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A b s t r a c t  

The design of a class hierarchy may be imperfect. For example, a 
class 6' may contain a member m not accessed in any G-instance, 
an indication that m could be eliminated, or moved into a derived 
class. Furthermore, different subsets of (7's members may be ac- 
cessed from different (7-instances, indicating that it might be ap- 
propriate to split (7 into multiple classes. We present a framework 
for detecting and remediating such design problems, which is based 
on concept analysis. Our method analyzes a class hierarchy along 
with a set of applications that use it, and constructs a lattice that 
provides valuable insights into the usage of the class hierarchy in a 
specific context. We show how a restructured class hierarchy can 
be generated from the lattice, and how the lattice can serve as a 
formal basis for interactive tools for redesigning and restructuring 
class hierarchies. 

1 I n t r o d u c t i o n  

Designing a class hierarchy is hard, because it is not always pos- 
sible to anticipate how a hierarchy will be used by an application. 
This is especially the case when a class hierarchy is developed as a 
library, and designed independently from the applications that use 
it. Ongoing maintenance, in particular ad-hoc extensions of the 
hierarchy, will further increase the system's entropy. As typical 
examples of inconsistencies that may arise, one might think of: 

• A class 6' may contain a member rr~ not accessed in any 6'- 
instance, an indication that m may be removed, or moved 
into a derived class. 

• Different instances of a given class 6' may access different 
subsets of (7's members, an indication that it might be ap- 
propriate to split 6' into multiple classes. 

In this paper, we present a method for analyzing the usage of 
a class hierarchy based on concept analysis [28]. Our approach 
comprises the following steps. First, a table is constructed that pre- 
cisely reflects the usage of a class hierarchy. In particular, the ta- 
ble makes explicit relationships between the types of variables, and 
class members such as "the type of z must be a base class of the 
type of y", and "member ra must occur in a base class of the type 
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of variable x" are encoded in the table. From the table, a concept 
lattice is derived, which factors out information that variables or 
members have in common. We will show how the concept lattice 
can provide valuable insight into the design of the class hierarchy, 
and how it can serve as a basis for automated or interactive restruc- 
turing tools for class hierarchies. The examples presented in this 
paper are written in C++, but our approach is applicable to other 
object-oriented languages as well. 

Our method can analyze a class hierarchy along with any num- 
ber of programs that use it, and provide the user with either a com- 
bined view reflecting the usage of the hierarchy by the entire set 
of programs, or with individual views that clarify how each appli- 
cation uses the hierarchy. Analyzing a class hierarchy without any 
accompanying applications is also possible, and can be useful to 
study the internal dependences inside class definitions. 

1 ,1  A m o t i v a t i n g  e x a m p l e  

Consider the example of Figure 1, which is concerned with rela- 
tionships between students and professors. Figure l(a) shows a 
class hierarchy, in which a class P e r s o n  is defined that contains 
a person's name, address, and socialSecurityNumber. 
Classes Student and Professor are derived from Person. 
Students have an identification number (studentId), and a 
thesis a d v i s o r  if they are graduate students. A constructor is 
provided for initializing S t u d e n t s ,  and a method s e t A d v i s o r  
for designating a P r o f e s s o r  as an advisor, P r o f e s s o r s  have 
a f a c u l  t y  and a workAddres  s, and a professor may hire a stu- 
dent as a teaching a s s i s t a n t .  A constructor is provided for ini- 
tialization, anda method h i r e g s s i s t a n t  for hiring a S t u d e n t  
as an assistant. Details for classes A d d r e s s  and S t r i n g  are not 
provided; in the subsequent analysis these classes will be treated as 
"atomic" types and we will not attempt to analyze them. 

Figure l(b) and (c) show two programs that use the class hier- 
archy of Figure l(a). In the first program, a student and a professor 
are created, and the professor is made the student's advisor. The 
second program creates another student and professor, and here the 
student is made the professor's assistant. The example is certainly 
not perfect C++ code, but looks reasonable enough at first glance. 

Figure 2 shows the lattice computed by our method for the class 
hierarchy and the two example programs of Figure 1. Ignoring a 
number of details, the lattice may be interpreted as follows: 

• The lattice elements (concepts) may be viewed as classes of 
a restructured class hierarchy that precisely reflects the usage 
of the original class hierarchy by the client programs. 

• The ordering between lattice elements may be viewed as in- 
heritance relationships in the restructured class hierarchy. 
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class String { /* details omitted */ }; 
class Address { /* details omitted */ }; 
enum Faculty { Mathematics, ComputerScience }; 
class Professor; /* forward declaration */ 

class Person { 
public: 

String name; 
Address address; 
long socialSecurityNumber; 

}; 

class Student : public Person { 
public: 

Student(String sn, Address sa, int si){ 
name = sn; address = sa; studentId = si; 

}; 
void setAdvisor(Professor *p){ 

advisor = p; 
}; 
long studentId; 
Professor *advisor; 

}: 
class Professor : public Person { 
public: 

Professor(String n, Faculty f, Address wa){ 
name = n; faculty = f; 
workAddress = wa; 
assistant = 0; /* default: no assistant */ 

}; 
void hireAssistant (Student *s){ 

assistant = s; 
}; 
Faculty faculty; 
Address workAddress; 
Student *assistant; /* either 0 or 1 assistants */ 

}; 

(a) 

int main(){ 
String slname, plname; 
Address sladdr, pladdr; 
Student* sl = /* Studentl */ 

new student(slname,sladdr, 12345678); 
Professor *pl = /* Professorl */ 

new Professor(plname,Mathematics,pladdr); 
sl->setAdvisor(pl); 
return 0; 

} 

(b) 

int main(){ 
String s2name, p2name; 
Address s2addr, p2addr; 
Student* s2 = /* Student2 */ 

new Student(s2name,s2addr, 87654321); 
Professor *p2 = /* Professor2 */ 

new Professor(p2name, ComputerScience, p2addr); 
p2->hireAssistant(s2); 
return 0; 

} 

(e) 

Figure 1 : Example: relationships between students and pro~ssors. (a) 
Class hierarchy for expressing associations between students and pro~s- 
so~. (b) ExampM program using the class hierarchy of Figure 1 (a). (e) 
Another example program using the class hierarchy of Figure 1 (a). 

• A variable v has type C in the restructured class hierarchy if 
v occurs immediately below concept C in the lattice. 

• A member m occurs in class C if m appears directly above 
concept C in the lattice. 

Examining the lattice of Figure 2 according to this interpreta- 
tion reveals the following interesting facts I : 

• Data member Person: :socialSecurityNumber is 
never accessed, because no variable appears below it. This 
illustrates situations where subclassing is used to inherit the 
functionality of a class, but where some of that functionality 
is not used. 

• Data member P e r s o n :  : a d d r e s s  is only used by stu- 
dents, and not by professors (for professors, the data member 
P r o f  e s  s o r  : : w o r k A d d r e s  s is used instead, perhaps be- 
cause their home address is confidential information). This 
illustrates a situation where the member of a base class is 
used in some, but not all derived classes. 

• No members are accessed from parameters s and p, and from 
data members a d v i s o r  and a s s i s t a n t .  This is due to 
the fact that no operations are performed on a student's advi- 
sor, or on a professor's assistant. Such situations are typical 
of  redundant, incomplete, or erroneous code and should be 
examined closely. 

• The analyzed programs create professors who hire assis- 
tants ( p r o f e s s o r 2 ) ,  and professors who do not hire as- 
sistants ( P r o f e s s o r l ) .  This can be seen from the fact 
that method Professor : :hireAssistant () appears 
above the concept labeled Professor2, but not above the 
concept labeled p r o f e s s o r l .  

• There are students with advisors ( S t u d e n t l )  and students 
without advisors ( S t u d e n t 2 ) .  This can be seen from the 
fact that data member S t u d e n t :  : s e t A d v i s o r  appears 
above the concept labeled S t u d e n t l ,  but not above the 
concept labeled S t u d e n t 2 .  

• Class S t u d e n t ' s  constructor does not initialize the 
a d v i s o r  data member. This can be seen from the fact that 
attribute S t u d e n t  : : a d v i s o r  does not appear above at- 
tribute S t u d e n t  : : S t u d e n t  ( ) in the lattice 2. 

One can easily imagine how the above information might be 
used as the basis for restructuring the class hierarchy. One pos- 
sibility would be for a tool to automatically generate restructured 
source code from the information provided by the lattice, similar 
to the approach taken in [26, 27]. However, from a redesign per- 
spective, we believe that an interactive approach would be more 
appropriate. For example, the programmer doing the restructuring 
job may decide that the data member social S ecur ityNumber 
should be retained in the class hierarchy because it may be needed 
later. In the interactive tool we envision, one could indicate 
this by moving up in the lattice the attribute under consideration, 
s o c i a l S e c u r i t y N u m b e r .  The programmer may also decide 
that certain fine distinctions in the lattice are unnecessary. For ex- 
ample, one may decide that it is not necessary to distinguish be- 
tween professors that hire assistants, and professors that don't. In 
an interactive tool, this distinction could be removed by merging 
the concepts for Professorl and Professor2. 

XThe labels Studentl, Professorl, Student2, and Professor2 that ap- 
pear in the lattice represent the types of the heap objects created by the example pro- 
grams at various programpoints (indicated in Figures 1 (b) and (c) using comments). 

S t u d e n t  : : S t u d e n t  ( ) also represents the th is -poin ter  of the meflmd. 
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P r o f e s s ~ l  s2 

S t u d e n t : : a d v i s o P  ~ versoq::r,arne Student::s~vfsorO / / ~  Pro'f~.~:assistant 

S t ~ ~  P ~ i s t a n t O  

Person::so ,tyNumber 
Figure 2: Lattice for Student/Professor example. 

Another useful capability of an interactive tool would be to 
associate names with lattice elements. When the programmer is 
done manipulating the lattice, these names could be used as class 
names in the restructured hierarchy when the restructured source 
code is generated. For example, using the information provided 
by the lattice, the programmer may determine that S t u d e n t  ob- 
jects on which the s e t A d v i s o r  method is invoked are gradu- 
ate students, whereas S t u d e n t  objects on which this method is 
not called are undergraduates. Consequently, he may decide to as- 
sociate names Student and Graduates tudent with the con- 
cepts labeled s t u d e n t  2 and S t u d e n t  1, respectively. 

1.2 Organization of this paper 

The remainder of this paper is organized as follows. Section 2 
briefly reviews the relevant parts of the theory of concept analy- 
sis. In Section 3 we define the objects and attributes in our domain, 
which correspond to the rows and columns of the tables. The pro- 
cess of constructing tables and lattices is presented in Section 4. In 
Section 5, we discuss how the information provided by the lattice 
can reveal problems in the design of class hierarchies, and how the 
lattice can be used as a basis for interactive tools for restructuring 
class hierarchies. Section 6 discusses related work. Finally, con- 
clusions and directions for future work are presented in Section 7. 

2 Concept Analysis 

Concept analysis provides a way to identify groupings of objects 
that have common attributes. The mathematical foundation was 
laid by Birkhoff in 1940 [3]. Birkhoff proved that for every bi- 
nary relation between certain objects and attributes, a lattice can be 
constructed that provides remarkable insight into the structure of 
the original relation. The lattice can always be transformed back 
to the original relation, hence concept analysis is similar in spirit 
to Fourier analysis. Later, Wille and Ganter elaborated Birkhoff's 
result and transformed it into a data analysis method [28, 6]. Since 
then, it has found a variety of applications, including analysis of 
software structures [9, 21, 11, 20, 7]. 

Concept analysis starts with a relation, or boolean table, T be- 
tween a set of  objects 0 and a set of attributes ,4, hence T C_ 
(.9 x .A. For any set of  objects O _C O, their set of common at- 
tributes is defined as ~r(O) = {a E ,4 [ Vo E 0 : (o, a) E T}. 

For any set of  attributes A C ,,4, their set of  common objects is 
~(A) = {o e 0 I r a  e A :  ~ , a )  E T}. 

A pair (O, A) is called a conceptifA = or(O) and O = z(A).  
Informally, such a concept corresponds to a maximal rectangle in 
the table T: any o E O has all attributes in A, and all attributes 
a E A fit to all objects in O. It is important to note that concepts are 
invariant against row or column permutations in the table. The set 
of all concepts of a given table forms a partial order via (O1, A~ ) < 
(05, A2) ¢=~ 01 C_ 05 ¢=~ A I D  As. Birkhoffprovedthat 
the set of concepts constitutes a complete lattice, the concept lattice 
/ : (T).  For two elements (O1, A1) and (O5, As) in the concept 
lattice, their infimum or meet is defined as 

(o l ,  A1) A (O~, As) = (ol  n 05, ,~(o, n 05))  

and their supremum or join as 

(01, A1) V (0=, A2) = (r(A1 N A2), A~ O A2) 

A concept c = (O, A) has extent ext(c) = O and intent 
int(c) = A. In our figures, a lattice element (concept) c is la- 
beled with attribute a E ..4, if it is the largest concept with a in its 
intent, and it is labeled with an object o E O, if it is the smallest 
concept with o in its extent. The (unique) lattice element labeled 
with a is denoted/~(a) = V{c E £(T) [a E int(c)}, and the 
(unique) lattice element labeled with o is denoted 7(0) = A{c E 
/ : (T)  t o E ext(c)}. The following property establishes the con- 
nection between a table and its lattice, and shows that they can be 
reconstructed from each other: 

(o,a) ET ~ 7(o)_<#(a) 

Hence, the attributes of object o are those which appear above o, 
and all objects that appear below a have attribute a. Consequently, 
join points (suprema) in the lattice indicate that certain objects have 
attributes in common, while meet points (infima) show that certain 
attributes fit to common objects. In other words,join points factor 
out common attributes, while meet points factor out common ob- 
jects. Thus, the lattice uncovers a hierarchy ofconceptionalclusters 
that was implicit in the original table. 

Figure 3 shows a table and its lattice (taken from [5]). The 
element labeled far corresponds to the maximal rectangle indicated 
in the table. This element is the supremum of all elements with far 
in their intent: Pluto, Jupiter, Saturn, Uranus, Neptune are below 
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x xI 
X X  
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g 

=o 
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s moon 

M~¢ury~ Ea.h ~ PI~ ~ll~qt ~ . . . .  
Venus ~ m  Nep~ne 

Figure 3: Example table and associated concept lattice. 

far in the lattice, and the table confirms that these (and no other) 
planets are indeed far away. 

A table and its lattice are alternate views on the same infor- 
mation, serving different purposes and providing different insights. 
There is yet another view: a set of implications. Let A, B C_ .,4 be 
two sets of attributes. We say that A implies B, iff any object with 
the attributes in A also has the attributes in B: 

A-+ B ¢=~ Vo E O : (Va E A : (o,a) E T) 

=~, (Vb 6 B :  (o, b) 6 T) 

ForB = {bl . . . . .  bk} ,A  --+ B holds iffA --+ b, for all b, 6 B. a 
Implications show up in the lattice as follows: A --+ b holds iff 
A{/~(a) I a 6 A} < /~(b). Informally, implications between 
attributes can be found along upward paths in the lattice. In the 
example of Figure 3, we have that/~(far) < /.,(moon), which can 
be read as far --~ moon, or"A planet which is far away has a moon". 
Other examples of implication are no moon ~ near, small; or near, 
far--+ large (the latter implication being true because its premise is 
contradictory). 

Often, some implications are known to hold a priori. Such 
background knowledge can easily be integrated into a given table. 
An implication z --+ y can be enforced by adding the entries in the 
x column to the y column, and will cause ~(x) < ~(y) in £(T) .  
A general implication A --+ B can be enforced by adding the inter- 
section of the A columns to all B columns. 

Implications between objects can be defined (and enforced) sim- 
ilarly. For any lattice, a minimal implication base can be computed, 
which allows to obtain all the other implications by applying propo- 
sitional logic. 

Construction of concept lattices and implication bases has typi- 
cal time complexity O(n s) for an n x n table, but can be exponen- 

We will usually write a l , . . . , a ~  --+ b l , . . . , b m  instead of 
{~ ..... ~,,} -+ {b~ ..... b,,,). 

tial in the worst case. Empirical studies show that even for large 
tables, exponential behavior is extremely rare [2 1 ]. In fact it can be 
shown that if the number of attributes for every object is bounded 
(which is true for most applications), the lattice size is linear in the 
number of table entries. 

There is much more to say about concept lattices, their struc- 
ture theory, and related algorithms and methodology. Davey and 
Priestley's book [5] contains a chapter on elementary concept anal- 
ysis. Ganter and Wille [6] treat the topic in depth. Section 4.7 will 
sketch Ganter's algorithm for lattice construction. 

3 Objects and Attributes 

Roughly speaking, the objects and attributes in our domain are vari- 
ables and class members, respectively, and the table that will be 
constructed in Section 4 identifies for each variable which members 
must be included in its type. Before we can define the objects and 
attributes more precisely, we need to introduce some terminology. 
In what follows, 79 denotes a program containing a class hierarchy, 
or a collection of programs that share a class hierarchy. Further, v, 
w, . . .  denote the variables in 79 whose type is a class, and p, q, 
•.. the variables in 7' whose type is a pointer to a class (references 
can be treated similarly, and will be ignored in the present paper). 
Expressions are denoted by x, V . . . . .  We will henceforth use "vari- 
ables" to refer to variables as well as parameters. In the definitions 
that follow, TypeOt(79, x) denotes the type of expression x in 79. 

The objects of our domain are the program variables through 
which the class hierarchy is accessed. Variables whose type is 
(pointer to) built-in can be ignored because the class hierarchy can 
only be accessed through variables whose type is class-related (i.e., 
variables whose type is a class, or a pointer to a class). Definition 1 
below defines sets of variables ClassVars and ClassPtrVars whose 
type is a class, and a pointer to a class, respectively. In Section 4.8, 
we will discuss how to model heap-allocated objects. Note that 
ClassPtrVars includes implicitly declared t h i s  pointers of meth- 
ods. In order to distinguish between t h i s  pointers of different 
methods, we will henceforth refer to the t h i s  pointer of method 
A::f ( ) by the fully qualified name of its method, i.e., A::f. 

Definition 1 Let 7 9 be a program. Then, we define the set o f  class- 
typed variables and the set of  pointer-to-class-typed variables as 
follows: 

C; Vats(79) " ass 

{ v [ v is a variable in 79, TypeOt(79, v) = C, 
for some class C in 79 } 

ClassPtrVars( P ) A 
{ p [ p is a variable in 79, TypeO[(79, .p) = C, 

for some class C in 79 } 

The attributes of our domain are class members. Following the 
definitions of [26, 27], we will distinguish between definitions and 
declarations of members. We define these terms as follows: The 
definition of a member comprises a member's signature (interface) 
as well as the executable code in its body, whereas the declara- 
tion of a member only represents its signature. This distinction is 
needed for accurately modeling virtual method calls. Consider a 
call to a virtual method f from apointerp. In this case, only the 
declaration o f f  needs to be contained in p's type in order to be able 
to invoke f ;  the body of f does not need to be statically visible to 
p4. Naturally, a definition of f must be visible to the object that p 

4Our objective is to identify the smallest possible set of member declarations and 
definitions that must be included in tim type of any variable. Including tim de[inition of 
f in *p's type may lead to the incorporation of members that are otherwise not needed 
(in particular, members accessed from f ' s  t h i s  pointer). 
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class A { 
public: 

virtual int f(){ return g(); }; 
virtual int g(){ return x; }; 
int x; 

}; 
class B : public A { 
public: 

virtual int q(){ return y; }; 
int y; 

}; 
class C : public B { 
public: 

virtual int f(){ return g() + z; 
int z; 

}; 

int main(){ 
A a; B b; C c; 
A *ap; 
if (...) { ap = &a; } 
else { if (...) { ap = &b; } 

else { ap = &c; } } 
ap->f () ; 
return 0 ; 

Figure 4: Example program 7~,. 

; 

points to at run-time, so that the dynamic dispatch can be executed 
correctly. 

Definition 2 (shown below) defines sets MemberDcls(7 ~) and 
MemberDefs(7 a) of member declarations and member definitions 
in ~.  We distinguish between declarations and definitions of vir- 
tual methods for the reasons stated above. For nonvirtual meth- 
ods, making this distinction is not necessary because the full def- 
inition of a nonvirtual method must always be statically visible to 
the caller. Therefore, nonvirtual methods are modeled using defini- 
tions only. Data members are modeled as declarations because they 
have no t h i s  pointer from which other members can be accessed. 

Definition 2 Let 7 ~ be a program. Then, we define the set o f  mem- 
ber declarations and member definitions as follows: 

MemberDcls( 7 ~ ) 
{ dcl(C::m) I m is a data member or virtual method 

in class C } 

MemberDefs( 7 ~ ) 
{ de~C::,~) I m is a virtual or nonvirtual method 

in class C } 

Example: Figure 4 shows a program pa that will be used as a 
running example. For P , ,  we have: 

ClassVa1~1) -- { a, b, c } 
ClassPtrVars(Px) -- { ap, A::f, A::g, B::g, C::f } 
MemberOcls(7~x ) -- { dcl(A::f), dcl(A::g), dcl(A::x), 

dct(B::g), dct(B::y), dct(c::f), 
dct(C::z) } 

MemberDefs(Px) -- { def(A::f), del(A::g), det(B::g), 
de~(c: : f )  } 

In Section 4.9, we will discuss how class-typed data members 
(which behave like variables because other members can be ac- 
cessed from them) are modeled. 

4 Table and Lattice Construction 

This section describes how tables and lattices are constructed. Re- 
call that the purpose of the table is to record for each variable the 
set of  members that are used. A few auxiliary definitions will pre- 
sented first, in Section 4.1. 

4.1 Auxiliary definitions 

For each variable v in ClassPtrVars(7 ~) we will need a conserva- 
tive approximation of the variables in ClassVars(7 p) variables that 
v may point to. Any of several existing algorithms [4, 16, 23, 19]) 
can be used to compute this information, and we do not make as- 
sumptions about the particular algorithm used to compute points- 
to information. Definition 3 expresses the information supplied by 
some points-to analysis algorithm as a set PointsTo('P), which con- 
tains a pair (p, v) for each pointerp that may point to a class-typed 
variable v. 

Definition 3 Let P be a program. Then, the points-to information 
for 7 ~ is defined as follows: 

PointsTo(7 ~) & { (p, v) [ p 6 ClassPtrVars('P), 
v 6 ClassVars(P), 
p maypointto v } 

Example: We will use the following points-to information for 
program 7~1. Recall that X: :  f denotes the thS. s pointer of method 
x::fO. 

PointsTo( 7~l ) -- { 
(ap, a), (ap, b), (ap, c), (A::f, a), (A::f,b), 
(C::f, c), (A::g, a), (B::g,b), (B::g, c) } 

Note that the following simple algorithm suffices to compute the 
information of Example 4.1: for each pointer;, of  type , X ,  assume 
that it may point to any object of  type Y, such that (i) Y = X or 
Y is a class transitively derived from X,  and (ii) i fp  is the t h i s  
pointer of a virtual method C::ra, no overriding definitions of ra 
are visible in class Y. 

We will use the following terminology for function and method 
calls. A direct call is any call to a function or a nonvirtual 
method, or an invocation of a virtual method from a variable in 
ClassVars(P). An indirect call is an invocation of a virtual method 
from a variable in ClassPtrVars(P) (requiring a dynamic dispatch). 

4.2 Table entries for member access operations 

Table T has a row for each element of ClassVars('P) 
and ClassPtrVars('P), and a column for each element of 
MemberDcls(P) and MemberDefs(7~). Informally, an entry 
(V, dcl(A::ra)) appears in T i f f  the declaration of ra is contained 
in V'S type, and an entry (y, det(A::ra)) appears in T iffthe defi- 
nition o f ra  is contained in y 's  type. We begin by adding entfi'es to 
T that reflect the member access operations in the program. Defi- 
nition 4 below defines a set MemberAccess('P) of all pairs (ra, y) 
such that member m is accessed from variable y. For an indirect 
call p --+ f ( y l ,  . . . ,  y,~), we also include an element (f ,  y) in 
MemberA ccess( P ) for each (p, V) 6 Points To( P ). 

Definition 4 Let 7 ~ be a program. Then, the set o f  member access 
operations in 7 ~ is defined as follows: 

MemberAcces~( P ) & 
{ (re, v) [ v .moccursin P, misac lassmember in  7 p, 

~ CtassVars(p) } u 
{ (m, *19) [ p -~ ra occurs in P, m is a class member in 7 ~, 

p e ClassPtrVars(~) } u 
{ (m, V) [ P --+ ra occurs in P, (p, V) 6 PointsTo('P), 

m is a virtual method in "P } 
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Example: For program 79t of Figure 4, we have: 

M e m b e r A c c e s ~ 7 9 1 ) = _  - 

{ <x,*A::g), <y,*B::g), <z,*c::f), <g,*A::f), (g ,*c : : f ) ,  
(f,*ap), (f,a), (f,b>, (f,c), (g,a), (g,b), (g,c)} 

Accessing a class member is not an entirely trivial operation 
because different classes in a class hierarchy may contain members 
with the same name (or signature). Furthermore, in the presence of 
multiple inheritance, an object may contain multiple subobjects of a 
given type C, and hence multiple members C::m. This implies that 
whenever a member rn is accessed, one needs to determine which 
m is being selected. This selection process is defined informally in 
the C++ Draft Standard [1] as a set ofrnles that determine when a 
member hides or dominates another member with the same name. 
Rossie and Friedman [1 8] provided a formalization of the member 
lookup, as a function on subobject graphs. This framework has 
subsequently been used by Tip et al. as a formal basis for oper- 
ations on class hierarchies such as slicing [25] and specialization 
[26]. Ramalingam and Srinivasan recently presented an efficient 
algorithm for member lookup [1 7]. 

For the purposes of the present paper, we will assume the avail- 
ability of a function static-lookup which, given a class (7 and a 
member ra, determines the base class B (B is either (7, or a transi- 
tive base class of (7) in which the selected member is located 5. For 
details on function static-lookup, the reader is referred to [1 8, 25]. 

We are now in a position to state how the appropriate relations 
between variables and declarations and definitions should be added 
to the table: 

Definition 5 Let 7 9 be a program with associated table T. Then, 
the following entries are added to the table due to member access 
operations that occur in the program. 

( m, y) • MemberAccess( 79 ), m • DataMembers( 79 ), 
X -- static-lookup(TypeOf(79, V), m)  

(y, dcl(X::m)) • T 

( m, Y) • MemberAccess~ P ), m • Non VirtualMethods( 79), 
X -- static-lookup(TypeOl('P, V), m)  

(u, det(X::m)) • T 

(ra, 7) • MemberAccess(79), ra • VirtualMethods(79), 
y =_ .p, p • ClassPtrVars(P), 

X =- static-lookup(TypeOf(79, V), m) 
(y, dcl(X::m)) • T 

( m, y) • MemberA ccess( 79 ), ra • VirtualMethods( 79 ), 
y =_ v, v • ClassVars(79), 

g =-- static-lookup( TypeOt~7 9, V), m) 
(U, det~X::m)) • T 

4.3 Table entries for this pointers 

The next table construction rule we will present is concerned with 
t h i s  pointers of methods. Consider the fact that for each method 
G : : f 0 ,  there is a column in the table labeled det~G::f), and a row 
labeled *G:: f .  The former is used to express the fact that method 
C : : f 0  may be called from objects. The latter is necessary to re- 
fleet members being accessed from method C: : f 0 ' s  t h ±  s pointer. 
Unless precautions are taken, the attribute del~C::f) and the ob- 
ject *G: : f  may appear at different points in the lattice, though 

5 In [ 18, 25], static-lookup is defined as a function from subobjeet to subobjects. 
Since the present paper is only concerned with the classes in which members are lo- 
cated, we will simply ignore all subobject information below. 

a 

AA A 
ATA" b 

,,T T, c 

ii *A: : f 

*A: :q 

*B: :g 

*C::f 

X 
X 

X 

X X  
X 

X 
X 

'X 
X 

X X  

6 v 

X 

× 

Table I : Initial table for program T'I of Figure 4. Arrows indicate 
implications due to assignments (see Section 4.4). 

7(*(7::f)  >__ #(det~G::f))  must always hold 6. In such cases, our 
method effectively infers that the type of a e h i  s pointer could be a 
base class of the type in which method C::f  occurs (and therefore 
be less constrained). However, in reality, the type of a method's 
t h i s  pointer is determined by the class in which the associated 
method definition appears. 

The table entries added by Definition 6 will force a method's 
attribute and a method's t h i s  pointer to appear at the same lattice 
element; by ensuring 7 (*C: : f )  _< #(det[C::f)).  This will allow 
us later to remove rows for t h i s  pointers from the table when 
constructing the lattice. 

Definition 6 Let 7) be a program. Then, the following entries are 
added to the table: 

det[ C::m) 6 MemberDefs( 79) 
(*C::m, def(C::m)) • T 

Example: Table 1 shows the table for program 791 of Figure 4 
after adding the entries according to Definitions 5 and 6. 

4.4 Table entries for assignments 

Consider an assignment x -- y, where x _= v and y ~ w, for some 
class-typed variables v, w 6 Class Vars( 79 ). Such an assignment 
is only valid if the type of x is a base class of the type of y. Con- 
sequently, any member declaration or definition that occurs in x 's  
type must also occur in y 's  type. We will enforce this constraint 
using an implication from the row for x to the row for y. However, 
we will begin by formalizing the notion of an assignment. 

Definition 7 below defines a set Assignments(P) that contains a 
pair of  objects (v, w) for each assignment v = w in 79 where v and 
w are class-typed. In addition, Assignments(79) also contains en- 
tries for cases where the type of the left-hand side and/or the right- 
hand side of the assignment are a pointer to a class. Parameter- 
passing in direct calls to functions and methods is modeled by way 
of assignments between corresponding formal and actual parame- 
ters. For an indirect call p --+ f (yl , . . . ,  y,~ ), Assignments(79) con- 
tains additional elements that model the parameter-passing in the 
direct call x . f ( y l  . . . .  , Y,O, for each (p, x) 6 PointsTo(7~). That 
is, we conservatively approximate the potential targets of dynam- 
ically dispatched calls. The set Assignments(P) will also contain 

6 See Appendix. 
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elements for implicit parameters such as t h i s  pointers of methods 
and function/method return values whose type is class-related. 

Definition 7 Let P be a program. Then, the set o f  assignments 
between variables whose type is a (pointer to a) class is defined as 
follows: 

Assignments(P) a= 
{ <v, ~o) I ~ = ~o occurs in p ,  ~, w • C las sVa~p)  } u 
{ (*p, w) [ p = ~ w  occurs in P, p • ClassPtrVars(P), 

w • ClassVars(p) } u 
{ (*p, *q) [ p = q occurs in P, p, q • ClassPtrVars(P) } U 
{ (*p, w) I *P = w occurs in P, p • ClassPtrVars(P), 

~o • CtassVars(p) } u 
{ (v, *q) I v = *q occurs in P, v • ClassVars(P), 

q • ClassPtrVars(P) } U 
{ (*p, *q) *p = .q occurs in P, p, q • ClassPtrVars(P) } 

Example: For program Pi  of Figure 4, we have: 

Assignments(Pa ) - 
{ (*ap, a), (*ap, b>, (*ap, c), (*A::f,a), (*A::f,b>, 

<*C::f,c>, <*A::g,a), <*B::g,b>, (*B::g,c> } 

We are now in a position to express how elements should be 
added to the table due to assignments. Definition 8 states this as 
an implication, which tells us how elements should be copied from 
one row to another. 

Definition 8 Let P be a program with associated table T. Then, 
the following implications must be encoded in the table due to as- 
signments that occur in P: 

(x, y} 6 Assignments(P) 
z - -+y  

Example: For program Pl  of Figure 4, the following assign- 
ment implications are generated: 

*ap --+ a, *ap --+ b, *ap -+ c, *A: :f --', a, *A: :f -+ b, 
*C: :f -+ c, *A: :g -4 a, *B: :g --+ b, *B: :g -+ c 

These implications are indicated on the left side of Table 1. Table 2 
is obtained by copying the elements from the "source row" to the 
"target row" according to each of these implications. 

4.5 Table entries for preserving dominance/hidlng 

The table thus far encodes for each variable the members contained 
in its type (either directly because a member is accessed from that 
variable, or indirectly due to assignments between variables). How- 
ever, in the original class hierarchy, an object's type may contain 
more than one member with a given name. In such cases, the mem- 
ber lookup roles of [1] determine which member is accessed. This 
is expressed as a set of roles that determine when a member hides 
or dominates another member with the same name. In cases where 
a variable contains two members m that have a hiding relation- 
ship in the original class hierarchy, this hiding relationship must be 
preserved, because we are interested in generating a restructured 
hierarchy from the table, and the member access operations in the 
program might otherwise become ambiguous. Definition 9 incor- 
porates the appropriate hiding/dominance relations into the table, 
using implications between attributes: 

a 

b 
C 

*ap 

*A::f 

*A::g 

*B::q 

*C::f 

X 
X 

X 
× 

xi 
X 

X 

X X  
X 

X 
X 

X 
X X  

X X X X  

X 
X X  

"4 

X X X  

Table 2: Table after application of assignment implications. Arrows in- 
dicate implications for preserving hiding/dominance among members with 
the same name (see Section 4.5). 

Definition 9 Let P be a program with associated table T. Then, 
the following implications are incorporated into T in order to pre- 
serve hiding and dominance." 

(x, dcl(A::m)) 6 T, (x, dcl(B::m)) 6 T, 
A is a transitive base class o f  B 

dcl( B::m) --4 dcl(A::m) 

(x, dcl(A::m)) E T, (x, det(B::m)) 6 T, 
A = B or A is a transitive base class o f  B 

del~B::m) --4 dcl(A::m) 

(x, det(A::m)) 6 T, (z, del(B::m)) 6 T, 
A is a transitive base class o f  B 

dei(B::m) --+ def(A::m) 

(x, del(A::m)) E T, (x, dcl(B::m)) 6 T, 
A is a transitive base class o f  B 

dcl( B::m) --+ det[A::m) 

Example: For program P l ,  the following dominance implica- 
tions are generated: 

def(A::f) --+ dcl(A::f) det(A::g) ~ dcl(A::g) 
de/~B::g) ---r dcl(A::q) dcl(B::g) -+ dcl(A::g) 
det(B::g) -+ dcl(B::g) 

These implications are shown at the bottom of Table 2. After in- 
corporating these implications, Table 3 results. 

Remark: Observe that the implication de/(B::g) --+ dcl(A::q) 
only becomes necessary after propagating table elements according 
to the other implications. 

4.6 Efficiently applying implications 

Since the assignment implications can generate new dominance im- 
plications and vice versa, it seems that a fixpoint iteration is neces- 
sary in order to compute the final table. Fortunately, there is a direct 
algorithm for table completion which runs in time O(IOI × IAI). 
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X X  
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X X  
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X X  
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X X  
X X  

X X  

X 
X X  

X 

6 
v 

X 

X 

Table 3: Final table for program 7~t. 

The algorithm is based on the fact that any set of  dependencies (im- 
plications) between rows or columns can be lifted to dependencies 
between individual table entries: an implication ot --+ o~_ generates 
table entry dependencies (oz, a) --+ (o2, a) for all (oz, a) 6 T; 
similarly, at -4 a2 generates table entry dependencies (o, at ) --+ 
(o, a2) for all (o, at ) 6 T. Table entries are processed in topologi- 
cal order according to the lifted dependencies. Since only positive 
entries are propagated, cycles can be ignored: a backward edge 
closing a dependency cycle must lead to a table entry which has 
been set earlier (otherwise the cycle would not have been explored, 
due to the topological ordering). 

4.7 Lattice construction 

From the final table, the lattice can be constructed using Ganter's 
algorithm [6]. This algorithm utilizes the fact that both tr o ~- and 
~- o tr are closure operators. Ganter's algorithm computes the closed 
sets for any closure operator by enumerating all subsets of O (or,A) 
in alphabetical order'.  The closure operator is applied to every sub- 
set, and whenever the result of  the closure operator changes, a new 
closed subset of O has been found. Enumeration then continues, 
beginning with the new closed subset. This process enumerates all 
closed subsets----that is, concept extents---in alphabetical order. By 
applying tr the intents are obtained, and finally all concepts are ar- 
ranged in a partial order via mutual comparison of their extents, and 
their labels are computed. In practice, Ganter's algorithm needs 
less than a second for 2000-element lattices on a standard work- 
station [21]. Subsequent layout of the lattice graph is much more 
expensive. 

There is one minor issue that deserves mentioning. Recall that 
in Section 4.3 table entries were added to ensure that method defini- 
tions and their t h i s  pointers show up at the same lattice element. 
In order to avoid presenting redundant information to the user, we 
will henceforth omit t h i s  pointers from the lattice. The easiest 
way to accomplish this is to remove the rows for t h i s  pointer vari- 
ables to the table prior to generating the lattice. Note that rows for 
t h i s  pointers cannot be left out during table construction because 
they are needed to model member accesses from t h i s  pointers, 
and the elements in such rows may be involved in implications due 
to assignments and dominance. 

Example: Figure 5 shows the lattice for program T'z, generated 

rThis requires that the elements of CO are ordered themselves somehow; subsets 
are then represented as strings of objects. 

dcl (A: : f) 

*aP l 

dcl (B: : ~  
def (B: -¢~) \ 

Figure 5: Lattice for program T'z, generated from Table 3 after removing 
the rows labeled *A::f, *A::g, *B::g, and *C::f. 

from Table 3 after removing the rows labeled *A::f,  *A::g, *B::g, 
and *C:: f.  It demonstrates that a does not access B : : y and C : : z, 
while b and c do not access A: : x and b does not access c : : z. 
Similarly, the lattice shows the fine-grained differences in method 
access. 

4.8 Heap allocation 

Heap allocated objects can be handled in a straightforward way. 
Since our analysis is a static one, we are unable to distinguish be- 
tween different objects created at the same allocation site. Our ap- 
proach consists of simply treating each allocation site in the pro- 
gram as a class-typed variable (e.g., an element of the set Class- 
Vars). For the program of Figure 1, there are four such allocation 
sites, which we refer to as Studentl, Student2, Professorl, 
and Professor2. 

4.9 Modeling nested objects 

We conclude this section with a brief discussion of the treatment 
of class-related data members (i.e., data members whose type is 
class-related), such as S t u d e n t :  : a d v i s o r  in Figure 1. Like 
data members of built-in types, class-related data members can be 
accessed from variables and are therefore modeled as attributes. 
However, since other members may be accessed from a class-related 
data member, such data members play an alternate role as objects. 

In order to clarify the issues involved in the reengineering of 
such "nested" structures, consider a class (7 that contains a data 
member m whose type is some class D. Then, the following infor- 
mation about m is made explicit in the concept lattice: 

• The set of  variables in which m is contained. This is modeled 
by treating m as an "attribute" a. Any object that occurs 
below a in the lattice contains m. 

• The set of  members contained in the type of re. This is mod- 
eled by treating the type of m as an "object" o. The set of  
members contained in o correspond to the attributes that oc- 
cur above o in the lattice. This set of  members is a subset of 
the members of D in the original class hierarchy. 

Note that the "attribute view" of m corresponds exactly to the way 
we previously modeled data members with a built-in type, whereas 
the "object view" of m corresponds exactly to the way we pre- 
viously modeled variables. The definitions that are concerned with 
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X X 

X 

X X  X X  
X X 

X X X  
X X X  

X X 
X X 

X X X  

X 

X 
X l X  

X 

X 

Table 4: Final table for the Student/Professor example. 

variables therefore apply to class-related data members as well, and 
for convenience we will henceforth assume the term "variable" to 
include class-related data members. 

4.10 Modeling constructors 

Constructors require special attention. A constructor generally 
initializes all data members contained in an object. If no con- 
structor is provided by the user, a so-called default constructor 
is generated by the compiler, which performs the necessary ini- 
tializations. The compiler may also generate a call to a con- 
strutter in certain cases. Modeling these compiler-generated ac- 
tions as member access operations would lead us to believe that 
each member ra of class C is needed in all C-instances, even in 
cases where the only access to ra consists of its (default) initializa- 
tion. Compiler-generated constructors, compiler-generated initial- 
izations, and compiler-generated calls to constructors will therefore 
be excluded from the set of  member access operations. Destructors 
can be handled similarly. 

4.11 Example 

Table 4 shows the final table for the example of Figure 1, as ob- 
tained by analyzing the class hierarchy along with the two example 
programs. The lattice corresponding to this table was shown previ- 
ously in Figure 2 (note that we replaced member definitions by the 
corresponding method names there for convenience). 

4.12 L;mltations 

We conclude this section with a remark on a limitation of our anal- 
ysis. In situations where an object z contains multiple subobjects 
of some type C (due to the use of nonvirtual multiple inheritance), 
our tables do not make a distinction between the various "copies" 
of the members of C' in z. This leads to problems if the objective 
is to generate a new hierarchy from the lattice in which the dis- 
tinct copies of the members of G* must be preserved. We consider 
this to be a minor problem because situations where nonvirtual in- 
heritance is used for its "member replicating" effect are quite rare 
in practice, and the restructuring tool could inform the user of the 
cases where the problem occurs. A clean solution to this problem 
would involve the encoding of subobject information in the table 
using an adaptation of the approach of [26, 27]. 

5 Restructuring class hierarchies 

The following can be learned from the lattice (we refer the reader 
to the lattice of Figure 2 for examples): 

• Data members that are not accessed anywhere in the program 
(e.g., Person: : socialSecurityNumber) appear at 
the bottom element of the lattice. 

• Data members of a base class B that are not used by (in- 
stances of) all derived classes of B are revealed. Such data 
members (e.g., P e r s o n :  : a d d r e s s )  appear above (vari- 
ables of) some but not all derived classes of B. For ex- 
ample, P e r s o n :  : a d d r e s s  appears above instances of 
S t u d e n t ,  but not above any instances of P r o f e s s o r .  

• Variables from which no members are accessed appear at the 
the top element of the lattice (e.g., s). 

• Data members that are properly initialized appear above the 
(constructor) method that is supposed to initialize them. If 
this is not the case, the data member may not be initialized. 
For example, we know that S t u d e n t  : : S t u d e n t  does not 
initialize S t u d e n t  : : a d v i s o r  because that data member 
does not appear above S t u d e n t  : : S t u d e n t  in the lattice. 

• Situations where instances of a given type C access differ- 
ent subsets of C ' s  members are revealed by the fact that 
variables of type C appear at different points in the lattice. 
Our example contains two examples of this phenomenon. 
The instances Professorl and Professor2 of type 
Professor and the instances Studentl and Student2 
of type Student. 

The structure theory of concept lattices offers several algorithms 
which may provide useful information [22] as well. For example, 
one might think of measuring quality factors such as cohesion and 
coupling by algebraic decomposition of the lattice [11, 15]. 

As we mentioned earlier, a class hierarchy may be analyzed 
along with any number of programs, or without any program at 
all. The latter case may provide insights into the "internal struc- 
ture" of a class library. Figure 6 shows the lattice obtained by 
analyzing the class hierarchy of Figure 1 (a) without the programs 
of Figure l(b) and (c); only code in method bodies is analyzed. 
Clearly, the resulting lattice should not be interpreted as a restruc- 
turing proposal, because it does not reflect the usage of the class 
hierarchy. However, there are some interesting things to note. For 
example, socialSecuri tyNumber is not accessed anywhere. 
If we would know in addition that s o c i a l S e c u r i t y N u r a b e r  
is private (i.e., that it can only be accessed by methods within its 
class), we could inform the user that it is effectively dead. Observe 
also that no members are accessed from method parameters s and 
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P r o f ~  p s 

Professor ~fessor i ~ ~  :name 

I ~~.. ~ ~2~ Person: ~ address I ...... ~.. ~j.~o~ Person: : ~tuaentId Professor: : ~ ~  / ~ Student 

Person : : s~i tyNumber 

Figure 6: Lattice obtained by analyzing the class hierarchy of Figure 1 
without accompanying programs. 

p. Since the scope of these variables is local to the library, we know 
that analyzing additional code will not change this situation. 

We intend to construct an interactive tool that provides the user 
with a view of the lattice and the associated table. One could easily 
imagine that such a tool would notify the user of anomalies in the 
design of a class hierarchy, as was discussed above. In addition, 
the tool could generate source-code from the lattice at any point in 
the transformation process by interpreting the lattice as a class hier- 
archy. Optionally, the analyzed programs could be transformed as 
well to take the new, restructured hierarchy into account. Specific 
transformations that the tool could support are: 

• Unlabeled lattice elements (e.g., the center element in Fig- 
ure 3) correspond to classes without members and without 
variables using them. The lattice can be simplified by prun- 
ing all such elements, and directly connecting their subordi- 
nate and superordinate neighbors. The fact that the resulting 
structure is not a lattice anymore, but only a partial order, 
is not relevant--lookup behavior and subobjects are not af- 
fected. 

• The user can decide to merge s adjacent lattice elements if 
the distinction between these concepts is irrelevant (possibly 
because the lattice reflects a specific use of the hierarchy). 
For example, one may decide that the distinction between 
between professors that hire assistants, and professors that 
don't hire assistants is irrelevant, and therefore merge the 
concepts for Professorl and Professor2. 

• With certain limitations, the user may move attributes up- 
wards in the lattice, and object downwards. For example, the 
user may decide that s o c i a l S e c u r i t y N u m b e r  should 
be retained in the restructured class hierarchy, and move the 
corresponding attribute up to the concept labeled with at- 
tribute Person : : name. 

• Background knowledge that is not reflected in the lattice, 
e.g., "the type of z must be a base class of the type of V", 
can be integrated via background implications. 

• Color should be used to display relevant substructures in the 
lattice, e.g., display all variables which formerly had the same 
type. 

a There are some issues that a tool must take into account, because we want to pre- 
serve member lookup behavior. For example, merging two concepts that have different 
definitions era virtual method f associated with them is not possible, because at most 
one / can occur in any class. 

• The user may associate names with lattice elements. When 
the programmer is done manipulating the lattice, these names 
could be used as class names in the restructured hierar- 
chy. For example, by examining the lattice, the program- 
mer may determine that S t u d e n t  objects on which the 
s e t k d v i s o r  method is invoked are graduate students, 
whereas S t u d e n t  objects on which this method is not 
called are undergraduates. Consequently, he may decide to 
associate names Student and GraduateStudent with 
the concepts labeled s2 and sl, respectively. 

• For very large class hierarchies, the tool could allow the user 
to focus on a selected subhierarchy either by specifying its 
minimal and maximal elements in the lattice, or by leav- 
ing out rows and columns in the table (in particular, the user 
could investigate the usage of a specific class C' in the orig- 
inal hierarchy by focusing on the rows for the variables of 
type (7, and the columns for the members of (7). 

• Very large lattices can also be subject to algebraic decompo- 
sition, such as horizontal decomposition, interference analy- 
sis or block relations [22]. Such decompositions correspond 
to natural subsystems of the original class hierarchy. 

6 Related Work 

6.1 Applications of concept analysis 

Godin and Mill [7, 8] also use concept analysis for class hierarchy 
(re)design. The starting point in their approach is a set of inter- 
faces of (collection) classes. A table is constructed that specifies 
for each interface the set of supported methods. The lattice derived 
from this table suggests how the design of a class hierarchy imple- 
menting these interfaces could be organized in a way that optimizes 
the distribution of methods over the hierarchy. Another property of 
their approach is that it identifies useful abstract classes that could 
be interesting in their own right, or suitable starting points for fu- 
ture extensions of the hierarchy. Although Godin and Mill's work 
has the same formal basis as ours, the domains under considera- 
tion are different. In [7], relations between members and classes 
are studied in order to improve the distribution of these members 
over the class hierarchy. In contrast, we study how the members 
of a class hierarchy are used in the executable code of a set of ap- 
plications by examining relationships between variables and class 
members, and relationships among class members. Godin and Mill 
discuss some extensions of their basic approach to so-called multi- 
faceted domains, but do not study the usage of class hierarchies in 
applications. 

Another application of concept analysis in the domain of soft- 
ware engineering is the analysis of software configurations. Snelt- 
ing [21 ] uses concept analysis to analyze systems in which the C 
preprocessor (CPP) is used for configuration management. The re- 
lation between code pieces and governing expressions is extracted 
from a source file, and the corresponding lattice visualizes interfer- 
ences between configurations. Later, Lindig proved that the con- 
figuration space itself is isomorphic to the lattice of the inverted 
relation [10]. 

Concept analysis was also used for modularization of old soft- 
ware. Sift and Reps [20] investigated the relation between proce- 
dures and "features" such as usage of global variables or types. A 
modularization is achieved by finding elements in the lattice whose 
intent partitions the feature space. Lindig and Snelting [11] also 
analyzed the relation between procedures and global variables in 
legacy Fortran programs. They showed that the presence of mod- 
ule candidates corresponds to certain decomposition properties of 
the lattice (the Siff/Reps criterion being a special case). 
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6.2 Class hierarchy specialization and application extrac- 
tion 

The work in the present paper is closely related to the work on class 
hierarchy specialization by Tip and Sweeney [26, 27]. Class hier- 
archy specialization is a space optimization technique in which a 
class hierarchy and a client program are transformed in such a way 
that the client's space requirements are reduced at run-time. The 
method of [26, 27] shares some basic "information gathering" steps 
with the method of the present paper ~, but the subsequent steps 
of that method are quite different. After determining the mem- 
ber access and assignment operations in the program, a set of (ype 
constraints is computed that capture the subtype-relationships be- 
tween variables and members that must be retained. These type 
constraints roughly correspond to the information encoded in our 
tables, but contrary to our current approach they correctly distin- 
guish between multiple subobjects that have the same type. From 
the type constraints, a new class hierarchy is generated automati- 
cally. In a separate step, the resulting class hierarchy is simplified 
by repeatedly applying a set of simple transformation rules. 

In addition to the differences in the underlying algorithms, the 
method of [26, 27] differs from our reengineering framework in a 
number of ways. Class hierarchy specialization is an optimization 
technique that does not require any intervention by the user. In 
contrast, the current paper presents an interactive approach for an- 
alyzing the usage of a class hierarchy in order to find design prob- 
lems. Reducing object size through the elimination of members is 
possible, but not necessarily an objective. For the purpose of re- 
structuring it may very well be the case that an unused member 
should be retained in the restructured class hierarchy. The frame- 
work we presented here also allows for the analysis of a class hier- 
archy along with any number of programs, including none. Class 
hierarchy specialization customizes a class hierarchy w.r.t, a single 
client application. 

Several other application extraction techniques for eliminating 
unused components from hierarchies and objects have been pre- 
sented in the literature [2, 25, 24]. These are primarily intended 
as optimizations, although they may have some value for program 
understanding. 

Tip et al. [25] present an algorithm for slicing class hierarchies 
that eliminates members and inheritance relations from a C++ hi- 
erarchy. Class slicing is less powerful than specialization because 
it can only remove a member ra from a class C' i f ra  is not used by 
any G-instance. 

Sweeney and Tip [24] present an empirical study of an algo- 
rithm for detecting dead data members in C++ applications. This 
algorithm reports a data member to be dead if the program never 
reads that data member's value. This algorithm is evaluated on a 
set of C++ benchmark programs ranging from 600 to 58,000 lines 
of code. Sweeney and Tip found that up to 27.3% of the data mem- 
bers in the benchmarks are dead (average 12.5%), and that up to 
11.6% of the object space of these applications may be occupied 
by dead data members at run-time (average 4.4%). 

6.3 Techniques for restructuring class hierarchies 

Another category of related work is that of techniques for restruc- 
turing class hierarchies for the sake of improving design, improv- 
ing code reuse, and enabling reuse. Opdyke and Johnson [14, 13] 
present a number of behavior-preserving transformations on class 
hierarchies, which they refer to as refactorings. The goal of refac- 
toting is to improve design and enable reuse by "factoring out" 
common abstractions. This involves steps such as the creation of 
new superclasses, moving around methods and classes in a hierar- 
chy, and a number of similar steps. Our techniques for analyzing 

9Definitions 1, 3, 4, and 7 were taken from [26, 27]. 

the usage of a class hierarchy to find design problems is in our 
opinion complimentary to the techniques of [14, 13]. 

Moore [12] presents a tool that automatically restructures in- 
heritance hierarchies and refactors methods in Self programs. The 
goal of this restructuring is to maximize the sharing of expressions 
between methods, and the sharing of methods between objects in 
order to obtain smaller programs with improved code reuse. Since 
Moore is studying a dynamically typed language without explicit 
class definitions, a number of complex issues related to preserving 
the appropriate subtype-relationships between types of variables do 
not arise in his setting. 

7 Conclusions and Future Work 

We have presented a method for finding design problems in a class 
hierarchy by analyzing the usage of the hierarchy by a set of appli- 
cations. This method is based on concept analysis and constructs a 
concept lattice in which relationships between variables and class 
members are made explicit, and where information that members 
and variables have in common is "factored out". We have shown 
the technique to be capable of finding design anomalies such as 
class members that are redundant or that can be moved into a de- 
rived class. In addition, situations where it is appropriate to split a 
class can be detected. We have suggested how these techniques can 
be incorporated into interactive tools for maintaining and restruc- 
turing class hierarchies. 

The present paper has focused on foundational aspects. We 
intend to implement an interactive class hierarchy restructuring tool 
based on our technique, and verify its practicality by applying it to 
large C++ applications. Large applications typically use libraries 
for which no source code is available, which will force us to make 
conservative assumptions in the points-to analysis. It remains to be 
seen to what extent this will affect the accuracy and usefulness of 
the resulting lattices. 

We believe that there are several interesting research issues re- 
lated to the question of how to present the information contained in 
the lattice to the user. The treatment of a number of C++ features 
(in particular type casts) still needs to he modeled, but we antici- 
pate no major problems. We hope to be able to report on realistic 
ease studies soon. 
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Appendix 

This appendix demonstrates that a method and its this-pointer 
will always appear together in the lattice. This fact justifies the 
elimination of the rows for th£  s-pointers from the constructed ta- 
bles. 

Lemma. For any dcl(C::f) 6 MemberDcls(7)), we have that: 

I~(dcl(O::f)) = V 7(z)  
(~:, dcl(C::y))~T 

Proof. 7(z)  < t~(dcl(O::f)) for all (z, dcl(O::f)) 6 T, and 
therefore this is also true for their supremum. On the other hand, 
l~(dcl(O::f)) can not be above the supremum, because by con- 
struction of the concept lattice, $ I.*(dcl(C::f)) contains exactly 
all z with (z, dcl(O::f)) 6 T. Hence the equality holds. 

Lemma. For any det(C::f) E MemberDefs(7~), we have that: 

~( .c: : f )  > ~,(def(C::y)) 

Proof. 
Every method call x .  f () causes an implicit assignment 

*c:  : f = x ;  to the method's t h i s  pointer, hence by the as- 
signment rule we have the implication , (7 : : f  --+ z and there- 
fore 7(*C: : f )  > 7(~:). Furthermore, for m = def(G::f)or 
m = dct(O::f), V(~.m)eT 7 (z )  = I~(dcl(O::f)) by the above 
lemma (note that the dominance rules will enforce i~(dcl(O: :f))  > 
/~(def((7::f)), hence accesses of z to f ' s  definition do not re- 
ally contribute to the supremum). Because of i~(dcl(O::f)) >_ 
t~(def(O::y)), we have 7(*(7::f) > i~(def~C::f)). 

The last lemma shows that a method always appears below its 
gh i  s-pointer, and without the this-rule ,  they will indeed appear 
at different elements in the lattice if method (7::f does not access 
itself (i.e., is non-reeursive). 

The t h i s - r u l e  enforces 7(*(7::f)  < t.*(det((7::f)), and to- 
gether with the lemma we may conclude the following. 

Proposition. For any det~O::m) 6 MemberDefs(7 ~) we have that: 

7(*C: : f )  =/~(def((7: :f))  
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