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Abstract

DEEPDIVE is a system for extracting relational databases from dark data: the mass of text, tables, and 

images that are widely collected and stored but which cannot be exploited by standard relational 

tools. If the information in dark data — scientific papers, Web classified ads, customer service 

notes, and so on — were instead in a relational database, it would give analysts a massive and 

valuable new set of “big data.”

DEEPDIVE is distinctive when compared to previous information extraction systems in its ability to 

obtain very high precision and recall at reasonable engineering cost; in a number of applications, 

we have used DEEPDIVE to create databases with accuracy that meets that of human annotators. To 

date we have successfully deployed DEEPDIVE to create data-centric applications for insurance, 

materials science, genomics, paleontologists, law enforcement, and others. The data unlocked by 

DEEPDIVE represents a massive opportunity for industry, government, and scientific researchers.

DEEPDIVE is enabled by an unusual design that combines large-scale probabilistic inference with a 

novel developer interaction cycle. This design is enabled by several core innovations around 

probabilistic training and inference.

1 Introduction

DEEPDIVE is a system for extracting structured data from unstructured dark data. Dark data is 

the mass of text, tables, and images that is collected and stored but which cannot be queried 

using traditional relational database tools. Consider the set of text notes about insurance 

claims, or scientific papers, or internet classified ads; these different sources contain 

valuable information that is not in a relational format, but in principle should be amenable to 

analysis by relational tools. Currently, organizations pay the cost of collecting and 

maintaining dark data, but cannot exploit it. DEEPDIVE consumes dark data and populates a 

relational database that can be used with standard data management tools, such as OLAP 

query processors, visualization software like Tableau, and analytical tools such as R or 

Excel.
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Dark data often holds information that is not available in any other format. For example, an 

insurance company's claim notes resemble a small blog dedicated to a single claim, with 

entries authored by many different individuals. They will contain service representatives’ 

notes from customer interactions, bills from doctors who treat claimants, reports from car 

repair shops, and so on. Simple claims might have a single text note, but more complicated 

claims might have hundreds. If this information were in a relational database instead of text, 

it would be possible to use simple SQL queries to answer a range of useful questions, 

including:

• Which doctors were responsible for the most claims?

• Is the distribution of injury types changing over time?

• Do certain inspectors yield larger claims than others?

Because success in analytical tasks is often limited by the data available [18], the 

information embedded in dark data can be massively valuable. In some cases, the data is so 

valuable that institutions have hired human beings to manually read documents and populate 

a relational database by hand [37]. However, this practice is expensive, incredibly slow, and 

surprisingly error-prone.

DEEPDIVE can extract structured databases from dark data accurately and vastly more quickly 

than human beings. Of course, information extraction has been an area of active academic 

investigation since at least the early 1990s [1]. DEEPDIVE is distinctive because of its ability to 

produce databases of extremely high accuracy with reasonable amounts of human 

engineering effort. In a remarkable range of applications, DEEPDIVE has been able to obtain 

data with precision that meets or beats that of human annotators. DEEPDIVE's high quality is 

possible because of a unique design based around probabilistic inference and a specialized 

engineering development cycle; they are underpinned by several technical innovations for 

efficient statistical training and sampling.

DEEPDIVE is an open source project that has been under development since 2011. We have 

used it to extract high-quality information in a number of disparate areas, including 

genomics, insurance, Web classified ads, materials science, paleontology, and others. We 

believe that creating and exploiting extracted information from dark data (nowadays often 

sitting around in rapidly-growing data lakes) represents a massive opportunity for academia, 

industry, and government. We have deployed many of these extracted datasets to domain-

specific users and have been gratified to see the information enable novel and remarkable 

domain-specific results.

In this paper we will discuss the core elements of the DEEPDIVE software architecture, as well 

as a number of applications driven by DEEPDIVE, drawn from both academic and industrial 

settings. Many of the algorithms and technical components behind DEEPDIVE have been 

documented previously; this paper is the first to offer a comprehensive look at the software 

that ties the technical elements into a coherent whole. Although DEEPDIVE is designed to 

handle multiple media types, we will primarily focus on text.

In this paper we discuss:

Zhang et al. Page 2

Proc ACM SIGMOD Int Conf Manag Data. Author manuscript; available in PMC 2017 March 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Design goals for DEEPDIVE (Section 2)

• DEEPDIVE's software architecture (Section 3)

• A brief overview of the technical components needed to implement the above 

architecture (Section 4)

• The DEEPDIVE development cycle (Section 5)

• An overview of DEEPDIVE-enabled applications, including insurance, materials 

science, and human trafficking (Section 6)

Finally, we conclude with a discussion of related and future work.

2 User Interaction and Design Criteria

DEEPDIVE's overriding goal is to extract data with very high quality. Figure 1 shows DEEPDIVE's 

core inputs and outputs. The user presents DEEPDIVE with an input document corpus and an 

input aspirational schema to populate with information from that corpus. For example, if the 

document corpus were a collection of genomics research papers, the aspirational schema 
might be (gene, phenotype). DEEPDIVE then emits an output aspirational table that has the 

given schema and uses information found in the input corpus.

The success of a single DEEPDIVE run is determined by the quality — the precision and recall 

— of the output aspirational table. DEEPDIVE obtains high quality by asking an engineer to 

repeatedly examine the output table, diagnose any problems, and repair problems by 

contributing domain-specific code. By repeatedly going through this iterative improvement 

cycle, a DEEPDIVE engineer should be able to obtain extremely high accuracy data.

DEEPDIVE's success is entirely dependent on effective and rapid execution of this iterative 

development cycle. In this section we discuss the motivation behind this developer model, as 

well as the system design criteria driven by the model.

2.1 Iterative Development Model

We have observed that when working on an information extraction task, it is very easy to 

spend one's time poorly. Even well-trained computer scientists will work in an ad hoc 
fashion and contribute useless features, laboriously perfect features that have little impact, 

solve error cases that are obvious rather than common, fiddle with the statistical 

infrastructure, rarely know when to add more training data, and fall victim to common 

(though sometimes subtle) statistical errors. In short, even the best of us flail aimlessly in the 

face of a low precision or recall number.

This process superficially resembles that of performance debugging, an area where it is 

famously easy for a software engineer to spend huge amounts of time flailing, making 

changes that do not yield concrete results. But in contrast to extractor development, the 

software engineer who wants to make a slow piece of software run fast can pursue several 

methods that are very effective, if not always practiced.
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An effective engineer knows the wisdom in Amdahl's Law, and will focus only on the 

slowest component. Identifying the slowest component is often counterintuitive, so she 

heavily instruments the code before making any changes. Finally, she knows that she should 

make performance improvements piecemeal, because solving one can change the overall 

picture of which components are now the bottleneck. By repeatedly applying this deeply-

ingrained, reliable, and predictable discipline, the engineer can obtain a fast piece of 

software.

DEEPDIVE aims to use a similar development cycle to obtain high accuracy. The human 

engineer identifies the most common error in the output table. She then examines the 

relevant region of the raw input corpus, plus DEEPDIVE's instrumented extraction decision. 

This information enables the engineer to solve the error class, rerun the system, and move 

onto the next error. We describe the developer experience in more detail in Section 5.

2.2 System Design Criteria

In order to support the above developer workflow, DEEPDIVE has three core design criteria:

• Mechanism independence — Human developers improve accuracy by 

contributing domain information, not by changing the statistical procedure.

• Integrated processing — The interrelated steps of extraction, cleaning, and 

integration should all be handled simultaneously.

• Debuggable decisions — Any extraction error made by the system should be 

analyzable and tied to a root cause that can be understood and fixed by a human 

engineer.

2.3 Mechanism Independence

In an effort to obtain either high accuracy or faster runtimes, it is commonplace for machine 

learning engineers to modify the core statistical procedure for a given task. Machine learning 

conferences focus heavily on novel methods, often justified with experiments showing 

improved accuracy numbers for a workload of tasks. This practice is disastrous from an 

engineering point of view, encouraging the developer to fiddle with the most error-prone and 

difficult-to-debug portion of the system. It also distracts the developer from contributing 

what a human is uniquely able to contribute, and what usually solves real extraction 

problems: additional problem-specific domain knowledge.

Unlike machine learning toolkits such as MLib, MADLib, or SAS, DEEPDIVE does not offer 

the user an elaborate suite of statistical algorithms. The training and inference procedure is 

not controllable by the developer. Rather, the developer uses a high-level datalog-like 

language called DDlog to describe the structured extraction problem. DEEPDIVE then figures 

out how to most efficiently perform the extraction task described by the developer.

This approach should sound very familiar to readers in the database community, which has 

long favored high-level languages over direct user control of the query processing 

mechanism. However, this design choice posed a serious technical challenge well into the 

1980s, until it eventually became known how to build a query processing system that could 
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obtain acceptable performance. DEEPDIVE faced a similar technical challenge: a system for 

probabilistic inference that is efficient enough that users can generally rely on it. Addressing 

this challenge was a key hurdle in building DEEPDIVE (though DEEPDIVE is not the only 

possible way to use these efficient training and inference techniques). We describe it in more 

detail in Section 4.

2.4 Integrated Processing

DEEPDIVE handles in a single platform several processing steps that in the past have been 

treated as distinct: extraction, integration, and cleaning. This approach may seem unwisely 

ambitious, since each individual step has been the focus of dedicated software products. But 

in contrast to the past siloed processing model, we believe that integrated processing is 

crucial for supporting the developer workflow above. The key is that integrated processing 

allows the developer to solve extraction problems where they are easiest to solve.

Consider when the DEEPDIVE developer wants to create a book catalog out of book review 

web pages, using a siloed system of two steps: extraction, followed by integration with a 

partial catalog. Imagine the target schema is (bookTitle, author, uniqueId, price) and the 

extractor has a very high precision of 98%. The remaining 2% of emitted tuples are not 

books, but are movies that were incorrectly extracted, due to a mistake made by the 

extractor's NLP parser. The downstream integration module fails to integrate some of the 

correct extractions (because they are novel) and all of the incorrect ones (because the 

existing database does not contain movies).

In a siloed system, the extractor will appear to be providing incorrect data to the integrator, 

which of course will fail. The team responsible for the integration system will naturally ask 

the extractor team to fix the problem, with the reasoning that no system can integrate 

incorrect data1. Unfortunately, NLP parsing problems are likely extremely difficult for the 

extraction team to repair, forcing them to either devote huge technical resources to solving 

the problem, or devote human resources to manually reviewing the extractor's output.

It would be vastly simpler for the integration team to simply filter out extracted tuples that 

contain movie titles (for which there are free and high-quality downloadable databases). 

However, this easy fix will not be apparent in the siloed system; it is only apparent to an 

engineer responsible for integrated end-to-end data quality.

It may seem artificial to say that the siloed “extractor” cannot use dictionaries; we entirely 

agree. Using separate software components for each stage — written and maintained by 

separate teams — will inevitably lead to these artificial distinctions, which will lead to poor 

engineering decisions. In an integrated system, the developer simply asks whether the final 

data product is good enough; if the answer is no, the developer picks the most convenient 

place to fix the most important problem.

1Could the extractor team respond that 98% is “good enough”? There is no way to answer this question without an integrated end-to-
end evaluation. Consider the similar problem of evaluating whether a given function in a piece of software is “fast enough.” For a 
function considered in isolation, the question is impossible to answer. One needs to know the function's role in an overall program — 
the performance requirements, how often the function is called, etc.
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There may also be a further statistical advantage in incorporating multiple sources of 

information during the joint inference task.

2.5 Debuggable Decisions

Our final design goal is that DEEPDIVE should enable debuggable decisions. When the 

developer has identified an extraction error, she must be able to examine what incorrect 

decision DEEPDIVE made, and diagnose why it happened. Satisfying this goal has three 

practical impacts on the system:

• DEEPDIVE uses human-understandable features that are implemented in traditional 

Python code, not the opaque features yielded by deep learning systems. In 

Section 5 we describe how to use this approach and still obtain some of the 

feature induction advantages associated with deep learning.

• All weighted decisions are described using calibrated probabilities, not scores. 

This allows humans to examine individual and intermediate decisions, then 

decide whether the intermediate decision was correct or not. Doing so is 

impossible unless the numerical value is human-comprehensible. This places 

additional requirements on our probabilistic inference mechanism.

• It retains a statistical “execution history” and can present it to the user in an easy-

to-consume form. For example, our debugging tool always presents, for each 

feature, the number of times the feature was observed in the training data. This 

allows engineers to detect whether the feature has an incorrect weight due to 

insufficient training data.

In the following section we describe the overall DEEPDIVE architecture, and discuss how it 

meets these three design criteria.

3 System Overview

Figure 2 shows DEEPDIVE's three execution phases:

1. In candidate generation, DEEPDIVE applies a user-defined function (UDF) to each 

document in the input corpus to yield candidate extractions. For example, the 

book price extractor might emit every numerical value from each input webpage. 

The goal of the candidate generator is to eliminate “obviously” wrong outputs 

(such as non-numeric prices). The candidate generation step is thus intended to 

be high-recall, low-precision.

The system also applies user-defined feature functions to each candidate. For example, one 

feature might indicate whether the candidate has a $ symbol to its left. We believe that 

improving feature quality is one of the core mechanisms by which a statistical system can 

improve its quality [2]. Unlike some statistical frameworks in which features are largely or 

entirely synthetic — say, deep learning — we strongly believe that all features should be 

comprehensible by humans, so as to permit downstream debugging.

2. In supervision, DEEPDIVE applies user-defined distant supervision rules to provide 

labels for some of the candidates. For example, we might know the true price for 
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a subset of downloaded Web pages because of a previous hand-annotated 

database. Supervision rules do not have to label each candidate: they are 

intended to be low-recall, high-precision. Distant supervision rules in some 

cases may be more error-prone than direct human label generation, but the 

former allows us to fix and reexecute rules, and also to generate massively more 

labeled examples.

3. In learning and inference, we construct a graphical model that represents all of 

the labeled candidate extractions, train weights, then infer a correct probability 

for each candidate. At the end of this stage, we apply a threshold to each 

inferred probability and thereby obtain the extractions that will be placed in the 

output database.

Every time the developer makes a pass through the Figure 1 iteration loop — that is, each 

time she changes a candidate generation UDF, a feature UDF, or the distant supervision rules 

— we rerun DEEPDIVE to obtain a new output table. The user can also specify many smaller-

bore task-specific details: where to find input data, the schema of the output, how to 

incorporate information about multiple possible extractions, and so on. The user provides 

this information using DDlog.

3.1 Candidate Generation and Feature Extraction

All data in DEEPDIVE is stored in a relational database. The first phase populates the database 

using a set of SQL queries and user-defined functions (UDFs). By default, DEEPDIVE stores all 

documents in the database in one sentence per row with markup produced by standard NLP 

pre-processing tools, including HTML stripping, part-of-speech tagging, and linguistic 

parsing. After this loading step, DEEPDIVE executes two types of queries: (1) candidate 
mappings, which are SQL queries that produce possible mentions, entities, and relations, 

and (2) feature extractors that associate features to candidates.

Example 3.1—Candidate mappings are usually simple. Here, we create a relation mention 

for every pair of candidate persons in the same sentence (s):

(R1) MarriedCandidate(m1, m2):-

PersonCandidate(s, m1), PersonCandidate(s, m2).

Candidate mappings are simply SQL queries with UDFs that look like low-precision but 

high-recall ETL scripts. Such rules must be high recall: if the union of candidate mappings 

misses a fact, DEEPDIVE will never extract it.

We also need to extract features. Here we extend classical Markov Logic in two ways: (1) 

user-defined functions and (2) weight tying, which we illustrate by example.

Example 3.2—Suppose that UDF phrase(m1, m2, sent) returns the phrase between two 

mentions in the sentence, e.g., “and his wife” in the above example. The phrase between two 

mentions may indicate whether two people are married. We would write this as:

(FE1) MarriedMentions(m1, m2):-
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MarriedCandidate(m1, m2), Mention(s, m1),

Mention(s, m2), Sentence(s, sent)

weight = phrase(m1, m2, sent).

One can think about this like a classifier: This rule says that whether the text indicates that 

the mentions m1 and m2 are married is influenced by the phrase between those mention 

pairs. The system will infer based on training data its confidence (by estimating the weight) 

that two mentions are indeed indicated to be married.

Technically, phrase returns an identifier that determines which weights should be used for a 

given relation mention in a sentence. If phrase returns the same result for two relation 

mentions, they receive the same weight. In general, phrase could be an arbitrary UDF that 

operates in a per-tuple fashion. This allows DEEPDIVE to support common examples of 

features such as “bag-of-words” to context-aware NLP features to highly domain-specific 

dictionaries and ontologies. In addition to specifying sets of classifiers, DEEPDIVE inherits 

Markov Logic's ability to specify rich correlations between entities via weighted rules. Such 

rules are particularly helpful for data cleaning and data integration.

3.2 Supervision

Just as in Markov Logic, DEEPDIVE can use training data or evidence about any relation; in 

particular, each user relation is associated with an evidence relation with the same schema 

and an additional field that indicates whether the entry is true or false. Continuing our 

example, the evidence relation MarriedMentions_Ev could contain mention pairs with 

positive and negative labels. As a rule, we use distant supervision to obtain labels rather than 

manual efforts.

Example 3.3—Distant supervision [20,33] is a popular technique to create evidence in 

information extraction systems. The idea is to use an incomplete database of married entity 

pairs to heuristically label (as True evidence) all relation mentions that link to a pair of 

married entities:

(S1) MarriedMentions_Ev(m1, m2, true):-

MarriedCandidates(m1, m2), EL(m1, e1),

EL(m2, e2), Married(e1, e2).

Here, Married is an (incomplete) list of married real-world persons that we wish to extend. 

The relation EL is for “entity linking” that maps mentions to their candidate entities. At first 

blush, this rule seems incorrect. However, it generates noisy, imperfect examples of 

sentences that indicate two people are married. Machine learning techniques are able to 

exploit redundancy to cope with the noise and learn the relevant phrases (e.g., “and his 

wife”). Negative examples are generated by relations that are largely disjoint (e.g., siblings). 

Similar to DIPRE [6] and Hearst patterns [19], distant supervision exploits the “duality” [6] 

between patterns and relation instances; furthermore, it allows us to integrate this idea into 

DEEPDIVE's unified probabilistic framework.
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3.3 Learning and Inference

In the learning and inference phase, DEEPDIVE generates a factor graph, similar to Markov 

Logic, and uses techniques from Tuffy [36]. The inference and learning are done using 

standard techniques (Gibbs Sampling) that we describe below after introducing the formal 

semantics.

As in Figure 4, DEEPDIVE explicitly constructs a factor graph for inference and learning using 

a set of SQL queries. Recall that a factor graph is a triple (V, F, ŵ) in which V is a set of 

nodes that correspond to Boolean random variables, F is a set of hyperedges (for f ∈ F, f ⊆ 

V), and  is a weight function. In DEEPDIVE each variable corresponds to one 

tuple in the database, and each hyperedge f corresponds to the set of groundings for a rule γ. 

In DEEPDIVE, V and F are explicitly created using a set of SQL queries. These data structures 

are then passed to the sampler, which runs outside the database, to estimate the marginal 

probability of each node or tuple in the database. (In principle there could be some data 

movement advantages to running the sampler inside the core database system, but probably 

not enough to warrant the additional code complexity.) Each tuple is then reloaded into the 

database with its marginal probability.

Example 3.4—Take the database instances and rules in Figure 4 as an example, each tuple 

in relation R, S, and Q is a random variable, and V contains all random variables. The 

inference rules F1 and F2 ground factors with the same name in the factor graph as 

illustrated in Figure 4. Both F1 and F2 are implemented as SQL in DEEPDIVE.

To define the semantics, we first define the concept of possible world: a possible world is a 

function that assigns each variable a truth value. Let  be the set of all possible worlds, for 

each factor f and a possible world I, we use ŵ(f, I) as the value returned by factor f for 

possible world I. We then define Ŵ(F, I) = Σf∈F ŵ(f, I), and then the probability of a 

possible world is the following function:

The main task that DEEPDIVE conducts on factor graphs is statistical inference, i.e., for a given 

node, what is the marginal probability that this node takes the value 1? This marginal 

probability is defined as follows. Given a variable v, let  be the set of all possible worlds 

in which v is assigned to true, the marginal probability of v is .

3.4 Execution

DEEPDIVE runs the above three phases in sequence, and at the end of the learning and 

inference, it obtains a marginal probability p for each candidate fact. To produce the output 

database, DEEPDIVE applies a user-chosen threshold, e.g., p > 0.95. For some applications that 

favor extremely high recall at the expense of precision, it may be appropriate to lower this 

threshold.
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Typically, the developer will need to perform an error analysis and repeat the development 

cycle. Error analysis is the process of understanding the most common mistakes (incorrect 

extractions, too-specific features, candidate mistakes, etc.) and deciding how to correct them 

[40]. To facilitate error analysis, users write standard SQL queries or use the Mindtagger 

tool [45]. We will describe these methods in more detail in Section 5.

4 System Infrastructure

DEEPDIVE relies on two novel technological components for incremental grounding as well as 

statistical inference and learning.

4.1 Incremental Grounding

Grounding takes place when DEEPDIVE translates the set of relations and rules into a concrete 

factor graph upon which probabilistic inference is possible. Because DEEPDIVE is based on 

SQL, we are able to take advantage of decades of work on incremental view maintenance. 

The input to this phase is the same as the input to the grounding phase, a set of SQL queries 

and the user schema. The output of this phase is how the output of grounding changes, i.e., a 

set of modified variables ΔV and their factors ΔF. Since V and F are simply views over the 

database, any view maintenance techniques can be applied to incremental grounding. 

DEEPDIVE uses the DRED algorithm [17] that handles both additions and deletions. Recall that 

in DRED, for each relation Ri in the user's schema, we create a delta relation, , with the 

same schema as Ri and an additional column count. For each tuple t, t.count represents the 

number of derivations of t in Ri. On an update, DEEPDIVE updates delta relations in two steps. 

First, for tuples in , DEEPDIVE directly updates the corresponding counts. Second, a SQL 

query called a “delta rule”2 is executed which processes these counts to generate modified 

variables ΔV and factors ΔF. We found that the overhead of DRED is modest and the gains 

may be substantial, so DEEPDIVE always runs DRED–except on initial load.

4.2 Statistical Inference and Learning

The main task that DEEPDIVE conducts on factor graphs is statistical inference, i.e., for a given 

node, what is the marginal probability that this node takes the value 1? Since a node takes 

value 1 when a tuple is in the output, this process computes the marginal probability values 

returned to users. In general, computing these marginal probabilities is #P-hard [50]. Like 

many other systems, DEEPDIVE uses Gibbs sampling [43] to estimate the marginal probability 

of every tuple in the database.

Efficiency and Scalability—There are two components to scaling statistical algorithms: 

statistical efficiency, roughly how many steps an algorithm takes to converge, and hardware 
efficiency, how efficient each of those step is. We introduced this terminology and studied 

this extensively in a recent paper [55].

DimmWitted [55], the statistical inference and learning engine in DEEPDIVE, is built upon our 

research of how to design a high-performance statistical inference and learning engine on a 

2For example, for the grounding procedure illustrated in Figure 4, the delta rule for F1 is qδ(x) : −Rδ(x, y).
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single machine [29,41,54,55]. DimmWitted models Gibbs sampling as a “column-to-row 

access” operation: each row corresponds to one factor, each column to one variable, and the 

non-zero elements in the matrix correspond to edges in the factor graph. To process one 

variable, DimmWitted fetches one column of the matrix to get the set of factors, and other 

columns to get the set of variables that connect to the same factor. In standard benchmarks, 

DimmWitted was 3.7× faster than GraphLab's implementation without any application-

specific optimization. Compared with traditional work, the main novelty of DimmWitted is 

that it considers both hardware efficiency and statistical efficiency for executing an inference 

and learning task.

• Hardware Efficiency DEEPDIVE takes into consideration the architecture of 

modern Non-uniform memory access (NUMA) machines. A NUMA machine 

usually contains multiple nodes (sockets); each socket contains multiple CPU 

cores. To obtain high hardware efficiency, one wants to decrease the 

communication across different NUMA nodes.

• Statistical Efficiency Pushing hardware efficiency to the extreme might suffer 

on statistical efficiency because the lack of communication between nodes might 

decrease the rate of convergence of a statistical inference and learning algorithm. 

DEEPDIVE takes advantage of the theoretical results of model averaging [57] and 

our own results about lock-free execution [29,41].

When performing extraction from a corpus of 0.3 million papers from the paleobiology 

literature, the factor graph contains more than 0.2 billion random variables and 0.3 billion 

factors. On this factor graph, DEEPDIVE is able to run Gibbs sampling on a machine with 4 

sockets (10 core per sockets), and we find that we can generate 1,000 samples for all 0.2 

billion random variables in 28 minutes. This is more than 4× faster than a non-NUMA-aware 

implementation.

Incremental Inference—Due to our choice of incremental grounding, the input to 

DEEPDIVE's inference phase is a factor graph along with a set of changed variables and factors. 

The goal is to compute the output probabilities computed by the system. Our approach is to 

frame the incremental maintenance problem as approximate inference. Previous work in the 

database community has looked at how machine learning data products change in response 

to both to new labels [25] and to new data [9,10]. When extracting databases from dark data, 

both the program and data change on each iteration. Our system can cope with both types of 

change simultaneously.

There are two popular classes of approximate inference techniques: sampling-based 
materialization (inspired by sampling-based probabilistic databases such as MCDB [22]) 

and variational-based materialization (inspired by techniques for approximating graphical 

models [49]). We conducted an experimental evaluation of these two approaches on a 

diverse set of DEEPDIVE programs. We found these two approaches are sensitive to changes in 

the size of the factor graph, the sparsity of correlations, and the anticipated number of future 

changes. The performance varies by up to two orders of magnitude in different points of the 

space. To automatically choose the materialization strategy, we use a simple rule-based 

optimizer.
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5 Developing and Debugging

The main claim for DEEPDIVE is that it enables data quality that is much higher than previous 

or competing systems. But so far we have covered mainly how to match our three design 

criteria of mechanism independence, integrated processing, and debuggable decisions. 

DEEPDIVE meets these criteria by framing extraction as a single integrated probabilistic 

inference task, along with infrastructure that can perform fast and accurate probabilistic 

inference without any one-off hacking of the inference procedure, plus some code that 

generates log-like data about DEEPDIVE's decisions.

In this section we describe how these advantages translate into DEEPDIVE's reliably high-

quality output.

5.1 Improvement Iteration Loop

DEEPDIVE reaches high accuracy by enabling an efficient improvement iteration loop. The 

basic steps in this loop are described in Figure 1. As mentioned in Section 2, this developer 

loop is inspired by engineering behavior in traditional performance debugging settings: the 

engineer repeatedly runs the system, carefully diagnoses problems, and makes minimal 

modifications to address only the diagnosed problems. Performing this cycle is not easy — 

new students require lots of training in order to do it — but can be done reliably and 

repeatedly. Put another way, a good software engineering team can reliably obtain better 

performance by applying systematic effort to the problem.

In contrast, most machine learning-driven efforts in our experience do not exhibit either 

reliable accuracy improvement over time or systematic practice by engineers. Instead, the 

accuracy improvement over time is often fitful and unreliable. The engineering practice is 

often characterized by tinkering with the core statistical machinery and opaque “rules of 

thumb” that often lead to wasted or low-productivity effort.

We have devoted substantial time to evolving a systematic engineering practice that yields 

reliable improvements to extraction quality over time. Below we describe how the engineer 

identifies and remedies accuracy errors, plus some dead ends and common failure modes we 

have observed while building DEEPDIVE.

5.2 Fixing Failure

Rapidly identifying and repairing accuracy errors is the core mechanism by which DEEPDIVE 

obtains high accuracy. The first step in this process is when an engineer produces an error 
analysis. This is a strongly stylized document that helps the engineer determine:

• The true precision and recall of the extractor

• An enumeration of observed extractor failure modes, along with error counts for 

each failure mode. For example, a flawed extractor for medical doctors might 

incorrectly yield city names because they appear after the term Dr.

• For the top-ranked failure modes, the underlying reason DEEPDIVE made a 

mistake.
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The error analysis document plays a role similar to the software engineer's performance 

instrumentation tool. Unfortunately, unlike most performance tools, producing the error 

analysis cannot be wholly automated. It requires a human being to:

1. Manually mark a sample of emitted extractions — usually roughly 100 — as 

correct or incorrect. This sample will be used to compute DEEPDIVE's precision.

2. Manually mark a sample of correct answers from the documents — usually 

roughly 100 — as correctly or incorrectly-extracted. This sample will be used to 

compute DEEPDIVE's recall.

3. Place each extraction failure into one of several “failure mode buckets.” These 

buckets are not hard-coded in advance, and are not strictly defined; they are more 

akin to semantic tags applied by the engineer to errors that seem similar. 

Examples include bad doctor name from addresses, or bad gene name from 
capitalized title, or missed price extraction when preceded by Euro symbol.

Producing the error analysis requires human annotation and can be time-consuming. 

(Though note that the person producing the above document can be someone other than the 

core DEEPDIVE engineer, and in the case of highly-technical input corpora, the primary 

DEEPDIVE engineer might not be qualified to produce it.)

The error analysis document also includes information the user does not have to generate 

manually: commodity statistics that describe the inputs and outputs, checksums of all data 

products and code, and summaries of features, including their learned weights and observed 

counts. It also has a version checksum and references to GitHub versions that contain the 

relevant feature functions and distant supervision code.

After producing the error analysis, the engineer sorts the failure mode buckets in descending 

order of frequency. She always tries to address the largest bucket first. Bugs usually fall into 

one of three categories:

1. The candidate generator failed to identify the extraction, or through a 

preprocessing error emitted a nonsense candidate (perhaps due to a bad character 

in the input, or an OCR failure in the case of hand-written forms). This is easily 

checked by testing whether the correct answer was contained in the set of 

candidates evaluated probabilistically.

2. There is not a feature function that can successfully distinguish the right answer. 

The engineer checks for this failure by examining each incorrect example in the 

current bucket, and asking whether the observed features would be sufficient for 

a human being to distinguish a correct from incorrect answer.

For example, if the doctor extractor has just a single feature — is ’Dr’ to the left of the 
candidate? — then clearly there is not sufficient feature information for DEEPDIVE to emit the 

correct result, and the engineer should add a new feature function.

3. If there is sufficient feature information, but DEEPDIVE still yielded an incorrect 

result, then the learned feature weights are likely incorrect, most often due to 
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insufficient distant supervision rules. This can easily happen when the distant 

supervision rules provide few or no labels for certain feature values.

For example, if the extractor has two features — is ’Dr’ to the left of the candidate? and is 
the candidate inside an address? — then the distant supervision rules must provide labels for 

candidates that exhibit both features. If the distant supervision rules instead just happen to 

label non-address examples, then DEEPDIVE will not have enough evidence to correctly 

compute the relative weights of these features. The engineer should add a new distant 

supervision rule to cover this case.

That is all. The DEEPDIVE engineer repeatedly creates the error analysis, then diagnoses the 

reason behind the most important errors. Do this enough times, and DEEPDIVE can rapidly 

obtain extremely high data quality.

In addition, after each training run, DEEPDIVE emits the diagrams shown in Figure 5. This data 

helps the engineer understand the system's probabilistic output without having to understand 

the statistical algorithm. The leftmost diagram is a calibration plot that shows whether 

DEEPDIVE's emitted probabilities are accurate; e.g., for all of the items assessed a 20% 

probability, are 20% of them actually correct extractions? In the case shown here, the actual 

red line does not reflect the ideal dotted blue line, suggesting DEEPDIVE lacks sufficient 

feature evidence to compute entirely correct probabilities. The center and right diagrams 

show a histogram of predictions in various probability buckets for the test and training sets, 

respectively. Ideal prediction histograms are U-shaped, with the vast majority of items 

receiving a probability of either 0% or close to 100%. The center (test set) histogram here is 

worrisome, suggesting that for many test cases, DEEPDIVE does not have enough evidence to 

push its belief either to zero or 1.

5.3 Design Choices

Making the engineer as productive as possible has been a driving force in the last few years 

of DEEPDIVE development. We have made a number of nonobvious design choices and pulled 

back from a few interesting dead ends.

Human-understandable features only—All of the features that DEEPDIVE uses are 

easily human-understandable. This decision stands in sharp contrast to recent deep learning 

trends that deemphasize manual feature engineering in favor of manually-designed networks 

and training procedures that can yield effective but opaque features.

Note that human comprehensibility is core to the debugging loop described above. In our 

view, the human engineer must be able to determine whether an observed mistake was due 

to a lack of effective features or due to some other source of failure; that determination is 

impossible if the feature set is not comprehensible.

In the past year we have introduced a feature library system that automatically proposes a 

massive number of features that plausibly work across many domains, and then uses 

statistical regularization to throw away all but the most effective features. This method gives 

a bit of the feel of deep learning, in that some features come “for free” with no explicit 

engineer involvement. However, the hypothesized features are designed to always be human-
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understandable; we describe the space of all possible features using code-like “feature 

templates” instead of the opaque network designs common in deep learning.

Distant supervision—Our standard development loop never calls upon anyone to 

manually label training data examples. The only explicit human labels come during the error 

analysis phase, after the system has already been trained. This decision stands in contrast to 

most previous supervised trained systems, which rely on huge numbers of manually-labeled 

examples.

We use distant supervision for three reasons. First, it is far less burdensome than manual 

labeling and thus enables rapid execution of the improvement iteration cycle. Second, we 

have found in other work that the massive number of labels enabled by distant supervision 

rules may simply be more effective than the smaller number of labels that come from 

manual processes, even in the face of possibly-higher error rates [53]. Third, distant 

supervision rules can be revised, debugged, and cheaply reexecuted; in contrast, a flaw in the 

human labeling process can only be fixed by expensively redoing all of the work.

Few deterministic rules—This point is best described as an engineering failure mode we 

now actively strive to avoid. When faced with an extraction task, it is often possible to 

rapidly obtain middling data quality by writing a simple regular expression. For example, 

simply extracting capitalized words after Dr. would indeed give a healthy number of correct 

doctor extractions. This approach can be extremely appealing from an engineering 

perspective, as it is quick to write and relies entirely on well-understood software libraries 

instead of probabilistic machinery that may seem novel or surprising.

However, this approach is also a dead end for all but the most trivial extraction targets. A 

conscientious engineer, having met with success after writing the first regular expression, 

will quickly address the remaining quality bugs by writing a second. In our experience, this 

second deterministic rule will indeed address some bugs, but will be vastly less productive 

than the first one. The third regular expression will be even less productive. Very quickly, the 

engineer will have written a depressing page full of increasingly-obscure regular expressions 

that are hard to debug, hard to maintain, and still do not obtain human-level quality.

We have seen this pattern in new DEEPDIVE engineers many, many times. It has led to failure 

every single time but two: when extracting phone numbers and email addresses. There is a 

real cognitive resistance to adopting the development cycle described above; it appears to 

run strongly against common engineering habit, perhaps similar to the way habits for 

effective performance debugging can be very counterintuitive. Training new engineers in the 

DEEPDIVE debugging methodology can be initially difficult, but once these engineers are 

trained, they are enormously effective. Indeed, over the last several years, improvements in 

tools, practices, and training have enabled experienced DEEPDIVE engineers to produce many 

novel and high-quality databases in 1-2 days, down from several months originally.
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6 Applications

We now explore several applications in detail, to give a flavor for the kinds of applications 

DEEPDIVE can enable.

6.1 Medical Genetics

The body of literature in life sciences has been growing rapidly for years, to the extent that it 

has become unrealistic for scientists to perform research solely based on reading and 

memorization (even with the help of keyword search). As a result, there have been numerous 

initiatives to build structured databases from the research literature. For example, OMIM is 

an authoritative database of human genes and genetic disorders. It dates back to the 1960s, 

and so far contains about 6,000 hereditary diseases or phenotypes. Because OMIM is 

curated by humans, it has been growing at a rate of roughly 50 records / month for many 

years. In collaboration with Prof. Gill Bejerano at Stanford, we are developing DEEPDIVE 

applications in the field of medical genetics. Specifically, we use DEEPDIVE to extract 

mentions of genes, diseases, and phenotypes from the literature, and statistically infer their 

relationships.

Consider a very simple schema of regulate relationships that consists of (gene, phenotype, 

research-paper). This database can be crucial for treating genetic illnesses: consider a 

patient who arrives at the doctor with a symptom that the doctor believes is likely to be 

genetically-linked. The doctor takes two steps to find a possible clinical intervention: (1) she 

runs a test on the patient to determine which genes are atypical, (2) she checks the scientific 

literature to see if there is any known linkage between the patient's symptom and the atypical 

genes. This second step — sometimes known informally as “asking Doctor Google” — can 

be hugely time-consuming: the scientific literature is vast, genes and phenotypes are often 

known by different names, and identifying a relevant relationship between a gene and 

phenotype often requires reading and understanding the paper. Doctors can spend large 

amounts of time researching rare genetic illnesses, and if Googling does not yield immediate 

results, it can be difficult for the doctor to distinguish between humanity's lack of clinical 

knowledge on a topic vs. an especially challenging Internet browsing effort. As a result, 

doctors spend a large amount of time performing research instead of treating patients, and in 

some cases may fail to identify literature that is crucial for formulating treatment.

If the doctor had access to a high-quality version of the (gene, phenotype, research-paper) 

database, it would be simple and quick to look up patient information. DEEPDIVE enables the 

construction of this database.

6.2 Pharmacogenomics

Understanding the interactions of chemicals in the body is key for drug discovery. However, 

the majority of this data resides in the biomedical literature and cannot be easily accessed. 

The Pharmacogenomics Knowledgebase is a high quality database that aims to annotate the 

relationships between drugs, genes, diseases, genetic variation, and pathways in the 

literature. With the exponential growth of the literature, manual curation requires 

prioritization of specific drugs or genes in order to stay up to date with current research. In 
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collaboration with Emily Mallory and Prof. Russ Altman [30] at Stanford, we are 

developing DEEPDIVE applications in the field of pharmacogenomics. Specifically, we use 

DEEPDIVE to extract relations between genes, diseases, and drugs in order to predict novel 

pharmacological relationships.

6.3 Materials Science

The world of semiconductors offers a scenario similar to that of medical genetics. There is a 

large universe of chemical formulas from which it is possible to create semiconductors with 

different technical physical properties, such as electron field mobility. It would be useful for 

a semiconductor engineer to have a handbook of semiconductor materials and their 

properties, using which she could simply look up a desirable set of numbers for any specific 

application. Unfortunately, there is no such handbook — the evolving research literature 

itself is the best source of information on semiconductors data. As a result, engineers can 

spend large amounts of time rifling through the scientific literature in the search for just the 

right material.

In conjunction with researchers at Toshiba Corporation, we have worked since the fall of 

2014 to create this database of semiconductors and their properties.

6.4 Fighting Human Trafficking

Human trafficking is an odious crime that uses physical, economic, or other means of 

coercion to obtain labor from human beings. Trafficked individuals are often used in sex 

work or factory work. Unfortunately, identifying human trafficking victims in the United 

States can often be difficult for authorities — the individuals may be kept from regular 

contact with friends or family, and may be unable, afraid, or too ashamed to contact law 

enforcement by themselves. (Trafficking patterns differ from country to country.) It would 

be far better if law enforcement could proactively identify and investigate possible 

trafficking victims.

Somewhat surprisingly, there is data online that may contain evidence of trafficking activity. 

Like many other forms of commerce, sex work advertising is now online; there are many 

websites where providers of sex services post ads containing price, location, contact 

information, physical characteristics, and other data. Details differ across sites, but in most 

cases the posts resemble Craigslist-style textual classified ads: they have very little structure, 

lots of extremely nonstandard English, and tend to contain the same data values. It is easy to 

imagine a relational schema that would capture most of the relevant data in these ads.

There is additional information available on discussion forum websites where users of sex 

services post information about their experiences. Again, these posts are primarily textual, 

but tend to contain similar information: when the encounter took place, what happened, the 

sex worker's details, etc. For a surprisingly large percentage of forum posts, there is enough 

contact information for us to identify the relevant sex worker ad. The posts are also 

remarkably candid, describing both the illegal activity itself as well as details about the sex 

worker (e.g., evidence of drug abuse or physical abuse) that would never have been found in 

the original advertisement.
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It was initially surprising to us that forum writers are willing to be so forthcoming. There 

appears to be a strong social element to the forum posts, roughly similar to what can be 

observed in Amazon and Yelp discussion fora; domain experts in sex commerce have 

reported to us that this finding is not surprising to them.

We ran DEEPDIVE on approximately 45M advertisements and 0.5M forum posts, creating two 

distinct structured tables. We can use this data in many different ways:

• Statistics from advertisements can be used by themselves to identify trafficking 

warning signs. For example, a sex worker who posts from multiple cities in 

relatively rapid succession may be moved from place to place by traffickers in 

order to be kept disoriented and easy to manage. A worker who posts an 

unusually low price or is willing to engage in extremely risky practices may also 

be doing so as a trafficking victim. We have shipped extracted data for other 

companies to use in law enforcement products; this data has been deployed to 

several law enforcement agencies and has been used in at least one arrest.

• Using price data from the advertisements alone, we can compute aggregate 

statistics and analyses about sex commerce in the United States. We are writing a 

paper with economists and political scientists about the relationship between 

pricing in the sex economy in individual cities and the licit economies in those 

places.

• Using the joined advertisement and forum tables, we can use forum posters’ 

comments about experiences to identify sex workers who may be in danger. For 

example, signs of drug or physical abuse on their own are worrisome on their 

own, and may also be evidence of possible trafficking. Engineers at Lattice Data 

(http://lattice.io), a startup company designed to commercialize DEEPDIVE, have 

used this data to create a user-facing faceted search tool for law enforcement 

officers.

This work was done as part of the DARPA MEMEX project and has been covered on 60 

Minutes and other news sources.

7 Related Work

Knowledge Base Construction (KBC)

KBC has been an area of intense study over the last decade, moving from pattern matching 

[19] and rule-based systems [28] to systems that use machine learning for KBC 

[5,8,13,14,34]. Many groups have studied how to improve the quality of specific 

components of KBC systems [33,51]. DEEPDIVE's effort to extract structured databases from 

dark data can be seen as an effort to ease and accelerate the KBC process. DEEPDIVE has 

many common features to Chen and Wang [11], Google's Knowledge Vault [13], and a 

forerunner of DEEPDIVE, Tuffy [36]. We focus on the incremental evaluation from feature 

extraction to inference.

DEEPDIVE's model of KBC is motivated by the recent attempts of using machine learning-

based technique for KBC [3,4,24,38,46,52,56] and the line of research that aims to improve 
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the quality of a specific component of KBC system [7,12,15,21,26,27,31–

33,35,39,42,47,48,51,53,54]. When designing DEEPDIVE, we used these systems as test cases 

to justify the generality of our framework. In fact, we find that DEEPDIVE is able to model 

thirteen of these popular KBC systems [15,23,26,27,31–33,35,39,42,51,53,54].

Declarative Information Extraction

The database community has proposed declarative languages for information extraction, a 

task with similar goals to knowledge base construction, by extending relational operations 

[16,28,44], or rule-based approaches [34]. These approaches can take advantage of classic 

view maintenance techniques to make the execution incremental, but they do not study how 

to incrementally maintain the result of statistical inference and learning, which is the focus 

of our work.

Data Cleaning and Integration

Data cleaning and integration systems have been active research topics in academia, with 

moderate deployment in industrial settings. Many deployed systems to date have focused on 

generating precise and correct integrations for traditional transaction-focused systems, such 

as merged human resources databases.

A newer set of software systems, such as Wrangler and Tamr, have focused on data ingest, 

cleaning, and integration for analytical purposes. To the best of our knowledge, these 

systems are focused more on ingesting diverse sources of structured data rather than free-

form dark data, but the line between the two can be hazy (e.g., template-driven electronic 

medical records with a mixture of structured and unstructured components). More 

importantly, these systems are rule-driven rather than probabilistic, which we believe will 

lead to the higher maintenance costs and lower data quality we described in Section 5.3. We 

have found that probabilistic inference and an effective accompanying engineering cycle are 

core to DEEPDIVE's success in obtaining reliably high quality.

8 Conclusions and Future Work

We have demonstrated DEEPDIVE's ability to obtain high-quality databases in many different 

domains. We believe there is a vast amount of future work in applying DEEPDIVE to novel 

problems in the sciences, medicine, finance, and other real-world domains with huge 

amounts of dark data. We have been repeatedly surprised by the sheer number and variety of 

problems that can be addressed using DEEPDIVE's results.

Much of the future technical work on DEEPDIVE entails reducing the amount of developer 

effort needed to obtain high quality. This work can be reduced using novel developer tools, 

novel data-centric methods, or some combination.

For example, over time we have modified DEEPDIVE to require less information from the user, 

not more. Users have fairly limited direct control over the machine learning elements of our 

knowledge base construction procedure, especially compared to what is possible given most 

standard machine learning toolkits. However, it is still possible for users to make inadvertent 

and hard-to-debug errors. For example, consider a user who has provided the above-listed 
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feature, which we might call isGenef1. This is an entirely reasonable piece of feature code, 

and is likely just one of several features the system uses when classifying an in-document 

string as is-gene or not.

However, now consider what happens when the user has also provided a distant supervision 

rule. Distant supervision rules are algorithmic methods for generating labeled data; they can 

be less accurate than traditional hand-labeled data examples, but when applied to a large 

corpus they can generate far more labeled data than is possible with hand-marking. 

Unfortunately, if the distant supervision rule is identical to or extremely similar to a feature 

function, standard statistical training procedures will fail badly. Even if the user has provided 

a large number of helpful features, there is one that perfectly predicts the labeled answer, 

and so the training procedure will build a model that places all weight on the single feature 

that overlaps with the supervision rule. The trained statistical model will — reasonably 

enough — have little effectiveness in the real world, in which the feature and the truth do not 

perfectly overlap. This failure mode is extremely hard to detect: to the user, it simply 

appears that the training procedure has failed. Worse, it has failed after the user has been 

conscientious enough to provide what should have been a high-quality feature function. 

Continuing to address such DEEPDIVE engineering failure modes is an ongoing project.
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Figure 1. 
The typical DEEPDIVE user interaction cycle. A knowledge engineer runs DEEPDIVE to obtain an 

output, evaluates its quality, then adjusts the input rules and runs DEEPDIVE again.
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Figure 2. 
DEEPDIVE takes as input dark data — such as unstructured documents — and outputs a 

structured database. The runtimes here are for the TAC-KBP competition system. To 

improve quality, the developer adds new rules and new data with error analysis conducted on 

the result of the current snapshot of the system. DEEPDIVE provides a declarative language to 

specify each type of different rules and data, and techniques to incrementally execute this 

iterative process.
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Figure 3. 
An example DEEPDIVE deployment.
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Figure 4. 
Schematic illustration of grounding. Each tuple corresponds to a Boolean random variable 

and node in the factor graph. We create one factor for every set of groundings.
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Figure 5. 
Example plots emitted by DEEPDIVE after training. From left-to-right: a probability calibration 

plot, a histogram of the different emitted probabilities for the test set, and a histogram of 

different emitted probabilities for the training set.
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