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A

Automatic Moment-closure Approximation of Spatially Distributed
Collective Adaptive Systems

CHENG FENG, University of Edinburgh
JANE HILLSTON, University of Edinburgh
VASHTI GALPIN, University of Edinburgh

Spatially distributed collective adaptive systems are an important class of systems, which pose significant
challenges to modelling due to the size and complexity of their state spaces. This problem is acute when the
dynamic behaviour of the system must be captured, for example in order to predict system performance. In
this paper we present an abstraction technique which automatically derives a moment-closure approxima-
tion of the dynamic behaviour of a spatially distributed collective adaptive system from a discrete represen-
tation of the entities involved. The moment-closure technique is demonstrated to give accurate estimates of
dynamic behaviour, although the number of ordinary differential equations generated for the second order
joint moments can grow large in some cases. For these cases, we propose a rigorous model reduction tech-
nique and demonstrate its use to substantially reduce the computational effort with only limited impact on
the accuracy if the reduction threshold is set appropriately. All the techniques reported in this paper are
implemented in a tool which is freely available for download.

CCS Concepts: rComputing methodologies → Model development and analysis; rMathematics of
computing→ Mathematical analysis; rTheory of computation→ Formal languages and automata the-
ory;

Additional Key Words and Phrases: Collective adaptive systems, moment-closure approximation, model re-
duction

ACM Reference Format:
Cheng Feng, Jane Hillston, and Vashti Galpin, 2015. Automatic Moment-closure Approximation of Spatially
Distributed Collective Adaptive Systems. ACM Trans. Model. Comput. Simul. V, N, Article A (January 2015),
22 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Collective adaptive systems, consisting of many communicating entities who react ac-
cording to their local knowledge, without centralised control, and which nevertheless
achieve coherent results at the global level, are becoming pervasive. Capturing the
local nature of knowledge means that the location of an entity is a key characteris-
tic which may deeply influence the pattern and scope of communication. But record-
ing this aspect of each entity adds to the complexity of modelling and analysing such
systems. This problem is exacerbated by the fact that collective systems necessarily
consist of many, many distributed entities.

In this paper we are concerned with predicting the behaviour of collective adaptive
systems. As outlined above, the major challenge to such analysis is the size of the
state space representation of the system, when the state encompasses not only logical
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A:2 C. Feng et al.

behaviour but also location. Numerical techniques traditionally used for performance
analysis, based on a Markovian approach, are entirely infeasible. Discrete event simu-
lation is feasible but extremely costly in terms of computational resources and may not
scale as the size of the system increases. Here we propose an approach, based on a for-
mal modelling language to support the description of a collective adaptive system as a
discrete event system (amenable to simulation), which makes an approximation of the
system as a set of ordinary differential equations (ODEs). Unlike earlier fluid approxi-
mation techniques of process algebras such as PEPA [Hillston 2005b; Tribastone et al.
2012], our approach is not limited to the expectation or first moment characterisation
of system behaviour. Importantly, our moment-closure-based approach also incorpo-
rates second order moments supporting the analysis of the compliance of a system to
service level agreements and other performance requirements.

The context in which we develop our approach is the stochastic process algebra
PALOMA. This language was introduced in [Feng and Hillston 2014] and provides
a high-level modelling language for the multi-message multi-class Markovian agent
modelling framework of [Cerotti et al. 2010]. PALOMA has been revised since [Feng
and Hillston 2014] in order to enhance the expressiveness of the language whilst
also making model descriptions more compact. The language is equipped with both
individual-based and population-level semantics. Here our focus is on the population
level as we consider the emergent performance of the system when large numbers of
entities interact. Thus we explain how to derive a set of ODEs describing the evolution
of the moments of the population-level dynamics of an arbitrary PALOMA model. We
apply moment-closure techniques to close the moment ODEs at the second order. The
obtained ODEs are not, in general, amenable to analytical solution but can neverthe-
less be solved efficiently by numerical simulation. Importantly, the structure of the set
of ODEs is independent of the number of agents in the model, making the approach
scalable even in the face of very large populations. We illustrate the applicability of
the approach on three case studies including a classic epidemic model, a wireless sen-
sor network model and a bike-sharing model taken from the domain of smart urban
transport, such as that found in London and many other European cities [Midgley
2009].

The number of ODEs characterising the evolution of the moments, whilst indepen-
dent of the size of the populations of entities, does depend on the number of locations
and local state space of each entity type. In some circumstances this can lead to a pro-
hibitive number of ODEs, or to a slow-down in analysis. Thus we also propose a model
reduction technique which generates a reduced set of ODEs on the basis of a formally
defined neighbourhood relation that is defined at the level of process algebra descrip-
tion and can be automatically applied. We demonstrate through the three examples
that this can significantly improve the efficiency and scalability of moment analysis
whilst still retaining high accuracy.

The paper is structured as follows. We present the syntax and semantics of PALOMA
in the next section. This is followed by the section of moment analysis of PALOMA
models. In Section 4, three case studies will be presented. Finally, Sections 5 and 6
discuss related work and draw final conclusions.

2. PALOMA
The Process Algebra for Located Markovian Agents (PALOMA) is a stochastic process
algebra, specifically designed to support the construction of formal models of large col-
lective adaptive systems in which agents are distributed over a discrete set of named
locations, L. Agents are parameterised by a location, denoted by `, ` ∈ L. Each indi-
vidual agent is a finite state machine, and the language is conservative in the sense
that no agents are created or destroyed during the evolution of the model. There is
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Moment-closure Approximation of Collective Adaptive Systems A:3

a finite set of action types A, and actions may be undertaken spontaneously or may
be induced by a message of the same type, sent by another agent in the system. All
spontaneous actions are assumed to have a duration governed by an exponential dis-
tribution and characterised by a rate r. A model P consists of a number of agents com-
posed in parallel. There is no direct communication between agents, e.g. in the style
of CSP [Hoare 1985] or PEPA [Hillston 2005a], but synchronisation between agents is
achieved through message passing.

The language has the following grammar:

π ::= !(α, r)@IR{
−→
` } | ?(α, p)@Pr{v} | !!(α, r)@IR{

−→
` } | ??(α, p)@Wt{v} | (α, r)

S(`) ::= π.S′(`′) | S1(`) + S2(`) | C
P ::= S(`) | P ‖ P

Agents can change their states and locations by different actions:
Spontaneous action with broadcast message emission: !(α, r)@IR{

−→
` } describes that

the agent performs an action α, α ∈ A, spontaneously with rate r. During the occur-
rence of the action, a broadcast message, also typed α, is emitted. The influence range
of the broadcast is defined by the location vector

−→
` , which gives a list of locations where

agents can potentially be influenced by this message.
−→
` can be defined both statically

and dynamically. For example,
−→
` = [`1, `2, `3] means that the influence range of the

broadcast is locations `1, `2 and `3, whereas
−→
` = range(d) denotes that the influence

range is a set of locations whose distance from the location of the sender agent is less
than a specific threshold d. Some other frequently used definitions of influence range
are
−→
` = local and

−→
` = all, which represent that the influence range of the broadcast

message is restricted to the location of the sender agent or consists of all the locations
in the model, respectively.

Spontaneous action with unicast message emission: !!(α, r)@IR{
−→
` } also describes a

spontaneous action of type α, rate r and influence range
−→
` . The difference is that here

the message is a unicast, meaning that at most one agent can receive the message.
Action induced by a broadcast message: ?(α, p)@Pr{v} describes that the agent per-

forms an action α immediately after receiving and accepting a broadcast message of
type α. Whether the agent receives the broadcast message is decided by two factors.
Firstly, the agent must be located within the influence range of the message; other-
wise, the message will be ignored. Secondly, the value v ∈ [0, 1] gives the probability
that the message is received by the agent given that it is within the influence range
of the broadcast. v can be defined as a constant. For example, v = 0.5 means that the
agent has 50% chance of receiving the message. v can also be defined dynamically. For
instance, v = 1/|S(`)| denotes that the message reception probability is dependent on
the number of agents in state S in location `, where | · | is an operator which gives
the number of agents in a particular state and location. Formally, the definition of v
follows this grammar:

v ::= c | dist(`1, `2) | |S(`)| | v (op) v

where c is a constant real number, dist(`1, `2) is the distance between locations `1 and
`2, (op) is a basic arithmetic operator. This means that v defines a function that can
be dependent on the number of agents, and distance between locations. Once the mes-
sage has been received, the agent decides whether to accept it. Here, a constant value
p ∈ [0, 1] encodes the probability that the agent will accept the message. This can be
thought of as the agent choosing to respond to a spontaneous action of the given type
with probability p. The definition of v and p support a rich set of possible interaction
patterns between agents.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January 2015.



A:4 C. Feng et al.

Action induced by a unicast message: ??(α, p)@Wt{v} describes that the agent per-
forms an action α immediately after receiving and accepting a unicast message of type
α. Here, v ∈ R+ gives the weight of the agent to be the receiver of this unicast message.
The definition of v follows the same grammar as previously, but with a different value
domain. The weights are used to resolve between several potential receiver agents:
suppose there are n agents denoted by S1(`1), S2(`2), ..., Sn(`n), which can potentially
receive the unicast message, with weights v1, v2, ..., vn. Then, the probability that agent
S1(`1) receives the message is v1/Σ, where Σ denotes

∑n
i=1 vi, the sum of the associ-

ated weights of all potential receivers. The calculation of this probability can be seen
as a new function wv1 obtained from the functions vi, and it may also involve agents
counts. If there is no potential receiver, the message is simply discarded. The value
p ∈ [0, 1] is a distinct probability deciding whether a received message is accepted or
not. Note that if the selected agent does not accept the unicast message, the message
is discarded; it cannot be passed to any other potential receiver agent.

Spontaneous action without message emission: (α, r) denotes that the agent performs
a spontaneous action named α with a rate r governed by a negative exponential dis-
tribution. No message is sent out during the firing of this action. Thus it remains an
individual action solely of this agent.

Alternative behaviours are represented by the standard choice operator, +. A choice
between spontaneous actions is resolved via the race policy, based on their correspond-
ing rates. We assume that there is never a choice between two induced actions of the
same type within a single component. C denotes a constant name for an agent. The
symbol ‖ means parallel composition of agents.

2.1. Semantics
In this section, we present the population-level semantics of PALOMA which provides
the theoretical foundation for population-level stochastic simulation of PALOMA mod-
els. Simulating a PALOMA model at the population level can dramatically reduce the
computational cost compared with traditional individual-based (agent-based) simula-
tion when the model contains a large number of symmetric agents. More importantly,
the population-level semantics also serves as an intermediate tool for the generation
of the moment ODEs which we will see later.

In PALOMA, as agents in the same state and location are indistinguishable, it is
advantageous to derive a population model in which symmetric agents located in the
same location are aggregated through a counting abstraction. Specifically, we first con-
struct a state vector S whose size is |S|, where each element Si denotes an agent state
variable that appears in the definition of the PALOMA model. Then, a location vector
L whose size is |L| is also constructed, in which each element `i denotes a location
variable that appears in the PALOMA model (S and L can be initialized by simply
traversing the model definition and listing all the distinct states and locations in the

S(`)[n] ≡ S(`) ‖ . . . ‖ S(`)︸ ︷︷ ︸
n copies

S(`) ≡ S(`)[1]

S(`)[n1] ‖ S(`)[n2] ≡ S(`)[n1 + n2]

S(`) ‖ S′(`′) ≡ S′(`′) ‖ S(`)(
S(`) ‖ S′(`′)

)
‖ S′′(`′′) ≡ S(`) ‖

(
S′(`′) ‖ S′′(`′′)

)
Fig. 1. Structural congruence in PALOMA
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Moment-closure Approximation of Collective Adaptive Systems A:5

model). Furthermore, we use a |S| × |L| numerical matrix ξ to represent the current
count of agents in all possible states and locations. Specifically, the element ξi,j at the
ith row and jth column of the matrix denotes the current number of agents in state Si
and location `j (we set ξi,j = −1 if Si(`j) does not exist).

Before introducing the semantics, we define a structural congruence in Figure 1,
which will allow us to define the semantics and the models in a more compact and
straightforward way. Moreover, we let pf(Si(`j)) denote the set of prefixes of an agent
in state Si and location `j such that:

pf(Si(`j)) = {∀ πn.Sin(`jn) | Si(`j) =
∑
n∈N

πn.Sin(`jn)}

Now, we formally define the population-level structured operational semantics with
rules for the derivation of population-level transitions for PALOMA in Figure 2. The
rule NoMsg infers a population-level transition from a spontaneous action with no
message emission of a single agent with rate r. The idea is that if there are ξi,j copies
of agents in state Si and location `j at any given time instant (ξi,j > 0), then the total
rate at which a spontaneous action with no message emission in the premise fires is
r × ξi,j .

The rule BrPair infers a set of population-level transitions from an induced action
coupled with a spontaneous action with broadcast message emission with the same
action name. Suppose there are ξi,j copies of agents Si(`j) who can do a spontaneous
action with broadcast message emission at rate r at any time instant, then the total
emission rate of the broadcast message α from those agents is r × ξi,j . For an agent in
state Sm and located in `n which is within the influence range of the broadcast mes-
sage given by

−→
` , the probabilities of receiving and accepting the message are v and p,

respectively. Then, suppose a spontaneous action α with broadcast message emission
is fired by an agent in state Si and location `j , in the population level, the number of
agents in state Sm and location `n who actually fire the corresponding induced action
caused by the broadcast message is a random variable (denoted as K) following a Bi-
nomial distribution, K ∼ Binomial(ξm,n, v×p). Thus, we can infer ξm,n+1 population-
level transitions denoted as −→k each with rate r × ξi,j × Pr(k, ξ), and during which a
copy of Si(`j) goes to Si′(`j′) and k copies of Sm(`n) go to Sm′(`n′), where:

Pr(k, ξ) =

(
ξm,n
k

)
(p× v(ξ))k(1− p× v(ξ))ξm,n−k ∀k, 0 ≤ k ≤ ξm,n

As there can be multiple agents in different states or locations which enable actions
induced by the same broadcast message, we use a further rule BrCombo to infer a
population-level transition from a spontaneous action with broadcast message coupled
with multiple agent types. As different agents choose to receive or respond to the mes-
sage independently, the probabilities of the number of actions of the different agents
induced by the message can be multiplied to obtain the total probability.

The rule UniPair infers a population-level transition from an induced action coupled
with a spontaneous action with unicast message emission. This requires the use of the
function wv to transform the weights of all agents involved into a probability. Given n
weight functions vi with vi(ξ) ∈ R+ then wvj (ξ) = vj(ξ)/

∑n
i=1 vi(ξ).

The above four rules can be used to infer basic population-level transitions for any
PALOMA model.

In the rules Choice and Parallel, we use expressions E and F to denote a component
which consists of a set of agents which together enable a basic population-level tran-
sition. As can be seen in the rule Choice, a choice between two basic population-level
transitions is resolved by a race policy, where the associated agents can either behave

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January 2015.



A:6 C. Feng et al.

(α, r).Si′ (`j′ ) ∈ pf(Si(`j))
NoMsg

Si(`j)
(α,r×ξi,j)−−−−−−−−→ Si′ (`j′ )

!(α, r)@IR{
−→
` }.Si′ (`j′ ) ∈ pf(Si(`j)) ?(α, p)@Pr{v}.Sm′ (`n′ ) ∈ pf(Sm(`n)) `n ∈

−→
`

BrPair
For 0 ≤ k ≤ ξm,n Si(`j) ‖ Sm(`n)[k]

(α,r×ξi,j×Pr(k,ξ))
−−−−−−−−−−−−−−→k Si′ (`j′ ) ‖ Sm′ (`n′ )[k]

P ‖ Q1[k1]
(α,r(ξ)×Pr(k1,ξ))−−−−−−−−−−−−−→k1

P ′ ‖ Q′1[k1] · · · P ‖ Qn[kn]
(α,r(ξ)×Pr(kn,ξ))−−−−−−−−−−−−−→kn P

′ ‖ Q′n[kn]
BrCombo

P ‖ Q1[k1] ‖ . . . ‖ Qn[kn]
(α,r(ξ)×

∏
z=1,...,n Pr(kz,ξ))

−−−−−−−−−−−−−−−−−−−−−→ P ′ ‖ Q′1[k1] ‖ . . . ‖ Q′n[kn]

!!(α, r)@IR{
−→
` }.Si′ (`j′ ) ∈ pf(Si(`j)) ??(α, p)@Wt{v}.Sm′ (`n′ ) ∈ pf(Sm(`n)) `n ∈

−→
`

UniPair
Si(`j) ‖ Sm(`n)

(α,r×ξi,j×p×wv(ξ)×ξm,n)
−−−−−−−−−−−−−−−−−−−−→ Si′ (`j′ ) ‖ Sm′ (`n′ )

E
(α,r(ξ))−−−−−−→ E′

Choice
E + F

(α,r(ξ))−−−−−−→ F ′

F
(α,r(ξ))−−−−−−→ F ′

E + F
(α,r(ξ))−−−−−−→ F ′

E
(α,r(ξ))−−−−−−→ E′

Parallel
E ‖ F (α,r(ξ))−−−−−−→ E′ ‖ F

F
(α,r(ξ))−−−−−−→ F ′

E ‖ F (α,r(ξ))−−−−−−→ E ‖ F ′

P
(α,r(ξ))−−−−−−→ P ′

Constant C , P
C

(α,r(ξ))−−−−−−→ P ′

P
(α,r(ξ))−−−−−−→ P ′Congruence P ≡ Q

Q
(α,r(ξ))−−−−−−→ P ′

Fig. 2. The Population-level Structured Operational Semantics of PALOMA (all rules for arbitrary α; r ∈
R+, p ∈ [0, 1], v(ξ) ∈ [0, 1], wv(ξ) ∈ [0, 1].)

as E or F . Parallel components proceed independently as shown in the rule Parallel.
Note that the rate of any population-level transition can be thought as a function of
the numerical population matrix ξ.

Constants are agents whose meaning is given by a defining equation such as C , P
which gives the constant C the behaviour of the agent P .

2.1.1. The PCTMC Model. With the population-level structured operational semantics,
any PALOMA model can be treated as a population continuous time Markov chain
(PCTMC) represented as a tuple P = (X, T ,x0), where:

— X = (x1, ..., xn) maps the population numerical matrix ξ to a vector format, where
each vector element is the count variable of agents in a specific state and location
(we assume that there is an implicit function f such that f(ξi,j) = xk if ξi,j 6= −1). We
will use X as short for X(t) hereafter to represent the current state of the model in
terms of the population level at a time instant.

— T = {τ1, ..., τm} is the set of enabled population-level transitions, of the form τk =
(rk(X),dk), where:
(1) rk(X) ∈ R ≥ 0 is the rate function of transition τk depending on the current

population-level state of the system. Note that rk(X) is not restricted to polyno-
mial functions.

(2) dk ∈ Zn is the update vector in which each element is a constant which gives the
net change for a specific element of X caused by transition τk.

— x0 is the initial state of the model.

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January 2015.



Moment-closure Approximation of Collective Adaptive Systems A:7

The tuple P contains all the information that is needed for the population-level dis-
crete event simulation of a PALOMA model using the standard stochastic simulation
algorithm [Gillespie 1977].

3. MOMENT ANALYSIS OF PALOMA MODELS
As collective adaptive systems usually consist of a few hundreds, or perhaps many
more entities, discrete event simulation of the associated PCTMC models can be com-
putationally expensive even with the use of a counting abstraction and simulation at
the population level. Moreover, deriving performance measures from stochastic simu-
lation often requires us to simulate the model a large number of times, and then obtain
the measures of interest such as mean, variance and covariance from the trajectories
of those simulation runs. This means that analysing large-scale collective adaptive
systems may become extremely inefficient. Thus, in this section, we show how to auto-
matically derive an ODE approximation for a PCTMC model expressed in PALOMA.
Specifically, we will describe the evolution of the first moment, second moment and
second-order joint moment of population variables in an arbitrary PALOMA model by
a set of coupled ODEs. As these ODEs contain additional moment variables (moment
variables higher than the second order), we apply moment-closure techniques to close
the moment ODEs at the second order. Obtaining performance measures by solving
these moment ODEs using numerical techniques is computationally much more effi-
cient than stochastic simulation since we only need to solve the ODEs once to get our
performance measures and the associated cost is independent of the number of agents
in the model.

3.1. The Derivation of Moment ODEs
We have mentioned that the population-level semantics can serve as an intermediate
tool for the generation of the moment ODEs. Specifically, the evolution of the moments
of the underlying population-level stochastic process of an arbitrary PCTMC model
can be approximated by the following system of ODEs [Engblom 2006]:

d

dt
E[M(X(t))] =

∑
τ∈T

E[(M(X(t) + dτ )−M(X(t)))rτ (X(t))]

where M(X) denotes the moment to be calculated, dτ and rτ (X(t)) represent the up-
date vector and rate of a population-level transition τ , respectively.

By substituting M(X) with xi, xi2 and xixj , we get the following ODEs to describe
the first moment, second moment and second-order joint moment respectively, of pop-
ulation variables in an arbitrary PALOMA model (we use the same notations as in
Section 2.1.1):

d

dt
E[xi] =

m∑
k=1

E[(xi + dki − xi)rk] =
m∑

k=1

E[dki × rk]

d

dt
E[xi2] =

m∑
k=1

E[((xi + dki)
2 − xi2)rk] =

m∑
k=1

E[2dki × xi × rk + dki
2 × rk]

= 2
m∑

k=1

E[dki × xi × rk] +
m∑

k=1

E[dki2 × rk]

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January 2015.



A:8 C. Feng et al.

d

dt
E[xixj ] =

m∑
k=1

E[((xi + dki)(xj + dkj)− xixj)rk]

=

m∑
k=1

E[dki × xj × rk + dkj × xi × rk + dki × dkj × rk]

=

m∑
k=1

E[dki × xj × rk] +
m∑

k=1

E[dkj × xi × rk] +
m∑

k=1

E[dki × dkj × rk]

where dki is the ith element in dk representing the update on the population variable
xi caused by transition τk. Furthermore, we denote any moment variable in the above
equations as E[f(X)] because both dki and rk can be thought of as a function of the
population vector X.

In order to be able to solve the above moment ODEs, we face three problems. First of
all, consider a vector of population-level transitions inferred from the rule BrPair, we
can write the transitions in the PCTMC as follows (0 ≤ k ≤ xm):

xi, xj , xm, xn
r×xi×(xm0 )(p×v(X))0(1−p×v(X))xm

−−−−−−−−−−−−−−−−−−−−−−−−→0 xi − 1, xj + 1, xm − 0, xn + 0

...

xi, xj , xm, xn
r×xi×(xmk )(p×v(X))k(1−p×v(X))xm−k

−−−−−−−−−−−−−−−−−−−−−−−−−−→k xi − 1, xj + 1, xm − k, xn + k

...

xi, xj , xm, xn
r×xi×(xmxm)(p×v(X))xm (1−p×v(X))0

−−−−−−−−−−−−−−−−−−−−−−−−→xm xi − 1, xj + 1, xm − xm, xn + xm

Clearly, there will be no meaning for the Choose function
(
xm
k

)
in the rate function of

these transitions, given that we treat the populations of agents as continuous variables
in moment analysis. Thus, in order to deal with this problem, we combine the above
vector of transitions for each possible update into a single probabilistic population
transition:

xi, xj , xm, xn
r×xi−−−→ xi − 1, xj + 1, xm − p× v(X)× xm, xn + p× v(X)× xm

since:

p× v(X)× xm =
∑

k=0,...,xm

k ×
(
xm
k

)
(p× v(X))k(1− p× v(X))xm−k

Intuitively, this means that we get a combined population-level transition for a vector
of population-level transitions inferred from BrPair where the rate of the combined
transition is the rate of the spontaneous action with broadcast message emission, the
update vector of the combined transition is the expected number of agents to actually
change their state. Furthermore, we can write a combined population-level transition
inferred from BrCombo in the PCTMC as follows:
xi, xj , . . . , xmk , xnk , . . .

r×xi−−−−→ xi − 1, xj + 1, . . . , xmk − pk × vk(X)× xmk , xnk + pk × vk(X)× xmk , . . .

where r×xi is also the rate of the broadcast message emission, pk× vk(X)×xmk is the
expected number of agents in a state and location with associated transitions induced
by the message to actually change their state. With the combined transitions, we are
able to circumvent the intractable Choose function.

A second point to note is that, the above ODEs are not closed as E[f(X)] may contain
moment variables with arbitrary orders.
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Lastly, when there are many population variables in the model, a problem we call
ODE explosion (so many coupled ODEs that traditional machines do not have enough
memory and computational power to numerically simulate them) may also emerge.

Before we show how to close the moment ODEs, in the next subsection, we first
introduce a neighbourhood relation between population variables which can be used
to significantly mitigate the ODE explosion problem.

3.2. Neighbourhood Relation
Describing the evolution of expected population-level dynamics by moment ODEs can
be dramatically improved our ability to analyse large scale collective adaptive systems.
However, ODE explosion may significantly reduce the scalability of the moment anal-
ysis. Specifically, consider there are n elements in the population vector X. Then there
will be nODEs to describe the evolution of all E[xi], nODEs for all E[xi

2], and (n2−n)/2
ODEs for all E[xixj ]. Obviously, the problem of ODE explosion is mostly caused by the
number of ODEs for E[xixj ]. Fortunately, the number of moment ODEs for E[xixj ] can
be significantly reduced if we can approximate E[xixj ] ≈ E[xi]E[xj ] when the degree of
correlation between xi and xj is less than a specific threshold.

Concretely, we estimate the degree of correlation between two population variables
xi and xj by their neighbourhood relation. We say xi, xj are one-hop neighbours if one
of them can directly influence the evolution of the other. Specifically, we define:

(xi, xj) ∈ R(1) ⇐⇒ ∃ τk, (dki 6= 0 ∧ δjk = 1) ∨ (dkj 6= 0 ∧ δik = 1)

where δjk is an indicator which equals to 1 only if xj is updated after transition τk
(dkj 6= 0) or xj appears in the rate function (rk) of τk. Intuitively, this means there
exists a transition, in which one of the two population variables is updated, and the
other is also involved. Moreover, we can infer two-hop neighbours by:

∃ k /∈ {i, j} (xi, xj) /∈ R(1) ∧ (xi, xk) ∈ R(1) ∧ (xk, xj) ∈ R(1) ⇒ (xi, xj) ∈ R(2).

More generally, R(n) is the smallest relation that satisfies

∃ k /∈ {i, j} (xi, xj) /∈ R(1), . . . ,R(n) ∧ (xi, xk) ∈ R(1) ∧ (xk, xj) ∈ R(n) ⇒ (xi, xj) ∈ R(n+1).

After calculating the neighbourhood relation between two arbitrary population vari-
ables, we can deal with moment ODE explosion by approximating

E[xixj ] ≈ E[xi]E[xj ] if (xi, xj) ∈ R(d′) ∧ d′ > d

where d ≥ 0 is a threshold chosen by the modeller. Note when d = 0, it means we
assume all the population variables are independent; when d = ∞, it means we keep
all the correlation between population variables, and no reduction is actually applied.
With smaller values of d, we can use fewer moment ODEs to describe the first and
second order dynamics of a PALOMA model at the cost of losing some accuracy, and
the optimal value of d can be chosen whenever increasing the value of d will not make
any observable difference in the results. In our case studies, we will show this reduction
method can substantially reduce the number of moment ODEs, but still produces very
good results.

3.3. Moment-closure Method
After the reduction of moment ODEs, we show how to close the moment ODEs (note
that we can use the following moment-closure method regardless of whether we are
working with the full set or a reduced set of moment ODEs).

First of all, when the derived moment ODEs only contain moment variables that
are no higher than the third order (these are cases when the probability of receiving
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a broadcast message and the weight of receiving a unicast message are constants),
we can apply the lognormal moment closure [Singh and Hespanha 2006a] which as-
sumes that the dependence of a higher-order moment on lower order ones is consistent
with the population being joint lognormally distributed, to close the moment ODEs at
the second-order. The lognormal moment closure provides a pure multiplicative way of
closing higher-order moments. This can provide more robust analysis than traditional
additive moments, such as normal moment-closure [Whittle 1957], which inevitably
also assign probability for negative values that are not possible in PALOMA models
[Keeling 2000; Singh and Hespanha 2006b]. Concretely, suppose we want to approxi-
mate E[x(m)] (x and m are both vectors with size n) where

x(m) := x
(m1)
1 x

(m2)
2 · · ·x(mn)

n

using only moments of order up to o(m) − 1, where o(m) =
∑n

1 mi. Let M =
{m1, . . . ,mk} be the moment order set containing all the moments up to the order
o(m)− 1, then we can approximate E[x(m)] ≈

∏k
p=1(E[xmp ])γp , where γ = (γ1, . . . , γk) is

the unique solution to the following system of linear equations

C
(m)
(ms)

=

k∑
p=1

γpC
(mp)

(ms)
∀s = {1, . . . , k} where C

(m̂)
(m̌) = C

(m̂1)
(m̌1)C

(m̂2)
(m̌2) . . .C

(m̂n)
(m̌n)

where m̂ and m̌ are vectors with size n, Clh is defined as: Clh =

{
l!

(l−h)!h! if l ≥ h
0 if l < h

.

Specifically, using the lognormal closure technique, we obtain:

E[xixj
2] =

E[xj
2]E[xixj ]

2

E[xi]E[xj ]2
E[xixjxk] =

E[xixj ]E[xixk]E[xjxk]

E[xi]E[xj ]E[xk]

By substituting the above equations into the moment ODEs, we get a closed system
of ODEs for the first, second and joint moment of population variables which can be
numerically solved.

However, when the derived moment ODEs also contain moment variables that are
higher than the third order, we use a heuristic algorithm to reduce the order of mo-
ment variables to the third order. We utilise the neighbourhood relation defined in the
previous subsection to estimate the degree of correlation of a population variable with
a list of other population variables. Specifically, we let

(xi, [xj1 , . . . , xjn ]) ∈ R(N) ⇐⇒ (xi, xjk) ∈ R(dk), 1 ≤ k ≤ n ∧
n∑
k=1

dk = N.

The above is the basis for reducing the order of moment variables in E[f(X)]. Con-
cretely, we let E[f(X)] ≈ E[f1(X)]

E[f2(X)] if f(X) = f1(X)
f2(X) . When E[fi(X)], i ∈ {1, 2} contains

moment variables that are higher than third-order, we reduce the order of its moment
variables also, by approximating E[fi(X)] ≈ E[xk]E[g(X)], if fi(X) = xkg(X), and xk is
the least correlated population variable in fi(X). We apply the above algorithm until
the maximum order of moment variables is three. After that, the lognormal moment-
closure can be applied.

Figure 3 illustrates the procedure for the moment analysis of PALOMA models. By
following the procedure, an arbitrary PALOMA model can be analysed by solving a set
of ODEs. The accuracy and efficiency of our moment analysis will be demonstrated by
examples in the next section.
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Fig. 3. The procedure for the moment analysis of PALOMA models

4. TOOL AND CASE STUDIES
We have developed a tool for parsing and analysing PALOMA models. The tool is devel-
oped as an Eclipse plug-in which is available on https://github.com/cfeng783/paloma/
wiki#the-paloma-eclipse-plug-in. It can support both population-level stochastic sim-
ulation and automatic moment ODE script generation of PALOMA models written in
the syntax introduced earlier in this paper. The generated moment ODE script is di-
rectly executable in Matlab without any further modification.

In this section, we show three PALOMA models capturing three collective adaptive
systems in different areas to show both the expressiveness of the language and the
correctness and efficiency of the various techniques we use in the moment analysis.

4.1. An Epidemiological SIS Model
We first consider a classical epidemiological SIS model of individuals partitioned into
communities, where individuals move between communities but infections only take
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place within communities. Each individual is considered to be susceptible (S) or in-
fected (I) with respect to the disease. More specifically, consider a total fixed popula-
tion of N individuals partitioned into m communities in a ring topology, each of which
contains n individuals (N = n × m). A continuous-time SIS epidemiological model is
then applied to this population as follows: each individual, regardless of susceptible or
infected, can move to his/her neighbour communities with rate r. Each infected indi-
vidual contacts and attempts to infect others in the same community at rate λ. Each
contact is with a randomly chosen individual. When an infected individual contacts a
susceptible individual, the latter becomes infected as well. Finally, infected individuals
independently recover to the susceptible state at rate µ.

The individuals in susceptible and infected states can be represented in PALOMA
by the following agents:

S(`i) = ??(contact, 1)@Wt{1}.I(`i) +
∑

j∈nearby(i)

(moveij , r).S(`j)

I(`i) = !!(contact, λ)@IR{local}.I(`i)+??(contact, 1)@Wt{1}.I(`i)

+(recover, µ).S(`i) +
∑

j∈nearby(i)

(moveij , r).I(`j)

where S(`i) and I(`i) denote an individual in the susceptible and infected state cur-
rently in community i respectively, nearby(i) = {(i+ 1) mod m, (i− 1 +m) mod m} is
the index of nearby communities of community i.

The initial population of agents are given in the following definition:

S(`1)[n− I1] ‖ I(`1)[I1] ‖ . . . ‖ S(`i)[n− Ii] ‖ I(`i)[Ii] ‖ . . . ‖ S(`m)[n− Im] ‖ I(`i)[Im]

where Ii denotes the number of initial infected individuals in community i.
In the simulation, we randomly choose 5 out of 50 communities as the source of

the epidemic. There are 5 individuals in the 5 chosen source communities who are
infected initially. All the other individuals in the model are in the susceptible state
initially. Table I gives the simulation configuration of the SIS model. The values of the
parameters in the model are chosen to make the model close to realistic scenarios. The
number of simulation runs is chosen to make the first moment and the second moment
observable. The stop time of a simulation run is chosen to let the first moment and the
second moment converge. The same standard is also applied in the next two examples.

Table I. SIS Model Simulation Configuration

m 50
n 50
r 1
λ 2
µ 1
Ii (`i is a source community) 5
Ii (`i is not a source community) 0
Stop time of a simulation run 20
Number of simulation runs 10,000

The analysis of interest in the SIS model is the number of infected individuals over
all the communities. We apply moment-closure analysis on the SIS model with differ-
ent reduction thresholds based on the neighbourhood relation of population variables,
and then compare the results with the stochastic simulation. Figure 4 shows the tra-
jectories of the first and second moments of the infectious population in the SIS model
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Fig. 4. The first moment and the second moment of infected population

in the 10,000 runs of stochastic simulation as well as moment analysis. It can be seen
that with a stricter reduction standard (the larger value of d), the result of moment
analysis is closer to the stochastic simulation. Nevertheless, the result of moment
analysis when d = 3 is almost the same as that with d = ∞, which means that the
second-order joint moments between population variables when their neighbourhood
relation is larger than three hops gives no extra information than their first moments.
Therefore, we can ignore the correlation between those population variables without
loss of accuracy but with the gain of reduced solution time for the moment ODEs.
More evidence is shown in Table II, where the error ratio is calculated by averaging
the difference between the stochastic simulation and the moment analysis over 200
data points evenly selected in the trajectories along the simulation time. We can see
that the number of ODEs and solution time for moment analysis can be significantly
reduced by our reduction method with only limited loss of accuracy compared with the
full moment analysis (d =∞) as long as the optimal value of d is chosen.

Table II. Simulation V.S. moment analysis of the SIS model

SIS model ODE number Solution time Error ratio
1st moment 2nd moment

Stochastic simulation (10,000 runs) N/A 10.39 hrs N/A N/A
Moment analysis with d = 0 200 0.31 secs 14.01% 22.78%
Moment analysis with d = 1 350 0.83 secs 11.27% 18.37%
Moment analysis with d = 2 550 1.1 secs 8.61% 14.16%
Moment analysis with d = 3 750 1.34 secs 7.42% 12.3%
Moment analysis with d =∞ 5150 31.99 secs 7.16% 11.34%

Furthermore, it is clear that moment analysis can enormously reduce the computa-
tional cost of analysing a PALOMA model compared with stochastic simulation.

4.2. A wireless sensor network model
Here, we discuss a spatial model that represents the spread of pheromone in a multi-
hop Wireless Sensor Network (WSN). In nature, pheromone is a hormone laid down
by colony-based insects, to indicate popular routes to food sources or new nest sites. In
a similar manner pheromone gradients have been adapted in the WSN literature as
an abstract means of studying the evolution of routes from source to sink nodes. Sev-
eral models have been built to investigate the spread of pheromone in such networks
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[Bruneo et al. 2012; Guenther et al. 2013]. We show how to capture those models in
PALOMA. Figure 5 visualises the topology of the WSN model, where there is a sink
node in cell 13 and there is a sensor deployed in each cell.

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

Fig. 5. The topology of the WSN model

Assuming we are only interested in the spread of pheromone, then the sink node
which is also the source of the pheromone spread broadcasts a message containing the
maximum pheromone level to all sensor nodes in the network at rate λsink. Thus, the
sink node is represented as follows:

Sink(`13) = !(phmax, λsink)@IR{all}.Sink(`13)

The pheromone level in a sensor node is denoted by an integer in the range 0 to
max. A sensor node can update its pheromone level to max once it receives a broadcast
message from the sink node. However, the probability of a message from the sink node
being received by a sensor node depends on the physical distance between the sink
node and sensor node. The sensor nodes can also exchange pheromone information
with their neighbourhood sensor nodes using a Manhattan style communication pat-
tern. The pheromone level in each sensor node is assumed to decrease exponentially at
rate µ. Moreover, sensor nodes can also enter an off state at rate roff . Sensor nodes in
the off state can do nothing but sleep for a while and return to the on state with rate
ron. When a sensor node re-enters the on state, its pheromone level is set to 0.

Thus, the sensor nodes can be represented as follows:

Sensorphk(`i) =
∑

k<j≤max

?(phj , 1)@Pr{ 1

1 + dist(`s, `i)
}.Sensorphj (`i)

+ !(phk, λsensor)@IR{range(1)}.Sensorphk(`i)

+ (evaporate, µ).Sensorphk−1
(`i) (k > 1)

+ (off, roff).Sensoroff(`i)

Sensoroff(`i) = (on, ron).Sensorph0
(`i)

where Sensorphk(`i) denotes a sensor node in cell i currently with pheromone level k.
The sensor node can receive a message containing a higher level pheromone and then
update its pheromone level. dist(`s, `i) is the distance between `i and the location of
the message sender (can be either a sink node or a sensor node). It can also broadcast
a message containing its current pheromone level to its neighbourhood at rate λsensor.
The other two actions capture the evaporation of pheromone and the sleep of nodes.

Table III summarises the simulation configuration of the model, where we set the
maximum pheromone level to 5. The analysis of interest is the spread of pheromone:
the number of sensor nodes with different pheromone levels and the expected
pheromone level in each node. Figures 6 and 7 show the trajectories of the first mo-
ment and second moment of the number of sensor nodes with different pheromone
levels. Figure 8 shows the expected pheromone level of the sensor nodes in each cell
at time 100 which is the stop time of a simulation run. In both cases, we can see that
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moment analysis with d = 1 gives much closer results to stochastic simulation than
moment analysis with d = 0. Table IV compares the moment analysis with different
reduction thresholds with stochastic simulation. In this case, moment analysis cannot
be applied without our reduction method since the number of ODEs is too large for
Matlab to solve when d > 1. Moreover, again we can see that moment analysis with
d = 1 gives much better results than moment analysis with d = 0. This is because fluid
limit analysis neglects all the correlations between population variables and can only
give a good result at the first moment when the population is large [Tribastone et al.
2012]. However, in this case, the population is too small for this kind of analysis.

Table III. WSN Model Simulation Configura-
tion

max 5
λsink 0.35
λsensor 0.35
µ 0.5
roff 0.05
ron 0.25
Stop time of a simulation run 100
Number of simulation runs 10,000

Fig. 6. The first moment of number of sensor nodes with different pheromone level

Table IV. Simulation V.S. moment analysis of the sensor network model

sensor network model ODE number Solution time Error ratio
1st moment 2nd moment

Stochastic simulation (10,000 runs) N/A 15.55 mins N/A N/A
Moment analysis with d = 0 352 0.21 secs 33.34% 45.42%
Moment analysis with d = 1 2427 25.94 secs 8.72% 12.97%
Moment analysis with d = 2 12332 out of memory N/A N/A
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Fig. 7. The second moment of number of sensor nodes with different pheromone level

Fig. 8. The expected pheromone level in each cell at time 100.

4.3. A City Bike-sharing Model
The last example we discuss is a PALOMA model for a city bike-sharing system. Sup-
pose that the city is divided into 16 zones in a 4 × 4 grid topology, and each zone has
a bike station with a number of available bikes and slots. Therefore, we represent the
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available bikes and slots in Station i by agents as follows:
Slot(`i) =??(return, 1)@Wt{1}.Bike(`i) Bike(`i) =??(borrow , 1)@Wt{1}.Slot(`i)

Both Slot(`i) and Bike(`i) are passive. They can only be induced to make a return (a
bike is returned to this station) or borrow (a bike is borrowed from this station) action
by a unicast message, and when this happens they switch role.

The agents to represent the bike stations are defined as:
Station(`i) = !(SlotAvailablei, γ)@IR{range(d)}.Station(`i) +

!(BikeAvailablei, γ)@IR{range(d)}.Station(`i)

A bike station performs both a BikeAvailablei and a SlotAvailablei self-jump sponta-
neous actions with broadcast message emission at the rate of γ. The influence range
of the broadcast messages is defined by the function range(d), which means that only
agents in locations whose distance to the location of the sender station is less than d
can potentially be influenced by this message.

The agents representing bike users are given as follows:

Pedestrian(`i) = (seekbi, bi).SeekBike(`i) +
∑
j 6=i

(walk ij , wij).Pedestrian(`j)

SeekBike(`i) =

m∑
j=1

?(BikeAvailablej , 1)@Pr{v1}.Walk2Stationj(`i)

Walk2Stationj(`i) = (W2S ij , w2sij).CheckBikeNum(`j)

CheckBikeNum(`i) = ?(BikeAvailablei, 1)@Pr{v2}.BorrowBike(`i)
BorrowBike(`i) = !!(borrow , o)@IR{local}.Biker(`i)

Biker(`i) = (seeksi, si).SeekSlot(`i) +
∑
j 6=i

(rideij , rij).Biker(`j)

SeekSlot(`i) =

m∑
j=1

?(SlotAvailablej , 1)@Pr{v3}.Ride2Stationj(`i)

Ride2Stationj(`i) = (R2S ij , r2sij).CheckSlotNum(`j)

CheckSlotNum(`i) = ?(SlotAvailablei, 1)@Pr{v4}.ReturnBike(`i)
ReturnBike(`i) = !!(return, o)@IR{local}.Pedestrian(`i)

where

v1 = θ0 + θ1
d− dist(`i, `j)

d
+ θ2

|Bike(`j)|
|Bike(`j)|+ |Slot(`j)|

(1)

v2 =
|Bike(`i)|
|Bike(`i)|+ σ

(2)

v3 = θ0 + θ1
d− dist(`i, `j)

d
+ θ2

|Slot(`j)|
|Bike(`j)|+ |Slot(`j)|

(3)

v4 =
|Slot(`i)|
|Slot(`i)|+ σ

(4)

As can be seen from the definition, when the user agent is in the Pedestrian state, it
travels from location `i to location `j at the rate of wij by doing a spontaneous action
walkij without message emission. It may also seek a bike at the rate of bi, and goes
into the SeekBike state.

The user agent in the SeekBike(`i) state can do a BikeAvailablej action induced
by a broadcast message sent by a station agent in location `j and goes to the
Walk2Stationj(`i) state, which represents the user walking from location `i to the bike
station in location `j . The probability of receiving a bike available message from the

ACM Transactions on Modeling and Computer Simulation, Vol. V, No. N, Article A, Publication date: January 2015.



A:18 C. Feng et al.

Table V. Bike-sharing Model Simulation Con-
figuration

d 1
θ0 0
θ1 0.5
θ2 0.5
Pedestriani 25
Bikeri 5
Sloti 5
Bikei 10
Stop time of a simulation run 150
Number of simulation runs 10,000

station in location `j is defined in Equation (1). It can be interpreted as follows: the
users tend to borrow a bike from a closer bike station with more available bikes, and
θ1, θ2 are associated weights of those factors, θ0 is the noise term (imagine that the
user checks the bike numbers in nearby stations using a smart phone application).
The user in the Walk2Stationj(`i) state can do a spontaneous action W2S ij at the rate
of w2sij , where 1/w2sij is the expected time to walk from `j to the bike station in `i.

The user in the CheckBikeNum(`i) state can only do a BikeAvailablei action induced
by a broadcast message sent by the station in `i. The probability of receiving the mes-
sage is defined in Equation (2), where σ is a very small real number to avoid a zero
denominator. This ensures that the user can only go to the BorrowBike(`i) if the bike
station is not empty. The borrow bike action borrow is fired at the rate of o. Meanwhile,
a unicast message borrow is sent out, and the user becomes a Biker .

A user agent in the Biker state can perform actions and become a Pedestrian again
in a similar fashion.

Finally, the initial population of agents are given in the following definition:
. . . ‖ Pedestrian(`i)[Pedestriani] ‖ Biker(`i)[Bikeri]
‖ Slot(`i)[Sloti] ‖ Bike(`i)[Bikei] ‖ Station(`i) ‖ . . .

where Pedestriani, Bikeri, Sloti and Bikei are numbers indicating the initial count of
pedestrians, bikers, available slots and bikes in location i or station i, respectively.

Table V gives the simulation configuration of the bike-sharing model (only the values
of key parameters are listed). The analysis of interest is the number of available bikes
in each station over time. Here, we only give the trajectories of the first and second mo-
ments of the number of available bikes in the central station in Figure 9. Table VI gives
the detailed comparison between moment closure with different reduction thresholds
and stochastic simulation whereas the error ratio takes into the account of trajectories
of available number of bikes in all the 16 stations. Here, we can observe that moment
analysis with d = 1 gives almost the same accuracy as moment analysis with any
higher thresholds, but with much less solution time needed. Moreover, moment anal-
ysis without reduction is again infeasible which shows the usefulness of our method.

Table VI. Simulation V.S. moment analysis of the bike-sharing model

bike-sharing model model ODE number Solution time Error ratio
1st moment 2nd moment

Stochastic simulation (10,000 runs) N/A 19.96 hrs N/A N/A
Moment analysis with d = 0 608 2.84 secs 42.5% 64.91%
Moment analysis with d = 1 1952 35.14 secs 2.74% 6.39%
Moment analysis with d = 2 7342 3.36 mins 2.44% 6.16%
Moment analysis with d = 3 18934 7.9 mins 2.38% 6.1%
Moment analysis with d =∞ 46664 out of memory N/A N/A
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Fig. 9. The first moment and the second moment of number of available bikes in the central station

4.3.1. Service Level Agreement Estimation. Finally, we take the bike-sharing example to
show how to efficiently conduct service level agreement estimation using the moment
analysis of a PALOMA model. Concretely, suppose there is a service level requirement
that at any time instant, the probability of a bike station being empty or full should be
less than p. Then, we can compute the 1− p prediction interval [L,U ] of the number of
available bikes in a station at time instant t (which gives the lower and upper limits of
an interval that the next observation of the number of available bikes at time t lies in
with probability 1− p) using the moment ODE model:

L = E[x(t)]− z1−p

√
E[x(t)2]− (E[x(t)])2 U = E[x(t)] + z1−p

√
E[x(t)2]− (E[x(t)])2

where x(t) is the population variable representing the number of available bikes in
the station at time t, z1−p is the z-score for 1 − p coverage of a normally distributed
population (we assume that the available number of bikes in a station at time instant
t over many simulation runs follows a normal distribution). Therefore, we can check
whether L ≥ 1 ∧ U ≤ C − 1 holds to see if the service level requirement is met, where
C is the capacity of the station.

In our experiment, we first compute the 95% prediction interval (z0.95 = 1.96) for
the number of available bikes for the bike-sharing example using our moment ODE
model, and then check if the data sampled from our 10,000 discrete event simulation
runs agree with it. More specifically, we evenly sample 200 data points from each simu-
lation run for the available number of bikes in each station, and calculate the average
percentage of the data points lying in the 95% prediction interval. Our result shows
that 95.58% of the data points we sampled from discrete-event simulation are in its
95% prediction interval. Thus, estimating service level agreement of large scale collec-
tive adaptive systems by using the moment analysis of a PALOMA model is beneficial
because of its low computational cost and has reasonably high accuracy.

5. RELATED WORK
Moment-closure techniques have been studied for many years in different scientific ar-
eas. The goal is to achieve a closed form of an infinite set of coupled differential equa-
tions by expressing higher-order moments in terms of lower-order moments. Many
different closure techniques have been introduced. For example, pair approximation
which approximates the density of triplets (third-order moments) by counting cer-
tain link densities (second-order moments) that form the triplet, is typically used in
spatial epidemic models [Keeling 1999; Hiebeler 2006] and self-organization of adap-
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tive networks such as opinion formation [Nardini et al. 2008; Pugliese and Castel-
lano 2009]. Another approach is to use a prior distribution assumption on the popu-
lation variables of a stochastic process. Typical examples are normal closure [Whittle
1957], beta-binomial closure [Krishnarajah et al. 2005], and lognormal closure [Singh
and Hespanha 2006a]. Which assumption is the most valid will depend greatly on
the problem being investigated; however, in our context, lognormal closure has the
strong advantage of probabilities only being defined for positive values, thus is most
suitable for PALOMA. The central moment truncation method follows a similar pat-
tern, which uses the Taylor expansion to approximate moment variables, and then
closes the moment equations by assuming the moments of order higher than a certain
threshold around the mean to be zero [Engblom 2006; Andreychenko et al. 2015]. How-
ever, since the form of moment variables can vary significantly in different PALOMA
models, automatically deriving the Taylor expansion of moment variables is nearly
infeasible for PALOMA. Unlike normal, beta-binomial, lognormal closure and the cen-
tral moment truncation method which all assume a particular correlation structure
of population variables, the maximum-entropy moment-closure, which is a classic tool
in kinetic theory [Singer 2004; Rangan and Cai 2006], makes no assumption on the
correlation structure of population variables and chooses the distribution of maximum
entropy subject to the constraints based on the knowledge of some lower dimensional
marginals. In [Rogers 2011], the maximum-entropy closure has also been applied in
spatial epidemic models. Both the pair approximation and maximum-entropy moment-
closure have the disadvantage that they require one ODE to capture the density or the
population of an agent class in each possible value. This is impossible for PALOMA
models, since the possible value of the population of an agent class and the number
of agent classes can both be very large, thus the derived ODEs can simply exceed the
memory limit.

In most cases, fluid analysis of process algebra models merely focuses on the first-
order moment approximation. For example, [Hillston 2005b] showed how to translate
a PEPA model to a system of ODEs describing the evolution of the mean population
of processes by fluid-flow approximation in an informal way. Later, [Tribastone et al.
2012] formally justified the fluid-flow approximation using Kurtz’s fluid limit theorem
[Kurtz 1970]. [Cardelli 2008a; 2008b] presented translations from some stochastic pro-
cess algebras, namely stochastic π−calculus and stochastic interacting processes, to
systems of chemical reactions.

Due to the fact that only investigating the first-order moment cannot provide enough
information to reveal the true trace for a stochastic process, recently, there has been
some work on higher moment analysis of process algebra models. [Hayden and Bradley
2010] showed how to derive ODEs describing higher moments of PEPA models by let-
ting E[min(P1(t), P2(t))] ≈ min(E[P1(t)],E[P2(t)]), where P1(t), P2(t) are two stochastic
processes. [Guenther and Bradley 2011] applied normal moment closure for higher mo-
ment analysis of MASSPA models. However, neither PEPA nor MASSPA are expres-
sive enough to model collective adaptive systems; PALOMA is a much more complex
modelling formalism, and doing higher moment analysis of PALOMA models is much
more difficult in terms of its high nonlinearity and large model size. Among the other
suitable process algebras for the modelling of collective adaptive systems are StocS
[Latella et al. 2014], a stochastic extension of SCEL [Nicola et al. 2014] and CARMA
[Bortolussi et al. 2015]. StocS also supports attribute-based communication among
components which is an important feature of collective adaptive systems. However,
StocS models can only be analysed by discrete-event simulation, thus the language
suffers from the lack of scalable analysis techniques to model large scale collective
adaptive systems. CARMA, inspired by PALOMA and SCEL, is a more general and
powerful language particularly tailored for the modelling of collective adaptive sys-
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tems. Although CARMA is a more expressive language for collective adaptive systems,
currently, only its discrete semantics has been introduced. Thus, this paper can be a
guide for developing scalable analysis techniques for CARMA.

6. CONCLUSION
In this paper we have presented an approach to the quantitative analysis of collective
adaptive systems that is scalable and able to tackle systems which are beyond the
scope of traditional analysis techniques. The discrete system is approximated by a sys-
tem of ODEs that characterize the moments of the dynamic behaviour, and these ODEs
are automatically derived from a high-level system description. Here we have used
the stochastic process algebra PALOMA but the approach could be readily adapted to
other formal description languages for PCTMCs. Although previous work has derived
higher moments from process algebra models [Hayden and Bradley 2010; Guenther
and Bradley 2011], the system and language we are tackling have more complexity.
Moreover, our work is embodied in an implementation1. Depending on the structure of
the entities that make up the collective system, the number of ODEs, particularly for
the second-order joint moments, can grow large, impeding the efficiency of the solution.
We have demonstrated a rigorous technique for model reduction which approximates
these joint moments when they are likely to have less impact on the overall behaviour,
and which reduces the number of ODEs that must be simulated. We have shown that
the results of the moment approximation technique have acceptably low levels of error
even when the model reduction technique is applied.
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