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ABSTRACT

Control over shared communication networks is a key chal-
lenge in design and analysis of cyber-physical systems. The
quality of control in such systems might be degraded due
to the congestion while accessing the scarce communication
resources. In this paper, we consider a multiple-loop net-
worked control system (NCS), where all control loops share a
communication network. Medium Access Control (MAC) is
performed in contention-based fashion using a multi-channel
slotted ALOHA protocol, where each control loop decides
locally whether to attempt a transmission based on some
error thresholds. We further introduce a local event-based
resource-aware scheduling design with an adaptive choice of
the error thresholds for a transmission. This leads to a hy-
brid channel access mechanism where the control loops are
deterministically categorized into two sets of eligible and in-
eligible sub-systems for transmission in an event-based fash-
ion, before a random process to select the available channels.
In addition, employing the introduced policy, we show the
stability of the resulting NCS in terms of Lyapunov stabil-
ity in probability. We illustrate numerically the efficiency
of our proposed approach in terms of reducing the average
networked-induced error variance, and show the superior-
ity of the adaptive event-based scheduler compared to the
scheduling design with non-adaptive thresholds.
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1. INTRODUCTION

Traditional digital control systems are characterized by
collocated sensors, actuators and controllers as well as by
time-triggered control schemes with periodic sampling. With
the advent of new technologies, the parts of control sys-
tems are becoming spatially distributed and their interac-
tion is being increasingly supported by shared communica-
tion networks, which usually impose energy and capacity
limitations [22]. In the context of wireless communication,
distributed control systems form a specific subset of appli-
cations known as Machine-to-Machine (M2M) communica-
tion [31]. Smart grids or industrial automation are common
examples of M2M use cases.

Control over shared communication resources imposes var-
ious challenges, such as congestion due to bandwidth limita-
tion, collisions, and time delays, that compromise the con-
trol performance and can even lead to instability. In order to
utilize the limited communication and energy resources effi-
ciently, event-triggered control and scheduling schemes have
been proposed recently [6,10,19,20,27,28]. These aforecited
works suggest that it is usually more beneficial to trans-
mit the sampled data upon the occurrence of certain events
rather than at periodic time instants. This is even more so
in case of large-scale networked control systems due to the
sheer amount of data that needs to be exchanged.

In the event-based paradigm, events are typically trig-
gered by either deterministic [23,30], or stochastic policies [7,
18, 24, 26]. Deterministic event-based policies award the
channel to the entity with the highest priority. Try-Once-
Discard (TOD) is a basic event-based deterministic proto-
col that awards the medium access to the system with the
largest estimation error and consequently discards the other
transmission requests [30]. However, TOD is prone to sys-
tem noise and can cope with collisions only with a given
pre-defined priority order, and hence is not convenient for
practical realizations [5]. Therefore, an efficient event-based
policy for dealing with collisions is still an open research
topic.

Due to the non-deterministic transmission patterns of event-
based control systems, and typically long idle periods be-



tween consecutive transmissions, it is not possible to reserve
radio resources for event-based control applications. Thus,
it makes them prone to the notorious problem of existing
wireless standards, namely, congestion during the connec-
tion establishment phase [8,9,14].

The problem has been extensively studied in the context
of Long Term Evolution (LTE) Random Access (RA) pro-
cedure, where it is commonly modeled as a multi-channel
slotted ALOHA system [29]. Many results exist which pro-
pose improvements for the LTE RA procedure [1,12,16,17]
for general class of M2M devices, however, significantly less
contributions can be found in coupling the control system
properties and efficient network resource allocation. In [2,3]
authors compare the event-based and periodic control via
single channel ALOHA for a network of homogeneous in-
tegrator sub-systems. Additionally, Cervin et. al. [4] com-
pare different MAC strategies for event-based NCS, how-
ever, their assumption about the collision resolution time is
basically diminishing the effect of collisions, which is non-
negligible for most of the scenarios. In [21] the authors in-
vestigate an adaptive price-based scheduling mechanism for
multiple loop NCSs with shared communication resource. In
this approach distributed optimization method and adaptive
Markov decision process are employed to develop distributed
self-regulating event-triggers which are capable of adapting
their transmission request rate in order to fulfill a global
resource constraint.

In this paper, we analyze the behavior of the multi-channel
slotted ALOHA medium access, considering an event-based
networked control system consisting of multiple linear time-
invariant (LTI) control sub-systems as the communication

endpoints. First, we describe our local threshold-based sched-

uler which determines whether a sub-system is eligible for
a transmission attempt. Stability of the resulting NCS over
the multi-channel slotted ALOHA is then discussed in terms
of Lyapunov stability in probability (LSP). We evaluate the
performance of the event-based scheduler, and further pro-
pose an improvement to it, an adaptive scheduler. In the
new scheduler design, network and control systems are cou-
pled via the knowledge of the network state: each local
scheduler adapts its threshold based on the available net-
work resources. Numerically, we demonstrate that an adap-
tive choice of the transmission threshold is beneficiary com-
pared to the non-adaptive static design.

The remainder of this paper is structured as follows. We
start by introducing the problem statement and preliminar-
ies in Section 2. Stochastic stability of the resulting NCS
design in discussed in Section 3. Section 4 is dedicated
to the numerical performance evaluation and divided into
two parts: Subsection 4.1 illustrates the performance of the
static scheduler, and in Subsection 4.2 we demonstrate the
benefits of using an adaptive scheduler.

2. PROBLEM STATEMENT

In this paper, we consider an NCS consisting of N phys-
ically isolated LTI control sub-systems which are coupled
through a shared communication network. A control sub-
system ¢ is composed of a linear plant P; and a controller C;.
The feedback loop from the plant to the controller is closed
via the shared communication network and the decision of
whether to attempt the access to the network is taken by
the local scheduler S;. The plant process is subject to sys-
tem noise and can be described with the following stochastic

difference equation:
Th1 = Aixy, + Biuj, + wj, (1)

where i € R™ denotes the i'" system state at time-step
E, ui, € R% describes the control input at time-step k. The
constant matrices 4; € R™*" B, € R"*% describe sys-
tem and input matrices, respectively. The noise sequence
wi, is considered to be an independent and identically dis-
tributed (i.i.d) vector distributed according to a zero-mean
Gaussian distribution with the covariance matrix W;. Inde-
pendent of the noise variables w?, the initial state % can
be considered to be a random variable of any arbitrary sym-
metric distribution with bounded second moment. At each
time-step k, the binary variable &; € {0,1} represents the
decision of the local scheduler S; for sub-system i as follows:

7 13
5k = {07

Assume that the communication network has M available
transmission channels at each time-step (see Fig. 2). Ac-
cording to the multi-channel slotted ALOHA protocol, each
sub-system which is eligible for transmission, selects one of
the M transmission channels randomly to send its own data
packet. We denote number of available channels M as a
network state.

A collision would occur if two or more sub-systems select
the same channel at a certain sample time k. Consequently,
none of those sub-systems transmit at & and have to try for
transmission at the next time-step k 4+ 1. (6) A successful
transmission (i.e., the scheduled packet is not collided) is
confirmed by the binary variable ~; € {0, 1} as follows:

x% sent through the channel
z} blocked.

i )L x} successfully received
= 0, zi collided.

Accordingly, the received signal zj at the controller side of
the sub-system 1 is given as a function of scheduling variable
0, and collision indicator -, as follows:

i
i L
Zp =

a,

where, 0% = 5ivi. Each sub-system is assumed to be con-
trolled by a state-feedback controller which is updated at
every time-step k by either the true state values z§, (in case
sub-system 4 successfully transmits, i.e. 6, = 1 and i = 1)

0 =1
otherwise,

Table 1: Summary of most-used notations

x;, | system state of a sub-system ¢ at time-step k

e error state of a sub-system ¢ at time-step k

wy, | system noise of a sub-system 7 at time-step k

A; | system matrix of sub-system 1

0 | scheduling variable

0 | transmission indicator

-] | Euclidean norm

E[-]] | conditional expectation operator

A; error threshold for sub-system i

A" | global error threshold for all sub-systems

N | total number of control sub-systems

M | network state: number of available channels per slot




or by the state estimates E [xi] (in case sub-system i is
blocked by the scheduler, i.e. §i = 0 or a collision occurs,
ie. v, = 0). It is assumed that the sensor and controller
of the " sub-system merely have local knowledge, i.e., of
A;, B;, W; and the distribution of x},. Therefore, we assume
that the control law 9¢ is described by measurable and causal
mapping of the past observations:

uh = 0L(Z1) = —L:E [x;;|z,i} 7 (2)

where Z; = {z},...,2.} is the i controller observation
history, and L; is an arbitrary stabilizing feedback gain. In
case a transmission fails, either due to a blocking by the
scheduler (i.e. 63 = 0) or collision (i.e. 7} = 0), the estimate
of system state z' is computed by a model-based estimator
as follows:

E [xMZ}C} = (A;s — BiL;)E [$271|Zli71] ) (3)

with the initial condition E [§|Z5] = 0. The estimate (3)
is well-behaved only if a stabilizing gain L, exists to ensure
that the closed-loop matrix (A; — B;L;) is Hurwitz. Ac-
cordingly, the network-induced estimation error el € R™ is
defined as the difference between the actual and estimated
values of the system state, i.e.

el =zt —E [JcﬂZ}c} . (4)

Having the definition (4) and employing (1)-(3), we can de-
rive the dynamics of the networked-induced error state ej,.
Assume that a sub-system i successfully transmits at time-
step k, i.e. 0, = 1. Therefore, z;, = z}, and subsequently
uj, = —L;xj,. Thus, the error at the next time-step can be
calculated as:
624-1 = I2+1 —-E [$Z+1‘Zli+1]
= Azl — BiLizh +wi — E [Azac}C — B;L;izi + w}€|x§c]
= (Al — Bsz)xz + wlk — (AZ — BlLl)l'};

= Wy,

On the other hand, if the sub-system ¢ does not successfully
transmit at time-step k, i.e. 0 = 0, then zi, = @ and the
controller will be updated by the estimated value of z%, i.e.
up, = —L;E [2}|Z}]. In this case, we have

ehr1 = Aixy, — B L;E |:$ZJ|Z;C:| + wj,
—E [Am; — BiL;E [x;;\z;;] + w;;|z;}
— Azl —BiL:E [x};|z,i] fwh—AE [:;;}JZ@] +BiL:E [:c;;\z,i]
= Ai(ak — E [eh|Zh]) + wi
= Ajel + wi.

Rewriting the error dynamics for the general 8}, we obtain
the following form:
ekt = (1= 63) Aiej, + wj.. (5)

The decision whether to attempt a transmission or not is
taken by the scheduler S; described in the next Subsec. 2.1.

Plant | Sensor with
Scheduler S;

Controller
G

Shared
Communication Network

Figure 1: A multi-loop NCS with a shared commu-
nication channel and local scheduling mechanism.

2.1 Local threshold-based scheduler

The local scheduler situated at each local control loop
decides to access the medium at every time-step k only if
the following threshold inequality holds:

llexll > As, (6)

where, A; is the local error threshold for sub-system i. There-
fore, if (6) is satisfied at some time-step k, then the corre-
sponding sub-system is eligible for transmission at the next
time-step k + 1. Otherwise, it is deterministically excluded
from the channel access, i.e.

0, if [lek ]| < A
1, otherwise.

P[52+1 = 1|€§c] = { (7)

Note that the deployed scheduling policy (7) is not explic-
itly dependent on the whether the transmission has been
successful or it has collided, therefore, channel sensing of
acknowledgements are not necessary for the policy’s realiza-
tion.

The communication network model is restricted to the
Media Access Layer (MAC) and is represented by a multi-
channel slotted ALOHA protocol [25], see Fig. 2. As the
most common practical example, we can refer to LTE-based
system and its Random Access Channel [9], while map-
pings to different single-hop wireless or even bus systems
can also be imagined. In every time slot, there are several
non-overlapping transmission channels available. We denote
the number of available channels as M. As we investigate
the multi-channel model in this paper, we assume M > 2.

M channels
1
uniform choice 2
| " | |
(k-1)th timeslot kth timeslot (k+1) timeslot

Figure 2: Communication system model: multi-
channel slotted ALOHA. One time slot is assumed
equal to a control period of any sub-system. A chan-
nel can represent a frequency, code [29] or time do-
main transmission opportunity, depending on the
communication technology in use.



The information about the available number of channels is
assumed to be known for all sub-systems in the beginning
of each time slot.

For the sake of simplicity, we assume that the communica-
tion time slots are equal in duration to the control sampling
periods, and that all sub-systems’ control periods are syn-
chronized. Thus, in every control period we have M avail-
able transmission channels, meaning:

N .
> oo <M (8)
i=1

According to the slotted ALOHA protocol, if a packet is
scheduled for transmission, it will be sent through one of
M channels, randomly chosen. Thus, if we denote a set of
sub-systems which are eligible for transmission at time-step
k as Gi, then the probability of successful transmission for a
given eligible sub-system in the k£ timestep is calculated as:

i i M —1\%
WM:WWDMF( ), (0)

M

where g is the cardinality of the set Gy.

The transmission threshold A; is influencing directly both
the error of the sub-system, and the arrival rate of the re-
quests for network access. Since the network is modeled
by slotted ALOHA mechanism, too high arrival rate of re-
quests will result in a high collision rate and consequently
degrades the performance of the overall networked system,
significantly. Following this observation, our hypothesis is
that adapting A; to network state, can be beneficial for the
control performance.

3. STABILITY ANALYSIS

In this section, we study stability of multiple-loop NCSs
with shared multi-channel communication networks subject
to the constraint (8), and the introduced threshold-based
decentralized scheduling policy (7). We show stochastic sta-
bility of the overall networked system by the notion of Lya-
punov stability in probability (LSP). Before introducing the
notion of LSP, we will describe the overall network state at
some time-step k£ by the aggregation of the system states

xi from all sub-systems ¢ € {1,..., N} and error states e,
) . T
from all sub-systems i € {1,...,N}, i.e. [zf,ef] , where
T T T T
xkz[xi,...,a:iv andek:[e}f,...,eg] . From (1)-

(3), together with the definition of the estimation error ei
in (4), it is straightforward to see that the individual ag-

T T
gregate networked state [x}c ,ekT] within each sub-system

i has triangular dynamics as follows:

[e;ﬁl}_{ 0 (1—6) A | |ep|Tlwp| GO

This implies that the evolution of the error state e} is in
fact independent of the system state xi. We employ an
emulation-based control design to stabilize the control sub-
systems in case their corresponding loops are closed, i.e. the
controllers are updated with their own true state values.
This incurs that, assuming each pair (A;, B;) is stabilizable,
there exists stabilizing feedback gain L; such that the closed-
loop matrix (A; — B;L;) is Hurwitz, and consequently the
system state z, is asymptotically stable. It should however
be noted that existence of stabilizing control laws u}’s does

not guarantee the stability of overall networked system with
T i) T
the introduced networked state [m}c ,ekT] , since the evolu-

tion of the error state is independent of the control laws.
This statement is clear from (10), which illustrates that if
a sub-system does not transmit at a certain time-step, sta-
bilizing gain L; guarantees the stability only if error state
el is stable. Now we are ready to introduce the concept of
stability, i.e. LSP, considered in this paper.

DEFINITION 1. (Lyapunov Stability in Probability (LSP),
[18]) A linear system with state vector xy possesses LSP if
given €,¢' >0, exists p(e,e") >0 such that |zo| < p implies

lim sup P [x;fwk > 5'] <e. (11)
k— o0

The following lemma shows the LSP is achievable by solely
considering the error state e, in our NCS of interest.

LEMMA 1. For an NCS described by (1)-(5), the condi-
tion in (11) is equivalent to

lim supP |:€]Z€k > f/] <&, (12)
k— o0

where £ > 0 and the constant & fulfills 0 < € < ¢.

PROOF. As already stated, the system state xi for each
control loop 7 evolves as

Thyr = (A; — BiL)xl, + (1 — 0})B;Liej, + wj,.  (13)

As already discussed, the evolution of the error e} is inde-
pendent of the system state x% within each individual control
loop. Furthermore, by assuming the emulative control law
(2), the closed-loop matrix (A;—B;L;) is ensured to be Hur-
witz. Together with the assumption that x} has a symmet-
ric bounded variance distribution, it follows that the system
state §, is converging with any stabilizing feedback gain L.
In addition, the disturbance process wi is i.i.d. according
to M(0, ), and is bounded in probability. Thus, showing

. iT L .
limg oo sup P [e}C ey, > fé} <&, ensures existence of constants

g; and £} >0 such that limg_, . sup P [m}:ajz > E/L] <e&;, where
& < g;. As individual loops operate independently, we take
the aggregate NCS state (zg,ex). Then, the existence of &
and &’ >0 such that limy_, o sup P [e{ek > 5/] <¢, implies ex-
istence of € and £’ > 0 such that limy_, o, sup P [:U;';xk > 5'} <e
for ¢ < e, and the proof readily follows. [

This lemma enables us to study stability of the overall net-
worked system only by looking at the error state ey, consid-
ering that stabilizing feedback gains L; are designed.

As expected values are more straightforward in pursuing
further analysis than probabilities, we employ the following
inequality for ¢ > 0 as
E [eZek}

¢
The above expression is derived using Markov’s inequality.
This confirms that showing the error is uniformly bounded
in expectation ensures finding appropriate ¢ and ¢ >0 such
that (12) is satisfied for arbitrary p(¢',€). Therefore, we

focus on deriving an upper bound for the expectation of
quadratic error norm, i.e.

Eferer] =37 Eleei] =37 E[lleil]  (15)

Plefer>¢] < (14)



This modifies the condition (12) as follows:
. T = f
lim sup P[ekek > 5] <¢. (16)
k— o0

Due to the nature of the multi-channel communication net-
work with capacity constraint (8), and threshold-based sched-
uler policy (7), the boundedness of (15) cannot always be
shown over one time-step transition, i.e. k& — k + 1. This
observation is discussed in the following illustrative example:
Illustrative example Consider an NCS consisting of three
identical scalar unstable sub-systems with systems matri-
ces Ay = Ay = A3 = A > 1, competing for two avail-
able transmission channels at each time slot over a shared
multi-channel communication network. For simplicity, as-
sume A1 = Ay = A3 = A, and e} = e} =€} = &. In ad-
dition, consider that the condition (6) is fulfilled, i.e. all
three sub-systems are eligible for channel access at time-
step k+ 1. Each sub-system selects each of the two available
transmission channels by probability of % Two scenarios
are viable: 1) one successful transmission occurs from one
of the sub-systems, and the other two will inevitably collide.
It is straightforward to calculate that this scenario happens
with the probability of %; 2) all three sub-systems choose
the same transmission channel and consequently all three
will collide, which means no successful transmission is oc-
curred, where this scenario occurs with probability of i. As
the sub-systems are identical, and for the sake of illustrative
purposes, assume a realization for the first scenario that e.g.
sub-system 1 transmits and sub-systems 2 and 3 are col-
lided. Employing (5), we calculate the error expectation in
(15) for one step transition, as follows:

3 i 3 i i i
£ ittt -5 E10-0) i
1 3 _ B
= 1 2., ElllAex + wiex|’]

3 _ _ _ _
+ 7 (EllAex + wilex|’] + E[l| A + wilex]|) + Elllwi]|*])

1 3 _ 2 Q2
= 1377 llAE® + Elfui )
3 ) 3 ;
+ 5 (2N’ + > ElluilP])
1 3
=1 (3l A&w||* +3) + 1 (2| Aex]* + 3)
=34 2.25|| A&,

which is not uniformly bounded for arbitrary €, and system
matrix A. Intuitively, between two consecutive transmis-
sions of each sub-system, they operate in open loop. Hence,
in general, the respective local errors are expected to grow.
Thus to obtain boundedness of error state, we need to look
at an interval of time-steps rather than only one transition
step such that, given the channel capacity constraint (8), all
sub-systems have non-zero chances of transmission. There-
fore, one can infer that an interval of length || pro-
vides enough transmission possibilities for an NCS of N sub-
systems and M available transmission channels per time-
step. It should be reminded that the linearity of our sub-
systems guarantees the boundedness over any finite longer
horizons.

For stability analysis, we assume the worst case scenario
by considering the minimum number of available transmis-
sion channels, i.e. only two transmission channels at each

time-step. This yields that the minimum length of the in-
terval over which LSP is investigated equals N.

THEOREM 1. Consider an NCS with N heterogeneous LTI1
control sub-systems, with the plants given by (1), sharing
a multi-channel communication network with two available
transmission channels per time-step. Given the control law
(2) and threshold policy (7), the NCS of interest is Lyapunov
stable in probability if the MAC employs slotted ALOHA pro-
tocol.

PROOF. See Appendix A. E]

REMARK 1. The notion of stability considered in this pa-
per, i.e., LSP, determines the probability that the overall
NCS state remain bounded. This probability is not one due
to the fact that there exists a mon-zero probability, though
might be very close-to-zero, such that at all time-steps the
NCS is operating all the transmissions fail due to successive
collisions. This is the structural property of the decentral-
ized MAC we are considering in this paper and in case such
a scenario occurs, it means all control loops, either stable
or unstable, operate in open-loop which consequently lead to
instability of the overall NCS due to the presence of unstable
plants.

4. PERFORMANCE EVALUATION

In this section, we evaluate the performance of a threshold-
based scheduler over multi-channel slotted aloha. Both com-
munication and control-related aspects are investigated.

For the simulations, we consider an evaluation setup as
follows. An NCS in consideration is composed of two hetero-
geneous classes of scalar control loops: class one including
multiple homogeneous stable plants with the system ma-
trix A; = 0.75 and class two consisting of unstable plants
with A = 1.25. The plants within each group are homoge-
neous, and all sub-systems are influenced by the i.i.d. noise
processes randomly chosen from the standard normal distri-
bution, i.e. wi ~ N(0,1) for all time-steps k. The input
matrices for both groups are B1 = B> = 1. For the plants’
stabilization, deadbeat control law L; = A; is employed. We
consider the total amount of sub-systems to be N, while each
group of control loops has N/2 sub-systems. The number
of transmission channels in each slot, unless stated other-
wise, is considered to be M = 10. It is worth mentioning
that not only stability or instability of a plant determines
the urge of a transmission, but also system noise influences
the threshold-based policy. Therefore, it is not guaranteed
that if a plant is stable, then it is asymptotically stable even
if no transmission is associated with that sub-system. Due
to presence of noise, a sub-system with stable plant might
become in more urgent situation for transmission than a
sub-system with unstable plant.

For a control performance evaluation, we study the aver-
age error variance among N sub-systems:

$— % ;var[ez] (17)

From the communication point of view, we use two met-
rics. First one is average channel utilization, commonly
known as throughput 7', defined as:

_EM)

T
M

(18)
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Figure 3: Average error variance varle;] vs. number
of sub-systems N (30 runs): M =10, A’ = 2.

where E[n,] is expected number of successful transmissions
per slot. Ratio of collided packets is used as the second
performance metric. It is defined as:

E[ny]

Eng] + Elng)’ (19)

Tcoll =
where E[ng] is expected number of collided transmissions per
slot.

The transmission threshold A; is considered homogeneous
for all V sub-systems throughout the simulation:

AN =Aj, Vi,jeN. (20)
To simplify the notations, we denote it by A’.
4.1 Static Threshold Scheduler

For the first setup we consider a scheduler, where the
transmission threshold is chosen arbitrary and is indepen-
dent of the number of transmission channels M.

Fig. 3 demonstrates the evolution of the average error vari-
ance with the increasing number of sub-systems. We observe
a non-linear growth of the error variance, and, on the same
time, higher variation of the resulting variance over multi-
ple runs. The growth of the error variance can be explained
by looking at Fig. 5: with the increasing number of sub-
systems we see an increase in collision rate. Since for the
unstable systems, the error accumulates exponentially with
every collision, linear increase in collisions results in a non-
linear increase in the variance of the error.

In Fig. 5, we observe that the shape of the plot for through-
put corresponds to the commonly known dependency for
multi- and single-channel slotted aloha with Poisson distri-
bution arrival rate [29]. The highest value 7'~ 1/e &~ 0.368
is achieved at N = 26.

Fig. 4 shows how the error variance depends on the trans-
mission threshold A’. As we observe, and it is inline with the
hypothesis we have stated in the Section 2, the dependency
is a convex function. With the values of A’ close to 0, the
transmission is attempted every time, thus, causing many
collisions and shifting the throughput 7" operating region as
in 5 to the right. The collisions, in turn, further increase
the |lef|| for all unstable systems with A; > 1, thus, further
increasing the amount of access attempts. As expected, the
error variance among all sub-systems grows. If, however,

IS
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Figure 4: Average error variance varle] vs. A’. Pa-
rameters: M = 10.

Table 2: Optimal A’ = f(N, M).

N
4 6 8 10 | 12 | 14 | 16
M =5 1.0 1520|2435 |52]8.1
M=1006 |08 10|12 14|16 |18

the A’ is chosen too high, the increase in the error vari-
ance is caused by the underutilized communication medium
(throughput 7" low). Thus, it is observed that there exists
an optimal value for A’ in a given NCS scenario defined by
N, M.

4.2 Scheduler with Threshold Adaptation

Following the observation about the existence of an opti-
mal A’, we propose an improvement to the threshold design
defined in (21). Namely, we use a knowledge about the net-
work state M and the number of present sub-systems N, in
order to choose the A’ for the optimal performance:

N = f(M), (21)

where higher number of channels results in a higher A’.

0.40

Throughput
°© o o o
S & 8 u

o

i

%)
T

Ratio of collided packets

5 10 15 20 25 30 35 40
Number of sub-systems N

Figure 5: Average throughput and collision rate vs.
number of sub-systems N. Parameters: M = 10.
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Figure 6: Model of number of channels M variations.

Numerically obtained values for A’ for M and N choices we
use for evaluation are summarized in Table 2.

The benefits of this approach can be seen for the case of
the varying number of available channels M. For simplicity,
we model the number of channels as a random variable with
two possible values M € {Mi, M2}, My < M,, with:

P[M = M1] =1 - P[M = M2). (22)

The model is depicted in Fig. 6. These two states can rep-
resent presence or absence of a background traffic with re-
served channels, for example, as described in [11,15]. Al-
though we consider only two states for M, it has to be noted
that the proposed scheduler design is extendable for a more
general case of multiple states. In the evaluation scenario
M; =5 and M, = 10, and P[M = M1] = 0.5 are used.

For comparison, we consider two choices of A’ for static
scheduler: (A) first, where A’ is statically set to minimize
the error variance for M = M, and (B) second to mini-
mize the error variance for M = M> for a given number of
sub-systems in the simulation N. The comparison results
are presented in Fig. 7. It is observed, that the error vari-
ance with the adaptive scheduler is always lower or equal
than for non-adaptive. It is further observed, that the first
static scheduler (A), optimizing the threshold for the lower
number of channels Ms is performing noticeably better than
the scheduler (B), optimizing the threshold for the higher
number of channels M;. The effect is supported by the ob-

=—a Non-Adapt. (B)
+~—a Non-Adapt. (A)
e—e Adaptive
tL10%}
<
3
>
9]
o)
@©
—
o
Z 10'h
4 6 8 10 12 12 16
Number of sub-systems N
Figure 7: Average error variance vs. number

of sub-systems N for three cases: Adaptive A,
Non-Adaptive (A’ optimal for M1 channels), Non-
Adaptive (A’ optimal for M2 channels). Parameters:
My =5, My = 10, P[M = My] = 0.5.

Adaptation Gain

98T 02 03 04 05 06 07 08 09 10
State change probability P[M =M, ]

Figure 8: Adaptation gain Gu4.p vs. Probability of
the “good” channel P[M = M2] for N € {4,10,14}.
Parameters: M; =5, M2 = 10.

servations from Fig. 4 that the slope on the left from the
optimal point is much higher than on the right from it, thus,
over-utilization is more harmful for the error variance than
underutilization.

To evaluate how the probability of a network state change
P[M = M>] influences the performance gain from the adap-
tive scheduler, we use the reduction of the average error
variance as a metric for adaptation gain:

Ena - Ea

2
S (23)

Gadap -
where ¥,,, and Y, represent the average error variances for
static (non-adaptive) and adaptive schedulers, respectively.

The resulting dependency is depicted in Fig. 8. The pa-
rameter P[M = M2] is in this case a measure of how fre-
quently the network state is changing. For P[M = M2] =
0.1 almost no changes are there, hence, both schedulers are
close to optimal. On the other hand, for P[M = M2] = 1,
although also no changes are present, the default state of
the channel is M = M2, thus, the static scheduler is not
optimal in any time-slot. For the network state changing
every second time, the adaptive scheduler is able to reduce
the error variance by up to 30%.

S. CONCLUSIONS

In this paper, we propose a decentralized threshold-based
scheduling policy for an NCS composed of multiple het-
erogeneous LTI control loops operating via a multi-channel
shared communication medium. The Medium Access Con-
trol (MAC) is assumed to be performed in contentious fash-
ion using a multi-channel slotted ALOHA protocol. The
analysis in the paper proves stochastic stability of such NCSs.

After demonstrating that there exists an global thresh-
old value minimizing the average error variance, we further
introduce a local resource-aware scheduler design with an
adaptive choice of the error threshold based on knowledge
of the network state, and numerically demonstrate that by
deploying it instead of the static threshold choice, we can
significantly increase the control performance. Future work
aims at finding the exact relation or a close approximation
of the relation between the network state and the optimal
transmission threshold.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF (Theorem 1). : To show LSP, let the NCS of in-
terest operate over the interval [k, k+N] of length N, starting
from time-step k with arbitrary initial state ey. We assume
that the NCS freely operates from the initial time & until
k4N —1 and we predict the error evolution considering all
the possible scenarios under the introduced threshold-based
scheduling policy over the interval [k, k+N—1]. Then, looking
at the final time-step k+IN, we show the aggregate error state
er+n fulfills (15). Depending on whether the condition (6)
is satisfied at every time-step k’, we divide the sub-systems

i €{1,...,N} into two complementary and disjoint sets as
follows:
’ i/ > A-L
ie 9 llewll (24)
G el < Asy

where G,UGyr = N. According to (6), sub-systems belonging
to Gy are eligible for transmission at time-step k’'+1. In ac-
cordance with the slotted ALOHA policy, if a sub-system 1 is
eligible for transmission at some time k' +1, i.e. |leb/ || > As,
then i selects one of the available transmission channels in
uniform random fashion. If no other transmission-eligible
sub-system j # i selects that certain transmission channel,
then sub-system i successfully transmits. Otherwise, a col-
lision occurs and both collided packets are dropped and the
corresponding sub-systems will have to wait until the next
time-step, i.e. k' + 2, to transmit, only if the inequality (6)
is satisfied. To take this into account, we discern four com-
plementary and mutually exclusive cases, covering the entire
state space the error state ej evolves until time-step k+N—1
as follows:
Sub-system i:
c1: has either successfully transmitted or not within the
past N —1 time-steps, and is in set Gpyn_1, i.€.

i€ Grin_1 = |\€2+N—1|| <A,

c2: has successfully transmitted at least once within the
past N —1 time-steps, and is in set Gr+n_1, i.€.
3K € [k,k+N—1]: 0}, =1 and |lefpyn_1] > As,

c3: has not successfully transmitted within the past N —1
time-steps, and is in the set Gr4+n—_1, but has been in
the set G/ at least once at some time-step k' € [k, k+
N —2], ie.

Vk' € [k, k+N—1]: 0, =0 and |le}/| < Ai.
ca: has not successfully transmitted within the past N —1

time-steps, and has always been in the set G,/ for all
time-steps k' € [k, k+N—1], i.e.

Vk' € [k, k+N—1]: 60, =0 and |le}/| > Ai.

Introducing the above cases, we study the boundedness of
error norm expectation over the interval [k, k+ N] for cases

ci-c4. Since, the cases are complementary and mutually
exclusive, i.e. each sub-system belongs exactly to one of the
cases c¢1-ca, we can express (15) as

N P o1 1=1,2,3,4 i 9
S E ekl =32 E ek Pl (25)

Suppose that some sub-systems ¢ belong to ci, i.e. those
sub-systems have never attempted for transmission. Since
i€ Grin—1, it follows from (24) that |lef, x_;|| <A;. Thus,
those sub-systems are not eligible for transmission at time-
step k + N, i.e. HIiH_N = 0. Then, it follows from (5) and
(25) that

> ElleknlPlex] = STE[IAiek i1 +whinalPles]

i€cy i€cy
<30 ABE [llekn—1I7lex] + E [lwhsn1]?]
c1
< 211 4,112 [ i 2]_
< ch Ail|Aillz + E|[lwpgn—1 (26)
This fulfills the condition (16) with & > Y. A?[4i]3 +
. — E ei, 2le
€ [Jwksn 117, and £ = e led
For some i € ca, let a successful transmission occur at time-
step k47, where r; € [1, N—1], i.e. 05, =1. We express
epn as a function of the error at time k-+7;—1 as

N ) )
. 7 N—r;+1 1
ChiN T | | (1 - 9k+j) Ay ek

J=ri
N

+Zi\]:ri [Hj:r+1 (1 - onrj)AzN_TwliﬁJrT*l} o (27)

where we define Hxﬂ(l —0;., ;) := 1. The first term of the
above equality vanishes as 0}, +r, = 1. By statistical indepen-
dence of wf'ﬁ_r_l and Hliﬂ-, it follows from (27)

Z’L‘ECQE[He}iJ’_N”Qlek:l
B Zcz : |:||Z1I~V:T; Hj'v:r-H [1 702_”] Ayirw’iﬂ-ﬁ-r—l ||2]
<SS E[IAY ). o8)

Hence, the condition (16) is satisfied considering & chosen
3 2
to be larger than (28), and £ = M < 1. Note
that we assume to have only two transmission channels per
time slot in this proof, therefore if the number of sub-systems
which are eligible for transmission is greater than two, and
one sub-system belongs to cz, then the rest of the transmis-
sion eligible sub-systems belong to either set c3 or c4. This
means that, one successful transmission occurs through one
of the two available channels, while the other sub-systems
which attempt to access the channel will not successfully
transmit as they simultaneously select the second channel
and eventually their corresponding data packet are collided.
For the case c3, assume that the k + r; is the last time-
step for sub-systems i € c3 that i € Qk+ri, which in turn
implies that ||} ., || <Ai. Recall that the sub-systems i€ cs
belong to Gi+n—1. Knowing that 92, = 0 for 7 € c3 for all
k' € [k, k + N — 1], we reach

> E[llehenllex] <
2, [A?“AZ]‘M”@+ZTZ:;E[||A£V’T*1wi+7-\I2}]- (29)



The condition (16) is met by choosing & larger than the

k3 2

uniform upper bound (29), and £ = w < 1.

The sub-systems i € ¢4 have always been candidates for
channel access, i.e. i€ G r+n—1], but they have never trans-
mitted, which means that every single attempt from those
sub-systems ended up with a collision. Hence, ||e, || > A, for
all k' € [k, k+N —1] while %, = 0. To show LSP in this case,
we consider the worst case scenario by assuming every sub-
system i € {1,..., N} belongs to the set ca, which instead
ensures having successive collisions over the entire interval
[k, k+ N]. Indeed, we assume that every attempts to access
one of the two available channels results in collisions and
consequently no successful transmission would happen over
the entire period. Generally, the probability that such a sce-
nario happens for M available transmission channels can be
calculated as follows:

k4N
Pfa,il = H P}aih (30)

i=k

where P’}ail is the probability that all sub-systems collide
in a given slot & with M channels. In general, the number
of sub-systems eligible for transmission in a given slot k is
gr = |Gk|. Thus, the probability P’;m-l can be derived as:

Mgk — Mis
M9x ’

where M9 is the total number of possible channel choices
for all transmitting sub-systems for a given slot, and mis is
the number of outcomes with at least one successful trans-
mission.

The probability of one specific sub-system to succeed is
given in (9). As it can be any of g sub-systems, and they
can be successful with any channel, total number of such
outcomes is defined as:

st (M) (32)

Now, by Inclusion-Exclusion principle, the probabilities of
two successful transmissions in the slot k& are counted in (32)
twice. There are exactly 2! ways for two success matches,
and they can occur in for any pair channels for any pair of
sub-systems, resulting in

2l (f) (%) (M — 2)92 (33)

possible outcomes. Following the Inclusion-Exclusion princi-
ple, we need to subtract the number of outcomes with three
successes, and so forth.

P];ail = (31)

Thus, at the end, we can derive m1s as follows:

min(gy,M)
mio= Y <—1>J’“~ﬂ<@4> (?)(M—N”. (34)

j=1

Using expression (34) in (31), we get the probability of all
transmissions fail in one slot:
; min(gy,M) MY (g ) .
Mo S (DG ()L =)
M9k ’
(35)
Note that for any given slot, maximum number of eligible
for transmission sub-systems is at most N, thus, gr < N.
Therefore, we can derive the upper bound on the Py, as:

k
Pfail =

Prai < (P?aiz)Nv (36)
with:
MN+min(N,M)(_1)j. .'(1\4)(N)(M_ ~)N7j
2. S PAY: J
P?ail < d

MN '
(37)
From (27), if no sub-system transmits over the N-step

horizon, we can choose & =31 | |AN el N AN Twi |12 >

0. Therefore, we have

N
sup P [Z lersnl? > E} < Pait, (38)

k i=1

for an arbitrary p(¢’,€) such that 3~ | |lek|*> < p and LSP
of the overall NCS is readily obtained according to (16). [

REMARK 2. It should be noted that Pgq: depends on the
system parameters N\; and A; and the noise covariance W;
via the variable gi. In fact, inclusion or exclusion of a sub-
system 1 in the set G does not only depend on the transmis-
sion history, but also on the system parameters and noise
variables.



