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ABSTRACT

A key promise of SQL is that the optimizer will find the
most efficient execution plan, regardless of how the query is
formulated. In general, query optimizers of modern database
systems are able to keep this promise, with the notable excep-
tion of nested queries. While several optimization techniques
for nested queries have been proposed, their adoption in
practice has been limited. In this paper, we argue that the
NF? (non-first normal form) algebra, which was originally de-
signed to process nested tables, is a better approach to nested
query optimization as it fulfills two key requirements. First,
the NF? algebra can represent all types of nested queries as
well as both existing and novel optimization techniques based
on its equivalences. Second, performance benefits can be
achieved with little changes to existing transformation-based
query optimizers as the NF? algebra is an extension of the
relational algebra.

1. INTRODUCTION

One of the reasons why declarative languages are popular
and successful in query processing is the fact that developers
do not need to worry about performance. As long as they
can formulate a query that returns the desired result, the
query optimizer of the database system promises to find the
best possible execution plan. In the case of SQL, modern
query optimizers are, for the most part, able to deliver on
that promise. Still the exception to this general rule are
nested queries, for which the actual formulation can have a
large impact on execution time.

In order to close this gap, several optimization techniques
for nested queries have been proposed. These techniques
either work at the level of SQL [14,/20], define new opera-
tors [3,|9] and algebras [4] that are specifically targeted at
nested queries, or build on entirely different formalisms, e.g.,
comprehension calculus [8}/12,[13]. We argue that these ap-
proaches all have drawbacks that have limited their adoption
in database systems. Using tailor-made algebras and opera-
tors requires considerable changes to the query optimizer for
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a single class of optimizations, whereas introducing an en-
tirely different formalism can even lead to a complete rewrite.
Finally, approaches that work at the level of SQL restrict the
space of possible optimizations by addressing nested queries
in isolation from other optimizations. As an example, con-
sider the following query, which returns all parts that are
cheaper and bigger than the average of parts of the same
type, according to the schema of the TPC-H benchmarkﬂ
which we use for examples throughout this paper.

SELECT P1.p_name
FROM Part P1
WHERE P1.p_retailprice <
(SELECT AVG(P2.p_retailprice)
FROM Part P2 WHERE P2.p_type = P1l.p_type)
AND P1.p_size >
(SELECT AVG(P3.p_size)
FROM Part P3 WHERE P3.p_type = P1l.p_type)

Both subqueries can be unnested according to Kim [14],
which will result in the following SQL query.

SELECT Pl.p_name
FROM Part P1,
(SELECT p_type, AVG(p_retailprice) AS avg_price
FROM Part GROUP BY p_type) AS P2,
(SELECT p_type, AVG(p_size) AS avg_size
FROM Part GROUP BY p_type) AS P3
WHERE P1.p_retailprice < avg price AND P1.p_size > avg_ size
AND P1l.p_type = P2.p_type AND P1l.p_type = P3.p_type

Since both subqueries access the same relation, they can
be merged (coalesced) into a single subquery. The result of
this transformation is as follows.

SELECT Pl.p_name
FROM Part P1,
(SELECT p_type, AVG(p_retailprice) AS avg price,
AVG(p_size) AS avg_size
FROM Part GROUP BY p_type) AS P2
WHERE P1.p_retailprice < avg_price AND P1.p_size > avg_size
AND P1l.p_type = P2.p_type

Even if query optimizers can perform both of these steps
in isolation, our experiments (c¢f. Section |7]) have shown that
they are not able to combine them. Since the inner work-
ings of commercial query optimizers are well-kept company
secrets, we can only speculate about the precise reasons for
these limitations. We note, however, that both nesting and
grouping are concepts of SQL that cannot be represented

"http:/ /www.tpc.org/tpch/| (November 18, 2015)

Konstanze©Online-Publikations-Syste(i{OPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-3267


http://dx.doi.org/10.1145/2882903.2915241
http://www.tpc.org/tpch/
http://dx.doi.org/10.1145/2882903.2915241

by the relational algebra in its original form [6]. As query
plan enumeration typically relies on transformations that are
based on equivalences of the relational algebra, it is at least
conceivable that optimizations, which cannot be expressed
algebraically, are performed in separate phases.

Nesting (in the WHERE clause) and grouping are concepts
that have been part of SQL since the beginning. Over time,
many other extensions were made to the language, which are
also not covered by the relational algebra. In this paper, we
therefore argue that it is time to re-think the choice of the
original relational algebra as a basis for query execution plan
enumeration. Rather than defining yet another specialized
algebra, we show how an existing algebra, which was devel-
oped for the NF? (non-first normal form) data model [18],
can be used for the uniform optimization of nested SQL
queries. Even though it was not their originally intended use,
the operators defined by the NF? algebra to access nested
relations can also be used to represent nested queries.

While the focus of this paper is mainly on nested queries,
we note that the NF? algebra can also be used to represent
SQL concepts such as grouping, CASE statements, and win-
dow functions with the PARTITION BY clause. Furthermore,
the NF? algebra naturally represents operations provided by
object-relational database systems, such as Oracle and Post-
greSQL. As a consequence, we argue that the NF? algebra is
a much better match to the current state of SQL than the
original relational algebra. Also, since the NF? algebra is an
extension of the relational algebra, all existing equivalences
remain valid. Finally, all logical operators described in this
paper can be implemented by the physical operators that
are present in any relational database system, which is a
key distinction of our approach with respect to some of the
previous proposals. Specifically, the contributions of this
paper are as follows.

e We show how all types of nested queries supported
by SQL, i.e., nesting in the SELECT, FROM, and WHERE
clause, are represented by NF? expressions (Section .

e We define NF? equivalences that formalize existing op-
timization techniques, which were previously described
as edit operations at the SQL code level (Section .

e Beyond the current state of the art, we introduce new
optimization techniques, which are made possible by
the NF? approach (Section .

e We demonstrate the feasibility of the proposed ap-
proach by discussing the necessary changes to a query
optimizer that is based on Cascades framework (Sec-

tion @

e We quantify the performance benefits of our approach
by measuring the execution times of nested queries in
four major database systems and comparing them to
execution times of the corresponding queries that were
optimized as proposed in this paper (Section .

We begin in the next section with a short overview of the
NF? algebra and the notation used throughout this paper.
Related work is presented in Section [§] and concluding re-
marks as well an an outlook on future work are given in
Section

2. NF? ALGEBRA OVERVIEW

For the sake of a self-contained presentation, this section
introduces the concepts and notation of the NF? algebra
that are used in this paper. A detailed introduction to
the NF? algebra can be found, for example, in Schek and
Scholl [18]. The NF? algebra is an extension of the traditional
relational algebra. In the scope of this paper, the extended
selection and projection operator, which both support nested
subexpressions, are most relevant.

The following NF? expression introduces the notation for
a selection operator that contains a subexpression in its
selection condition.

olc_custkey € m[o_custkey](Orders)](Customer)

For every tuple of the Customer relation, the subexpression
in the selection condition is evaluated. If the key of the
customer is contained in the result set of the subexpression,
the customer tuple is added to the result set of the outer
selection operator. The NF? expression above is equivalent
to the following SQL statement.

SELECT *
FROM Customer
WHERE c_custkey IN (SELECT o_custkeyr FROM Orders)

The following NF? expression introduces the notation for
a projection operator that contains a subexpression in its
projection list.

m[c_custkey, G :=
olo_custkey = c_custkey](Orders)](Customer)

The expression creates a new attribute G that contains all
orders of a customer by evaluating the subexpression for
each tuple of relation Customer and selecting all order tuples
containing the corresponding customer key.

3. NF? REPRESENTATION OF NESTED
QUERIES

Both generation-based and transformation-based optimizers
use algebraic equivalences to enumerate query plans in the
search space |16]. As a first step, a SQL statement therefore
needs to be transformed into an algebraic expression. In this
section, we first show how GROUP BYs can be represented in
the NF? algebra. Then, we discuss how the different types
of nested queries in the WHERE clause are represented by NF?2
expressions. Finally, we introduce the NF? representation
for subqueries in the SELECT and FROM clause.

3.1 Preliminary Definitions

Aggregation functions are an important feature of SQL. How-
ever, since they are not part of the original NF? algebra, we
define them for the purpose of this work.

Definition 3.1.1 (Aggregation Function) Let f be an
aggregation function and D a domain of numeric values.
The input of f is a list of atomic values and the output of f
is a single atomic value.

f:P(MD) —-D
In SQL, aggregation functions are typically used together

with the GROUP BY clause. Grouping can be represented in
the NF? algebra using a nested projection.



Definition 3.1.2 (Grouping) Let R be a relation and A =
{A1,..., A} Cattr(R) a set of atomic attributes. Further,
R :=n[A] := A1,..., A4}, == Ay, attr(R)\ A](R) is a relation
obtained by renaming the attributes of R. The grouping of R
by the attributes A is then defined as follows:

7[A, G = wlattr(R") \ {AL,..., AL }(

glAl = A1 A ANAL = A (R)(R).
For each outer tuple t of R, the subset of tuples of R’ that
have the same values in the attributes A%,..., A, as t in its
attributes Aq, ..., A, is selected. In order to prevent naming
conflicts, the attributes of R’ are renamed from A;,..., A,
to Af,..., Al,. By applying an aggregation function f on an
attribute of G, the groups of G can be aggregated.

Example 3.1.1 Consider the relation Orders given below.

| o_orderkey | o_custkey | o_totalprice |

1 5 100
2 5 500
3 2 30
4 2 60

The NF? expression to group the relation on the attribute
o_custkey is as follows.

wlo_custkey, G := w[attr(Orders’) \ {o_custkey'}](
olo_custkey’ = o_custkey](Orders’))|(Orders)

The result is shown in the following relation.

o_custkey G
o_orderkey’ | o_totalprice’
2 3 30
4 60
5 1 100
2 500

The logical group-by/aggregate operator is defined by com-
bining a nested projection with an aggregation function. This
representation enables further transformations on the logical
level, e.g., the removal of redundant groupings (cf. Section.
The following definition introduces a dedicated operator to
abbreviate the corresponding logical group-by/aggregate NF2
expression. Note that this operator directly corresponds to
the physical group-by/aggregate operator of a relational
database system.

Definition 3.1.3 (Group-By/Aggregate Operator)
Let R be a relation, A = {A1,...,An} Cattr(R), {Bu,...,
By} € attr(R)\ A a set of attributes, and F = {f1,..., fr} a
set of aggregation functions. The group-by/aggregate operator
~[4; F](R) groups R on the attributes of A and computes the
functions fi,..., fr on the attributes Bi,...,Bg:

VA FI(R) =
(A, aggs, = [i(7[B1](G)), ..., aggs, = fr(m[Bi](G))I(
7[A, G = rlattr(R") \ {AL, ..., AL }(
oAl = A1 AL ANAL = A(RD)(R)).
As an abbreviation, the set braces in the expression

’7[{‘417' . ‘7"471}; {fh .o >fk}](R)
are ignored. Instead we write

’Y[A1, . .,An;fl,. . ,fk}(R)

Example 3.1.2 The expression
~lo_custkey; MAX(o_totalprice)]( Orders)

groups the orders table (cf. Example on the attribute
o_custkey and computes the most expensive order for each
customer. The result is shown in the following relation.

o_custkey | a99,,qs
2 60
5 500

3.2 WHERE Clause Subqueries

Subqueries in the WHERE clause can occur in combination with
quantifiers such as ANY, ALL, and EXISTS. In this subsection,
we present how these different types of nested queries can
be represented by NF? expressions.

3.2.1 Representation of the IN Operator
The IN comparison operator returns true, if the value of the

selected column is contained in the result set of the subquery.

Example 3.2.1 The query below returns all parts delivered
by a supplier. This is the case, if the key of a part tuple is
contained in the PartSupp relation.

SELECT p_name
FROM Part
WHERE p_partkey IN (SELECT ps_partkey FROM PartSupp)

This query is represented by the following NF? expression:
w[p-name](o[p_partkey € m[ps_partkey|(PartSupp)](Part)).

Definition 3.2.1 Consider the following SQL statement
containing a subquery S in the WHERE clause that projects
on an attribute, which has the same data type as attribute A.

SELECT L FROM R WHERE A IN (S)

This query is represented by the following NF? expression, in
which 87 is an NF? expression that is equivalent to the SQL
statement S:

n[L)(c[A € S'|(R)).

3.2.2  Representation of the EXISTS Quantifier
The EXISTS quantifier holds, if the result set of the corre-
sponding subquery is not empty.

Example 3.2.2 The query given below is an alternative for-
mulation of the query from Example|3.2.1

SELECT p_name
FROM Part
WHERE EXISTS (SELECT *
FROM PartSupp
WHERE ps_partkey = p_partkey)

In the NF? algebra, this query is represented by the following
expression:

w[p-name](c[ COUNT(
o[ps_partkey = p_partkey](PartSupp)) # 0](Part)).

Definition 3.2.2 Consider the following SQL statement
containing a subquery S in the WHERE clause.

SELECT L FROM R WHERE EXISTS (S)



This query is represented by the following NF? expression, in
which 87 is an NF? expression that is equivalent to the SQL
statement S:

7[L](c[COUNT(S’) # 0](R)).

Note that for NOT EXISTS the predicate COUNT(S’) # 0 has
to be changed to COUNT(S’) = 0. Alternatively, EXISTS (or
NOT EXISTS) could be represented by S’ # ) (or S’ = 0).

3.2.3 Representation of the ANY Quantifier

The ANY quantifier can be used in selection conditions, which
compare the value of a given column to the result set of a
subquery. The quantifier holds if at least one tuple of the
subquery result set satisfies the comparison condition.

Example 3.2.3 The following query returns all parts that
are cheaper than the most expensive part.

SELECT p_name
FROM Part
WHERE p_retailprice < ANY (SELECT p_retailprice FROM Part)

This query is expressed in the NF2 algebra as follows:

m[p_name|(
olp_retailprice < MAX(w[p_retailprice’|(Part’))](Part)).

Definition 3.2.3 Consider the following SQL statement
containing a subquery S in the WHERE clause that projects
on an attribute which has the same data type as attribute A.
Let 0 € {<,<,>,>,=} be a comparison operator.

SELECT L FROM R WHERE A @ ANY (S)

Depending on 0, there are three cases that define how the ANY
quantifier is represented as an NF? expression. Again, S’ is
an NF? expression that is equivalent to the SQL statement S.

1. 0 e {<,<}:n[L](c]A 0 MAX(S")|(R))
2. 0 € {>,>}:m[L](c]A § MIN(S)]|(R))
3. 0 € {=}:n[L](c]A € S'|(R))
3.2.4 Representation of the ALL Quantifier

The ALL quantifier can be used in selection conditions, which
compare the value of a given column with the result set of a
subquery. The quantifier holds if all tuples of the subquery
result set satisfy the corresponding condition.

Example 3.2.4 The following query returns the most ex-
pensive part.

SELECT p_name
FROM Part
WHERE p_retailprice >= ALL (SELECT p_retailprice FROM Part)

This query is expressed in the NF2 algebra as follows:
7 [p-name](

o[p-retailprice > MAX(rw[p-retailprice|(Part’))](Part)).

Definition 3.2.4 Consider the following SQL statement
containing a subquery S in the WHERE clause that projects
on an attribute which has the same data type as attribute A.
Let 0 € {<,<,>,>} be a comparison operator.

SELECT L FROM R WHERE A 0 ALL (S)

Depending on 0, there are two cases that define how the ALL
quantifier is represented as an NF? expression. Again, S’ is
an NF? expression that is equivalent to the SQL statement S.

1. 0 € {<,<} : w[L](o]A 6 MIN(S)](R))
2. 0 {>>}:7[L](c]A 0 MAX(S)](R))

3.3 SELECT and FROM Clause Subqueries

Originally, SQL only supported nesting in the WHERE clause.
In an effort to make the language more orthogonal, subqueries
were allowed in the SELECT and FROM clause as well.

Example 3.3.1 The given query returns the total number
of orders for each customer.

SELECT o_custkey, (SELECT COUNT(*) FROM Orders O2
WHERE O2.0_custkey = Ol.o_custkey) AS nrOrders
FROM Orders O1

Note that this SQL statement can be directly represented by
the nested projection operator.

m[o_custkey, nrOrders :=
COUNT(o[o-custkey’ = o_custkey|(Orders’)|(Orders)

Definition 3.3.1 Consider a SQL statement with a sub-
query in the SELECT clause.

SELECT L, (S) AS Y FROM R

The query is represented by the following NF? expression, in
which S’ is an NF? expression that is equivalent to the SQL
statement S:

w[L, Y:= S|(R).

A subquery in the FROM clause can be directly repre-
sented as an input of the corresponding NF? operator.

Definition 3.3.2 Consider a SQL statement with a sub-
query S in the FROM clause.

SELECT L. FROM S WHERE F

The query is represented by the following NF? expression, in
which S’ is an NF? expression that is equivalent to the SQL
statement S:

[ L](o[F)(S57)-

4. EQUIVALENCES FOR NESTED QUERY
OPTIMIZATION TECHNIQUES

In the previous section, we defined the algebraic representa-
tion of SQL subqueries in terms of NF? expressions. Based
on this representation, we now derive equivalence rules for
well-know nested query optimization techniques.

4.1 Unnesting Subqueries

The work of Kim [14] describes how nested queries in the
WHERE clause can be replaced by joins. The transformations
are directly applied on the SQL code of the given query.
Kim classifies the WHERE clause subqueries into five categories
(Type N, J, A, JA, and D). In this paper, we define equiv-
alence rules for the transformations of the Types N, J, A,
and JA. Since Type D queries contain the relational division
operator, which is no longer supported by the current SQL
standard, we do not provide equivalence rules for queries of
this type.



4.1.1 Unnesting Type N and Type J Subqueries

A subquery is of Type N, if it occurs in the WHERE clause in
combination with the IN comparison operator and has no
aggregation. If the subquery is additionally correlated with
the outer query, the subquery is of Type J. The following
example illustrates a Type J subquery and its equivalent
NF? expression.

Example 4.1.1 The query given below returns all parts de-
livered by a supplier.

SELECT p_name, s_name
FROM Part, Supplier
WHERE p_partkey IN (SELECT ps_partkey
FROM PartSupp
WHERE ps_suppkey = s_suppkey)

The equivalent NF? expression is as follows:

m[p-name, s_namel(o[p_partkey € w[ps_partkey](
o[ps_suppkey = s_suppkey|(PartSupp))](Part x Supplier)).

As described by Kim, this subquery can be replaced by a
join. Example shows the result of the transformation
and the equivalent NF? expression.

Example 4.1.2

SELECT p_name, s_name
FROM Part, Supplier, PartSupp
WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey

Below, the corresponding expression of the NF® algebra is
given. Note that this is not the most efficient expression,
since there is still a cross product. The cross product can
be removed, however, based on equivalences defined by the
traditional relational algebra.

m[p-name, s_name](
PartSupp

Np,pankey:ps,pa/rtkey/\ ps_suppkey=s_suppkey

(Part x Supplier))

In Deﬁnition the equivalence rule for unnesting Type
J and N subqueries is introduced.

Definition 4.1.1 (Unnesting Type N/J Subqueries)
Let Inner and Outer be NF? expressions, A € attr(Outer)
and B € attr(Inner) attributes, and F a condition. The
equivalence rule for unnesting a Type N or J subquery is
defined as follows (for Type N, F is true; for Type J, F is a
correlation condition):

o[A € n[B](c[F]|(Inner))](Outer)
= wlattr(Outer)|(Outer <a=par Inner).

4.1.2 Unnesting Type A Subqueries

A subquery with aggregation, but without correlation is of
Type A. Example shows a Type A subquery.

Example 4.1.3 The following query returns all parts with
a price greater than the average price of parts.

SELECT p_name

FROM Part P1

WHERE P1.p_retailprice > (SELECT AVG(P2.p_retailprice)
FROM Part P2)

The equivalence rule given in Definition can be used
to transform a Type A subquery into an expression, in which
the aggregation value of the subquery is computed once. This
precomputing is possible because the subquery is independent
from the outer query and returns a single value as a result.

Definition 4.1.2 (Unnesting Type A Subqueries)

Let Inner and Outer be NF? expressions, A € attr(Outer)
and B € attr(Inner) attributes, f an aggregation function,
and 0 € {<,<,>,>,=,#} a comparison operator. The
equivalence rule for unnesting Type A subqueries is defined
as follows:

o[A 0 f(w[B](Inner))](Outer)
= wlattr(Outer)](c[A 0 agg](
Outer x (agg := f(w[B](Inner)))).

4.1.3 Unnesting Type JA Queries

A Type JA subquery is correlated with the outer query and
uses aggregation. Example shows a Type JA subquery
and its equivalent NF? expression.

Example 4.1.4 The following query returns all parts with
a price greater than the average price of parts of the same
type.

SELECT P1l.p_name

FROM Part P1

WHERE P1.p_retailprice > (SELECT AVG(P2.p_retailprice)
FROM Part P2
WHERE P2.p_type = Pl.p_type)

The equivalent NEF? expression contains a relation Part’,
which is a renamed relation of Part. The renaming is nec-
essary to unambiguously define to which relation (inner or
outer relation) an attribute belongs to.

w[p_namel(o[p_retailprice > AVG(
m[p-retailprice’|(o[p-type’ = p_type](Part’)))](Part))

According to Kim, the nested query of Example [f.1.4] can
be transformed as follows. The relation of the subquery is
grouped by the attribute that is contained in the correlation
condition. For each group, the value of the aggregation
function is computed. Afterwards, the original subquery
in the WHERE clause is removed and the grouping is added
as a new subquery to the FROM clause of the outer query.
Example [f.I.5] shows the result of this transformation.

Example 4.1.5

SELECT Pl.p_name
FROM Part P1, (SELECT p_type, AVG(p_retailprice) AS avg_price
FROM Part
GROUP BY p_type) P2
WHERE P2.p_type = Pl.p_type
AND P1.p_retailprice > P2.avg price

This query is represented using the NF? algebra as follows:
m[p-name](
olp_retailprice > avg_price](Part > _type—p_type

~[p-type’; avg_price :== AVG(p_retailprice’)|(Part?))).

In Definition [£.1.3] the equivalence rules that can be used
to unnest Type JA subqueries are introduced. As pointed



out by Ganski and Wong [10|, subqueries that use the COUNT
aggregation function and/or have inequality join predicates
need to be treated separately. These different cases lead to
three equivalence rules for Type JA subqueries.

Definition 4.1.3 (Unnesting Type JA Subqueries)
Let Inner and Outer be NF? expressions, A € attr(Outer)
and B € attr(Inner) attributes, f an aggregation function,
and 0 € {<,<,>,>,=,#} be a comparison operator. Assume
that F' is the condition that creates the correlation between
the outer and inner query. Depending on the aggregation
function f and the condition F, the equivalence rules for
unnesting Type JA subqueries are defined as follows.

1. f# COUNT and F consists of conjunctive subcondi-
tions A; = Bj with A; € attr(Outer), B; € attr(Inner).
The set G contains the attributes B; € attr(Inner).

o[A 6 f(x[B](c[F](Inner)))](Outer)
= 7[attr(Outer)](
o[A 0 agg](Outer xip v[G; agg := f(B)|(Inner)))

2. f #£ COUNT and F consists of conjunctive subcondi-
tions A; 0" Bj with 0" € {<,>,#}, A; € attr(Outer),
and Bj € attr(Inner). The set G contains the attributes
A; € attr(Outer).

o[A 0 f(x[B](c[F](Inner)))](Outer)
= 7lattr(Outer)](c[A 0 agg](
Outer <1 v[G; agg := f(B)](Outer < Inner)))

3. f = COUNT and F consists of conjunctive subcondi-
tions A; 0 Bj with 0" € {<,>,=,#}, Ai € attr(Outer),
and B; € attr(Inner). The set G contains the attributes
A; € attr(Outer).

o[A 0 f(w[B](o[F](Inner)))](Outer)
= wlattr(Outer)](c[A 0 agg](
Outer 1 v[G; agg := f(B)](Outer <t Inner)))

4.2 Subquery Coalescing

Bellamkonda et al. [2] describe which types of redundant
subqueries can be merged. In this context the term “redun-
dant” means that both subqueries access the same relations.
Based on the work of Bellamkonda et al., we define equiva-
lence rules that can be used to merge redundant subqueries.
Example [£:2.1] shows a query with two subqueries that can
be merged into a single subquery.

Example 4.2.1 The following query returns all orders that
are at least as expensive as orders with high and medium
priority.

SELECT *
FROM Orders
WHERE o_totalprice >= ALL (
SELECT o_totalprice
FROM Orders
WHERE o_orderpriority = ‘2-HIGH’
) AND o_totalprice >= ALL (
SELECT o_totalprice
FROM Orders
WHERE o_orderpriority = ‘3-MEDIUM’

This query can be represented by the following NF? expression.

olo-totalprice > MAX(rw[o_totalprice’|(
oo_orderpriority = ‘2-HIGH|(Orders’)))A
o_totalprice > MAX(w|o_totalprice’|(
oo_orderpriority = ‘3-MEDIUM|(Orders’)))](Orders)

In order to eliminate the redundant table access, the predi-
cate of the second subquery is combined with the predicate
of the first subquery. Afterwards, the second subquery can
be removed. In the following, the transformed query is shown.

SELECT *
FROM Orders
WHERE o_totalprice >= ALL (
SELECT o_totalprice
FROM Orders
WHERE o_orderpriority = ‘2-HIGH’
OR o_orderpriority = ‘3-MEDIUM’

)

The NF? expression that is equivalent to this query is:

olo_totalprice > MAX(w[o_totalprice’](
olo_orderpriority’ = ‘2-HIGH’ V
o_orderpriority’ = ‘3-MEDIUM’|(Orders’)))](Orders).

There are three equivalence rules that cover the different
cases in which subqueries in the WHERE clause can be merged
into a single subquery. In the following definitions, the
different cases that are covered by a rule are represented
by a triple of the form (61,602,03). 61 is the comparison
operator that is used in the outer query to compare the
result of the subquery with an outer column. 62 corresponds
to the Boolean operator connecting both subqueries. Finally,
0s denotes the aggregation function which is used in the
subqueries.

The rule given in Definition covers the cases, in
which two subqueries can be merged into a single subquery
by combining their predicates with OR. We already applied
this rule to transform the query shown in Example
In the following definitions the function val(F) returns the
result set of tuples of an expression F.

Definition 4.2.1 (Subquery Merge I) Let F and F> be
conditions with val(o[F1](Inner)) Z val(o[F2](Inner)) and
val(o[F2](Inner)) € val(o[Fi]|(Inner)). In addition, 6, €
{<,<,>,2,=,#}, 02 € {A,V}, and 03 € {MIN, MAX,
COUNTY} are given. For the assignments (#,V,COUNT),
(=,N,COUNT), (<,A\,MIN), (>,A\, MAX), (<,V,MAX),
and (>,V, MIN) for (01,02,03), the following equivalence
holds P

o[(A 01 05(n[B](c[Fi](Inner))) 62
(A 6, 03(w[B](o[F2](Inner)))](Outer)
= o[A 0, 03(w[B](o[F1 V F2](Inner))](Outer).

The rule given in Definition [£:2.2] covers the cases, in which
the second of two subqueries can be removed.

Definition 4.2.2 (Subquery Merge II) Let Fi and F>
be conditions with val(c[F2](Inner)) C val(c[F1](Inner)).
In addition, 61 € {<,<,>,>,=,#}, 02 € {A,V}, and

2If 03 equals COUNT, then A is zero.




03 € {MIN,MAX,COUNT} is given. For the assign-
ments (#,V,COUNT), (=,A,COUNT), (<,A\,MIN), (>,
N MAX), (<,V,MAX), and (>,V, MIN) for (61,02,03),
the following equivalence holds:

o[(A 01 Os(n[A](o[F1](Inner))) 02
(A 6, 03(w[A](c[F2](Inner)))](Outer)
= o[A 6, 03(w[A](c[F1](Inner))](Outer).

The rule given in Definition [£:2:3] covers the cases, in which
the first of two subqueries can be removed.

Definition 4.2.3 (Subquery Merge III) Let Fi and F»
be conditions with val(o[F2](Inner)) C val(o[Fi](Inner)).
In addition, 61 € {<,<,>,>,=,#}, 02 € {A\,V}, and 03 €
{MIN, MAX,COUNTY is given. For the assignments (#,
A,COUNT), (=,Vv,COUNT), (<,V, MIN), (>,V, MAX),
(<, A\, MAX), and (>,N, MIN) for (61, 02,03), the following
equivalence holds™

o[(A 61 Os(n[A](o[F1](Inner))) 02
(A 6, 03(w[A](c[F2](Inner)))](Outer)
= o[A 61 03(w[A](c[F2](Inner))](Outer).

In the previous definitions, whenever > or < is valid, the
corresponding cases for > and < are also valid. In order
to demonstrate how the correctness of these rules can be
proven, a sample proof for a specific case of Definition [£:2.]]
is included in Appendix[C]

S. NEW OPTIMIZATION POSSIBILITIES

Up to now, we have demonstrated how the NF? algebra
and its equivalences can be used to represent existing nested
query optimizations. In this section, we present additional
optimization techniques that are made possible at the alge-
braic level by our approach. We begin by introducing four
auxiliary equivalence rules that we need for the definition of
these new algebraic optimization possibilities.

5.1 Auxiliary Equivalence Rules

The first equivalence rule can be used to move a projection
out of a join.

7T[L1](R) Xg W[LQ](S) = ﬂ[Ll,LQ}(R Xp S) (5.1.1)

The second equivalence rule can be used to eliminate a redun-
dant equi-join. A join between a relation R and its renamed
relation R’ can be removed, if the subsequent operators (e.g.,
a projection) are only accessing attributes of R.

Equi-join Elimination. Let R be a relation, A1,..., A, €
attr(R) atomic attributes, and L C attr(R) a projection list.
In addition, R := w[L'|(R) with L' = {A'|A € attr(R)} is
giwven. Then the following holds:

TL) (R >4, —apnpan=ar, B) = n[L](R).

The next equivalence rule combines two projections in cases
where the inner projection generates a nested attribute which
the outer projection is accessing.

(L, {op)(E)|(w[L, E := (expr)|(R))
= n[L, E := (op)((expr))|(R)

The last equivalence rule moves a redundant subexpression
of a projection into a separate projection. As a result, the

(5.1.2)

(5.1.3)

subexpression is computed only once and the result is stored
in a nested attribute.

(L, {op1) ((expr)), (opz) ((expr))](R) (5.1.4)
= (L, (op1)(E), (op2)(E)|(x[L, E = (expr)|(R)) ~

5.2 Redundant GROUP BY Elimination

The following query returns the price of the cheapest and
most expensive order for each customer.

SELECT Ol.o_custkey, max_price, min_price

FROM (SELECT o_custkey, MAX(o_totalprice) AS max price
FROM Orders
GROUP BY o_custkey) O1,
(SELECT o_custkey, MIN(o_totalprice) AS min_price
FROM Orders
GROUP BY o_custkey) O2

WHERE O1l.o_custkey = O2.0_custkey

Obviously, this SQL statement is not an efficient formu-
lation of the query as there is a redundant GROUP BY in the
FROM clause. Nevertheless, as this query computes the cor-
rect result, a modern query optimizer should be able to
remove this redundancy in order to obtain the best possible
execution plan. As our experiments show, however, most
current database systems do not perform this optimization
(¢f. Section [7).

The following NF? expression represents the above query.
In the expression, “O” is an abbreviation for the Orders table
(O’ is the renamed Orders table).

m[o_custkey, max_price, min_price](
m[o_custkey, max_price := MAX (w[o_totalprice’](G))](
m[o_custkey, G := o[o_custkey’ = o_custkey](O’)](O))
>o_custkey=o_custkey”
m[o_custkey” := o_custkey, min_price :=
MIN (7r[o_totalprice’](G))](r[o-custkey, G :=
o[o_custkey’ = o_custkey](0’)](0)))

The above expression is the result of strictly applying
the definitions from Section [3] to the SQL statement. As
a consequence, the grouping and the computation of the
aggregation values are represented by two separate nested
projections. In order to further transform and optimize the
expressions, these projections have to be merged into a single
projection, which can be achieved by applying Rule
from Section While this intermediate step is included
here for reasons of understandability, it is not necessary to
implement this transformation (cf. Section[f) as it can be
performed at the time when the SQL statement is translated
into an NF? expression.

E.1.3)
= m[o_custkey, max_price, min_price](
m[o_custkey, max_price :=
MAX(m[o_totalprice’]

olo_custkey’ = o_custkey](0’)))](O)
Po_custkey=o_custkey”
wlo_custkey” := o_custkey, min_price :=
MIN (7r[o_totalprice’](
olo_custkey’ = o_custkey](07)))](0))



In the next step, the projections of the two group-by opera-
tors are moved outside the join using Rule [5.1.1]

(5.1.1) . . .
= m[o_custkey, max_price, min_price](

m[o_custkey,
max_price := MAX(r[o_totalprice’](
o[o_custkey’ = o_custkey](O’))),
min_price := MIN(7[o_totalprice’](
oo_custkey’ = o_custkey](0)))](

0) Mo,custkey:o,custkey” O”))

Now, the redundant join can be removed by applying Rule[5.1.2]

E12) . . .
= m[o_custkey, max_price, min_price](

m[o_custkey,
max_price := MAX(7[o_totalprice’]
olo_custkey’ = o_custkey](O’))),
min_price := MIN(7[o_totalprice’](
olo_custkey’ = o_custkey](0’)))](O))
Finally, the group-by/aggregate operator is split into two
projections using the rule from Definition [3.1.3] in Section [3}
While this step illustrates how these projections can be
mapped to the physical group-by/aggregate operator, it is
again not necessary to implement a transformation rule for
this step (c¢f. Section |§[)

a2
mH
=

m[o_custkey, max_price := MAX(7[o_totalprice’](G)),
min_price := MIN(w[o_totalprice’](G)](
wlo_custkey, G :=
o[o_custkey’ = o_custkey](0O’))](O)

E13)
= ~v[o_custkey; max_price := MAX(o_totalprice),

min_price := MIN(o_totalprice)](O)

To conclude, below the SQL statement that is equivalent to
the NF? expression above is shown.

SELECT o_custkey, max_price, min_price
FROM (SELECT o_custkey, MAX(o_totalprice) AS max_price,
MIN(o_totalprice) AS min_price
FROM Orders
GROUP BY o_custkey) O1

5.3 SELECT Clause Subquery Elimination

The example given in this section shows how a correlated
subquery in the SELECT clause can be eliminated. For each
part type the following query returns the number and the
average price of the corresponding parts.

SELECT p_type, AVG(p_retailprice), (SELECT COUNT(*)

FROM Part P2 WHERE P2.p_type = Pl.p_type)
FROM Part P1
GROUP BY p_type

The equivalent NF? expression is as follows:
m[p-_type, AVG(r[p_retailprice’](G)), COUNT(
o[p-type’ = p_type](P"))](
m[p-type, G := o[p-type’ = p_type|(P")](P)).

First, the projections can be merged by applying Rule
G-1.3)
= m[p-type,
AVG(7[p_retailprice’] (o [p-type’ = p-type](P"))),
COUNT (o[p-type’ = p-type](P"))](P)

Now, the aggregation functions have the same groupings as
input. Therefore, the redundant groupings can be removed
and added as a separate projection.

7 [p-_type, AVG(7[p_retailprice’] (G)), COUNT(G)](

w[p_type, G := o[p_type’ = p_type](P)](P))

~[p-type; AVG(p_retailprice), COUNT(x)](P)
Finally, the SQL statement that is equivalent to the above
NF?2 expression is shown below.

SELECT p_type, AVG(p_retailprice), COUNT(*)
FROM Part
GROUP BY p_type

6. IMPLEMENTATION

In order to demonstrate the feasibility of our approach, we
extended an existing optimizer, which is based on the Cas-
cades framework designed by Graefe [11]. We chose this
optimizer framework for two reasons. First, its general and
modular architecture was specifically designed to support the
definition of new operators and transformation rules. Second,
the Cascades framework has been used to build commercial
query optimizers such as the one of Microsoft SQL Server.

As a starting point for our NF? optimizer, we use an
existing implementation of the Cascades framework that
is based on the operators and transformation rules of the
traditional relational algebra. As the NF? algebra is an
extension of the relational algebra, it is only necessary to
extend this implementation at three points.

First, we have to define how NF? algebra expressions are
represented. In Cascades, expressions are modeled by class
EXPR that consists of an operator and its input expressions.
The number of input expressions that an operator can have
is defined by its arity. In order to work with NF? expres-
sions, nested selections and nested projections need to be
introduced. Representing nested selections does not require
any changes to the data structures, as the Cascades imple-
mentation described by Graefe already represents selection
conditions as an expression tree consisting of so-called item
operators. Accommodating nested projections with minimal
changes is more challenging. In contrast to selection condi-
tions, Graefe models the projection list as a parameter to the
projection operator, rather than a (list of) input expressions.
Unlike input expressions, operator parameters are not ex-
plored and therefore not optimized. A reason for this design
is the fact that it would lead to a projection operator with
variable arity, which is at odds with the static patterns used
to match transformation rules to expressions. In order to keep
the arity of the projection constant, while enabling nested
expression, we introduce a new GET_NESTED_EXPR logical op-
erator, which models the subexpressions in the projection
list without affecting the rule engine. Figure [I] illustrates
this design for a simple nested projection on relation R.

Second, we have to slightly adapt the control flow of the
optimizer. The optimization algorithm of the Cascades frame-
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Figure 1: Representation of a nested projection.

work is structured as a set of tasks. For our NF? optimizer,
we have to modify the existing “optimize expression” task
(class 0_EXPR), which applies all relevant transformation rules
to an expression in order to enumerate equivalent expres-
sions. As described by Graefe, this task does not traverse
expressions built from item operators. However, since the
comparison operator that has the nested query as an input
is an item operator, this behavior has to be changed.

Finally, transformation rules for the NF? equivalences have
to be added to the optimizer. In principle, each equivalence
gives rise to two transformations, depending on the direction
it is applied. For the subquery unnesting and coalescing
rules, we only implement the direction that removes a nest-
ing or redundancy, since it is obvious which variant is more
efficient. Note that the three subquery coalescing rules (cf.
Definitions [4.2.1] [4.2.2] |4.2.3)) can be implemented as one
transformation rule. As they share the same input pattern,
the output pattern can be created depending on the case. In
order to apply some of our optimizations, projections need
to be pushed up to move them out of a join. This transfor-
mation is in contradiction to the optimizer’s general strategy
of pushing down projections. This conflict is resolved by
adding a compound rule that both moves the projection out
of the join and performs the subsequent optimization. Some
equivalences (cf. Definition m rely on set semantics, i.e.,
it is important to consider the handling of duplicates in their
implementation as a transformation rule. To obtain equiva-
lent results, these rules insert explicit duplicate-elimination
operators that enforce set semantics, if necessary.

To conclude this implementation section, we study the
impact of our extensions on the code complexity of the op-
timizer. Originally, the optimizer consisted of 5972 LOC,
whereas the extended optimizer has 7630 LOC. This consti-
tutes an increase of 27.8%. However, most of this additional
code implements the new transformation rules and only 48
LOC were added to the control flow of the optimization algo-
rithm. Additionally, we study the cyclomatic complexity
of our extensions. The original optimizer had an average
cyclomatic complexity of 2.241, whereas the value for the
extended optimizer is 2.398, i.e., an increase of 7%.

7. EVALUATION

In order to quantitatively evaluate the performance bene-
fits that can be obtained with our approach in commercial
database systems, we first define a set of eleven nested queries
on the schema of the TPC-H benchmark. For each query, we
use our optimizer to generate an optimized NF? expression,
which is translated back to its equivalent SQL statement.
We execute both the original and the optimized SQL query
in four state-of-the-art database systems. In this way, we can
show that our NF? optimizer is able to find more efficient
execution strategies than the optimizers of these systems.
Finally, we study how NF? transformation rules impact the
optimization time and the memory usage of our optimizer.
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7.1 Experimental Setup

All experiments presented in this work were performed on a
Mac Pro with a 3.5 GHz 6-Core Intel Xeon E5 processor with
64 GB main memory. In our evaluation, we use PostgreSQL
Version 9.4.2, the in-memory database HyPerEI and three
market-leading commercial database systems. Due to license
terms, the commercial systems are referred to as “DB-X”,
“DB-Y”, and “DB-Z". PostgreSQL, DB-X, DB-Y and DB-
Z were installed in a 64-bit Windows 8.1 virtual machine.
HyPer was installed in a 64-bit Ubuntu 14.04 LTS virtual
machine. 32 GB main memory were allocated to both virtual
machines. For all systems, except HyPer, the buffer pool size
was set to 2 G]fl For all systems, a 10 GB TPC-H database
was stored on external storage. Runtime measurements for
each of the eleven queries were repeated five times. In order
to reduce the bias induced by caching, the queries were
executed in random order. Out of the five measurements,
the smallest and largest value was discarded and the average
of the remaining values was computed.

7.2 Cost and Runtime of the Queries

For each database system, we determine the execution time of
the original and the transformed query. With the exception
of HyPer, we also determine the cost (estimated by the
optimizer of the corresponding system) of the original and
the transformed query. To the best of our knowledge, it is
not possible to access the estimated cost in HyPer. In order
to obtain a measure that is relevant in practical applications,
the optimization time needed by our NF? optimizer is added
to the execution time. In the following, we simply refer to this
sum of optimization and execution time as “runtime”. The
optimization times for the original and transformed query
are measured by deactivating and activating the NF? rules
in our optimizer. Figure [2| plots the reduction of estimated
costs and runtime for each query, which is computed as

(value original query — value transformed query) .

— 100,
value original query

where “value original query” denotes the estimated cost/run-
time of the original query and “value transformed query”
denotes the estimated cost/runtime of the corresponding
transformed query. Table [1| gives the absolute runtimes of
the original and transformed queries. In the table, “-” is
used to indicate that the execution plan of the original and
transformed query is the same. In this case, the query was
not executed at all. The SQL statements for both the original
and the transformed query are given in Appendix @
Query (a) contains a Type J subquery. HyPer, DB-X,
DB-Y and DB-Z are all able to optimize this query. How-
ever, HyPer and DB-X use different join orderings and join
implementations for the original and transformed query. In
DB-X, the transformed query leads to a performance in-
crease, whereas the runtime in HyPer is not reduced by
the alternative plan. DB-Y and DB-Z execute the original
and transformed query in the same way. For that reason,
there is no reduction in the runtime and the estimated costs.
However, PostgreSQL cannot transform the original query.
Instead, it executes the subquery for each outer tuple. Even
after 24 hours the original query did not terminate and was

3http://www.hyper-db.de (February 16, 2016)
4One system was unable to execute the queries in reason-
able time using a smaller buffer pool size.

stopped manually. For each query that was manually aborted
after 24 hours, the label “>24h” is added in the corresponding
chart. The query transformed by our NF? optimizer was
executed in 17 seconds by PostgreSQL.

Query (b) contains a Type JA subquery. As before, Post-
greSQL cannot transform this query. Again, the original
query was aborted after 24 hours, whereas the transformed
query executed in 22 seconds. The other systems are able to
perform a subquery unnesting. Interestingly, DB-Y finds a
better plan for the query when given our transformed query
than when it performs the same transformation itself. In the
former case, a hash join is used to implement the join that
results from the transformation, whereas in the latter case
a nested-loops join is used. As a consequence, the original
query was aborted after 24 hours. Likewise, HyPer produces
a different plan for the original and transformed query.

Query (c) contains two subqueries in the FROM clause that
access the same relation, but compute different aggregation
functions. None of the systems can merge these subqueries
into a single subquery. The transformed query, which has only
one subquery, reduced the runtime in PostgreSQL, HyPer,
DB-X and DB-Z by about 40%. While DB-Y estimates a
reduction of about 50%, the transformed query does not lead
to a substantial reduction of the runtime.

Query (d) from Section [5| uses a redundant GROUP BY in
the FROM clause. Only DB-Y is able to remove the redun-
dancy. Hence, for all other systems, the transformed query
containing only one GROUP BY leads to a runtime reduction
of around 50%.

Query (e) is an extension of Query (d), in which the
WHERE clause of the subqueries have different predicates. The
two subqueries can be merged into a single subquery by
moving the predicates into the aggregation function as CASE
statements and by adding an additional predicate to the
outer query. None of the systems can eliminate this type
of redundancy. For PostgreSQL and DB-X, we can again
observe that the cost estimation does not accurately reflect
the actual runtimes.

Query (f) has redundant subqueries in the WHERE clause
that can be merged using the technique described by Bel-
lamkonda et al. |2]. Surprisingly, no system eliminates this
redundancy, even though they estimate a performance in-
crease of about 50%. Although the transformed query leads
to a reduction of the actual execution time in HyPer, the
increase of the optimization time reduces the overall perfor-
mance. This is due to the fact that the runtime of a query in
HyPer falls within the scope of milliseconds. Therefore, the
increase of the optimization time reduces the performance.

Query (g), which we introduced as a motivating example in
Section [T} contains two redundant Type JA queries. As the
query uses different predicates to compare an outer column
value to the result of a subquery, the subquery coalescing
proposed by Bellamkonda et al. cannot be applied. Instead,
our NF? optimizer eliminates the redundant subquery by
first unnesting both subqueries. As a result, two subqueries
with the same GROUP BY clause are contained in the FROM
clause, which can be merged into one subquery. As stated,
no current database system features an optimizer that can
perform all of these steps. Although DB-Y is able to do
a subquery unnesting and a removal of redundant GROUP
BYs, it cannot combine these steps to optimize the given
query. PostgreSQL was aborted after 24 hours, whereas the
transformed query executed in 3 seconds. Another significant
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[ Database [ Query (a) [ Query (b) | Query (c¢) [ Query (d) [ Query (e) | Query (f) [ Query (g) | Query (b) [ Query (i) [ Query (j) | Query (k) |

PostgreSQL >24h >24h 9896 58611 34108 17710 >24h >24h 96228 >24h >24h
17377 22057 6070 31155 33050 10770 3216 3355 1292 7079 18315
HyPer 131 233 78 96 92 160 137 145 55 156 X
134 218 53 58 62 186 133 176 22 158 X
DB-X 4817 - 1402 5152 2581 1471 588 418 506 1038 8525
1261 - 869 2887 2503 1390 415 559 292 751 7853
DB-Y - >24h 29700 - 45224 23470 1177484 1171713 40908 >24h 395831
- 8907 29076 - 21979 20353 3509 2965 2240 2522 50065
DB-Z - - 1273 14590 7948 72747 1006 301 1597 9987 4740
- - 760 8079 6551 38901 519 694 377 8426 4178
Table 1: Runtimes (in ms) of the original queries (top) and the transformed queries (bottom).
performance gain is achieved in DB-Y, where the original 300 |- . ithout NF? rules |

query is a factor 350 slower than the query transformed by
our NF2 optimizer. Due to the increase of the optimization
time, there is no performance gain in HyPer.

Query (h) is an extension of Query (g), where the Type JA
subqueries have different predicates in their WHERE clause.
Again, the NF? optimizer unnests both subqueries. Then,
the redundant GROUP BY with different predicates can be re-
moved (c¢f. Query (e)). No system is able to remove this
type of redundancy. For PostgreSQL and DB-Y, a significant
performance increase can be achieved by executing the trans-
formed query. Even though they estimate a performance
benefit, the execution time of the transformed query is larger
in DB-X and DB-Z. The reason for the performance decrease
could be that the predicates in the original query are very
selective. Therefore, only a small amount of tuples have to be
grouped by each of the two GROUP BY statements. However,
in the transformed query the grouping is performed on all
tuples of the input relation. Tuples that should not be in the
input of the aggregation function are then removed using a
CASE statement. Again, in HyPer there is no performance
gain, since the increase of the optimization time dominates
the overall performance.

Query (i) from Example uses a subquery in the
SELECT clause. In section [5| we showed, how this type of
subquery can be removed. However, no system performed
this optimization. Therefore, the transformed query of our
NF? optimizer led to a performance increase in all systems.
For PostgreSQL, the original query is a factor 75 slower than
the transformed query. For DB-Y the original query is a
factor 18 slower and for DB-Z the original query is a factor
4 slower than the transformed query.

Query (j) has multiple subqueries within other subqueries.
PostgreSQL and DB-Y were aborted after 24 hours, whereas
the transformed query executed in less than 10 seconds in
both systems. Again, due to the increase of the optimization
time, there is no performance increase in HyPer.

Query (k) combines different types of nested queries. Post-
greSQL was aborted after 24 hours. HyPer could not execute
Query (k) and returned an abstract syntax tree error (de-
noted by “x” in Table .

7.3 NF? Optimization Time and Memory

In order to quantify the implications of our approach to the
query optimizer itself, we measured the optimization time
and the memory consumption with and without NF? rules.

Figure 3| (top) plots the optimization time required by our
NF? optimizer for each query with NF? rules activated and
deactivated. For Query (a) to (e) and Query (i), there is only
a small increase when the NF? rules are activated. For the
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Figure 3: Optimization time (top) and memory us-
age (bottom) of the NF? optimizer.

other queries, the increase in optimization time is larger. The
cause is that the implementation of the Cascades framework
that we extended never merges expression groups, even if they
contain equivalent expressions. For example, the search space
for Query (k) currently consists of 2,058 groups. However,
if redundant groups were merged during optimization, only
146 groups would be required. We are therefore integrating
this functionality into our NF? optimizer.

Figure [3| (bottom) shows the memory usage of our NF?
optimizer for each query with NF? rules activated and deac-
tivated. Only Query (k) uses notably more memory when
NF? rules are activated. Again, this is due to the fact that
equivalent expression groups are not merged. The memory
usage of the other queries is stable at around 5 to 6 MB.

7.4 Discussion and Limitations

To conclude this section, we discuss limitations of the pre-
sented evaluation that we are aware of. One possible weak-
ness is the set of queries that we used to quantify the per-
formance benefits of our approach. Since the queries of the
TPC-H benchmark do not cover all optimization techniques
that have been proposed in the literature, we defined our own
set of eleven queries. Our first goal was to cover all types of
nested queries for which optimizations have been proposed in
the literature. Next, we aimed at covering all types of nesting
that are possible in SQL. Finally, we introduced queries that



combine different types of nesting, requiring different combi-
nations of optimizations. We argue that this methodology is
sound and that our set of queries can be used to identify the
optimization opportunities that are still present in current
database systems w.r.t. nested query optimization. At the
same time, we cannot make any claims as to the relevance
or frequency of these queries in practice.

Furthermore, our query set does not include queries that
use disjunction, non-inner-joins, or non-equi-joins. Such
queries can be executed using either nested-loops evaluation
or special physical operators. In this paper, we do not claim
to improve the state of the art at the physical level, but
we clearly demonstrate that there is still much to be gained
at the logical level by using the NF? algebra to represent
and transform nested queries. This claim even holds for
database systems that have special physical operators for
nested queries (e.g., SQL Server |9] and HyPer [17]). If such
special physical operators exist, they can be incorporated
into our approach by appropriate implementation rules.

Another limitation of our evaluation is its focus on nested
queries. While this approach is appropriate to quantify the
benefits of the optimization technique that we propose, it
does not shed light on potential drawbacks it might have,
if our NF? optimizer was applied in a setting with mostly
non-nested queries. Although we acknowledge that such a
study could be conducted, we also point out that it is possi-
ble to determine at parse-time whether or not a SQL query
has subqueries. Since our Cascades-based NF? optimizer
implementation supports the dynamic activation and deacti-
vation of transformation rules, this parse-time information
could be used to configure different “optimization profiles”,
which could mitigate some of the overhead introduced by our
approach, when it is not needed.

8. RELATED WORK

The optimization techniques for nested queries that have
been proposed over the last 30 years can be categorized
into three classes. Approaches of the first category perform
transformations at the level of SQL (or a query representation
close to SQL). Approaches of the second category extend the
relational algebra with new logical and physical operators
that are specifically designed to represent nested queries.
Finally, approaches of the third category address nested
query optimization using an entirely different formalism.

Kim [14] is the first to address the optimization of nested
SQL queries. His approach falls into the first catergory as it
uses stepwise edits of the SQL code with the goal of replacing
subqueries with joins. Our approach can express all transfor-
mations described by Kim, given that they are still possible
in the current version of SQL. Zuzarte et al. [20] describe
how certain subqueries can be replaced by window functions.
Even though not included in this paper, our approach can
also support these transformations (cf. Appendix. Finally,
Bellamkonda et al. |2] describe under which conditions sub-
queries in the WHERE clause can be merged. Their approach
is implemented in Oracle based on their cost-based query
transformation framework that uses “query trees, which are
different from algebraic operator trees in that query trees
retain all the declarativeness of SQL” [1]. In Section 4] we
showed how subquery coalescing is realized in our approach.
In contrast to these approaches, however, our transformation
are integrated into the logical optimization phase, rather
than performed at the level of SQL.

The work of Dayal [7], which falls into the second category,
extends the relational algebra with special join and aggrega-
tion operators. It also sketches how these operators could be
implemented in a database system. Cluet and Moerkotte [5]
define an algebra and equivalences to optimize nested queries
in object databases. Whereas most of the operators that they
propose are nowadays supported by database systems, they
also introduce a special join (d-join) to perform unnesting.
Galindo-Legaria and Joshi 9] describe how Microsoft SQL
Server transforms nested queries. They extend the relational
algebra with the so-called apply operator that is used to alge-
braically represent nested queries in the WHERE clause. Both
Brantner et al. [3] and Neumann and Kemper [17] extend
the relational algebra with new operators to algebraically
represent subquery unnestings. In the latter case, these op-
erators use sideways information passing to execute nested
queries more efficiently. Similar to our work, the approaches
of Wang et al. [19] and Cao and Badia [4] also propose the
use of nested relational algebras, but assume the presence
of physical nest and unnest operators. Compared to these
approaches of the second category, our approach performs
only logical optimizations and every logical operator that
we use can be mapped to a physical operator found in any
current database system. For that reason, the plans gener-
ated by our NF? optimizer can be executed in every existing
relational database system.

Instead of extending the relational algebra, approaches of
the third category introduce an entirely different formalism
by extending the relational calculus. For example, Fegaras
and Maier [8] propose the monoid comprehension calculus
and demonstrate how it can be used to remove any form of
nesting in OQL. Similarly, the work of Grust and Scholl [13]
extends monad comprehension calculus for which it can also
be shown that normalization is complete |12]. Since the
relational algebra rather than the relational calculus is the
formal foundation of existing query optimizers, the goal of
our work is to express unnesting rules in a formalism that
fosters their practical adoption.

9. CONCLUSION AND FUTURE WORK

In this paper, we presented how nested queries can be opti-
mized algebraically by representing them in the NF? algebra
and applying transformation rules that are based on the
equivalences of this algebra. A key advantage of this ap-
proach is that the optimization of nested queries can be
performed as part of the logical plan enumeration phase.
Furthermore, since the NF? algebra is an extension of the
traditional relational algebra, all existing equivalences (and
the corresponding transformation rules) are still valid and
can work hand-in-hand with new rules. We demonstrated
how this approach can be integrated into a Cascades-based
query optimizer with little effort. Finally, we used this imple-
mentation to quantify the potential performance benefits that
current database systems can achieve based on our approach.

Although we have focused on the optimization of nested
queries in this paper, the applications of the NF? algebra
in the context of SQL are not limited to this use case. As
another line of future work, we therefore plan to extend
our definitions to other SQL concepts, which then could be
similarly optimized by algebraic transformation rules. For
example, the CUBE or ROLLUP operator could be represented
by NF? expressions and new transformation rules could be
derived to optimize OLAP queries.
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APPENDIX

In this appendix, the eleven queries used in the evaluation,
NF? representations of additional SQL concepts, and a sam-
ple proof for an equivalence rule are given.

A. QUERIES

In this section, we present the queries that were used in the
evaluation of this work. For each query, we also show the
transformed version generated by our NF? optimizer.

Query (a): Type J Nesting

This query returns all parts delivered by suppliers from the
region ‘America’.
Original query
SELECT s_name, p_name
FROM Part, Supplier, Nation, Region
WHERE s_nationkey = n_nationkey AND n_regionkey = r_regionkey
AND r_name = ‘AMERICA’
AND p_partkey IN (SELECT ps_partkey
FROM PartSupp
WHERE ps_suppkey = s_suppkey)

Transformed query

SELECT DISTINCT p_name, s_name

FROM Part, Supplier, PartSupp, Nation, Region

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ‘AMERICA’

Query (b): Type JA Nesting

This query returns all parts delivered by suppliers from Asia
that are more expensive than the average price of parts of the
same type delivered by suppliers from the region ‘America’.

Original query
SELECT P1.p_name
FROM Part P1, PartSupp, Supplier, Nation, Region
WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey
AND s_nationkey = n_nationkey AND n_regionkey = r_regionkey
AND r_name = ‘ASIA’ AND P1.p_retailprice > (
SELECT AVG(P2.p_retailprice)
FROM Part P2, PartSupp PS2,
Supplier S2, Nation N2, Region R2
WHERE P2.p_type = Pl.p_type
AND P2.p_partkey = PS2.ps_partkey
AND PS2.ps_suppkey = S2.s_suppkey
AND S2.s_nationkey = N2.n_nationkey
AND N2.n_regionkey = R2.r_regionkey
AND R2.r_ name = ‘AMERICA’)

Transformed query

SELECT P1l.p_name
FROM Part P1, PartSupp PS1, Supplier S1, Nation N1,
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Region R1, (SELECT p_type, AVG(p_retailprice) AS avg_price

FROM Part, PartSupp, Supplier, Nation, Region

WHERE p_partkey = ps_partkey AND ps_suppkey = s_suppkey
AND s_nationkey = n_nationkey
AND n_regionkey = r_regionkey
AND r_name = ‘AMERICA’

GROUP BY p_type) P2

WHERE P2.p_type = Pl.p_type

AND P1.p_retailprice > P2.avg_price

AND P1.p_partkey = PS1.ps_partkey

AND PS1.ps_suppkey = Sl.s_suppkey

AND S1.s_nationkey = N1.n_nationkey

AND N1.n regionkey = Rl.r_regionkey

AND R1l.r_name = ‘ASIA’

Query (c): Redundant Table Access

This query returns the price of the cheapest and most expen-
sive order.

Original query

SELECT min_price, max_price

FROM (SELECT MIN(o_totalprice) AS min price
FROM Orders) O1,
(SELECT MAX(o_totalprice) AS max_price
FROM Orders) O2

Transformed query

SELECT min_price, max_price

FROM (SELECT MIN(o_totalprice) AS min price,
MAX(o_totalprice) AS max price
FROM Orders) O1

Query (d): Redundant GROUP BY I

This query returns the cheapest and most expensive order
for each customer.

Original query

SELECT Ol.o_custkey, max_price, min_price

FROM (SELECT o_custkey, MAX(o_totalprice) AS max_price
FROM Orders
GROUP BY o_custkey) O1,
(SELECT o_custkey, MIN(o_totalprice) AS min_price
FROM Orders
GROUP BY o_custkey) O2

WHERE Ol.o_custkey = O2.0_custkey

Transformed query

SELECT o_custkey, max_price, min_price

FROM (SELECT o_custkey, MAX(o_totalprice) AS max_price,
MIN(o_totalprice) AS min price
FROM Orders
GROUP BY o_custkey) O1

Query (e): Redundant GROUP BY II

This query returns for each customer the fraction between the
urgent orders and the total number of orders. Compared to
the previous query, the two subqueries of this query contain
different predicates in the WHERE clause.

Original query
SELECT O1.o_custkey, nrUrgentOrders/nrOrders

FROM (SELECT o_custkey, COUNT(*) AS nrOrders
FROM Orders

GROUP BY o_custkey) O1,
(SELECT o_custkey, COUNT(*) AS nrUrgentOrders
FROM Orders
WHERE o_orderpriority = ‘1-URGENT’
GROUP BY o_custkey) O2
WHERE O1l.o_custkey = O2.0_custkey

Transformed query

SELECT o_custkey, nrUrgentOrders/nrOrders AS ratio
FROM

(SELECT o_custkey, COUNT(*) AS nrOrders, COUNT(

CASE WHEN o_orderpriority = ‘1-URGENT’ THEN 1 END)

AS nrUrgentOrders

FROM Orders

GROUP BY o_custkey) O1
WHERE nrUrgentOrders <> 0

Query (f): Subquery Coalescing

This query returns all orders from customers located in Asia
that are at least as expensive as the most expensive orders
with urgent, high and medium priority. In contrast to the
previous queries, the redundancy is now contained in the
WHERE clause.

Original query
SELECT o_orderkey
FROM Orders, Customer, Nation, Region
WHERE o_custkey = c_custkey AND c_nationkey = n_nationkey
AND n_regionkey = r_regionkey AND r_name=‘ASIA’
AND o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘1-URGENT”
) AND o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘2-HIGH’
) AND o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘3-MEDIUM’

)

Transformed query

SELECT o_orderkey
FROM Orders, Customer, Nation, Region
WHERE o_custkey = c_custkey AND c_nationkey = n_nationkey
AND n_regionkey = r_regionkey AND r_name=‘ASIA’
AND o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘1-URGENT”
OR o_orderpriority = ‘2-HIGH’
OR o_orderpriority = ‘3-MEDIUM’

)

Query (g): Redundant Type JA 1

This query returns all parts that are cheaper and bigger than
the average of parts of the same type. In contrast to the
previous query, the aggregation functions of the subqueries
are computed on different attributes.



Original query
SELECT P1l.p_name
FROM Part P1
WHERE P1.p_retailprice < (
SELECT AVG(P2.p_retailprice)
FROM Part P2
WHERE P2.p_type = Pl.p_type
) AND P1.p_size > (
SELECT AVG(P2.p_size)
FROM Part P2
WHERE P2.p_type = P1.p_type

)

Transformed query

SELECT p_name
FROM Part P1,
(SELECT p_type, AVG(p_size) AS avg size,
AVG(p_retailprice) AS avg price
FROM Part
GROUP BY p_type) P2
WHERE P1.p_type = P2.p_type
AND p_retailprice < avg_price AND p_size > avg size

Query (h): Redundant Type JA II

This query returns all parts that are cheaper than the average
price of parts of the same type of brand “Brand#13” and
that are bigger than the average size of parts of the same
type of brand “Brand#14”. Compared to the previous query,
the two subqueries of this query contain different predicates
in the WHERE clause.

Original query
SELECT P1.p_name
FROM Part P1
WHERE P1.p_retailprice < (
SELECT AVG(P2.p_retailprice)
FROM Part P2
WHERE P2.p_type = Pl.p_type
AND P2.p_brand = ‘Brand#13’
) AND P1.p_size > (
SELECT AVG(P2.p_size)
FROM Part P2
WHERE P2.p_type = Pl.p_type
AND P2.p_brand = ‘Brand#14’

)

Transformed query

SELECT p_name
FROM Part P1,
(SELECT p_type,
AVG(CASE WHEN p_brand = ‘Brand#14’ THEN p_size END)
AS avg_size
AVG(CASE WHEN p_brand = ‘Brand#13’ THEN p_retailprice
END) AS avg_price
FROM Part
GROUP BY p_type) P2
WHERE P1.p_type = P2.p_type AND p_retailprice < avg_price
AND p_size > avg_size
AND avg_size IS NOT NULL AND avg price IS NOT NULL

Query (i): SELECT Clause Subquery

This query returns for each part type the number of parts
and the average price.

Original query

SELECT p_type, AVG(p_retailprice),

(SELECT COUNT(*) FROM Part P2 WHERE P2.p_type = P1.p_type)
FROM Part P1

GROUP BY p_type

Transformed query

SELECT p_type, AVG(p_retailprice), COUNT(*)
FROM Part
GROUP BY p_type

Query (j): Multiple Nestings 1

This query returns all suppliers from the United States de-
livering parts that are cheaper and bigger than the average
of parts of the same type.

Original query
SELECT s_suppkey, s_name
FROM Supplier, Nation
WHERE s_nationkey = n_nationkey
AND n_name = ‘UNITED STATES’
AND s_suppkey IN (
SELECT ps_suppkey
FROM PartSupp
WHERE ps_partkey IN (
SELECT p_partkey
FROM Part P1
WHERE P1.p_retailprice < (
SELECT AVG(P2.p_retailprice)
FROM Part P2
WHERE P2.p_type = Pl.p_type
) AND P1.p_size > (
SELECT AVG(P3.p_size)
FROM Part P3
WHERE P3.p_type = Pl.p_type

)

Transformed query

SELECT DISTINCT s_suppkey, s_name
FROM Supplier, Nation, PartSupp, Part P1,
(SELECT p_type, AVG(p_retailprice) AS avg_price
AVG(p_size) AS avg_size
FROM Part
GROUP BY p_type) P2
WHERE s_nationkey = n_nationkey
AND n_name=‘UNITED STATES’
AND s_suppkey = ps_suppkey
AND ps_partkey=P1.p_partkey AND P1.p_type = P2.p_type
AND P1.p_retailprice < avg_price
AND P1.p_size > avg_ size

Query (k): Multiple Nestings II

This query returns all parts delivered by a supplier from the
United States that are cheaper and bigger than the average
of parts of the same type. In addition, the price of a part
has to be less than the price of the most expensive orders
with urgent, high and medium priority.

SELECT s_name, p_name
FROM Part P1, Supplier, Nation
WHERE s_nationkey = n_nationkey



AND n_name = ‘UNITED STATES’ AND p_partkey IN (
SELECT ps_partkey
FROM PartSupp
WHERE ps_suppkey = s_suppkey
) AND P1.p_retailprice > (
SELECT AVG(P2.p_retailprice)
FROM Part P2
WHERE P2.p_type = Pl.p_type
) AND P1.p_retailprice < ALL (
SELECT o_totalprice
FROM Orders
WHERE o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘1-URGENT’
) AND o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘2-HIGH’
) AND o_totalprice >= (
SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority = ‘3-MEDIUM’))

Transformed query

SELECT DISTINCT s_name, p_name
FROM Part P1, Supplier, Nation, PartSupp, (
SELECT p_type, AVG(p_retailprice) AS avg price
FROM Part
GROUP BY p_type
) P2
WHERE s_nationkey = n_nationkey
AND n_name=‘UNITED STATES’
AND P1.p_partkey = ps_partkey AND ps_suppkey = s_suppkey
AND P1.p_type = P2.p_type AND P1.p_retailprice > avg_price
AND P1.p_retailprice < ALL
(SELECT o_totalprice
FROM Orders
WHERE o_totalprice >=
(SELECT MAX(o_totalprice)
FROM Orders
WHERE o_orderpriority=‘1-URGENT’
OR o_orderpriority=‘2-HIGH’
OR o_orderpriority=*‘3-MEDIUM’))

B. OTHER SQL CONCEPTS
B.1 CASE Statements

CASE statements can be represented with a projection con-
taining a selection as subexpression in its projection list. The
following example shows a SQL query with a CASE statement
and the equivalent NF? expression.

Example B.1.1 The following query returns for each part
type the number of parts that are larger than a given size.

SELECT p_type, COUNT(CASE WHEN p_size > 100 THEN 1 END)
FROM Part
GROUP BY p_type

The equivalent NF? expression is as follows.
m[p-type, COUNT(
olp_size > 100 A p_type’ = p_type](Part’))](Part)

B.2 Window Functions

Window functions can be represented by combining nested
selections with projections.

Definition B.2.1 (Window Function) Let R be a rela-
tion, L C attr(R) and A = {Au, ..., Ak} C attr(R) sets of
attributes, f an aggregation function and R’ the renamed
relation of R. In addition, the following query is given.

SELECT L, f(B) OVER(PARTITION BY A)
FROM R

This query can be represented by the NF? expression
T[L,w[A; f(B)(R)(R).
The window function w inside the projection is defined by:

wlA; f(B)(R') == f(n[B)(o[A} = A1 A ... A Al = ALJ(R))).

C. EXAMPLE PROOF

In this subsection, we demonstrate how the correctness of
the subquery coalescing rules defined in Section E| can be
proven. As an example, we proove the correctness of the
following case from Definition [4.2.1

o[(A > MAX(n[B](c[F1](Inner))) A
(A > MAX(n[B](o[F2](Inner)))](Outer)
= o[A > MAX(7[B](c[F1 V F2](Inner))](Outer)

Proor. Consider the expressions

E;y := o[(A > MAX(r[B](c[Fi](Inner)))
A (A > MAX(7[B](o[F2](Inner)))](Outer)

and Ej := o[A > MAX(n[B](c[F1 V Fx](Inner)))](Outer).

In order that Ey = E» is vaild, sch(E1) = sch(E2) and
val(Ey) = val(E2) have to hold (i.e., both expressions have
the same schema and return the same tuples). For both
expressions the outer operator is a selection on the relation
“Outer”. For that reason, sch(E1) = sch(E2) holds. As a
next step, we have to show that val(E1) = val(E2) holds.
W.l.o.g. m1 is the maximum of the first subexpression of
E; and m} the maximum of the second subexpression of Ej.
Additionally, mz is the maximum of the subexpression of Fo.

e val(E,) C val(E2): Let t € val(E1) be a tuple. Then
t(A) > m1 and t(A) > m] have to hold (t(A) is the value
of tuple t in attribute A). Since mi € val(w[B](c[F1](
Inner))) and m} € val(w[B](c[F2](Inner))) hold, m1,
m) € val(w[B](c[F1 V Fz](Inner))) also have to hold.
As a consequence, my = max{mi,m}} and t(4) >
mg follow. Hence, t € val(FE2) holds. Consequently,
val(E1) C val(E2) holds.

e val(E2) C val(Ey): Let t € val(E2) be a tuple. Then
t(A) > mg has to hold. Since mz = maz{val(w[B](
o[F1VE>](Inner)))} holds, it follows that ma = maz{m.,
m}} holds. Consequently, t(A) > m1 and t(A4) > m)
hold. Therefore, t € val(E1) is fulfilled and val(E2) C
val(E1) holds.

O

The other cases of Definition can be proven analo-
gously.
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