
Formal Modeling and Analysis of
the HLA Component Integration Standard

Robert J. Allen
IBM, Dept. AQPV / 862F

1000 River Road
Essex Junction, VT 05452 USA

roballen@btv.ibm.com

David Garlan
School of Computer Science
Carnegie Mellon University
Pit tsburgh, PA 15213 USA

garlan~cs.cmu.edu

James Ivers
School of Computer Science
Carnegie Mellon University
Pit tsburgh, PA 15213 USA

jivers~cs.cmu.edu

A B S T R A C T
An increasingly impor tant t rend in the engineering of com-
plex systems is the design of component integration stan-
dards. Such s tandards define miles of interaction and shared
communication infrastructure that permit composition of
systems out of independently-developed parts. A problem
with these s tandards is that it is often difficult to under-
s tand exactly what they require and provide, and to analyze
them in order to understand their deeper properties. In this
paper we use our experience in modeling the High Level Ar-
chitecture (HLA) for Distr ibuted Simulation to show how
one can capture the s tructured protocol inherent in an in-
tegration s tandard as a formal architectural model that can
be analyzed to detect anomalies, race conditions, and dead-
locks.

K E Y W O R D S
Component integration standards, component-based soft-
ware, protocol families, software architecture, formal speci-
fication.

1 I n t r o d u c t i o n

Component integration standards are becoming increas-
ingly impor tant for commercial software systems. The
purpose of a component integration s tandard is to define
rules of interaction and shared infrastructure for composing
independently-developed software components into larger
systems. Typically an integration s tandard prescribes re-
quirements that must be satisfied by component interfaces,
and it provides facilities that support communication and
coordination among those components.

An early example of a component integration s tandard is
Unix pipes, which requires components to have interfaces
that read and write byte streams, and provides buffering
and synchronization infrastructure to connect the compo-
nents together. More recent examples include a growing
number of domain-specific integration standards in areas as
diverse as programming environments, robotics control [20],
and signal processing [17]. Additionally some aspects of
general-purpose object-oriented systems, such as CORBA,
C O M / D C O M / O L E / A c t i v e X , and JavaBeans function as
component integration standards.

Component integration standards greatly simplify the con-
struction of complex systems from existing parts. Since com-
ponents share assumptions about the nature of interaction
with their environment many of the general problems of com-
ponent mismatch do not arise [9]. Thus it is easier for imple-

Permission to make digital or hard copies of all or part of this work for
personal or classroom usa is granted without fee provided that
copies are not made or distributed for profit or commercial sdvan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGSOFT '98 11198 Florida, USA
© 1998 ACM 1-58113-108-9/98/0010...$5.00

mentors to combine parts writ ten by multiple vendors and
to add new parts to existing systems. Moreover, the use
of a s tandard 's supporting infrastructure can substantially
reduce the amount of custom code that must be writ ten to
support communication between those parts.

In practice, integration standards are typically specified us-
ing a combination of informal and semi-formal documen-
tation. On the informal side are guidelines and high-level
descriptions of usage patterns, tips, and examples. On the
semi-formal side one usually finds a description of an ap-
plication programmers ' interface (API) that explains what
kinds of services are provided by the infrastructure. APIs are
formal to the extent that they provide precise descriptions
of those services--usually as a set of signatures, possibly
annotated with informal pre- and post-conditions.

While such documentat ion is necessary, by itself it leaves
many important questions unanswered--for component de-
velopers, system integrators, s tandard infrastructure imple-
mentors, and proposers of new standards. For example,
while it may be clear what are the names and parameters
of services provided by the integration infrastructure, it may
not be clear what are the restrictions (if any) on the ordering
of invocations of those services. It may not be clear what
kinds of run-time state is maintained by the infrastructure to
facilitate component interaction. It may not be clear what
facilities m u s t be provided by a component to be a compo-
nent, and which are optional. It may not be clear how con-
currently executing components might impact each other 's
run-time behavior, particularly when they access shared re-
sources. It may not be clear whether the s tandard itself
contains latent design problems that can lead to unexpected
runtime anomalies, such as race conditions and deadlocks.

In this paper we show how one can use formal modeling
to clarify these kinds of issues. The key idea is to treat
the integration s tandard as a s t ructured protocol that can
be analyzed using existing formalisms and tools for model-
ing software architecture. By making explicit the protocol
inherent in the integration standard, we are able to make
precise the requirements on both the components and on
the supporting infrastructure itself. This in turn provides a
deeper understanding of the s tandard, and supports analysis
of its properties.

While the use of protocols to model a component integra-
tion s tandard might seem like a natural idea, there are a
number of technical hurdles that make it non-trivial to do
in practice. First , many component integration standards
are relatively complex, often involving dozens of routines in
their API. Structuring becomes a central issue for modeling.
Second, for a complex s tandard it is critical that the for-
mal model be traceable back to the original documentation.
This is because when errors are found, it must be possible
to relate the results back to the source. Third, is the issue
of variability in the standard. It is critical to distinguish

70

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288195.288251&domain=pdf&date_stamp=1998-11-01

between aspects of the model that are fixed by the stan-
dard and those that are allowed to vary from one system to
another. In practice this can be difficult to do because a
part icular API may make implementation choices that are
not intrinsically par t of the integration standard. Fourth is
the problem of tractability. If the formal model is to be use-
ful to humans or to analysis tools it must be simple enough
that it can be understood (or mechanically processed), but
detailed enough that useful properties are revealed.

In the remainder of this paper we describe our experience of
solving these technical problems for a complex integration
standard for distr ibuted simulation. The primary contribu-
tions of this paper are twofold. First , we show how formal
architectural models based on protocols can clarify the in-
tent of an integration standard, as well as expose critical
properties of it. Second, we describe the techniques that
can be used to create the initial model, and structure it to
support traceability, tractability, and automated analysis.

2 R e l a t e d R e s e a r c h

This work is closely related to three distinct areas of prior
research. The first area is the growing field of architectural
description and analysis. Currently there are many archi-
tecture description languages (ADLs) and tools to support
their use (such as [12, 19, 15, 14]). While ADLs are far from
being in widespread use, there have been several examples
of their application to realistic case studies. This paper con-
tributes to this body of case studies, but pushes on a dif-
ferent dimension--namely, the application of architectural
modeling to component integration standards.

Among existing ADLs the one used here, Wright, is most
closely related to Rapide [12], as both use event pat terns to
describe abstract behavior of architectures. Indeed, parts of
the HLA have been modeled by the developers of Rapide.
Wright differs from Rapide insofar as it supports definition
of connectors as explicit semantic entities and permits static
analysis using model checking tools. As we will see, this
capability is at the heart of our approach for modeling inte-
gration standards.

The second related area is research on the analysis of stan-
dards. An example close in spirit to our work is that of Sul-
livan and colleagues, who used Z to model and analyze the
Microsoft COM standard [21]. Also closely related is work
on formal definitions of architectural styles. In particular,
Moriconi and colleagues describe techniques for refining be-
tween styles [15]. In other work carried out by this paper 's
authors, we have considered how Z and Wright can be used
to define styles [1, 2]. The work described in this paper dif-
fers from previous work in this area in that it represents a
much larger-scale application of architectural modeling than
has been reported in the literature, and introduces new tech-
niques to carry it out.

The third area is work on protocol specification and analy-
sis. There has been considerable research on ways to specify
protocols using a variety of formalisms, such as I /O Au-
tomata [13], SMV [6], SDL [11], and Petri Nets [16]. While
our research shares many of the same goals, there are no-
table differences. First , most protocol analysis assumes you
are start ing with a complete description of the protocol. In
contrast, in our work the protocol is typically implicit in the
API of some integration s tandard documentation. Second,
while most protocols may involve large numbers of states,
the number of entry points into the protocol is typically
small. In contrast, the HLA (and other similar standards)

HLA
IFSpec
Federa te
Federa t ion
RTI
Service

High Level Arch i t ec tu r e
HLA In ter face Specif ica t ion
an ind iv idua l s imula t ion
a set of coo rd ina t ed s imula t ions
R u n - T i m e In f r a s t ruc tu re
A rou t ine in the IFSpec

Figure 1: Glossary of HLA Terms

has over a 125 different entry points. This leads to techni-
cal issues not typically dealt with in the protocol literature,
such as ways to structure such a broad interface.

3 T h e " H i g h Leve l A r c h i t e c t u r e " fo r D i s t r i b u t e d
S i m u l a t i o n

The "High Level Architecture" (HLA) is a component in-
tegration s tandard for distr ibuted simulation [22]. It was
developed by the Defense Modeling and Simulation Office
(DMSO) to support interoperabili ty between simulations
purchased from different vendors) This is a critical con-
cern for the US government, which spends billions on third
par ty simulations, coming from a wide variety of vendors.

Informally, the HLA prescribes a kind of "simulation bus"
into which simulations can be "plugged" to produce a joint
(distributed) simulation (as il lustrated in Figure 2). In the
HLA design, members of a]ederation--the HLA term for a
distributed s imulat ion--coordinate their models of parts of
the world by sharing objects of interest and the at tr ibutes
that define them. Each member of the federation (termed
a]ederate) is responsible for calculating some part of the
larger simulation and broadcasts updates using the facilities
of a runtime infrastructure (termed the RTI). Routines that
support communication both from the federates, (e.g., to
indicate new da ta values), and to the federates, (e.g., to
request updates for a part icular at tr ibute) , are defined in the
"Interface Specification" document - -o r IFSpec. Routines,
or "services", in the IFSpec are specified by a name, the
initiator (either a Federate or the RTI), a set of parameters,
a possible return value, pre- and post-conditions, and a list
of the exceptions that may occur as a result of invoking the
service. (Figure 1 summarizes the HLA terms used in this
paper.)

An example of a typical RTI service is shown in Figure 3
(taken from [22]). This service is init iated by a federate (an
individual simulation) when it wants to pause the federation
(the entire distributed simulation). The effects of calling
the service are to cause the RTI to coordinate a distributed
handshaldng algorithm in which it asks each of the simula-
tions to pause.

The HLA is a complex integration standard. The current
IFSpec includes over a 125 different services, and the full
document is over 400 pages of description. While the part
of the HLA design that deals with a t t r ibute broadcast is rel-
atively straightforward, the overall s tandard is complicated
significantly by the need to deal with issues such as start-
ing, stopping, and pausing; allowing one federate to transfer
object a t t r ibute ownership to another; and distr ibuted clock
management and time-ordered message sequencing.

To make the documentation for the integration s tandard
manageable, the IFSpec is divided into six chapters: federa-

1This p a p e r refers to Version 1.2 of the s t a n d a r d , issued Augus t
1997. A more recent version (1.3 of Apr i l 1998), f ixing numerous
problems, was recent ly released. In add i t ion the HLA is cu r ren t ly in
the process of be ing revised as an I E E E s t a n d a r d (provis ional num-
ber P1516) by the S imula t ion In t e rope rab i l i t y S t a n d a r d s Organ i za t i on
(SISO).

71

federate I federate [I federate I

Figure 2: The HLA Integration Standard

R T I

2.5 Request Pause
Initiator: Federate-Initiated

Indicates to the RTI the request to stop the advance of the federation
execution. The federation execution members will be instructed by
the RTI to pause as soon after the inovcation of the Request Pause
service as possible. The label, supplied when the pause is requested,
will be supplied to the other federates via the Initiate Pause service.
Supplied Parameters

A label
Returned Parameters

None
Pre-conditions

The federation execution exists
The federate is joined to that federation execution
The federation execution is advancing (not paused)

Post-conditions
A federation pause is pending

Exceptions
Federation already paused
Federate not a federation execution member
RTI internal error

Related Services
Initiate Pause
Pause Achieved

Figure 3: The RequestPause Service

tion management, declaration management, object manage-
ment, ownership management, time management, and data
distribution management. Federation management services
are used by federates to initiate a federation execution, to
join or leave an execution in progress, to pause and resume,
and to save execution state. Declaration services are used
to communicate about what kinds of object attributes are
available and of interest, while object services communicate
actual object values. Ownership services are used in situ-
ations when one federate has been responsible for calculat-
ing the value of an object attribute, but for some reason
another federate should now take over that responsibility.
Time Management services are used to coordinate the logical
time advancements of federates and to ensure that messages
are delivered in time-stamp order. Data distribution man-
agement is used to filter at tr ibute updates, reducing message
traffic and processing requirements, for each federate based
on defined criteria.

4 P r o b l e m s w i t h t he I F S p e e

The IFSpec is an indispensible document, since it provides a
definition of each required and provided service of the stan-
dard. However, there a number of problems with using IF-
Spec as the only form of HLA documentation.

First, is the problem of determining what are the permissible
or required orderings of service invocations. While the pre-
conditions indicate (informally) in what situations a given
service can be called, it is often hard to determine what

kinds of behavior would lead to a precondition being satisfied
or not. For example, is it always legal for a federate to
pause the federation after joining? Moreover, it is difficult to
tell whether the preconditions are complete: if a component
satisfies all preconditions, will it ever trigger exceptions?

Second, since the IFSpec describes the HLA from the point
of view of an individual simulation, it is difficult for someone
building a federation out of existing simulations to tell what
kinds of coordination behavior will be provided by the RTI.
For example, exactly what kind of protocol does the RTI
use to pause a federation? Does an RTI at tempt to find an
owner for orphaned object attributes?

Third, is the problem of understanding the deeper properties
of the standard, both with respect to its intended behavior,
and with respect to anomalies that can arise in using it.
For example, are there sequences of service invocations that
might lead to system deadlock? Are there latent race condi-
tions or other sequences of events that can lead to anomalous
behavior?

5 A p p r o a c h a n d C h a l l e n g e s

In the remainder of the paper we show how a formal archi-
tectural specification can help resolve these kinds of issues.
The keystone of the approach is to view the HLA as an ar-
chitectural standard centered around a connector (i.e., the
RTI) that permits simulation components (i.e., the feder-
ates) to interact with each other. We then provide a formal
specification of that connector's behavior, thereby making
explicit the protocol inherent in its informal description.

While the use of protocols might appear to be a natural idea,
there are a number of technical challenges in specifying an
integration standard as complex as the HLA.

• S t r u c t u r e : It is essential to structure the specification
so that it permits (a) separation of concerns; (b) incre-
mental specification and analysis; and (c) traceability.
Separation of concerns is needed to manage complexity.
Incremental specification is required to allow increasing
levels of fidelity, depending on the needs for documenta-
tion and analysis. Traceability is needed so that issues
identified in the process of formalization can be related
to the source of the problem in the standard's API.

• A b s t r a c t i o n : Abstraction is required for two reasons.
First, it is necessary to simplify the model so that it
becomes tractable both for human readers and for anal-
ysis tools. Second, it is necessary to indicate what parts
of the standard are (intentionally) left unspecified.

• Ana lys i s : Once you have a formal definition, it is not
immediately clear what kinds of analyses one would
want to perform, or how to frame those analyses using
existing tools.

72

Connector C-S-connector(n: Int)
Role Clientl..n = (request -r result?x ~ Client) n §
Role Server = (request -+result!x --+ Server) [1 §
G l u e =

(U i: 1..n ,
Clienti .request --~ Server.request --+
Server.result?x --+ Clienti.result!x --~ Glue)

0§
Figure 4: Simple Client-Server Connector

In the next two sections we present the model and discuss
how it addresses these issues. Specifically, we use the Wright
archi tectural description language (ADL) as the model ing
language [4] to define the HLA. The key feature of Wright
tha t we exploit is the ability to formally define new archi-
tec tura l connectors as s t ruc tured protocols.

6 W r i g h t

Like most ADLs, Wright defines a system as a composi t ion
of components and connectors: the components define the
pr imary centers of computa t ion , while the connectors define
the interact ions be tween components . Unlike some ADLs,
however, Wright permi ts the explicit definition of new con-
nector types, and provides formal, au tomatab le criteria for
checking the consistency of those types [4]. 2

In Wright a connector type has a name, an optional set of
parameters, a set of role descriptions, and a glue description.
The name identifies the kind of connector. The parameters
provide ins tant ia t ion values for the connector. Each role
has a specification tha t defines the possible behaviors of a
par t ic ipant in the interaction. The glue defines how the roles
will in teract wi th each other.

To il lustrate, consider a client-server connector that permi ts
multiple clients to in teract with a server. Figure 4 shows
how this might be wr i t ten in Wright. The connector has a
pa ramete r tha t determines the number of clients that can
access the server. The roles of the connector define how the
clients and servers must behave at their interfaces. The glue
specifies how client-server communica t ion is coordinated.

The dist inct ion be tween roles and glue in Wright is impor-
tant because it allows us to separate two quite different con-
cerns of the connector specification. First is the description
of the interfaces to the connector: each role identifies what
an individual par t ic ipant must do to interact over tha t kind
of connector. Second is the specification of how the connec-
tor coordinates those part icipants . As we will see in the case
of the HLA, this separat ion allows us to distinguish be tween
the interface tha t each simulat ion must conform to, and the
coordinat ing behavior of the run- t ime infrastructure.

Wright uses a variant of CSP [10] to define role and glue
behavior. Each such specification defines a pa t t e rn of events
(called a process) using operators for sequencing (" -4" and
";"), choice ("gl" and " 9 "), and parallel composi t ion ("11").
Appendix A contains more details on the par ts of CSP that
we use in this paper .

Wright extends CSP in three minor syntact ic ways. First ,

2Wright also supports the ability to define architectural styles,
check for consistency and completeness of architectural configurations,
and check for consistent specifications of components. For this pa-
per, however, we will restrict our presentation to just those parts of
Wright that concern the specification of the HLA. For further details,
the reader is referred to [3].

it distinguishes between ini t iat ing an event mad observing
an event. An event tha t is ini t ia ted by a process is wri t ten
with an overbar. Second, it uses the symbol § to denote
the successful ly-terminating process. (In CSP this is usually
wr i t ten "SKIP" .) Third, Wright uses a quant if icat ion oper-
ator: (op) x : S • P (x) . This opera to r constructs a new
process based on the process expression P(s) , and the set
S, combining its par ts by the opera tor (o19). For example,
[1 i : {1 ,2 ,3} • Pi = P1 0 P2 ~ P3: i.e., a choice among one
of three processes, P1, P2, or P3. Similarly, ; x : S • P (x) ,
is a process tha t consists of some unspecified sequencing of
the processes: ; x : S • P (x) = rq x : S • (e (x) ; (; y :
s \ {x} • P(y)))

Refering again to Figure 4, the process defining the Server
role of the C-S-connector

Server -- (request -4 result!x --4 Server) ~ §

indicates tha t the server repeatedly ei ther observes a request
and then initiates the ou tput of a result (represented by vari-
able x), or else terminates . Since we use the CSP opera tor
for "external" choice (~), the decision about whether to ter-
minate or accept a request is de te rmined by the environment
of the server. 3

The connector also defines n client roles. Each of the n roles
has the same behavior:

Client ----- (request -4 resultYx --+ Client) Iq §

indicating that the client can repeatedly ini t iate a request
and retr ieve a result, or it can choose to terminate . In this
case we use the internal choice opera tor (r-l) to indicate that ,
unlike the server, it is the client 's choice whether to termi-
nate the interaction.

Finally, the glue par t of C-S-connector coordinates the
clients and servers by forwarding requests and re turning re-
suits. (In this case the glue has a par t icular ly simple be-
havior: we'll see la ter tha t this need not be the case.) The
glue guarantees tha t a complete request-reply t ransact ion
between a given client and the server will complete before
accepting another request . The use of the quantif ication (us-
ing ~) requires the glue to wait for some client to make a
request. If several do so simultaneously, the glue is free to
pick one. Note tha t in the description of the glue, we tag
each event with the name of the role wi th which it is associ-
ated. Also note that ini t ia ted events from roles are observed
events of the glue, and vice versa.

7 T h e H L A M o d e l

Turning now to the HLA, the core of the Wright formal-
ization is the specification of the RTI connector. 4 At the
top-most level the RTI is defined as follows:

C o n n e c t o r RTl(nfeds : 1..)
R o l e Fedl..nfeds = Federatelnterface
G l u e = RTIBehavior

The RTI is parameter ized by the number of federates (nfeds)
in a joint simulation; there can be an arbi t rary number of

3Wright uses a non-standard interpretation of external choice in
the case in which one of the branches is §: specifically, the choice
remains external, unlike, for example, the treatment in [18]. See [3]
for technical details.

4The full Wright specification is about 15 pages long [5]. For the
purposes of this paper we present only certain parts of the model
to highlight its key features. There are also a few other differences
arising from the fact that our final model includes fixes for several of
the problems identified in this paper.

73

them. The behavior of each federate is specified by the role
specification Federatelnterface. The interface describes the be-
havior to which a federate must conform in order to partic-
ipate in the federation.

The specification of the RTI's behavior, on the other hand,
is defined by the glue process RTIBehavior. It describes the
manner in which the RTI coordinates communication among
the federates within an execution. We now examine each of
these parts in turn.

7.1 S p e c i f y i n g t h e F e d e r a t e I n t e r f a c e

The behavior of Federatelnterface is divided into eight parts.

Federatelnterface -----
FedMgmt II DeclMgmt II ObjMgmt II OwnMgmt II TimeMgmt

II DataMgmt II Fed Joined II ControlPause
where

FedMgmt = . . .
DeclMgmt = . . .

Within each part, services are represented as events. A
federate-initiated a service like "Join Federation Execution"
appears as joinFedExecution, while a RTI-initiated service like
"Initiate Pause" appears as initiatePause. The required and
permitted orderings of the events are specified by a process
that indicates what events can follow other events, and where
choices can be made by the federate or the RTI.

To determine the legal orderings and choice points we re-
lied primarily on the published IFSpec documentation. For
example, in Figure 3 the "Request Pause" service (initiated
by a federate) would correspond to the requestPause event.
There are three preconditions for this service. The first two
indicate that the createFedExecution and joinFedExecution must
preceed any occurance of that event. The relative ordering
of those later two events and their relation to other events
in the system must be inferred by looking at other parts of
the [FSpec documentation.

The third precondition in the example is more problematic.
What exactly does it mean for a federation to be "advanc-
ing" ? Resolving this kind if issue is trickey because the pre-
condition refers to a state of the RTI and not the API. To
handle this kind of situation we had to infer the existence
of RTI state and build that into the RTIBehavior process.
However, sometimes the informal description was sufficiently
vague that we had to go back to the designers of the HLA
to ask them what they had in mind. For example, there
was no place in the IFSpec where "not paused" was defined,
and we had to clarify what the intention was--specifically,
what events should be allowed to occur in a "paused" state
and which are forbidden. (Note some events must be al-
lowed; otherwise there would be no way to "unpause" the
federate.)

Structurally, the first six parts of the specification corre-
spond to the six management groups of the IFSpec (cf.,
Section 3). The last two processes represent relationships
among events in different management groups. We struc-
ture the description as the parallel composition of subpro-
cesses for two reasons. First, it supports traceability: each
of the management processes corresponds to a distinct part
of the original IFSpec. When problems are discovered it is
relatively easy to trace them to the source. Second, the de-
composition permits us to separate concerns. This is fairly
obvious for the case of the six management groups, since
each covers a distinct aspect of the integration standard.

(We will consider these shortly.) Less obviously, however,
we can use separate processes to localize both the definition
of common constraints, as well as ways in which events in
one management group affect what is permissible in another.

Localization of common constraints is illustrated by the
Fed Joined process:

Fed Joined = joinFedExecution -+ (RUNFedEvents
A resignFedExecution -+ §)

The process constrains a federate from invoking any service
until it has first joined the federation. Formally, after ini-
tiating the joinFedExecution event, a federate can engage in
any of the events in the set FedEvents. This set includes
all HLA events except for federation setup and takedown
events. However, once the event resignFedExecution is exe-
cuted, it interrupts the RUN process (indicated by the CSP
interrupt operator, A) and leads to successful termination of
the federate. By virtue of the way CSP synchronizes events
across parallel processes, placing this process in parallel with
other processes has the effect of forcing all other parts of the
specification to satisfy its constraint.

Because this constraint on invocation of services includes
services from all of the management groups, we simplify the
specification considerably by putt ing this constraint into a
single process. The alternative would be to include this con-
straint redundantly in each of separate management group
processes, significantly complicating those processes.

Localization of inter-group effects is illustrated by
ControlPause:

ControlPause = RUNpauseEvents
A pauseAchieved --~ resumeAchieved --~ ControlPause

In this process PauseEvents is the set of events that should
not be allowed to occur when a federation is paused. Ini-
tially the process permits any of these events to take place.
However, when a pauseAcbieved event is initiated by a feder-
ate, none of those events are permitted until a resumeAchleved
event occurs. Since pauseAchieved occurs in response to a
pause request that can be initiated by some other federate,
and then mediated by the RTI (as we detail later), this links
the effects of one federate to other federate behaviors.

Returning to the six management group processes, each such
specification describes which services a federate may initiate
and under what circumstances. It also describes which ser-
vices may be invoked on that federate by the RTI, and under
what circumstances. To illustrate, Figure 5 details one of the
groups, Federation Management.

This extract illustrates how we represent federate behavior
and characterize what interactions are possible. Within this
specification a key part of the FedMgmt specification is to
describe pause and resume behavior of a federate. Refer-
ring to Figure 5, we see that after joining the execution, the
federate exhibits the behavior described by NormalFedMgmt.
That is, it can carry out normal events (like requesting to
save or restore state), it is permitted to request a pause, and
it should expect the possibility that a pause may be initiated.
Once a pause is initiated, it may choose between refusing to
pause (and exhibiting the behavior of NormalFedMgmt) and
agreeing to pause. If it decides to pause, it then notifies
the RTI of its success and exhibits the behavior described in
PausedFedMgmt. This is the inverse of NormalFedMgmt with
respect to pansing-- in this state, it may carry out normal
events that are not affected by pausing (which is true of

74

FedMgmt = JoinFed n createFedExecut ion -~ JoinFed
JoinFed = jo inFedExecut ion ~ Norma lFedMgmt

Norma lFedMgmt =
In i t ia teFedAct iv i ty [1Wai tForFedAct iv i ty n EndFedMgmt

In i t ia teFedAct iv i ty =
requestPause --~ Norma lFedMgmt

n requestFedSave -~ Norma lFedMgmt
n requestRestore-~ Norma lFedMgmt

EndFedMgmt = resignFedExecution -+ (§ n
destroyFedExecut ion -~ §)

Wai tForFedAct iv i ty =
ini t iatePause -4 (NormalFedMgrnt n

pauseAchieved -~ PausedFedMgmt)
in i t iateFedSave --~ fedSaveBegun -+ fedSaveComplete --+

Norma lFedMgmt
ini t iateRestore -+ restoreComplete -+ Norma lFedMgmt

PausedFedMgrnt =
In i t ia tePausedFedAct iv i ty 17 Wai tForPausedFedAct iv i ty n

EndFedMgmt
In i t ia tePausedFedAct iv i ty =

requestResurne -+ PausedFedMgmt
r'l requestFedSave-+ PausedFedMgmt
n requestRestore--~ PausedFedMgmt

Wai tForPausedFedAct iv i ty =
in i t iateResume --~ resumeAchieved -+ NormalFedMgrnt
ini t iateFedSave --~ fedSaveBegun -~ fedSaveComplete -4

PausedFedMgrnt
i1 ini t iateRestore --~ restoreComplete -~PausedFedMgmt

Figure 5: Specification of FedMgmt

both saving and restoring state), it is permitted to request
a resume (but not another pause), and it should expect that
an initiateResume will occur. Once it does, the federation
returns to it normal behavior.

In the specification of Federatelnterface we use non-
determinism to abstract away the actual behavior of a spe-
cific federate. For example, InitiateFedActivity provides an in-
ternal choice among a set of alternatives. The actual choice
will depend on the computation of the federate filling the
role. Here we simply indicate that one of the possibilities
might occur.

7.2 S p e c i f y i n g R T I B e h a v i o r

While Federatelnterfaee models the behavior of a single feder-
ate, RTIBehavior describes how multiple federates interact via
the run-time infrastructure provided by the integration stan-
dard. A representative extract of the specification is shown
in Figure 6.

Like Federatelnterface~ the description of RTIBehavior uses mul-
tiple processes to separate different aspects of the glue's be-
havior. As before, these processes can be divided into those
encapsulating global constraints and those describing local
behaviors.

The global constraints are captured by the two processes
HandleMembership and JoinedFeds. These deal (respectively)
with how an execution is created and populated, and with
keeping track of which federates are currently members of
the federation. This information is needed at various times
by all of the mini-protocols. By separating out this concern,
we simplify each of the mini-protocols, since they need not
maintain this state on their own.

RTIBehavior = HandleMembership II JoinedFeds{} II
Min iProtocols

w h e r e
HandleMembership = . . .
JoinedFeds S =

~,wholsJoined!S -+ JoinedFedss)
(LJ i : (1. .nSeds) • Fedi . jo inFedExecut ion -+

Jo inedFedssu{ i })
([1 i : (1 . .n feds) • Fedi.resignFedExecut ion

Jo inedFedss \ { i })

Min iProtocols =
Federat ionProtocols II Declarat ionProtocols ObjectProtocols
OwnershipProtocols]i T imeProtoco ls II DataDis t r bu t ionProtoco s

Federat ionProtocols = PauseProtocol II . . .
PauseProtocol = HandlePauseResume IJ PausedFeds{}
HandlePauseResume =

(0 i : (1 . . n f e d s) • Fedi.requestPause -~
wholsJoined?S ~ wholsPaused?T -+
(; j : (S \ T) 0 Fedj . in i t ia tePause -~ §) ;

HandlePauseRe~ume)
(~ i : (1 . . n f e d s) • Fedi.requestResume -~ wholsJoined?S -~

who lsPaused?T-+ ResurneResponse s = = T , T)

ResumeResponse t rueaS =
(; i : S • Fedi . in i t ia teResume --~ §) ; HandlePauseResume

ResurneResponsefa lse , S = HandlePauseResume
PausedFeds S = . . .

ObjectProtocols = HandleRegistrat ions II HandleRernoves II
HandleAt t rOutOfScopes II . . .

HandleRegistrat ions =
(~ i : (1 . . n f e d s) • Fedi . registerObject -+ impl ic i tAOAN! i -+

HandleRegistrat ions)

HandleRernoves =
(~ i : (1..n.feds) • Fedi .deleteObject ~ wholsJoined?S -+

(; j : (S \ { i }) • Dec ide l fRemoveNeededj) ; HandleRemoves)
(~ i : (l . . n f e d s) • Fedi .a t t rsOutOfScope -+

Decidel fRemoveNeededi ; HandleRemoves)
17 (impl ic i tOutOf$cope?i --* Dedde l fRemoveNeeded i ;

HandleRemoves)

Decidel fRemoveNeededi = § n Fed i . removeObject -+ §

HandleAt t rOutOfScopes =
(~] i : (l . .nSeds) • Fedi.subscr ibeObjClassAttr --~

Dec ide lmplOutOfScopei ; HandleAt t rOutOfScopes)
(~ i : (1 . .n feds) • Fedi.unsubscr ibeObjClassAttr -+

Dec ide lmplOutOfScopei ; HandleAt t rOutOfScopes)
(~ i : (l . . nSeds) • Fedi .subscr ibeObjClassAtt rWithRegion --~

Dec ide lmplOutOfScopei ; HandleAt t rOutOfScopes)
(0 i : (1 . . n f e d s) • Fedi .unsubscr ibeObjClassAtt rWithRegion -P

Decide lmplOutOfScopei ; HandleAt t rOutOfScopes)
[1 (0 i : (1 . .n feds) • Fedi.publ ishObjClass - ,who lsJo ined?S --~

(; j : (S \ { i }) • Dec ideOutOfScopej) ;
HandleAt t rOutOfScopes)

0 ([] i : (1 . .n feds) • Fedi.unpubl ishObjClass -~wholsJoined?S -~
(; j : (3" \ { i }) • Dec ideOutOfScopef l ;
HandleAt t rOutOfScopes)

N (0 i : (1 . .n feds) • Fed i .a t t rOwnAcqNot i f i ca t ion --~
Dec ide lmplOutOfScopei ; HandleAt t rOutOfScopes)

]-] (impl ic i tAOAN?i --~ Dec ide lmplOutOfScopei ;
HandleAt t rOutOfScopes)

DecideOutOfScopei = § n Fed i .a t t rsOutOfScope --~ §
Decide lmplOutOfScopei = § n impl ic i tOutOfScope! i -~ §

Figure 6: Specification of RTIBehavior

75

In the case of JoinedFeds the current membership of the fed-
eration is modeled as a set, represented by the subscript (S)
of the process. The process communicates the value of this
state using the wholsJoined event. The rest of the definition
describes how JoinedFeds monitors the events affecting mem-
bership (joinFedExecution and resignFedExeuction) and modifies
its state accordingly.

The MiniProtocols process forms the core of the glue. This
process is itself a combination of subprocesses, each of which
is a mini-protocol defining how the RTI behaves with respect
to one aspect of the overall interaction. The mini-protocols
are first grouped by management group, for traceability to
the IFSpec, and then by service or closely related cluster of
services.

We found that it was useful to have two kinds of mini-
protocols at the lowest level, The first kind is concerned
with specifying the effects of a particular kind of service
call. These mini-protocols describe how a request initiated
by one federate leads to communication via the RTI with
other federates, and how those federates must respond in
order for the original request to be fulfilled. For example,
the simple HandlePauseResume mini-protocol describes how
the RTI reacts to a requestPause event initiated by a feder-
ate. In this case it finds out which federates are members of
the execution, which federates are already paused, and in-
forms all member federates that are not paused to engage in
initiatePause. Other mini-protocols, like those handling trans-
fer of ownership, although more complex, are described in a
similar fashion.

The second kind of mini-protocol is one that collects all
the stimuli that can cause a single RTI-initiated service.
HandleAttrOutOfScopes is a good example. The RTI is sup-
posed to inform a federate whenever a particular attribute
is no longer relevant to that federate. The list of services
that could cause this to happen is rather long, and could
result in communication from any of the federates, not just
the one that will be notified that the attribute is "out-of-
scope." Having the stimuli collected in one place makes it
much easier to see what causes a given RTI-initiated service.

A key aspect of the specification of the mini-protocols is
the use of non-determinism to achieve abstraction. For ex-
ample, the HandleAttrOutOfScopes mini-protocol collects the
stimuli that can cause the attrsOutOfScope event to be in-
voked by the RTI on a federate. To describe under what
conditions an invocation of publishObjClass (one of the stim-
uli) leads to attrsOutOfScope, a lot of information is needed.
The decision depends on state that accumulates during the
run of the execution (like attr ibute subscriptions of feder-
ates for object classes), as well as the parameters to the
triggering service invocation. Instead of representing the
precise relationship between two services (like publishObjClass
and attrsOutOfScope), we simply show that some relation-
ship exists. Looking more closely at HandleAttrOutOfScopes,
we notice that each stimulus is followed by a use of the
DecideOutOfScope description or the DecidelrnplOutOfScope de-
scription. These descriptions specify that the RTI makes
s o m e choice about whether or not the stimulus leads to an
object at tr ibute going out-of-scope, but does not specify how
the choice is made.

8 U s i n g t h e M o d e l

Constructing a formal model for an integration standard as
complex as the HLA is a non-trivial task. Many of the or-
dering relationships embodied in the Wright protocol can be

directly inferred from the pre- and post-conditions of ser-
vices in the original IFSpec. However, as we noted earlier,
for many situations, we had to experiment with a number of
alternatives, and in many cases get in touch with the design-
ers of the HLA to find out exactly what was the intended
behavior. Once it became clear what the behavior should
be, the model provided a vehicle for clearly providing a pre-
cise definition of it. Indeed, parts of our formal models will
be incorporated as supplementary documentation in future
releases of the IFSpec.

But the value of the specification goes beyond mere docu-
mentation. In the process of formalizing the HLA, we iden-
tified several dozen issues that pointed to deeper concerns
about the nature of the HLA design--concerns that are cru-
cial to understanding how to use or implement it. Here are
two examples:

E x c e p t i o n s : Each service description in the IFSpec lists a
set of exceptions. For example, joinFedExecution has the ex-
ception "federate already joined." In our a t tempt to formal-
ize the HLA, we realized that the formalization (and presum-
ably any implementation) wasn't possible unless we knew if
these exceptions resulted in actual message traffic or whether
they were simply anomalies that should be considered (but
without explicit notification). It turned out that the answer
was that in some cases exceptions are used to convey impor-
tant information, while in other cases they represent genuine
errors. For example, before a federate can join a federation,
the federation must exist. It has the option of creating the
federation itself, but there is no way for a federate to deter-
mine if this is unnecessary without first a t tempting to create
it, and getting an exception back if it has already been cre-
ated.

R e t a i n e d s t a t e : To mediate the communication between
federates, the RTI must retain certain state. But it is not
clear what state, and for how long. For example, when a
federate saves its state, it provides a save label. State can be
restored through a "restore" service call (using an existing
label). But state can only be restored when all federates
have a save for the save label being restored. However, in
the IFSpec there is no indication of how long this save label
can be successfully used: after what point can a federate
discard a previous save?

In addition to raising critical issues for clarification, the for-
mal model also helps expose unintended behavior of the stan-
dard. We discovered about a dozen such anomalies using a
combination of careful review and the facilities of a com-
mercial model checker for CSP, called FDR [8]. To make
use of the model checker we used two primary techniques.
The first was to look for potential deadlocks in parts of the
specification. ~ When the tool detects "deadlock" it provides
a trace showing where the process goes awry. Such deadlocks
typically indicated the presence of a situation in which dif-
ferent parts of the specification had inconsistent views about
the behavior expected of other parts. The other technique
was to see if the model was consistent with some desirable
behavior. To check for this situation we used to tool to check
if a refinement relationship exists between the model and a
process that exhibits just that behavior.

The problems that we detected fell into three classes:

5In principle one could run the entire model through FDI~ and find
all deadlocks within. In practice, the HLA model is much too large for
the checker: so we had to break it into small pieces, and incrementally
recombine these in various combinations.

76

(1) requestPause

(4) resignFedExecution
(5) initiatePause !!

(2) wholsJoined. (1,2 }
(3) wholsPaused. { }

RTI internal events

Figure 7: Race condition with resigning federates

R a c e c o n d i t i o n s : Figure 7 shows a trace depicting a race
condition we found when analyzing the HLA specification
using FDR. The second event, wholsJoined.{1,2}, depicts the
RTI determining the current federation membership. It is
does this to inform all federates to initiate a pause (as seen
in the HandlePause mini-protocol of Fignre 6). However, there
is a race condition inherent in this situation. If a federate
resigns after the RTI determined membership, the RTI can
erroneously a t tempt to communicate with a federate that is
no longer a member of the execution. Had the resignation
occurred before the RTI determined federate membership,
there would be no problem as the RTI would not at tempt to
initiate a pause on the resigned federate.

Deadlocks-" The next two examples point out different ways
in which a federation execution designed to the HLA stan-
dard can become deadlocked. Both cases deal with the pause
and resume protocols and circumstances under which a fed-
eration cannot resume normal execution.

In the first case, we look more closely at the implications
of allowing a federate to refuse to pause. Referring back to
the WaltForFedActivity description from the FedMgmt process
in Federatelnterface, we see that after receiving an initiatePause
event a federate is allowed to choose either to pause its exe-
cution and notify the RTI or to refuse to pause.

Looking next at the HandleResume mini-protocol in the glue
specification, we can see the problem with this. The boolean
condition to ResumeResponse formalizes a pre-condition to the
requestResume service, which states "The federation execu-
tion is paused." In order for the federation execution to be
paused, each federate that is a member of the federation
must be paused. If one federate refuses to pause, the entire
federation is not paused and hence normal execution may
not be resumed within the execution. Therefore, the ability
of a federate to refuse to pause leads directly to the possi-
bility that a federation execution may become deadlocked.

In the second case, we model a potential solution to the
first problem by requiring a federate to pause if so directed.
However, after adjusting the Wright specification to match
this solution, analysis still indicates that the execution may
deadlock, but for a different reason. Looking back at the
definition of PausedFedMgmt within the FedMgmt process, we
notice that a paused federate is allowed to choose whether
or not to request a resume. But for this situation FDR gen-
erates a trace leading to a deadlock, in which every federate
chooses not to request a resume; the federation is deadlocked
with every federate "expecting" some other federate to re-
quest a resume.

Unlike the first case, however, this example of deadlock does
not point to a flaw in the HLA standard. In a number of
cases such as this, there may exist several reasonable ways
to resolve a problem by suitable choices within a particular

federation or RTI implementation. In these cases it would
be wrong for the HLA standard to prescribe a particular so-
lution. For example, with respect to the problem of pausing,
the standard correctly does not include a requirement that a
paused federate m u s t request a resume, as there are other le-
gitimate ways in which deadlock can be reasonably avoided.
Other policies for ending pauses include designating a par-
ticular federate as the one that always must request resumes,
or specifying that a time-out should be used to decide when
to request a resume.

The real solution is to provide supplementary documenta-
tion that highlights such trouble spots and, where possible,
indicates possible solutions from which the integrator could
select. Our formal model partially serves this role by both
identifying the problem areas, and by allowing us to experi-
ment with different policies for resolution.

U n e x p e c t e d o u t c o m e s : The Wright model allowed us
to analyze whether certain combinations of behaviors could
lead to unintuitive outcomes. Typically, the specification
would show immediate behaviors (e.g., that an RTI could
reply to a given event in one of several ways), but the ques-
tion arose, what is the result of composing such behaviors?
Are there combinations of choices that lead to unintuitive
outcomes?

As an example, consider the following three behav-
iors: The first immediate behavior is apparent from the
HandleRegistrations mini-protocol. Registration is used by
a federate to inform the RTI of the existence of a new
object, with the result that the registering federate ac-
quires ownership of some (or all) of the object 's attributes. 6
The second immediate behavior is apparent from the
HandleAttrOutOfScopes mini-protocol: acquiring ownership of
an attribute may cause the attribute to go out-of-scope.
The third behavior is apparent from the HandJeRemoves mini-
protocol; when an attribute goes out-of-scope, the federate
may be informed that it should remove the object (i.e., that
object is no longer relevant to the federate and it should
delete its local copy).

When these three behaviors are composed, we can observe
that it is possible for the registration of an object to lead
directly to the RTI telling the registering federate to remove
that object. This, clearly, is not what was intended. How-
ever, there remains a question of whether or not the IFSpec
does actually allow this chain of activity. Since two of the
immediate behaviors were described in mini-protocols that
use non-determinism to abstract the real relationships, we
still must determine if the composed behavior is possible
(i.e., whether this particular sequence of choices is a valid
one). By looking back at the IFSpec, we see that this could
happen if the registering federate acquires ownership of all
the attributes of the object- the composition is possible and
there is a problem.

9 D i scuss ion , C o n c l u s i o n , a n d F u t u r e W o r k

This paper has described an approach to formalization and
analysis of integration standards using the HLA as an ex-
ample. The effectiveness of this approach is best indicated

6Normally, whenever a federate acquires ownership, the
attrOwnAcqNotification event is used. In the case of object regis-
tration, however, acquiring ownership is part of the post-conditlon of
the registration service and no separate service is used to inform the
federate of the ownership change. We explicitly denote such service
side-effects that otherwise are noted in separate services by using such
events as implicitAOAN.

77

by noting that its identification of issues led directly to sig-
nificant improvements in the published specification of the
HLA. However, in considering the value of the approach it
is important to be clear about what is essential, what is
incidental, and what still remains to be done.

Among the essential elements we would point to four key
techniques. First is the t reatment of a component inte-
gration s tandard as a formal architectural model, focus-
ing on the semantics of the connectors as the key issue
in need of clarification. Specifically, an architectural ap-
proach focuses on the need to model the connection ap-
paratus of the s tandard, and further helps structure the
definition-explicitly separating the interface to the connec-
tor (here Federatelnterface) from the mediating behavior (here
RTIBehavior).
Second is the modeling of that semantics as a protocol. By
explicitly representing orders of invocations and loci of non-
determinism and choice, a protocol clarifies many global con-
trol and sequencing issues, as well as opening the way for
exploration of consequent behavior.

Third is the use of abstract ion to make the architectural
specification tractable (both intellectually and for model-
checking tools). In particular, to do this we abstracted away
the details of the da ta model and decisions of individual
federates. While this led to a lack of precision, it greatly
simplified the overall specification. (As with any abstraction,
however, the downside is that each discovered problem must
be carefully examined to determine if its introduction is a
consequence of abstract ing too far from the actual system.)

Fourth, was a careful at tent ion to structuring the architec-
tural specification. In particular, we divided the specifica-
tion into par ts that directly corresponded to the "manage-
ment groups" in the IFSpec. By doing this we were able
to part i t ion our effort into incremental steps (tackling one
management group at a time), and to provide traceabili ty
to the original document.

Among the inessential aspects were the use of CSP and the
details of the simulation domain itself. CSP provides the
formal basis of Wright, but it is only one of many possible
notations that could have been used. As we note below,
we found other complementary formalisms to be effective
in identifying different kinds of problems. Moreover, other
protocol modeling notations would likely have revealed many
of the same problems. For example, the developers of Rapide
used their event-based architectural modeling language to
discover problems similar to those that we identified.

While distr ibuted simulation is unique in some respects,
many of the issues that we identify in this paper would ap-
ply to virtually any complex integration standard. The HLA
is architecturally unusual in so far as it is centered around
a single connector (the RTI). Moreover, some of the com-
plexity of the HLA specification comes from the domain of
distr ibuted simulation (such as the part icular services for
time and object management).

On the other hand, we would argue that other aspects of
the HLA are embodied by most other integration standards.
In particular, most s tandards must take care to explain
how a composition is created, how reconfiguration takes
place during run time, how synchronization is handled be-
tween multiple components, and what kinds of guarantees
are provided for inter-component communication. These as-
pects are equally pert inent to s tandards for avionics systems,

robotics control systems, and even general-purpose compo-
nent integration standards such as DCOM or CORBA. And
it is these kinds of properties of an integration s tandard that
make it most difficult to understand, implement, and reuse.

It is important to note, however, that formalizations such
as ours are just one of many tools and notations. Wright
is good at detecting certain kinds of anomalies--pr imari ly
those associated with protocols of interaction. But there are
many other issues that are not addressed, such as real-time
behavior, state models, and compliance testing. This sug-
gests that future work on modeling architectural s tandards
can and should exploit other complementary approaches and
tools for architectural modeling and analysis.

Indeed, in our own work we we also formalized parts of the
specification using StateCharts (which appear in [23]) and
Z [7]. In particular, we used these formalisms to handle the
state-oriented aspects of the system. For example, a key
property that should be maintained by a federation is that
there is at most one owner for every simulated object in
the system. This property is relatively easy to specify (and
check) using a language like Z, but cumbersome using one
like CSP.

One important extension of the approach described in this
paper is the use of explicit formal models to guide imple-
mentors in producing conformant components and run-time
infrastructure. There are at least two key conformance issues
that a formal model can help resolve. The first is to provide
bet ter guidance for implementors. The formal model helps
clarify what m u s t be included and thereby establishes a base-
line for functionality in components and supporting run-time
infrastructure. For example, our HLA model clearly indi-
cates that the RTI will have to maintain various kinds of
state, including the current list of joined federates, pending
pauses, requests for object a t t r ibute ownership transfer, etc.
Such information is present only implicitly in an API, mak-
ing it difficult for infrastructure implementors to tell what
is essential and what is optional.

A second issue is conformance checking. Given a formal
model it should be possible to devise a set of conformance
tests that can be used by component and infrastructure im-
plementors. While the generation of tests from formal spec-
ifications is itself an active research area, the application of
those results to integration standards seems like a particu-
larly promising area for future work.

More generally, the use of formal models for documenting
and analyzing integration standards is clearly in its infancy.
We will need many more examples, and as noted, broader
coverage of other important propert ies before it becomes
clear what are the relative merits of using formal modeling
techniques such as those described in this paper. However,
we believe the success of the Wright formalization of the
HLA is cause for guarded optimism.

10 A c k n o w l e d g e m e n t s

This research was supported by the Defense Advanced Re-
search Projects Agency and Rome Laboratory, USAF, under
Cooperative Agreement F30602-97-2-0031, and by the De-
fense Modeling and Simulation Office (DMSO). Views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of Rome Labora-
tory, the US Department of Defense, or DMSO. The US Gov-
ernment is authorized to reproduce and distr ibute reprints

78

for Government purposes, notwithstanding any copyright
notation thereon. We would like to acknowledge the help
of Richard Weatherly and Reed Little, our main sources of
wisdom for the intended behavior of the HLA.

R E F E R E N C E S

[1] G. Abowd, R. Allen, and D. Garlan. Formalizing
style to understand descriptions of software architec-
ture. A CM Transactions on Software Engineering and
Methodology, October 1995.

[2] R. Allen. Formalism and informalism in architectural
style: A case study. In Proc of the First IntL Workshop
on Architectures for Software Systems, April 1995.

[3] R. Allen. A Formal Approach to Software Architecture.
PhD thesis, CMU, School of Computer Science, January
1997. CMU/SCS Report CMU-CS-97-144.

[4] R. Allen and D. Garlan. A formal basis for architectural
connection. ACM Transactions on Software Engineer-
ing and Methodology, July 1997.

[5] R. J. Allen, D. Garlan, and J. Ivers. A Wright specifi-
cation of the HLA. Technical report, Carnegie Mellon
University, School of Computer Science, 1998.

[6] E. Clarke et al. Automatic verification of finite state
concurrent systems using temporal logic specifications.
ACM Transactions on Programming Languages and
Systems, April 1986.

[7] C. A. Damon, R. Melton, R. J. Allen, E. Bigelow~ J. M.
Ivers, and D. Garlan. Formalizing a specification for
analysis: The HLA ownership properties. Technical
Report CMU-CS-98-149, Carnegie Mellon University,
School of Computer Science, 1998.

[8] Failures Divergence Refinement: FDR2 User Manual.
Formal Systems (Europe) Ltd., Oxford, England, ver-
sion 2.22 edition, October 1997.

[9] D. Garlan, R. Allen, and J. Ockerbloom. Architec-
tural mismatch: Why reuse is so hard. IEEE Software,
November 1995.

[10] C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[11] G. J. Holzmarm. Design and Validation of Computer
Protocols. Prentice Hall, 1991.

[12] D. C. Luckham, L. M. Augustin, J. J. Kenney, J. Veera,
D. Bryan, and W. Mann. Specification and analysis of
system architecture using Rapide. IEEE Transactions
on Software Engineering, April 1995.

[13] N. A. Lynch and M. R. Tuttle. An introduc-
tion to input/output automata. Technical Report
MIT/LCS/TM-373, MIT LCS, 1988.

[14] J. Mcgee, N. Dulay, S. Eisenbach, and J. Kramer. Spec-
ifying distributed software architectures. In Proceedings
ESEC'95, September 1995.

[15] M. Moriconi, X. Qian, and R. Riemenschneider. Correct
architecture refinement. IEEE Transactions on Soft-
ware Engineering, April 1995.

[16] J. Peterson. Petri nets. ACM Computing Surveys,
September 1977.

[17] RASSP project overview, Version 1.0. CSIS TR, Dept
of Electrical Engineering, University of Virginia, 1994.

[18] A. W. Roscoe. The Theory and Practice of Concur-
rency. Prentice Hall, 1998.

[19] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstractions for software ar-
chitecture and tools to support them. IEEE Transac-
tions on Software Engineering, April 1995.

[20] D. B. Stewart, R. A. Volpe, and P. K. Khosla. In-
tegration of real-time software modules for reconfig-
urable sensor-based control systems. In Proc 1992
IEEE/RSJ Intl Conf on Intelligent Robots and Systems.
IEEE Computer Society Press, July 1992.

[21] K. Sullivan, J. Socha, and M. Marchukov. Using for-
mal methods to reason about architectural standards.
In Proceedings of the 1997 International Conference on
Software Engineering, May 1997.

[22] U.S. Department of Defense. High Level Architecture
Interface Specification, Version 1.2, August 1997. Also
available via http://www.dmso.mil/projects/hla/.

[23] U.S. Department of Defense. High Level Architecture
Interface Specification, Version 1.3, draft 1, April 1998.
Also available via http:/ /www.dmso.mil/projects/hla/ .

A S u m m a r y o f C S P used in th is pape r .

We use the following subset of CSP:

• P rocesses a n d Even t s : A process describes an entity
that can engage in communication events. Events
may be primitive or they can have associated data (as
in e?x and e!x, representing input and output of data,
respectively).

• P re f ix ing : A process that engages in event e and then
becomes process P is denoted e-4P.

• Sequenc ing : ("sequential composition") A process
that behaves like P until P terminates (§) and then be-
haves like Q, is denoted P ; Q.

• I n t e r r u p t i n g : A process that behaves like P until the
occurrence of the first event in Q, is denoted P /x Q.

• A l t e r n a t i v e : ("external choice") A process that can
behave like P or Q, where the choice is made by the
environment, is denoted P ~ Q. ("Environment" refers
to the other processes that interact with the process.)

• Dec is ion : ("internal choice") A process that can be-
have like P or Q, where the choice is made (non-
deterministically) by the process itself, is denoted
P n q .

• N a m e d Processes : Process names can be associated
with a (possibly recursive) process expression. Pro-
cesses may also be subscripted to represent internal
state.

• Para l le l C o m p o s i t i o n : Processes can be composed
using the [[operator. Parallel processes may interact
by jointly (synchronously) engaging in events that lie
within the intersection of their alphabets. Conversely,
if an event e is in the alphabet of processes P1 and P2,
then P1 can only engage in the event if P2 can also do
so. That is, the process P1 [IPa is one whose behavior is
permitted by both P1 and P2,

In process expressions -4 associates to the right and binds
tighter than both ~and N. So e-4 f -4P 0 g-+Q is equivalent
to (e-4(/-4P)) If (g-4q).

79

