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A B S T R A C T  
An increasingly impor tant  t rend in the engineering of com- 
plex systems is the design of component integration stan- 
dards. Such s tandards define miles of interaction and shared 
communication infrastructure that  permit  composition of 
systems out of independently-developed parts.  A problem 
with these s tandards is that  it is often difficult to under- 
s tand exactly what they require and provide, and to analyze 
them in order to understand their deeper properties. In this 
paper  we use our experience in modeling the High Level Ar- 
chitecture (HLA) for Distr ibuted Simulation to show how 
one can capture the s tructured protocol inherent in an in- 
tegration s tandard  as a formal architectural model that  can 
be analyzed to detect  anomalies, race conditions, and dead- 
locks. 

K E Y W O R D S  
Component integration standards,  component-based soft- 
ware, protocol families, software architecture, formal speci- 
fication. 

1 I n t r o d u c t i o n  

Component integration standards are becoming increas- 
ingly impor tant  for commercial software systems. The 
purpose of a component integration s tandard is to define 
rules of interaction and shared infrastructure for composing 
independently-developed software components into larger 
systems. Typically an integration s tandard prescribes re- 
quirements that  must be satisfied by component interfaces, 
and it provides facilities that  support  communication and 
coordination among those components. 

An early example of a component integration s tandard is 
Unix pipes, which requires components to have interfaces 
that  read and write byte streams, and provides buffering 
and synchronization infrastructure to connect the compo- 
nents together. More recent examples include a growing 
number of domain-specific integration standards in areas as 
diverse as programming environments, robotics control [20], 
and signal processing [17]. Additionally some aspects of 
general-purpose object-oriented systems, such as CORBA, 
C O M / D C O M / O L E / A c t i v e X ,  and JavaBeans function as 
component integration standards.  

Component integration standards greatly simplify the con- 
struction of complex systems from existing parts.  Since com- 
ponents share assumptions about the nature of interaction 
with their environment many of the general problems of com- 
ponent mismatch do not arise [9]. Thus it is easier for imple- 
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mentors to combine parts  writ ten by multiple vendors and 
to add new parts  to existing systems. Moreover, the use 
of a s tandard 's  supporting infrastructure can substantially 
reduce the amount of custom code that  must be writ ten to 
support  communication between those parts.  

In practice, integration standards are typically specified us- 
ing a combination of informal and semi-formal documen- 
tation. On the informal side are guidelines and high-level 
descriptions of usage patterns,  tips, and examples. On the 
semi-formal side one usually finds a description of an ap- 
plication programmers '  interface (API) that  explains what 
kinds of services are provided by the infrastructure. APIs are 
formal to the extent that  they provide precise descriptions 
of those services--usually as a set of signatures, possibly 
annotated with informal pre- and post-conditions. 

While such documentat ion is necessary, by itself it leaves 
many important  questions unanswered--for  component de- 
velopers, system integrators, s tandard infrastructure imple- 
mentors, and proposers of new standards.  For example, 
while it  may be clear what are the names and parameters  
of services provided by the integration infrastructure, it may 
not be clear what are the restrictions (if any) on the ordering 
of invocations of those services. It may not be clear what 
kinds of run-time state is maintained by the infrastructure to 
facilitate component interaction. It may not be clear what 
facilities m u s t  be provided by a component to be a compo- 
nent, and which are optional. It may not be clear how con- 
currently executing components might impact  each other 's  
run-time behavior, particularly when they access shared re- 
sources. It may not be clear whether the s tandard  itself 
contains latent design problems that  can lead to unexpected 
runtime anomalies, such as race conditions and deadlocks. 

In this paper  we show how one can use formal modeling 
to clarify these kinds of issues. The key idea is to treat  
the integration s tandard as a s t ructured protocol that  can 
be analyzed using existing formalisms and tools for model- 
ing software architecture. By making explicit the protocol 
inherent in the integration standard,  we are able to make 
precise the requirements on both  the components and on 
the supporting infrastructure itself. This in turn provides a 
deeper understanding of the s tandard,  and supports  analysis 
of its properties. 

While the use of protocols to model a component integra- 
tion s tandard might seem like a natural  idea, there are a 
number of technical hurdles that  make it non-trivial to do 
in practice. First ,  many component integration standards 
are relatively complex, often involving dozens of routines in 
their API.  Structuring becomes a central issue for modeling. 
Second, for a complex s tandard it is critical that  the for- 
mal model be traceable back to the original documentation. 
This is because when errors are found, it must be possible 
to relate the results back to the source. Third,  is the issue 
of variability in the standard.  It is critical to distinguish 
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between aspects of the model that  are fixed by the stan- 
dard and those that  are allowed to vary from one system to 
another. In practice this can be difficult to do because a 
part icular API may make implementation choices that  are 
not intrinsically par t  of the integration standard.  Fourth is 
the problem of tractability. If the formal model is to be use- 
ful to humans or to analysis tools it must be simple enough 
that  it can be understood (or mechanically processed), but  
detailed enough that  useful properties are revealed. 

In the remainder of this paper  we describe our experience of 
solving these technical problems for a complex integration 
standard for distr ibuted simulation. The primary contribu- 
tions of this paper  are twofold. First ,  we show how formal 
architectural models based on protocols can clarify the in- 
tent of an integration standard,  as well as expose critical 
properties of it. Second, we describe the techniques that  
can be used to create the initial model, and structure it to 
support  traceability, tractability, and automated analysis. 

2 R e l a t e d  R e s e a r c h  

This work is closely related to three distinct areas of prior 
research. The first area is the growing field of architectural 
description and analysis. Currently there are many archi- 
tecture description languages (ADLs) and tools to support  
their use (such as [12, 19, 15, 14]). While ADLs are far from 
being in widespread use, there have been several examples 
of their application to realistic case studies. This paper con- 
tributes to this body of case studies, but  pushes on a dif- 
ferent dimension--namely,  the application of architectural 
modeling to component integration standards.  

Among existing ADLs the one used here, Wright, is most 
closely related to Rapide [12], as both use event pat terns  to 
describe abstract  behavior of architectures. Indeed, parts of 
the HLA have been modeled by the developers of Rapide. 
Wright differs from Rapide insofar as it  supports definition 
of connectors as explicit semantic entities and permits static 
analysis using model checking tools. As we will see, this 
capability is at the heart  of our approach for modeling inte- 
gration standards.  

The second related area is research on the analysis of stan- 
dards. An example close in spirit to our work is that  of Sul- 
livan and colleagues, who used Z to model and analyze the 
Microsoft COM standard [21]. Also closely related is work 
on formal definitions of architectural styles. In particular, 
Moriconi and colleagues describe techniques for refining be- 
tween styles [15]. In other work carried out by this paper 's  
authors, we have considered how Z and Wright can be used 
to define styles [1, 2]. The work described in this paper  dif- 
fers from previous work in this area in that  it represents a 
much larger-scale application of architectural modeling than 
has been reported in the literature, and introduces new tech- 
niques to carry it out. 

The third area is work on protocol specification and analy- 
sis. There has been considerable research on ways to specify 
protocols using a variety of formalisms, such as I /O  Au- 
tomata  [13], SMV [6], SDL [11], and Petri Nets [16]. While 
our research shares many of the same goals, there are no- 
table differences. First ,  most protocol analysis assumes you 
are start ing with a complete description of the protocol. In 
contrast, in our work the protocol is typically implicit in the 
API of some integration s tandard documentation. Second, 
while most protocols may involve large numbers of states, 
the number of entry points into the protocol is typically 
small. In contrast,  the HLA (and other similar standards) 

HLA 
IFSpec  
Federa te  
Federa t ion  
RTI  
Service 

High Level  Arch i t ec tu r e  
HLA In ter face  Specif ica t ion 
an ind iv idua l  s imula t ion  
a set  of coo rd ina t ed  s imula t ions  
R u n - T i m e  In f r a s t ruc tu re  
A rou t ine  in the  IFSpec  

Figure 1: Glossary of HLA Terms 

has over a 125 different entry points. This leads to techni- 
cal issues not typically dealt with in the protocol literature, 
such as ways to structure such a broad interface. 

3 T h e  " H i g h  Leve l  A r c h i t e c t u r e "  fo r  D i s t r i b u t e d  
S i m u l a t i o n  

The "High Level Architecture" (HLA) is a component in- 
tegration s tandard for distr ibuted simulation [22]. It was 
developed by the Defense Modeling and Simulation Office 
(DMSO) to support  interoperabili ty between simulations 
purchased from different vendors)  This is a critical con- 
cern for the US government, which spends billions on third 
par ty simulations, coming from a wide variety of vendors. 

Informally, the HLA prescribes a kind of "simulation bus" 
into which simulations can be "plugged" to produce a joint 
(distributed) simulation (as il lustrated in Figure 2). In the 
HLA design, members of a ]ederation--the HLA term for a 
distributed s imulat ion--coordinate  their models of parts of 
the world by sharing objects of interest and the at tr ibutes 
that  define them. Each member of the federation (termed 
a ]ederate) is responsible for calculating some part  of the 
larger simulation and broadcasts updates  using the facilities 
of a runtime infrastructure (termed the RTI). Routines that  
support  communication both from the federates, (e.g., to 
indicate new da ta  values), and to the federates, (e.g., to 
request updates for a part icular at tr ibute) ,  are defined in the 
"Interface Specification" document - -o r  IFSpec. Routines, 
or "services", in the IFSpec are specified by a name, the 
initiator (either a Federate or the RTI), a set of parameters,  
a possible return value, pre- and post-conditions, and a list 
of the exceptions that  may occur as a result of invoking the 
service. (Figure 1 summarizes the HLA terms used in this 
paper.)  

An example of a typical RTI service is shown in Figure 3 
(taken from [22]). This service is init iated by a federate (an 
individual simulation) when it wants to pause the federation 
(the entire distributed simulation). The effects of calling 
the service are to cause the RTI to coordinate a distributed 
handshaldng algorithm in which it asks each of the simula- 
tions to pause. 

The HLA is a complex integration standard.  The current 
IFSpec includes over a 125 different services, and the full 
document is over 400 pages of description. While the part  
of the HLA design that  deals with a t t r ibute  broadcast is rel- 
atively straightforward, the overall s tandard is complicated 
significantly by the need to deal with issues such as start-  
ing, stopping, and pausing; allowing one federate to transfer 
object a t t r ibute  ownership to another; and distr ibuted clock 
management and time-ordered message sequencing. 

To make the documentation for the integration s tandard 
manageable, the IFSpec is divided into six chapters: federa- 

1This p a p e r  refers to  Version 1.2 of the  s t a n d a r d ,  issued Augus t  
1997. A more  recent  version (1.3 of Apr i l  1998), f ixing numerous  
problems,  was recent ly  released.  In add i t ion  the  HLA is cu r ren t ly  in 
the  process  of be ing  revised as an I E E E  s t a n d a r d  (provis ional  num- 
ber  P1516)  by the  S imula t ion  In t e rope rab i l i t y  S t a n d a r d s  Organ i za t i on  
(SISO). 
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federate I federate [ I federate I 

Figure 2: The HLA Integration Standard 

R T I  

2.5 Request Pause 
Initiator: Federate-Initiated 

Indicates to the RTI the request to stop the advance of the federation 
execution. The federation execution members will be instructed by 
the RTI to pause as soon after the inovcation of the Request Pause 
service as possible. The label, supplied when the pause is requested, 
will be supplied to the other federates via the Initiate Pause service. 
Supplied Parameters 

A label 
Returned Parameters 

None 
Pre-conditions 

The federation execution exists 
The federate is joined to that federation execution 
The federation execution is advancing (not paused) 

Post-conditions 
A federation pause is pending 

Exceptions 
Federation already paused 
Federate not a federation execution member 
RTI internal error 

Related Services 
Initiate Pause 
Pause Achieved 

Figure 3: The RequestPause Service 

tion management, declaration management, object manage- 
ment, ownership management, time management, and data 
distribution management. Federation management services 
are used by federates to initiate a federation execution, to 
join or leave an execution in progress, to pause and resume, 
and to save execution state. Declaration services are used 
to communicate about what kinds of object attributes are 
available and of interest, while object services communicate 
actual object values. Ownership services are used in situ- 
ations when one federate has been responsible for calculat- 
ing the value of an object attribute, but for some reason 
another federate should now take over that responsibility. 
Time Management services are used to coordinate the logical 
time advancements of federates and to ensure that messages 
are delivered in time-stamp order. Data distribution man- 
agement is used to filter at tr ibute updates, reducing message 
traffic and processing requirements, for each federate based 
on defined criteria. 

4 P r o b l e m s  w i t h  t he  I F S p e e  

The IFSpec is an indispensible document, since it provides a 
definition of each required and provided service of the stan- 
dard. However, there a number of problems with using IF- 
Spec as the only form of HLA documentation. 

First, is the problem of determining what are the permissible 
or required orderings of service invocations. While the pre- 
conditions indicate (informally) in what situations a given 
service can be called, it is often hard to determine what 

kinds of behavior would lead to a precondition being satisfied 
or not. For example, is it always legal for a federate to 
pause the federation after joining? Moreover, it is difficult to 
tell whether the preconditions are complete: if a component 
satisfies all preconditions, will it ever trigger exceptions? 

Second, since the IFSpec describes the HLA from the point 
of view of an individual simulation, it is difficult for someone 
building a federation out of existing simulations to tell what 
kinds of coordination behavior will be provided by the RTI. 
For example, exactly what kind of protocol does the RTI 
use to pause a federation? Does an RTI at tempt  to find an 
owner for orphaned object attributes? 

Third, is the problem of understanding the deeper properties 
of the standard, both with respect to its intended behavior, 
and with respect to anomalies that can arise in using it. 
For example, are there sequences of service invocations that 
might lead to system deadlock? Are there latent race condi- 
tions or other sequences of events that can lead to anomalous 
behavior? 

5 A p p r o a c h  a n d  C h a l l e n g e s  

In the remainder of the paper we show how a formal archi- 
tectural specification can help resolve these kinds of issues. 
The keystone of the approach is to view the HLA as an ar- 
chitectural standard centered around a connector (i.e., the 
RTI) that permits simulation components (i.e., the feder- 
ates) to interact with each other. We then provide a formal 
specification of that connector's behavior, thereby making 
explicit the protocol inherent in its informal description. 

While the use of protocols might appear to be a natural  idea, 
there are a number of technical challenges in specifying an 
integration standard as complex as the HLA. 

• S t r u c t u r e :  It is essential to structure the specification 
so that it permits (a) separation of concerns; (b) incre- 
mental specification and analysis; and (c) traceability. 
Separation of concerns is needed to manage complexity. 
Incremental specification is required to allow increasing 
levels of fidelity, depending on the needs for documenta- 
tion and analysis. Traceability is needed so that issues 
identified in the process of formalization can be related 
to the source of the problem in the standard's  API. 

• A b s t r a c t i o n :  Abstraction is required for two reasons. 
First, it is necessary to simplify the model so that it 
becomes tractable both for human readers and for anal- 
ysis tools. Second, it is necessary to indicate what parts 
of the standard are (intentionally) left unspecified. 

• Ana lys i s :  Once you have a formal definition, it is not 
immediately clear what kinds of analyses one would 
want to perform, or how to frame those analyses using 
existing tools. 
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Connector  C-S-connector(n: Int) 
Role Clientl..n = (request -r result?x ~ Client) n § 
Role Server = (request -+result!x --+ Server) [1 § 
G l u e  = 

(U i: 1..n , 
Clienti .request --~ Server.request --+ 
Server.result?x --+ Clienti.result!x --~ Glue) 

0§ 
Figure 4: Simple Client-Server  Connector  

In the next  two sections we present the model  and discuss 
how it addresses these issues. Specifically, we use the Wright 
archi tectural  description language (ADL) as the model ing 
language [4] to define the HLA.  The  key feature of Wright 
tha t  we exploit  is the ability to formally define new archi- 
tec tura l  connectors  as s t ruc tured  protocols.  

6 W r i g h t  

Like most  ADLs,  Wright  defines a system as a composi t ion 
of components  and connectors:  the components  define the 
pr imary centers of computa t ion ,  while the connectors define 
the interact ions be tween components .  Unlike some ADLs,  
however, Wright  permi ts  the explicit definition of new con- 
nector  types, and provides formal,  au tomatab le  criteria for 
checking the consistency of those types [4]. 2 

In Wright a connector  type has a name, an optional set of 
parameters,  a set of role descriptions, and a glue description. 
The  name identifies the kind of connector.  The  parameters  
provide ins tant ia t ion values for the connector.  Each role 
has a specification tha t  defines the possible behaviors of a 
par t ic ipant  in the interaction.  The  glue defines how the roles 
will in teract  wi th  each other.  

To il lustrate,  consider a client-server connector  that  permi ts  
multiple clients to in teract  with a server. Figure 4 shows 
how this might  be wr i t ten  in Wright.  The  connector  has a 
pa ramete r  tha t  determines  the number  of clients that  can 
access the server. The  roles of the connector  define how the 
clients and servers must  behave at their  interfaces. The  glue 
specifies how client-server communica t ion  is coordinated.  

The  dist inct ion be tween roles and glue in Wright is impor-  
tant  because it allows us to separate  two quite different con- 
cerns of the connector  specification. First  is the description 
of the interfaces to the connector:  each role identifies what  
an individual par t ic ipant  must  do to interact  over tha t  kind 
of connector.  Second is the specification of how the connec- 
tor  coordinates those part icipants .  As we will see in the case 
of the HLA, this separat ion allows us to distinguish be tween 
the interface tha t  each simulat ion must  conform to, and the 
coordinat ing behavior  of the run- t ime infrastructure.  

Wright uses a variant  of CSP [10] to define role and glue 
behavior.  Each such specification defines a pa t t e rn  of events 
(called a process) using operators  for sequencing ( " -4"  and 
";"), choice ("gl" and " 9  "),  and parallel composi t ion ("11"). 
Appendix  A contains more details on the par ts  of CSP that  
we use in this paper .  

Wright extends CSP  in three minor  syntact ic  ways. First ,  

2Wright also supports the ability to define architectural styles, 
check for consistency and completeness of architectural configurations, 
and check for consistent specifications of components. For this pa- 
per, however, we will restrict our presentation to just those parts of 
Wright that concern the specification of the HLA. For further details, 
the reader is referred to [3]. 

it distinguishes between ini t iat ing an event  mad observing 
an event. An  event  tha t  is ini t ia ted by a process is wri t ten  
with  an overbar.  Second, it uses the  symbol  § to denote 
the successful ly-terminating process. (In CSP  this is usually 
wr i t ten  "SKIP" . )  Third,  Wright uses a quant if icat ion oper- 
ator: (op) x : S • P ( x ) .  This opera to r  constructs  a new 
process based on the process expression P(s ) ,  and the set 
S, combining its par ts  by the opera tor  (o19). For example,  
[1 i :  {1 ,2 ,3} • Pi = P1 0 P2 ~ P3: i.e., a choice among  one 
of three processes, P1, P2, or P3. Similarly, ; x : S • P (x ) ,  
is a process tha t  consists of some unspecified sequencing of 
the processes: ; x : S • P ( x )  = rq x : S • ( e ( x )  ; (; y : 
s \ {x} • P(y)))  

Refering again to Figure 4, the process defining the Server 
role of the C-S-connector  

Server -- (request -4 result!x --4 Server) ~ § 

indicates tha t  the server repeatedly  ei ther  observes a request  
and then initiates the ou tput  of a result  ( represented by vari- 
able x), or else terminates .  Since we use the CSP opera tor  
for "external" choice (~), the decision about  whether  to ter- 
minate  or accept  a request  is de te rmined  by the environment  
of the server. 3 

The  connector  also defines n client roles. Each of the n roles 
has the same behavior:  

Client ----- (request -4 resultYx --+ Client) Iq § 

indicating that  the client can repeatedly  ini t iate  a request  
and retr ieve a result,  or it can choose to terminate .  In this 
case we use the internal  choice opera tor  (r-l) to indicate that ,  
unlike the server, it is the client 's  choice whether  to termi- 
nate  the interaction.  

Finally, the glue par t  of C-S-connector  coordinates  the 
clients and servers by forwarding requests  and re turning re- 
suits. (In this case the glue has a par t icular ly  simple be- 
havior: we'll see la ter  tha t  this need not  be the case.) The  
glue guarantees  tha t  a complete  request-reply t ransact ion 
between a given client and the server will complete  before 
accepting another  request .  The  use of the quantif ication (us- 
ing ~ ) requires the glue to wait for some client to make a 
request.  If  several do so simultaneously, the glue is free to 
pick one. Note  tha t  in the description of the glue, we tag 
each event  with the name of the role wi th  which it is associ- 
ated. Also note  that  ini t ia ted events from roles are observed 
events of the glue, and vice versa. 

7 T h e  H L A  M o d e l  

Turning now to the HLA, the core of the  Wright formal- 
ization is the specification of the RTI  connector.  4 At  the 
top-most  level the RTI  is defined as follows: 

C o n n e c t o r  RTl(nfeds : 1..) 
R o l e  Fedl..nfeds = Federatelnterface 
G l u e  = RTIBehavior 

The  RTI is parameter ized  by the number  of federates (nfeds) 
in a joint  simulation; there can be  an arbi t rary  number  of 

3Wright uses a non-standard interpretation of external choice in 
the case in which one of the branches is §: specifically, the choice 
remains external, unlike, for example, the treatment in [18]. See [3] 
for technical details. 

4The full Wright specification is about 15 pages long [5]. For the 
purposes of this paper we present only certain parts of the model 
to highlight its key features. There are also a few other differences 
arising from the fact that our final model includes fixes for several of 
the problems identified in this paper. 
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them. The behavior of each federate is specified by the role 
specification Federatelnterface. The interface describes the be- 
havior to which a federate must conform in order to partic- 
ipate in the federation. 

The specification of the RTI's behavior, on the other hand, 
is defined by the glue process RTIBehavior. It describes the 
manner in which the RTI coordinates communication among 
the federates within an execution. We now examine each of 
these parts in turn. 

7.1 S p e c i f y i n g  t h e  F e d e r a t e  I n t e r f a c e  

The behavior of Federatelnterface is divided into eight parts. 

Federatelnterface ----- 
FedMgmt II DeclMgmt II ObjMgmt II OwnMgmt II TimeMgmt 

II DataMgmt II Fed Joined II ControlPause 
where  

FedMgmt = . . .  
DeclMgmt = . . .  

Within each part, services are represented as events. A 
federate-initiated a service like "Join Federation Execution" 
appears as joinFedExecution, while a RTI-initiated service like 
"Initiate Pause" appears as initiatePause. The required and 
permitted orderings of the events are specified by a process 
that indicates what events can follow other events, and where 
choices can be made by the federate or the RTI. 

To determine the legal orderings and choice points we re- 
lied primarily on the published IFSpec documentation. For 
example, in Figure 3 the "Request Pause" service (initiated 
by a federate) would correspond to the requestPause event. 
There are three preconditions for this service. The first two 
indicate that the createFedExecution and joinFedExecution must 
preceed any occurance of that event. The relative ordering 
of those later two events and their relation to other events 
in the system must be inferred by looking at other parts of 
the [FSpec documentation. 

The third precondition in the example is more problematic. 
What exactly does it mean for a federation to be "advanc- 
ing" ? Resolving this kind if issue is trickey because the pre- 
condition refers to a state of the RTI and not the API. To 
handle this kind of situation we had to infer the existence 
of RTI state and build that into the RTIBehavior process. 
However, sometimes the informal description was sufficiently 
vague that we had to go back to the designers of the HLA 
to ask them what they had in mind. For example, there 
was no place in the IFSpec where "not paused" was defined, 
and we had to clarify what the intention was--specifically, 
what events should be allowed to occur in a "paused" state 
and which are forbidden. (Note some events must be al- 
lowed; otherwise there would be no way to "unpause" the 
federate.) 

Structurally, the first six parts of the specification corre- 
spond to the six management groups of the IFSpec (cf., 
Section 3). The last two processes represent relationships 
among events in different management groups. We struc- 
ture the description as the parallel composition of subpro- 
cesses for two reasons. First, it supports traceability: each 
of the management processes corresponds to a distinct part 
of the original IFSpec. When problems are discovered it is 
relatively easy to trace them to the source. Second, the de- 
composition permits us to separate concerns. This is fairly 
obvious for the case of the six management groups, since 
each covers a distinct aspect of the integration standard. 

(We will consider these shortly.) Less obviously, however, 
we can use separate processes to localize both the definition 
of common constraints, as well as ways in which events in 
one management group affect what is permissible in another. 

Localization of common constraints is illustrated by the 
Fed Joined process: 

Fed Joined = joinFedExecution -+ (RUNFedEvents 
A resignFedExecution -+ §) 

The process constrains a federate from invoking any service 
until it has first joined the federation. Formally, after ini- 
tiating the joinFedExecution event, a federate can engage in 
any of the events in the set FedEvents. This set includes 
all HLA events except for federation setup and takedown 
events. However, once the event resignFedExecution is exe- 
cuted, it interrupts the RUN process (indicated by the CSP 
interrupt operator, A) and leads to successful termination of 
the federate. By virtue of the way CSP synchronizes events 
across parallel processes, placing this process in parallel with 
other processes has the effect of forcing all other parts of the 
specification to satisfy its constraint. 

Because this constraint on invocation of services includes 
services from all of the management groups, we simplify the 
specification considerably by putt ing this constraint into a 
single process. The alternative would be to include this con- 
straint redundantly in each of separate management group 
processes, significantly complicating those processes. 

Localization of inter-group effects is illustrated by 
ControlPause: 

ControlPause = RUNpauseEvents 
A pauseAchieved --~ resumeAchieved --~ ControlPause 

In this process PauseEvents is the set of events that should 
not be allowed to occur when a federation is paused. Ini- 
tially the process permits any of these events to take place. 
However, when a pauseAcbieved event is initiated by a feder- 
ate, none of those events are permitted until  a resumeAchleved 
event occurs. Since pauseAchieved occurs in response to a 
pause request that can be initiated by some other federate, 
and then mediated by the RTI (as we detail later), this links 
the effects of one federate to other federate behaviors. 

Returning to the six management group processes, each such 
specification describes which services a federate may initiate 
and under what circumstances. It also describes which ser- 
vices may be invoked on that federate by the RTI, and under 
what circumstances. To illustrate, Figure 5 details one of the 
groups, Federation Management. 

This extract illustrates how we represent federate behavior 
and characterize what interactions are possible. Within this 
specification a key part of the FedMgmt specification is to 
describe pause and resume behavior of a federate. Refer- 
ring to Figure 5, we see that after joining the execution, the 
federate exhibits the behavior described by NormalFedMgmt. 
That  is, it can carry out normal events (like requesting to 
save or restore state), it is permitted to request a pause, and 
it should expect the possibility that a pause may be initiated. 
Once a pause is initiated, it may choose between refusing to 
pause (and exhibiting the behavior of NormalFedMgmt) and 
agreeing to pause. If it decides to pause, it then notifies 
the RTI of its success and exhibits the behavior described in 
PausedFedMgmt. This is the inverse of NormalFedMgmt with 
respect to pansing-- in  this state, it may carry out normal 
events that are not affected by pausing (which is true of 

74 



FedMgmt  = JoinFed n createFedExecut ion -~ JoinFed 
JoinFed = jo inFedExecut ion ~ Norma lFedMgmt  

Norma lFedMgmt  = 
In i t ia teFedAct iv i ty  [1Wai tForFedAct iv i ty  n EndFedMgmt  

In i t ia teFedAct iv i ty  = 
requestPause --~ Norma lFedMgmt  

n requestFedSave -~ Norma lFedMgmt  
n requestRestore-~ Norma lFedMgmt  

EndFedMgmt  = resignFedExecution -+ (§ n 
destroyFedExecut ion -~ §) 

Wai tForFedAct iv i ty  = 
ini t iatePause -4 (NormalFedMgrnt  n 

pauseAchieved -~ PausedFedMgmt)  
in i t iateFedSave --~ fedSaveBegun -+ fedSaveComplete --+ 

Norma lFedMgmt  
ini t iateRestore -+ restoreComplete -+ Norma lFedMgmt  

PausedFedMgrnt = 
In i t ia tePausedFedAct iv i ty  17 Wai tForPausedFedAct iv i ty  n 

EndFedMgmt  
In i t ia tePausedFedAct iv i ty  = 

requestResurne -+ PausedFedMgmt 
r'l requestFedSave-+ PausedFedMgmt 
n requestRestore--~ PausedFedMgmt 

Wai tForPausedFedAct iv i ty  = 
in i t iateResume --~ resumeAchieved -+ NormalFedMgrnt  
ini t iateFedSave --~ fedSaveBegun -~ fedSaveComplete -4 

PausedFedMgrnt  
i1 ini t iateRestore --~ restoreComplete -~PausedFedMgmt 

Figure 5: Specification of FedMgmt 

both saving and restoring state), it is permitted to request 
a resume (but not another pause), and it should expect that 
an initiateResume will occur. Once it does, the federation 
returns to it normal behavior. 

In the specification of Federatelnterface we use non- 
determinism to abstract away the actual behavior of a spe- 
cific federate. For example, InitiateFedActivity provides an in- 
ternal choice among a set of alternatives. The actual choice 
will depend on the computation of the federate filling the 
role. Here we simply indicate that one of the possibilities 
might occur. 

7.2 S p e c i f y i n g  R T I  B e h a v i o r  

While Federatelnterfaee models the behavior of a single feder- 
ate, RTIBehavior describes how multiple federates interact via 
the run-time infrastructure provided by the integration stan- 
dard. A representative extract of the specification is shown 
in Figure 6. 

Like Federatelnterface~ the description of RTIBehavior uses mul- 
tiple processes to separate different aspects of the glue's be- 
havior. As before, these processes can be divided into those 
encapsulating global constraints and those describing local 
behaviors. 

The global constraints are captured by the two processes 
HandleMembership and JoinedFeds. These deal (respectively) 
with how an execution is created and populated, and with 
keeping track of which federates are currently members of 
the federation. This information is needed at various times 
by all of the mini-protocols. By separating out this concern, 
we simplify each of the mini-protocols, since they need not 
maintain this state on their own. 

RTIBehavior  = HandleMembership II JoinedFeds{} II 
Min iProtocols  

w h e r e  
HandleMembership = . . .  
JoinedFeds S = 

~,wholsJoined!S -+ JoinedFedss) 
(LJ i : (1. .nSeds) • Fedi . jo inFedExecut ion -+ 

Jo inedFedssu{ i } )  
([1 i : (1 . .n feds)  • Fedi.resignFedExecut ion 

Jo inedFedss \ { i } )  

Min iProtocols  = 
Federat ionProtocols II Declarat ionProtocols ObjectProtocols  
OwnershipProtocols ]i T imeProtoco ls  II DataDis t r  bu t ionProtoco s 

Federat ionProtocols = PauseProtocol  II . . .  
PauseProtocol = HandlePauseResume IJ PausedFeds{} 
HandlePauseResume = 

(0  i : ( 1 . . n f e d s )  • Fedi.requestPause -~ 
wholsJoined?S ~ wholsPaused?T -+ 
(; j : (S \ T)  0 Fedj . in i t ia tePause -~ §) ; 

HandlePauseRe~ume) 
(~  i : ( 1 . . n f e d s )  • Fedi.requestResume -~ wholsJoined?S -~ 

who lsPaused?T-+ ResurneResponse  s =  = T ,  T )  

ResumeResponse t rueaS  = 
(; i : S • Fedi . in i t ia teResume --~ §) ; HandlePauseResume 

ResurneResponsefa lse ,  S = HandlePauseResume 
PausedFeds S = . . .  

ObjectProtocols  = HandleRegistrat ions II HandleRernoves II 
HandleAt t rOutOfScopes II . . .  

HandleRegistrat ions = 
(~ i : ( 1 . . n f e d s )  • Fedi . registerObject  -+ impl ic i tAOAN! i  -+ 

HandleRegistrat ions) 

HandleRernoves = 
(~ i : (1..n.feds) • Fedi .deleteObject  ~ wholsJoined?S -+ 

(; j : (S \ { i } )  • Dec ide l fRemoveNeededj )  ; HandleRemoves) 
(~ i  : ( l . . n f e d s )  • Fedi .a t t rsOutOfScope -+ 

Decidel fRemoveNeededi  ; HandleRemoves) 
17 ( impl ic i tOutOf$cope?i  --* Dedde l fRemoveNeeded i  ; 

HandleRemoves) 

Decidel fRemoveNeededi  = § n Fed i . removeObject  -+ § 

HandleAt t rOutOfScopes = 
(~] i : ( l . .nSeds)  • Fedi.subscr ibeObjClassAttr  --~ 

Dec ide lmplOutOfScopei  ; HandleAt t rOutOfScopes)  
(~ i : (1 . .n feds)  • Fedi.unsubscr ibeObjClassAttr  -+ 

Dec ide lmplOutOfScopei  ; HandleAt t rOutOfScopes)  
(~ i :  ( l . . nSeds ) • Fedi .subscr ibeObjClassAtt rWithRegion --~ 

Dec ide lmplOutOfScopei  ; HandleAt t rOutOfScopes)  
(0  i : ( 1 . . n f e d s  ) • Fedi .unsubscr ibeObjClassAtt rWithRegion -P 

Decide lmplOutOfScopei  ; HandleAt t rOutOfScopes)  
[1 (0  i : (1 . .n feds)  • Fedi.publ ishObjClass - ,who lsJo ined?S --~ 

(; j : (S \ { i } )  • Dec ideOutOfScopej )  ; 
HandleAt t rOutOfScopes)  

0 ([] i : (1 . .n feds)  • Fedi.unpubl ishObjClass -~wholsJoined?S -~ 
(; j : (3" \ { i } )  • Dec ideOutOfScopef l  ; 
HandleAt t rOutOfScopes)  

N (0 i : (1 . .n feds)  • Fed i .a t t rOwnAcqNot i f i ca t ion  --~ 
Dec ide lmplOutOfScopei  ; HandleAt t rOutOfScopes)  

]-] ( impl ic i tAOAN?i  --~ Dec ide lmplOutOfScopei  ; 
HandleAt t rOutOfScopes)  

DecideOutOfScopei  = § n Fed i .a t t rsOutOfScope --~ § 
Decide lmplOutOfScopei  = § n impl ic i tOutOfScope! i  -~ § 

Figure 6: Specification of RTIBehavior 
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In the case of JoinedFeds the current membership of the fed- 
eration is modeled as a set, represented by the subscript (S) 
of the process. The process communicates the value of this 
state using the wholsJoined event. The rest of the definition 
describes how JoinedFeds monitors the events affecting mem- 
bership (joinFedExecution and resignFedExeuction) and modifies 
its state accordingly. 

The MiniProtocols process forms the core of the glue. This 
process is itself a combination of subprocesses, each of which 
is a mini-protocol defining how the RTI behaves with respect 
to one aspect of the overall interaction. The mini-protocols 
are first grouped by management group, for traceability to 
the IFSpec, and then by service or closely related cluster of 
services. 

We found that  it was useful to have two kinds of mini- 
protocols at the lowest level, The first kind is concerned 
with specifying the effects of a particular kind of service 
call. These mini-protocols describe how a request initiated 
by one federate leads to communication via the RTI with 
other federates, and how those federates must respond in 
order for the original request to be fulfilled. For example, 
the simple HandlePauseResume mini-protocol describes how 
the RTI reacts to a requestPause event initiated by a feder- 
ate. In this case it finds out which federates are members of 
the execution, which federates are already paused, and in- 
forms all member federates that are not paused to engage in 
initiatePause. Other mini-protocols, like those handling trans- 
fer of ownership, although more complex, are described in a 
similar fashion. 

The second kind of mini-protocol is one that collects all 
the stimuli that  can cause a single RTI-initiated service. 
HandleAttrOutOfScopes is a good example. The RTI is sup- 
posed to inform a federate whenever a particular attribute 
is no longer relevant to that  federate. The list of services 
that  could cause this to happen is rather long, and could 
result in communication from any of the federates, not just 
the one that  will be notified that  the attribute is "out-of- 
scope." Having the stimuli collected in one place makes it 
much easier to see what causes a given RTI-initiated service. 

A key aspect of the specification of the mini-protocols is 
the use of non-determinism to achieve abstraction. For ex- 
ample, the HandleAttrOutOfScopes mini-protocol collects the 
stimuli that  can cause the attrsOutOfScope event to be in- 
voked by the RTI on a federate. To describe under what 
conditions an invocation of publishObjClass (one of the stim- 
uli) leads to attrsOutOfScope, a lot of information is needed. 
The decision depends on state that accumulates during the 
run of the execution (like attr ibute subscriptions of feder- 
ates for object classes), as well as the parameters to the 
triggering service invocation. Instead of representing the 
precise relationship between two services (like publishObjClass 
and attrsOutOfScope), we simply show that some relation- 
ship exists. Looking more closely at HandleAttrOutOfScopes, 
we notice that  each stimulus is followed by a use of the 
DecideOutOfScope description or the DecidelrnplOutOfScope de- 
scription. These descriptions specify that  the RTI makes 
s o m e  choice about whether or not the stimulus leads to an 
object at tr ibute going out-of-scope, but does not specify how 
the choice is made. 

8 U s i n g  t h e  M o d e l  

Constructing a formal model for an integration standard as 
complex as the HLA is a non-trivial task. Many of the or- 
dering relationships embodied in the Wright protocol can be 

directly inferred from the pre- and post-conditions of ser- 
vices in the original IFSpec. However, as we noted earlier, 
for many situations, we had to experiment with a number of 
alternatives, and in many cases get in touch with the design- 
ers of the HLA to find out exactly what was the intended 
behavior. Once it became clear what the behavior should 
be, the model provided a vehicle for clearly providing a pre- 
cise definition of it. Indeed, parts of our formal models will 
be incorporated as supplementary documentation in future 
releases of the IFSpec. 

But the value of the specification goes beyond mere docu- 
mentation. In the process of formalizing the HLA, we iden- 
tified several dozen issues that pointed to deeper concerns 
about the nature of the HLA design--concerns that  are cru- 
cial to understanding how to use or implement it. Here are 
two examples: 

E x c e p t i o n s :  Each service description in the IFSpec lists a 
set of exceptions. For example, joinFedExecution has the ex- 
ception "federate already joined." In our a t tempt  to formal- 
ize the HLA, we realized that the formalization (and presum- 
ably any implementation) wasn't possible unless we knew if 
these exceptions resulted in actual message traffic or whether 
they were simply anomalies that should be considered (but 
without explicit notification). It turned out that  the answer 
was that in some cases exceptions are used to convey impor- 
tant information, while in other cases they represent genuine 
errors. For example, before a federate can join a federation, 
the federation must exist. It has the option of creating the 
federation itself, but there is no way for a federate to deter- 
mine if this is unnecessary without first a t tempting to create 
it, and getting an exception back if it has already been cre- 
ated. 

R e t a i n e d  s t a t e :  To mediate the communication between 
federates, the RTI must retain certain state. But it is not 
clear what state, and for how long. For example, when a 
federate saves its state, it provides a save label. State can be 
restored through a "restore" service call (using an existing 
label). But state can only be restored when all federates 
have a save for the save label being restored. However, in 
the IFSpec there is no indication of how long this save label 
can be successfully used: after what point can a federate 
discard a previous save? 

In addition to raising critical issues for clarification, the for- 
mal model also helps expose unintended behavior of the stan- 
dard. We discovered about a dozen such anomalies using a 
combination of careful review and the facilities of a com- 
mercial model checker for CSP, called FDR [8]. To make 
use of the model checker we used two primary techniques. 
The first was to look for potential deadlocks in parts of the 
specification. ~ When the tool detects "deadlock" it provides 
a trace showing where the process goes awry. Such deadlocks 
typically indicated the presence of a situation in which dif- 
ferent parts of the specification had inconsistent views about 
the behavior expected of other parts. The other technique 
was to see if the model was consistent with some desirable 
behavior. To check for this situation we used to tool to check 
if a refinement relationship exists between the model and a 
process that exhibits just that  behavior. 

The problems that  we detected fell into three classes: 

5In principle one could run the entire model through FDI~ and find 
all deadlocks within. In practice, the HLA model is much too large for 
the checker: so we had to break it into small pieces, and incrementally 
recombine these in various combinations. 
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(1) requestPause 

(4) resignFedExecution 
(5) initiatePause !! 

(2) wholsJoined. ( 1,2 } 
(3) wholsPaused. { } 

RTI internal events 

Figure 7: Race condition with resigning federates 

R a c e  c o n d i t i o n s :  Figure 7 shows a trace depicting a race 
condition we found when analyzing the HLA specification 
using FDR. The second event, wholsJoined.{1,2}, depicts the 
RTI determining the current federation membership. It is 
does this to inform all federates to initiate a pause (as seen 
in the HandlePause mini-protocol of Fignre 6). However, there 
is a race condition inherent in this situation. If a federate 
resigns after the RTI determined membership, the RTI can 
erroneously a t tempt  to communicate with a federate that is 
no longer a member of the execution. Had the resignation 
occurred before the RTI determined federate membership, 
there would be no problem as the RTI would not at tempt to 
initiate a pause on the resigned federate. 

Deadlocks-" The next two examples point out different ways 
in which a federation execution designed to the HLA stan- 
dard can become deadlocked. Both cases deal with the pause 
and resume protocols and circumstances under which a fed- 
eration cannot resume normal execution. 

In the first case, we look more closely at the implications 
of allowing a federate to refuse to pause. Referring back to 
the WaltForFedActivity description from the FedMgmt process 
in Federatelnterface, we see that after receiving an initiatePause 
event a federate is allowed to choose either to pause its exe- 
cution and notify the RTI or to refuse to pause. 

Looking next at the HandleResume mini-protocol in the glue 
specification, we can see the problem with this. The boolean 
condition to ResumeResponse formalizes a pre-condition to the 
requestResume service, which states "The federation execu- 
tion is paused." In order for the federation execution to be 
paused, each federate that is a member of the federation 
must be paused. If one federate refuses to pause, the entire 
federation is not paused and hence normal execution may 
not be resumed within the execution. Therefore, the ability 
of a federate to refuse to pause leads directly to the possi- 
bility that a federation execution may become deadlocked. 

In the second case, we model a potential solution to the 
first problem by requiring a federate to pause if so directed. 
However, after adjusting the Wright specification to match 
this solution, analysis still indicates that the execution may 
deadlock, but for a different reason. Looking back at the 
definition of PausedFedMgmt within the FedMgmt process, we 
notice that a paused federate is allowed to choose whether 
or not to request a resume. But for this situation FDR gen- 
erates a trace leading to a deadlock, in which every federate 
chooses not to request a resume; the federation is deadlocked 
with every federate "expecting" some other federate to re- 
quest a resume. 

Unlike the first case, however, this example of deadlock does 
not point to a flaw in the HLA standard. In a number of 
cases such as this, there may exist several reasonable ways 
to resolve a problem by suitable choices within a particular 

federation or RTI implementation. In these cases it would 
be wrong for the HLA standard to prescribe a particular so- 
lution. For example, with respect to the problem of pausing, 
the standard correctly does not include a requirement that a 
paused federate m u s t  request a resume, as there are other le- 
gitimate ways in which deadlock can be reasonably avoided. 
Other policies for ending pauses include designating a par- 
ticular federate as the one that always must request resumes, 
or specifying that a time-out should be used to decide when 
to request a resume. 

The real solution is to provide supplementary documenta- 
tion that highlights such trouble spots and, where possible, 
indicates possible solutions from which the integrator could 
select. Our formal model partially serves this role by both 
identifying the problem areas, and by allowing us to experi- 
ment with different policies for resolution. 

U n e x p e c t e d  o u t c o m e s :  The Wright model allowed us 
to analyze whether certain combinations of behaviors could 
lead to unintuitive outcomes. Typically, the specification 
would show immediate behaviors (e.g., that an RTI could 
reply to a given event in one of several ways), but the ques- 
tion arose, what is the result of composing such behaviors? 
Are there combinations of choices that lead to unintuitive 
outcomes? 

As an example, consider the following three behav- 
iors: The first immediate behavior is apparent from the 
HandleRegistrations mini-protocol. Registration is used by 
a federate to inform the RTI of the existence of a new 
object, with the result that the registering federate ac- 
quires ownership of some (or all) of the object 's attributes. 6 
The second immediate behavior is apparent from the 
HandleAttrOutOfScopes mini-protocol: acquiring ownership of 
an attribute may cause the attribute to go out-of-scope. 
The third behavior is apparent from the HandJeRemoves mini- 
protocol; when an attribute goes out-of-scope, the federate 
may be informed that it should remove the object (i.e., that 
object is no longer relevant to the federate and it should 
delete its local copy). 

When these three behaviors are composed, we can observe 
that it is possible for the registration of an object to lead 
directly to the RTI telling the registering federate to remove 
that object. This, clearly, is not what was intended. How- 
ever, there remains a question of whether or not the IFSpec 
does actually allow this chain of activity. Since two of the 
immediate behaviors were described in mini-protocols that 
use non-determinism to abstract the real relationships, we 
still must determine if the composed behavior is possible 
(i.e., whether this particular sequence of choices is a valid 
one). By looking back at the IFSpec, we see that this could 
happen if the registering federate acquires ownership of all 
the attributes of the object- the composition is possible and 
there is a problem. 

9 D i scuss ion ,  C o n c l u s i o n ,  a n d  F u t u r e  W o r k  

This paper has described an approach to formalization and 
analysis of integration standards using the HLA as an ex- 
ample. The effectiveness of this approach is best indicated 

6Normally, whenever a federate acquires ownership, the 
attrOwnAcqNotification event is used. In the case of object regis- 
tration, however, acquiring ownership is part of the post-conditlon of 
the registration service and no separate service is used to inform the 
federate of the ownership change. We explicitly denote such service 
side-effects that otherwise are noted in separate services by using such 
events as implicitAOAN. 
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by noting that  its identification of issues led directly to sig- 
nificant improvements in the published specification of the 
HLA. However, in considering the value of the approach it 
is important  to be clear about what is essential, what is 
incidental, and what still remains to be done. 

Among the essential elements we would point to four key 
techniques. First  is the t reatment  of a component inte- 
gration s tandard as a formal architectural model, focus- 
ing on the semantics of the connectors as the key issue 
in need of clarification. Specifically, an architectural ap- 
proach focuses on the need to model the connection ap- 
paratus of the s tandard,  and further helps structure the 
definition-explicitly separating the interface to the connec- 
tor (here Federatelnterface) from the mediating behavior (here 
RTIBehavior). 
Second is the modeling of that  semantics as a protocol. By 
explicitly representing orders of invocations and loci of non- 
determinism and choice, a protocol clarifies many global con- 
trol and sequencing issues, as well as opening the way for 
exploration of consequent behavior. 

Third is the use of abstract ion to make the architectural 
specification tractable (both intellectually and for model- 
checking tools). In particular,  to do this we abstracted away 
the details of the da ta  model and decisions of individual 
federates. While this led to a lack of precision, it greatly 
simplified the overall specification. (As with any abstraction, 
however, the downside is that  each discovered problem must 
be carefully examined to determine if its introduction is a 
consequence of abstract ing too far from the actual  system.) 

Fourth, was a careful at tent ion to structuring the architec- 
tural specification. In particular,  we divided the specifica- 
tion into par ts  that  directly corresponded to the "manage- 
ment groups" in the IFSpec. By doing this we were able 
to part i t ion our effort into incremental steps (tackling one 
management group at  a time), and to provide traceabili ty 
to the original document.  

Among the inessential aspects were the use of CSP and the 
details of the simulation domain itself. CSP provides the 
formal basis of Wright, but  it  is only one of many possible 
notations that  could have been used. As we note below, 
we found other complementary formalisms to be effective 
in identifying different kinds of problems. Moreover, other 
protocol modeling notations would likely have revealed many 
of the same problems. For example, the developers of Rapide 
used their event-based architectural modeling language to 
discover problems similar to those that  we identified. 

While distr ibuted simulation is unique in some respects, 
many of the issues that  we identify in this paper  would ap- 
ply to virtually any complex integration standard.  The HLA 
is architecturally unusual in so far as it  is centered around 
a single connector (the RTI). Moreover, some of the com- 
plexity of the HLA specification comes from the domain of 
distr ibuted simulation (such as the part icular  services for 
time and object  management).  

On the other hand, we would argue that  other aspects of 
the HLA are embodied by most other integration standards.  
In particular,  most s tandards must take care to explain 
how a composition is created, how reconfiguration takes 
place during run time, how synchronization is handled be- 
tween multiple components, and what kinds of guarantees 
are provided for inter-component communication. These as- 
pects are equally pert inent  to s tandards for avionics systems, 

robotics control systems, and even general-purpose compo- 
nent integration standards such as DCOM or CORBA. And 
it is these kinds of properties of an integration s tandard  that  
make it most difficult to understand, implement, and reuse. 

It is important  to note, however, that  formalizations such 
as ours are just  one of many tools and notations. Wright 
is good at  detecting certain kinds of anomalies--pr imari ly  
those associated with protocols of interaction. But there are 
many other issues that  are not addressed, such as real-time 
behavior, state models, and compliance testing. This sug- 
gests that  future work on modeling architectural  s tandards 
can and should exploit other complementary approaches and 
tools for architectural modeling and analysis. 

Indeed, in our own work we we also formalized parts  of the 
specification using StateCharts  (which appear  in [23]) and 
Z [7]. In particular,  we used these formalisms to handle the 
state-oriented aspects of the system. For example, a key 
property that  should be maintained by a federation is that  
there is at  most one owner for every simulated object in 
the system. This property is relatively easy to specify (and 
check) using a language like Z, but  cumbersome using one 
like CSP. 

One important  extension of the approach described in this 
paper  is the use of explicit formal models to guide imple- 
mentors in producing conformant components and run-time 
infrastructure. There are at  least two key conformance issues 
that  a formal model can help resolve. The first is to provide 
bet ter  guidance for implementors. The formal model helps 
clarify what m u s t  be included and thereby establishes a base- 
line for functionality in components and supporting run-time 
infrastructure. For example, our HLA model clearly indi- 
cates that  the RTI will have to maintain various kinds of 
state, including the current list of joined federates, pending 
pauses, requests for object a t t r ibute  ownership transfer, etc. 
Such information is present only implicitly in an API,  mak- 
ing it difficult for infrastructure implementors to tell what 
is essential and what is optional. 

A second issue is conformance checking. Given a formal 
model it should be possible to devise a set of conformance 
tests that  can be used by component and infrastructure im- 
plementors. While the generation of tests from formal spec- 
ifications is itself an active research area, the application of 
those results to integration standards seems like a particu- 
larly promising area for future work. 

More generally, the use of formal models for documenting 
and analyzing integration standards is clearly in its infancy. 
We will need many more examples, and as noted, broader 
coverage of other important  propert ies before it becomes 
clear what are the relative merits of using formal modeling 
techniques such as those described in this paper.  However, 
we believe the success of the Wright formalization of the 
HLA is cause for guarded optimism. 
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A S u m m a r y  o f  C S P  used in th is  pape r .  

We use the following subset of CSP: 

• P rocesses  a n d  Even t s :  A process describes an entity 
that can engage in communication events. Events 
may be primitive or they can have associated data (as 
in e?x and e!x, representing input and output of data, 
respectively). 

• P re f ix ing :  A process that engages in event e and then 
becomes process P is denoted e-4P. 

• Sequenc ing :  ("sequential composition") A process 
that behaves like P until P terminates (§) and then be- 
haves like Q, is denoted P ; Q. 

• I n t e r r u p t i n g :  A process that behaves like P until the 
occurrence of the first event in Q, is denoted P /x Q. 

• A l t e r n a t i v e :  ("external choice") A process that can 
behave like P or Q, where the choice is made by the 
environment, is denoted P ~ Q. ("Environment" refers 
to the other processes that interact with the process.) 

• Dec is ion :  ("internal choice") A process that can be- 
have like P or Q, where the choice is made (non- 
deterministically) by the process itself, is denoted 
P n q .  

• N a m e d  Processes :  Process names can be associated 
with a (possibly recursive) process expression. Pro- 
cesses may also be subscripted to represent internal 
state. 

• Para l le l  C o m p o s i t i o n :  Processes can be composed 
using the [[ operator. Parallel processes may interact 
by jointly (synchronously) engaging in events that lie 
within the intersection of their alphabets. Conversely, 
if an event e is in the alphabet of processes P1 and P2, 
then P1 can only engage in the event if P2 can also do 
so. That is, the process P1 [IPa is one whose behavior is 
permitted by both P1 and P2, 

In process expressions -4 associates to the right and binds 
tighter than both ~and N. So e-4 f -4P 0 g-+Q is equivalent 
to (e-4(/-4P)) If (g-4q). 
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