
On-Line Change Mechanisms 
the Software Architectural Level 

(Experience Paper) 
S y l v i a  S t u u r m a n ,  J a n  v a n  K a t w i j k  

D e p a r t m e n t  o f  M a t h e m a t i s c  a n d  I n f o r m a t i c s ,  

D e l f t  U n i v e r s i t y  o f  T e c h n o l o g y ,  P . O . B o x  356,  2600  A J  D e l f t ,  

T h e  N e t h e r l a n d s .  

E-mail: S. Stuurman@twi. tudelft, nl, J. vanKatwij k@twi, tudelft, nl 

Abstract 

Our interest in the field of software architecture is focused 
on the application in technical systems, such as control sys- 
tems. Our current research in this field is centered around a 
real-life case study, a control system for unmanned vehicles 
t ransport ing containers on the "Maasvlakte", an area in the 
ports  of Rot terdam.  

Impor tant  issues in this control system are scalability, 
evolvability, and on-line change capacities. 

In this paper,  we discuss two mechanisms for on-line 
change in the distr ibuted control system for the Maasvlakte 
system, which we have implemented in Java. The software 
architecture we use is a configuration of distr ibuted pro- 
cesses, communicating according to the subscription model. 
We will focus on the software architectural aspects of the 
mechanisms for on-line change. One of these mechanisms 
is associated with the decoupling of processes as a result 
of the subscription-based communication model. The other 
mechanism is based on the late-binding properties of Java. 

1 Introduction 

1.1 On-Line Change 

A structural  proper ty  of software seems to be that  changes 
are needed from time to time. Even in the situation that  we 
would be able to deliver systems without bugs, meeting ex- 
actly the specified requirements, the dynamic environment 
in which the piece of software struggles for life would even- 
tually dictate new or different requirements, which can only 
be met by changing the software system. 

In fact, a requirement of probably all software systems 
should be a certain degree of flexibility with respect to the 
remainder of the requirements. One should design for change. 

In several systems, shutting the system down to apply changes 
is unacceptable. According to Stankovic in [13], on-line 
change capabilities will especially be needed in the field of 
real-time and embedded systems. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage and that copies bear this notice and the full citation on the first page. 
To copy otherwise, to republish, to post on servers or to 
redistribute to lists, requires prior specific permission and/or • fee. 
SIGSOFT '98 11/98 Florida, USA 
© 1998 ACM 1-58113-108-9/98/0010...$5.00 

1.2 Software Architecture 

The recently emerged field of software architecture addresses 
the design of overall system structure.  Design for change 
should s tar t  at  this level. 

Software architectures are typically described as a com- 
position of high-level connected components ([5]). The ex- 
pression has often been used to indicate structures repre- 
senting the development view of a system, i.e. the high- 
level structure of the code (in [15] for instance, "software 
architecture" is always used in this way). 

In recent years, software architectures more and more 
describe the high-level design of the software system as it is 
seen during execution, with connections representing "inter- 
act" relationships as opposed to "implements" relationships 
([1]). Figure 1 shows these two usages of software architec- 
ture, with the "run-time view" indicating the la t ter  concept. 

Development 
view 

software 
orchltecture 

Run-time 
view 

soleMn:ire 
orchlteckJre 

structures 

V Y ] °,,.=.=,. I .,,.=,, ..J ° ' ~ng  I 
I ~1 ,. , .m 

~uc turos  

Figure 1: Development and Run-time view Software Archi- 
tectures 

Kruchten extends this concept of software architecture in [9] 
into four views: the logical view, supporting the functional 
requirements; the process view, focusing on concurrency and 
synchronization aspects; the physical view, mapping soft- 
ware on hardware; and the development view, describing 
the "implements" relationships. 

In tiffs paper,  we will adhere to the notion of software ar- 
chitecture as components connected by "interact" relation- 
ships, which generally means a combination of the logical 
and process view as seen by Kruchten. 

We will tackle the problem of on-line change at  the soft- 
ware architecture level, using a real-life example, and discuss 

80 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288195.288257&domain=pdf&date_stamp=1998-11-01


the problem more generally. 

1.3 A Case Study 

The case study we use to experiment with our ideas is the 
control of unmanned vehicles on the "Maasvlakte" in the 
ports of Rotterdam. Rotterdam is one of Europe's main- 
ports, were huge numbers of containers are handled. 

In the harbour area, containers are moved to and from 
ships, onto trains and lorries. Cranes are used to carry the 
containers from a ship onto a lorry, from a lorry to a stack, 
from a stack onto a train, or the other way around. 

Because of the huge safety risks involved, the harbour 
currently employs a system of automated, unmanned vehi- 
cles for the transport of the containers. In the near future, 
extensions of this system are foreseen. More terminals will 
be involved, the number of vehicles will increase (rather 1000 
than the current number of 50), and vehicles with different 
characteristics will be employed. 

The current system, controlled from a central site, is not 
able to handle these changes. The system we are designing 
should not only be usable for the current situation, but also 
for future changes, and should allow large scale simulations 
as well. Scalability and evolvability thus are important non- 
functional requirements of the system to be designed. 

1.4 Outline of the Paper 

The paper is organized as follows: 
In section 2 we give an outline of the system we designed. 
We took the decision to distribute the control, and to use 
communication between the processes according to the so- 
called "subscription model". 

The two different mechanisms for on-line change that are 
available in our solution for the control system are discussed 
in section 3. One of the mechanisms is associated with the 
decoupling of processes as a result of the subscription based 
communication. The other mechanism is based on the late- 
binding properties of Java. We show the implications of 
both mechanisms on the software architecture. 

Related work is discussed in section 4. In section 5 we 
discuss the implications of what we have found, come up 
with advantages and disadvantages of both mechanisms for 
on-line change, and show some loose ends. With section 6, 
we end with some concluding remarks, and express wishes 
for future research. 

2 A Control System for the Maasvlakte 

The problem of the case study comes down to control the 
movements of unmanned vehicles from one given place to 
another: the problem of assigning tasks to vehicles is another 
subproblem. 
In an early stage, we took two decisions: 

• Control is distributed. Each vehicle has its own con- 
troller dictating its behaviour. The main reason for 
this decision is that a distributed model conceptually 
fits perfectly to the situation of unmanned vehicles 
moving around. In practice, we will have to evaluate 
performance before deciding whether central or dis- 
tributed control is more effective. 

• Communication between the vehicle controllers and 
other processes is modeled according to the "subscrip- 
tion model", which is explained below. 

2.1 Subscription Model Communication 

Subscription based communication between processes ([2]) 
is a way of loosening the coupling between processes. A 
conceptual model for subscription based communication is 
the use of radiographic frequencies, called :'channels": 

• The availability of an unbounded number of channels 
is assumed. 

• For each channel, the type of data which are sent is 
defined. 

• Each process may send through whichever channels it 
wants, as long as it adheres to the kind of data that 
are expected. 

• A process may subscribe to channels. Processes are 
able to "listen" to the data sent along the channels to 
which they are subscribed. 

• Subscriptions may be done (and undone) on-line. 

An analogy to this form of communication is the way usenet 
users talk to each other through newsgroups. Someone may 
send messages to newsgroups. One subscribes to the news- 
groups one is interested in, and reads messages appearing 
in those groups. Users have no need for direct connections, 
and may in principle stay anonymous. 

In a system of distributed processes communicating ac- 
cording to the subscription model, direct connections be- 
tween processes are avoided. 

However, one must keep in mind the restrictions of this form 
of communication: 

• The order in which the data are sent is not necessarily 
the same order at which they are received. 

• There is no way to encertain that data are not lost, 
other then sending some precious data twice or more 
times. The typical use of subscription-based commu- 
nication is where the same kind of data is sent over 
and over again, every Lime slightly different. In such 
a case, the loss of one message is no disaster: the re- 
ceiving processes temporarily use information slightly 
older than it should be. 

2.2 Outline of the Control System 

The control system we designed for the Maasvlakte case 
study is discussed in detail in [12]. In this paper, we will 
briefly outline the ideas. 

The whole area where the vehicles may drive is charac- 
terized by x- and y-coordinates. Each unmanned vehicle is 
controlled by its own vehicle process. 

We assume that: 

A seperate planner system provides each vehicle with 
a plan: the place where it should receive a container 
from a crane, and the place where it should deliver the 
container. Places are represented by their coordinates. 

A vehicle process is able to deduce a detailed plan (a 
sequence of places) from the given plan. 

Each vehicle process knows the position (in terms of 
coordinates), the velocity and the characteristics of the 
vehicle it controls. 

81 



Vehicles send their short- term plans (the par t  of the detail 
plan that  should be followed in the immediate future) regu- 
larly through a channel. They listen to the short-term plans 
of other vehicles and evaluate possible collisions. In the case 
of a possible collision, traffic rules determine which vehicle 
should wait for the other. 

To avoid scalability problems, we divided the whole area 
in so-called regions: a grid of for instance 10 by 10 coordi- 
nated points. Each region is associated with one channel. 
Each vehicle sends its short- term plan through the channel, 
associated with the region it is positioned in; it  listens to 
the same region channel, and to the channels of the eight 
regions surrounding this region as well. 

process 

I }-, 
$ e m l  
c o n l ~ t i o n  

Listen 

Figure 3: Configuration of Processes and Connections 

. . . . . .  ! ,",, - : - -  - -  - . . . . . . .  ! 
i , ' , l  J i ] 1  , 

, ' , ,  , ' , ,  
, , j  , 

" 
0 l I i o i i  i 

: , " ~ . ,  | ~ - - " - - ' h '  , , 
, , ~ ~ ~ , ~ . , ~ r  

. . . .  ~ . . . . . . . .  : . / - - . ~ . . -  . . . . . . .  , . . . . . .  [ . . . . .  . :  . . . . . . . . . . . .  

. . . . . . . . .  ,I. . . . .  ' 

. . . . . . . . . . . . . . . . .  2 . . . . . . . . . . . . . . . . . .  ' . . . . . . . . . . . . . . . . . .  

~.  Se~d Connection ~ Region Channel 

. . . .  ~ Rece4ve Connection • Vehkle 

Figure 2: Vehciles in Regions 

Figure 2 shows two vehicles in different regions. Each sends 
(solid line) to the channel associated to the region it is posi- 
tioned in. Each vehcile listens to the same channel, and to 
the channels belonging to the eight regions around it. Note 
that  it is possible that  more than one vehicle drives around 
in one region. 

One region process is associated with each region. It collects 
the da ta  of the vehicles driving in the region, and creates a 
summary which is sent through the "image channel", avail- 
able for the visualization system. The visualizer can also be 
used to zoom in to one region, by telling it to listen to the 
associated channel. The short- term plans of the vehicles in 
that  region may be inspected. 

The traffic rules are a par t  of each vehicle process. Every 
vehicle process listens to a "rules" channel, which may be 
used to send a new version of these traffic iafles. To avoid 
version conflicts, vehicles send the version number of the 
rules they use, together with their short- term plan. In case 
of a version conflict, a default nile is used by both  parties. 

2.3 Software Architecture Large-Scale 

Figure 3 shows the software architecture of the proposed 
solution for the Maasvlakte case. A vehicle process (pro- 
cesses are represented by a circle) sends (denoted by a "Send" 

connection) through a region channel (channels are repre- 
sented by rotmded boxes), and listens (denoted by a "Lis- 
ten" connection) to nine region channels. 

A region process summarizes the da ta  going through a 
region channel, and sends the summary through the image 
channel. The visualizer process may either listen to the 
image channel, and receive the summaries of all regions, or 
listen to one region, to receive detailed information. Every 
vehicle process listens to the rttles channel, which is, from 
time to time, provided with new rules, by the rules injector. 

2.4 Implementation 

The system is implemented in Java. At  this moment,  we 
have a simulation of the system running on the computer 
network (Unix, Linux and Windows95) of our research group. 
We are currently evaluating the possibilities of a "transport  
lab" with real miniature vehicles communicating through 
radio transmission. 

Communication according to the subscription model is 
implemented in the "channel l ibrary",  by de Rooij ([3]). 
This l ibrary offers a set of classes with facilities to send 
and receive objects, in the form of (unthreaded) Transmit ter  
classes and (threaded) Receiver classes. One subclass of the 
Receiver class is meant for class definitions. It transforms a 
received class definition into a Java class, and instantiates 
the class into an object. This class makes use of the late- 
binding properties of Java. However, normally in Java, new 
class definitions are "pulled" by the class needing it; in this 
case, we had to "push" new class definitions into the system 
and force processes to instantiate them. 

Figure 4 shows the internal view of a vehicle process. In 
this figure, active (threaded) objects are represented by a 
rounded box, while sharp-edged boxes denote unthreaded 
objects. 

The vehicle object  performs a loop: 

• The VehicleState object is asked to construct the cur- 
rent Vehiclelnfo (consisting of the version of the traffic 
rules, the identity, speed and position of the vehicle, 
and the short- term plan). 

• The Transmit ter  is asked to t ransmit  the VehicleInfo 
object. 

• In the meantime, the Receiver objects connected to 
the Receivermanager object  listen for information from 
other vehicles. The ReceiverManager object  is respon- 
sible for the choice of the channels to listen to. 

82 



I 

PriorityDecider 

v.h,oes   ] I I 

Transmitter 

I 

Figure 4: Objects in the Vehicle Process 

• Once in a while, the PriorityDecider is asked to com- 
pute the next position to drive to, based on the in- 
formation gathered, and the traffic rules. The Vehi- 
cleState object is updated. 

• The traffic rules themselves may be updated when a 
new classdefinition is sent through the Rules channel. 

3 On-Line Change at the Software Architecture Level 

In the solution for the Maasvlakte case, the initiative for 
changes is always taken from outside the system. Two mech- 
anisms for applying these changes are available: 

• Create or remove processes. 

• Send a new subclass. 

3.1 On-Line Change on the Process Level 

The reason that on-line changes in the form of the creation 
or the removal of processes (or both), can be applied very 
easily in the system for the Maasvlakte, is the fact that we 
made use of the subscription model for communication. 

Figure 5: Subscription-Based Communication 

Figure 5 shows a possible configuration of processes, chan- 
nels, send- and listen connections. A solid-line connection 
stands for a "send" connection; a dotted line for a "listen" 
connection. Processes never have a direct connection to 
other processes, and are anonymous. Channels are named, 
so processes need to know the name (and the type of data 
connected with the channel) of the channels to which they 
send or receive data. 

When a process is removed, no other process has to be in- 
formed. The same applies for the creation of a new process. 
Chatmels can be added too, without affecting other chan- 
nels, or any of the existing processes. 

What is needed however, to change a software system 
communicating according to the subscription model, is an 
"all-knowing" entity outside of the system. This "all-knowing" 
entity has a direct connection to any of the processes, to be 
able to delete them. Moreover, it knows the names and the 
datatypes of every channel. 

Making use of process creation and removal to induce 
on-line change in a subscription-based system, metals that 
one deviates from the model, and allows one process to have 
direct connections to every process and every connection 
within the system. 

7 

Figure 6: Creation and Removal of Processes 

Figure 6 shows this need for direct connections. The 
"changer" in this figure may stand for a human, for a seper- 
ate process, or for one or more of the processes within the 
actual system. The type of connections needed for such a 
system are: 

• "Send" connection. From process to channel. Belongs 
to the subscription model. 

• "Listen" connection. From process to channel. Be- 
longs to the subscription model. 

• "Create or Remove" connection. From process to pro- 
cess. Deviates from the subscription model. 

• "Create" connection. From process to channel. Devi- 
ates from the subscription model. 

3.2 On-Line Change on the Class Level 

Enforcing on-llne change by the mechanism of sending new 
classes is possible when every process that has to be changed 
listens to the channel, reserved for the communication of 
class definitions. 

Figure 7 shows that in this case, the connections available 
in the subscription model are sufficient. 

83 



~ s ~ j j ~ ~  _ i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

, . . . . . . .  i . . . . . . .  L. . . . . . . .  m . . . . . . .  £ . . . . . .  _0 . . . . . . . . . . . . . . .  

Figure 7: Sending New Subclasses 

Processes should all listen to a channel, reserved for class 
definitions. Upon arrival, the class definition is instantiated 
into an object, which should connect itself to objects in the 
process. In the case study, this change mechanism is used 
for the traffic rules, but  in principle, every class used in the 
processes of a system may be changed in this way. 

3.3 Initiating an On-line Change 

As we have seen, an advantage of a subscription based ar- 
chitecture is the ease of on-line changes. Both mechanisms 
are based on the fact that processes in this architecture, are 
anonymous. 

Changing the system at the process level means that one 
introduces a meta-level: one (or more) processes need direct 
connections to processes that  are to be removed. In general, 
this "meta-level system", will consist of a change manage- 
ment system and the control system itself. The control sys- 
tem is wired according to the subscription model, while the 
change management system maintains direct connections to 
the processes of the control system. 

When changing the system by sending a new classdefinition, 
the processes that are affected are anonymous too: processes 
that listen to the Class channel, and that use the communi- 
cated class, will change their behaviour. The sender of the 
new class doesn't  need to know which processes. 

This mechanism for on-line change is more in line with 
the nature of distributed systems: there is no central control, 
even not for implementing changes. 

This opens the possibility of implementing systems that 
are able to change themselves, from within: one of the pro- 
cesses might notice the need for change of a certain class. 
This process, within the system, may send a class defini- 
tion for such a new class, and thus induce a change in every 
process using that same class. Such a scenario is not possi- 
ble when using on-line change on the process-level, because 
the initiator of a change should know which processes are 
involved, and should have direct connections to them. 

On-line change at the process level thus is most suitable for 
situations where the initiative for a change lies outside the 
actual system. A change management system is added to 
the control system, which can be used to check the validity 
of proposed changes, maintain consistency, etcetera. This 
change management system should maintain direct connec- 
tions with the processes of the actual control system. 

Changes at the process level may of course be used within 
the control system itself as well, but in this case, direct con- 

nections are needed within the control system, which is not 
obvious for a system based on anonymous communication. 

Changes on the class level on the other hand, may be 
induced by every process within the control system, with- 
out any need for a change of the used subscription based 
architecture. Of course, changes on the class level may be 
initiated from the outside as well. 

4 Related Work 

A software architectural style which is closely related to the 
subscription based model, is the implicit envocation style 
([6]). In this style, components communicate anonymously 
as well. The difference is, that implicit invocation is a 
mechanism to call a method of another component anony- 
mously (by raising an event, upon which all components that 
have subscribed to the event are called by their associated 
method). This means that on-line removal of components re- 
quires more attention than in the case of subscription-based 
systems: when a component is removed, all components that 
are calling a method, anonymously or not, are affected. 

The Distributed Software Engineering Group of Kramer 
and Magee has done a lot of work on on-line change in 
distributed systems. In [8] they introduced a model for 
dynamic change management in distributed system. They 
specify changes at the architectural level (without mention- 
ing it explicitly: the paper was written before "software ar- 
chitecture" became an issue). 

Changes have the form of creation or removal of pro- 
cesses. The software architecture they implicitly assume is 
one with direct connections between the processes. A change 
management system is used to make certain that changes 
that have an effect on certain processes are only applied at 
moments when these processes are not involved in a com- 
munication transaction. This notion of a "safe state" is 
elaborated upon in [7]. 

By using the subscription model, we avoid the problem 
of having to check for a safe state: because communication 
takes place thi'ough channels, no harm is done when a pro- 
cess is killed while sending or receiving data. 

In [10] their specification language for software architec- 
tures, "Darwin", is described. Using Darwin, it is possible 
to specify the creation or removal of processes, and the as- 
sociated connections. 

Darwin might be a good candidate as an ADL for sub- 
scription based software architectures. 

Oreizy, in [11], defines runtime architectural change in terms 
of components: he discerns addition, removal and replace- 
ment of components, and reconfiguration. He focuses on one 
architectural style, C2 ([14]). In the paper, tool-support for 
on-line change in C2-based systems is proposed. On-line 
change on the component level is again associated with di- 
rect connections between components. 

Frieder and Segal described a scheme for procedure replace- 
ment in [4]. Our class-level mechanism is in fact, like this 
scheme, a change at source-code level. We use the decou- 
pling aspects of the software architecture, together with the 
late-binding properties of Java, to enable the use of source- 
code changes at the architectural level. 

5 Discussion 

On-line change of systems, at the architectural level, is a 
rather new research area. The approaches that we have seen 

84 



until now aim at the creation and removal of components in 
an architecture with direct connections. 

By making use of a subscription-based model, we get 
rid of the problem of applying changes at the right moment. 
Another reason why we don' t  have to worry too much about 
lost messages is the nature of subscription-based communi- 
cation. It should be used for information that is sent over 
and over again, every time slightly different. In such a case, 
it is no problem when some of the data are lost during the 
removal or the creation of a process. 

On the other hand, we make use of the same connections 
for the distribution of class definitions. As has been said, the 
only way to handle precious information, is to send it more 
then once. There is no way to make certain that eventually 
every process will receive a new class definition, and there is 
certainly no way to know whether or not every process has 
received a new class. 

This fact has implications on the internals of the pro- 
cesses involved: one must always take into account that it 
might be possible that two processes have different versions 
of the same class. In our Maasvlakte case, where we send 
new traffic miles in the form of class definitions, we handle 
this inconsistency problem by having the vehicle processes 
send the version of the traffic rules they use, together with 
their short-term plan and other information. In the case of 
a version conflict, every process involved uses one general 
default rule. 

On-line change by creation and removal of processes is not 
new. New processes may get connections to existing chan- 
nels, or new channels may be created. When using this 
kind of on-line change in a subscription-based software ar- 
chitecture, one avoids connection-related problems on the 
one hand, but on the other hand, one needs to violate the 
software architecture to enable the removal of processes. 

On-line change by the distribution of new class defini- 
tions is new. This mechanism is facilitated by the late- 
binding properties of Java, but on the other hand, we had 
to find a way to enforce receiving processes to use a received 
class: normally, new versions of Java-classes are comnm- 
nicated on a pull-base, while we needed communication of 
class definition on a push-base. 

In fact, "precious" information should be sent through di- 
rect connections. This enables one to use protocols to check 
whether the information is really received, or to handle in 
the case of failing processes or failing connections. 

A wish for future research certainly is to explore com- 
binations of direct connections and anonymous communica- 
tion. 

Changes at the class level can be implemented by removal 
and creation of a process, provided that one has the means 
to save the state of a process. The same applies for the 
other way around. So, the choice for process level or class 
lever changes should be based on other considerations. One 
such a consideration is the question wether the initiative for 
changes come from within or from outside. Another con- 
sideration could be the fact that direct connections from 
"outside" are necessary anyway because the user should be 
able to have direct control. 

6 Conclusion 

We have presented two mechanisms for on-line change in a 
control system consisting of distributed processes, commu- 
nicating according to the subscription model. 

One mechanism is to remove and create processes. As a 
result of the used communication model, problems of finding 
a safe state almost don' t  exist. On the other hand, one needs 
direct connections to the processes involved. 

The other mechanism makes optimal use of the anony- 
mous connections, sending new class definitions through chan- 
nels. The problem in this case is that the application should 
be able to handle version conflicts. 

We already mentioned that a wish for future research is 
to explore the advantages and disadvantages of combining 
direct and anonymous connections. 

For the future, we would like to explore both on-line change 
mechanisms. We would like to build a change management 
system, and elaborate on the different kind of consistency 
checks that might be done by such a system. 

With respect to on-line change by distributing new class 
definitions, we would like to build ready-to-use components 
for control systems in the domain of logistic problems. With 
these components, one should be able to build distributed 
control systems, with the possibility to update the used 
classes while the system is running. 

In order to build a system which enables users to con- 
struct a system by wiring together components, we need a 
formal description of the software architecture that we use. 
Darwin looks like a candidate specification language to do 
so. 

References 

[1] R. Allen and D. Garlan. Beyond definition and use: Ar- 
chitectural interconnection. In Proceedings of the A CM 
Interface Definition Language Workshop, January 1994. 

[2] M. Boasson. Subscription as a model for the archi- 
tecture of embedded systems. In Proceedings of the 
2nd IEEE International Conference on Engineering of 
Complex Computer Systems, Montreal, Canada, 1996. 

[3] R.C.M. de Rooij. Subscription-based communication 
for distributed embedded java. In ASCI Conference, 
accepted for publication 1998. 

[4] O. Frieder and M.E. Segal. Dynamic program updating 
in a distributed computer system. In Proceedings of the 
IEEE Conference on Software Maintenance, Phoenix, 
Arizona, October 1988. 

[5] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting 
style in architectural design environments. In Pro- 
ceedings of the Second A CM SIGSOFT Symposium on 
Foundations of Software Engineering, December 1994. 

[6] D. Garlan and D. Notkin. Formalizing design spaces: 
Implicit invocation mechanisms. In Proceedings of the 
4th International Symposium of VDM Europe, volume 
551 of Lecture Notes in Computer Science, pages 31-44, 
Noorwijkerhout, the Netherlands, 1991. 

[7] K.M. Goudarzi and J. Kramer. Maintaining node con- 
sistency in the face of dynamic change. In Proceedings of 
the 3rd International Conference on Configurable Dis- 
tributed Systems, Annapolis, Maryland, USA, 1996. 

[8] J. Kramer and J. Magee. The evolving philosophers 
problem: Dynamic change management. IEEE Trans- 
actions on Software Engineering, 16(11):1293-1306, 
November 1990. 

85 



[9] P. Kruchten. The 4+1 view model of architecture. IEEE 
Software, 12(5):42-50, November 1995. 

[10] J. Magee and J. Kramer. Dynamic structure in software 
architectures. In Fourth SIGSOFT Symposium on the 
Foundation o.f Software Engineering, 1996. 

[11] P. Oreizy, 
N. Medvidovic, and R.N. Taylor. Architecture-based 
runtime software evolution. In Proceedings o] the In- 
ternational Conference on Software Engineering, 1998. 

[12] S.Stuurman. An implementation of a controller for un- 
manned lorries and its performance. Technical Report 
to appear, Faculty of Techincal Mathematics and Infor- 
matics, Delft University of Technology, 1998. 

[13] J.A. Stankovic. Real-time and embedded systems. 
Group Report of the Real-Time Working Group of the 
IEEE Technical Committee on Real-Time Systems, at 
http://www-ccs.cs.umass.edu/sdcr/rt.ps, 1996. 

[14] R.N. Taylor, N. Medvidovic, K.M. Anderson, E.J. 
Whitehead, J.E. Robbins, K.A. Nies, P. Oreizy, and 
D.L. Dubrow. A component- and message-based archi- 
tectural style for gni software. IEEE Transactions on 
Software Engineering, pages 390-406, June 1996. 

[15] B. Witt, F.T. Baker, and E.W. Merritt. Software Ar- 
chitecture and Design: Principles, Models and Methods. 
Van Nostrand Reinhold, New York, 1994. 

86 


