain- 
ability, scalability, and time-to-market. Some of these 
attributes may contradict with the performance goals. The 
development of a set of related and concrete scenarios, with 
different views, helps the trade-off analysis. 

Trade-off analysis could also be applied to cases where 
multiple design alternatives exist. Lung and Kalaichelvan [6] 
propose an approach to support an objective and repeatable 
evaluation. The idea is to break down the evaluation into 
more fine grained levels and identify the sensitivity of the 
attributes or design alternatives with respect to the key stake- 
holder objectives. 
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Figure 5. Regrouping of components to reduce 
coupling: an example 

7. Build a prototype, based on the analysis, to 
improve performance or other quality attributes. Iden- 
tifying the performance bottleneck is an important step. 
However, the actual value lies in the removal of the bottle- 
neck. Based on the evaluation of the software architecture 
and performance, we build prototypes to demonstrate how 
to eliminate certain problems or to improve performance 
and other system qualities. The approach has been used in 
one instance to synthesize an architecture based on design 
patterns for the problem area. The new design greatly 
reduced coupling between some system components and, 
at the same time, improved the overall performance. 

4. Results and Lessons Learned 

We have applied the above approach at Nortel’s SEAL 
in order to perform end-to-end analysis on various real- 
time telecommunication products. One specific example is 
the Nortel Service Control Point (SCP) product. We con- 
ducted performance analyses for the messaging system, 
run-time environment, application framework, and the 
high-level services and applications. The performance is 
defined as system throughput under quality of service 
(QoS) constraints. We also make concrete recommenda- 
tions to the design teams, and demonstrate feasibility and 
added values. 

Some results and values of this approach include: 
l Capturing various views at different levels of abstrac- 

tion enables better understanding of the architecture by 
the design teams 

l Developing and perusing a variety of scenarios helps 
identify risk areas 

l Identification of synchronization points and potential 
bottlenecks in a concurrent environment. 

l Performance improvement of the run-time environ- 
ment, application framework, and services and applica- 
tions. 

In short, we helped the design teams increase perfor- 
mance and improve software quality. In one instance, 
through use of the above approach, we managed to 
improve the throughput of a certain system by 25%. In 
another instance, the throughput of a certain application 
has improved by 500%. 

A 25% gain of system throughput was achieved for the 
real-time toll-free telephone number look-up (l-800 ser- 
vice). Based on the existing architecture, we first used the 
techniques described in step 2 of POSAE to identify criti- 
cal scenarios as query and update to the real-time database. 
Analysis of the scenarios, as described in step 3, showed 
that the main application process remains in a critical sec- 
tion for approximately 25% of the time required for pro- 
cessing a query. A 4-processor system was used to 
implement the product and there were four such applica- 
tion processes. Modeling techniques were then used [8] to 
determine the optimal length of the critical section. Based 
on the critical section analysis results, appropriate design 
changes were suggested to reduce the length of the critical 
section. This resulted in 25% improvement in the system 
throughput without affecting the quality of service. 

A 500% gain of performance was achieved on an intelli- 
gent network application implemented in a unit-processor 
environment. Analysis of key scenarios in this application 
revealed a critical interaction among query, update, and OS 
scheduling mechanism. Update processing, in this case, 
was 50 times more expensive compared to query process- 
ing. The application process performing updates did not 
relinquish the CPU for the entire quanta (1 second). This 
resulted in loss of queries. The update processing algo- 
rithm was optimized with the help of the design team and 
it was run at a lower priority. This resulted in 500% 
improvement of the system throughput. 

We have also learned many lessons from the actual field 
experiences. These lessons include: 

Software architecture is a critical asset for the designers. 
Quite often the designers’ focus is on one specific area of 
the system. With an architecture in place, the designers can 
appreciate the overall system components and how they 
work together. An explicit software architecture helps 
designers understand the system and facilitates communi- 
cation among the various design teams. On the other hand, 
current software architecture analysis practices often stop 
at the reverse engineering and problem identification 
stages. Design teams often react better to explicit remedial 
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recommendations. These recommendations, as such, have 
a better chance influencing the system. In addition to pure 
analysis, software architecture should support an engineer- 
ing discipline. 

To benefit the most, SPE must be closely tied to soft- 
ware architecture. Performance and other quality attributes 
may be constrained by a software architecture. Traditional 
SPE methodologies promote the construction of a perfor- 
mance model early in the design cycle. Efforts are under- 
going for automatic generation of performance models 
from high-level design descriptions such as UCMs. These 
models help provide crude estimates that can be useful, for 
example, in identifying critical application paths. 

In order to refine and validate the constructed models, 
application response time and resource usage information 
should be also provided. In simple centralized systems 
estimates based on expert intuition were often sufficient 
for constructing useful models. We have found that this is 
not often true for complex distributed systems. For this 
purpose we advocate the rapid construction of a functional 
skeletal prototype using the technology of choice for the 
application. The prototype is instrumented using MAGE 
instrumentation APIs (See Step 4 in Section 3). MAGE 
automatically generates a performance model that can be 
used for architecture assessment, feasibility analysis, and 
capacity planning. 

Prototype development is also useful in demonstrating 
design alternatives and showing values. The design teams 
are usually tied up with deliverable products. Assessing a 
system and identifying hot spots or bottlenecks may not be 
sufficient to solve the problem or have a great impact. 
Often, we need to provide the designers with partial solu- 
tions to evaluate concrete impacts before they actually 
modify the design. 

Domain knowledge plays a critical role in re-architect- 
ing or re-engineering a system. There is no replacement for 
it. We usually need to spend a lot of time understanding the 
problem domain to make contributions. We may also need 
to spend a lot of time building the performance model and 
conducting analysis. This process needs to be shortened to 
provide prompt feedback to the designers. 

5. Conclusion 

In this paper, we described an approach called POSAE. 
The main contribution of this paper is to put together some 
existing ideas in software architecture and software perfor- 
mance engineering. We presented a systematic approach to 
the performance assessment of software architectures 
either at an early stage in the design cycle or at the re-engi- 
neering stage. POSAE also emphasized the role of re- 
architecting or re-engineering rather than pure analysis or 
simply reverse engineering. 

There are still other challenges that lie ahead in this area. 
One challenge is to develop robust tools to construct pre- 
cise call graphs for object-oriented software and to gener- 
ate reliable performance measurements. Tools are essential 
to automate the reverse engineering process to capture the 
current architecture, especially software architecture 
evolves over time. The results generated by existing com- 
mercial tools are often incomplete or incorrect. We also 
found that different tools generate dif‘ferent results. Similar 
results are also observed for performance measurement 
tools. 

The ultimate goal of this approach is to aid design teams 
to reduce time-to-market and to meet the stakeholders 
objectives. We are building tools that automate the process 
of capturing performance and architectural characteristics 
of systems, making it easier to integrate the SPE methodol- 
ogy into software development. We are also investigating 
and characterizing the performance of design patterns. Pat- 
terns provide opportunities to produce high-quality 
designs in shorter time periods. However, they are still 
immature and more information is needed to guide devel- 
opers to select the appropriate patterns. Adequate training 
is also required to support the process. 
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