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ABSTRACT
We show that metric temporal logic (MTL) can be viewed as
linear time-invariant filtering, by interpreting addition, mul-
tiplication, and their neutral elements, over the idempotent
dioid (max,min,0,1). Moreover, by interpreting these oper-
ators over the field of reals (+,×,0,1), one can associate var-
ious quantitative semantics to a metric-temporal-logic for-
mula, depending on the filter’s kernel used: square, rounded-
square, Gaussian, low-pass, band-pass, or high-pass. This
remarkable connection between filtering and metric tempo-
ral logic allows us to freely navigate between the two, and
to regard signal-feature detection as logical inference. To
the best of our knowledge, this connection has not been es-
tablished before. We prove that our qualitative, filtering
semantics is identical to the classical MTL semantics. We
also provide a quantitative semantics for MTL, which mea-
sures the normalized, maximum number of times a formula
is satisfied within its associated kernel, by a given signal.
We show that this semantics is sound, in the sense that, if
its measure is 0, then the formula is not satisfied, and it is
satisfied otherwise. We have implemented both of our se-
mantics in Matlab, and illustrate their properties on various
formulas and signals, by plotting their computed measures.

1. INTRODUCTION
Starting with natural sciences, such as, chemistry, physics,

and mathematics, and ending with the applied sciences, such
as, mechanical engineering, electrical engineering, and com-
puter science, the process of filtering plays a central role. In
each of the above-mentioned domains, it takes a signal u as
input, and it produces a signal y as output, where the com-
ponents of u satisfying some given property are removed.

For example, in chemistry, a filter f may remove particular
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molecules from a given solution. In optics (physics) and
electrical engineering, f may remove particular frequencies
of u, as in a low-pass, high-pass or band-pass filter. Finally,
in computer science (eg. in functional programming), f may
remove the elements in a list that satisfy a predicate p.

If the relation between u and y is linear, that is, if f(u)
is a linear function, the filter is called linear, otherwise it is
called nonlinear. Moreover, if the operation of f depends
only on the values of u and not on time, the filter is called
time invariant. The most commonly used filters, in all of
the above areas, are the linear, time-invariant (LTI) filters.

Intuitively, an LTI filter operates by sweeping a kernel
distribution k(s) over the entire domain of the lagged in-
put signal u(t−s), performing for every s the multiplication
u(t−s)k(s), and than summing up (or integrating) the re-
sults, in order to obtain the value of the output signal y(t)
at time t. One says that y= u∗k= k∗u is the convolution of
u and k.

If one interprets (+,×, 0, 1) over the field of reals, then
filtering a discrete- or continuous-time {0,1}-valued signal u
results in a signal y ranging over the reals. One can speak
in this case about a quantitative semantics of the LTI filter:

y(n)=
∞
∑

i=0

u(n− i)k(i), y(t)=

∞
∫

0

u(t− s)k(s) ds. (1)

An important aspect of an LTI filter f is that, the kernel k
is the response f(δ(s)) of the filter to an impulse δ placed
at the origin. In discrete time, δ is the Kronecker function,
while in continuous time, δ is the Dirac distribution.

If one interprets (+,×, 0, 1) over the (max,min,0,1) idem-
potent dioid [15], then filtering a discrete- or continuous-time
{0,1}-valued signal u, results in a {0,1}-valued signal y. In
this case, one can speak about a qualitative semantics of the
LTI filter. The filter has in this case the following form:

y(t)=
∞
sup
s=0

min(u(t− s), k(s)). (2)

This qualitative semantics can be readily mapped to ei-
ther linear temporal logic (LTL), or to metric temporal logic
(MTL), by using discrete time for LTL, discrete or continu-
ous time for MTL, and choosing a rectangular window dis-
tribution k. In particular, (2) will represent the finally op-
erator. The other LTL/MTL operators can also be defined,
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either by duality, or by choosing appropriate kernels k.
To the best of our knowledge, this remarkable correspon-

dence between LTI filters and MTL has not been established
before. This correspondence allows us to freely navigate be-
tween logic and signal processing, and to understand signal
analysis, such as, feature detection, as a logical inference.
It also allows us to equip MTL with various quantitative
semantics, depending on the LTI-filter-kernel k used: From
square, to rounded, or to even a Gaussian windows, or from
low-pass, to band-pass, or to even high-pass-filter kernel.

We prove that our qualitative, LTI-filtering semantics is
identical to the classical MTL semantics. We also provide:

A quantitative semantics for MTL, which measures the
normalized, maximum number of times a formula is satisfied
within its associated kernel, with respect to a given signal.

We show that this quantitative semantics is sound, in the
sense that, if its measure is 0, then the formula is not satis-
fied, and it is satisfied otherwise. We implemented both of
our semantics in Matlab, and illustrate their properties on
various formulas and signals by plotting their measures.

It is important to note that an LTI filter is called causal if
the value of u is known for the entire kernel k at the time the
multiplication is performed, and otherwise not-causal. This
can be easily accomplished for signals with bounded domain.
This restriction corresponds to bounded MTL, too. In the
rest of the paper we will stick to this restriction.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we revise MTL, and
in Section 4 we revise LTI filters. In Section 5 we show that
MTL semantics corresponds to a qualitative semantics in
terms of LTI filters, and then also provide associated quan-
titative semantics, depending on the chosen kernel. Finally
in Section 6 we draw conclusions and discuss future work.

2. RELATED WORK
Linear temporal logic (LTL)[19], and metric temporal logic

(MTL)[16], have proven to be concise and elegant formalisms
for rigorously specifying a required temporal behaviour, for
a system under investigation. While in LTL real time is not
of concern (one speaks about logical time), in MTL all the
logical formulas are qualified with a time interval (window),
during which the system has to satisfy the corresponding
formula. Moreover, while in LTL time is discrete, in MTL
time can be either discrete or continuous. In fact, by re-
stricting the windows in MTL to [0,∞], or the length of the
signal, one can obtain LTL or bounded LTL, respectively.

The classical semantics for LTL or MTL is qualitative,
that is, it provides a true or false answer, to whether a
signal satisfies, or violates, a given LTL or MTL formula.
Moreover, the signals themselves, are Boolean, too. With
the increasing importance of analog- or even mixed digital-
analog signals, this classical semantics has been extended
to account for real-time, real-valued signals. To this end,
the set of atomic propositions has been extended to also in-
clude relational propositions of the form p> θ, where θ is a
constant value, representing a threshold. By negation and
conjunction, one obtains all other relational variations.

When monitoring LTL or MTL properties over real-time,
real-valued, possibly noisy signals, the classic, true or false
interpretation, has the limitation that, a small perturbation
(also called a jitter), in either the temporal- or in the value-
domain, may affect the overall verdict. In the last decade,
there has been a concerted effort, to provide alternative ways

to interpret LTL or MTL, by proposing a so called quantita-
tive, or metric semantics for an LTL or MTL specification.
This is often referred to as a measure of the specification.

In [20], Rizk et. al propose a quantitative semantics for
an LTL over the reals (LTL(R)) that computes, using a con-
straint solving algorithm, the domain, that is, all the time
points in which the real variables occurring in a formula,
make this formula true, for a signal under analysis.

In [14], Fainekos et al. introduce a notion of space ro-
bustness for MTL, with numeric predicates interpreted over
real-valued behaviors. The space robustness measures the
degree by which a continuous signal satisfies or violates the
specification. The key idea consists in computing for each
moment of time the distance xp(t)− θ, and in using min and
max, to summarize these distances. Consequently, min and
max replace the Boolean operators and, and or. The tem-
poral operators globally and eventually, had to be replaced
accordingly, with inf and sup. This quantitative interpreta-
tion of MTL over real-time, real-valued signals, has found
a number of applications in the hybrid systems community,
for both the identification of the uncertain parameters [4,
11, 12] in a system, and for the falsification analysis of a
model [3].

In [13], Donzé et al. define a notion of time robustness for
MTL interpreted over dense-real-time, real-valued signals.
The time robustness of a propositional formula evaluated
at time t measures the distance between t and the nearest
instant t′ in which the proposition switches its value. The
other logical and temporal operators are computed using
the same rules as in the space robustness. In contrast, as
shown in Section 5, we provide within the same filtering
framework, both a qualitative and a quantitative semantics
for MTL interpreted over real-time, Boolean-valued signals.
Moreover, our quantitative semantics is different from time
robustness. The latter does not allow to integrate the truth
value of the formulas over time, and hence reason about the
satisfaction rate of a specification.

Other notions of robustness based on accumulation have
been in part explored in the discrete time setting, motivated
by the goal to equip formal verification and synthesis with
quantitative objectives. For example, in [5], Boker et al.
investigate the extension of LTL with prefix-accumulation,
path-accumulation, average and infinite average assertions.
However, the interpretation of this extended logic remains
in the Boolean domain. Another related approach consists
in extending temporal logics with discounting operators [9,
2] weighting the importance of the events according to how
late they occur. In the context of real-time, the Duration
Calculus (DC) [7] is an interval logic containing the special
duration operator. This operator allows to integrate the
truth values of state expressions over an interval of time.
Recently, Akazaki et al. [1] extend MTL with average tem-
poral operators that quantifies the average over time of the
space and time robustness previously introduced. The afore-
mentioned logics based on the idea of accumulation share a
common aspect – they are all equipped with special syn-
tactic constructs that allow to specify integration of values.
This is in contrast to our work, in which we use convolu-
tion to provide the power of value accumulation directly to
the semantics of MTL without the need to adapt its syntax.
Finally, we also note that we are not aware of any previous
studies that relate convolution and filtering to the specifica-
tion formalisms described in this section.



Figure 1: Measuring the spiking rate of a neuron.

3. METRIC TEMPORAL LOGIC
Let P = {p1, . . . , pn} be a set of atomic propositions. A

signal x :T→ 2P over P is a set-valued function, with time
domain T. In this paper, we only consider finite-length sig-
nals, that is, we restrict their domains to T= [0, T ], for an
arbitrary, finite value T . In other words, T is an interval
which is either a subset of non-negative reals R≥0 or naturals
N. We denote by xp the projection of x to the proposition
p.

Metric Temporal Logic (MTL) [16] is a real-time exten-
sion of Linear Temporal Logic (LTL) [19]. We consider a
bounded variant of MTL that contains both future and past
temporal operators. Its principal modalities are timed until
U I and since S I , where I is a non-empty interval.

We provide a generic definition of MTL which is consis-
tent with both the dense and discrete time interpretation of
signals. Formally, the syntax of MTL interpreted over such
signals is defined by the following grammar:

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2 | ϕ1SIϕ2,

where p∈P and I is a non-empty interval of the form 〈a, b〉,
such that, the left boundary 〈 is either open ( or closed
[, the right boundary 〉 is either open ) or closed ], and the
boundary values a, b ∈ N are natural numbers with 0≤ a≤ b.

The satisfaction of a given formula ϕ with respect to a
signal x at time point i is a relation denoted by (x, i) |= ϕ
and defined inductively as follows:

(x, i) |= p ⇐⇒ xp[i] = 1

(x, i) |= ¬ϕ ⇐⇒ (x, i) 6|= ϕ

(x, i) |= ϕ ∨ ψ ⇐⇒ (x, i) |= ϕ or (x, i) |= ψ

(x, i) |= ϕU Iψ ⇐⇒ ∃j ∈ (i+ I) ∩ T : (x, j) |= ψ

and ∀k ∈ (i, j), (x, k) |= ϕ

(x, i) |= ϕS Iψ ⇐⇒ ∃j ∈ (i− I) ∩ T : (x, j) |= ψ

and ∀k ∈ (j, i), (x, k) |= ϕ.

From the basic definition of MTL, we can derive other stan-
dard Boolean and temporal operators as follows:

⊤ = p ∨ ¬p, ⊥ = ¬⊤, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
1

I
ϕ = ⊤U Iϕ, 0 I ϕ = ¬ 1

I
¬ϕ,

Q

I
ϕ = ⊤S Iϕ, ` I ϕ = ¬ Q

I
¬ϕ.

The Finally 1

I
, Globally 0 I , Once Q

I
and Historically

` I also admit a natural direct definition of their semantics:

(x, i) |= 1

I
ϕ ⇐⇒ ∃j ∈ (i+ I) ∩ T : (x, j) |= ϕ

(x, i) |= 0 I ϕ ⇐⇒ ∀j ∈ (i+ I) ∩ T, (x, j) |= ϕ

(x, i) |= Q

I
ϕ ⇐⇒ ∃j ∈ (i− I) ∩ T : (x, j) |= ϕ

(x, i) |= ` I ϕ ⇐⇒ ∀j ∈ (i− I) ∩ T, (x, j) |= ϕ.

4. LINEAR TIME-INVARIANT FILTERS
One of the most fundamental operations in signal process-

ing is linear filtering, that is, the convolution of a signal with
an appropriately chosen kernel or window. From audio, to
image, and to video processing, linear filtering is used to
either transform a signal in an appropriate way (eg. blur,
sharpen) or to detect its features (eg. edges, patterns).

In order to understand linear filtering, it is instructive to
describe it first in terms of the most fundamental windowing
primitives: the Kronecker δ function, for the discrete-time
case, and the Dirac δ distribution, for the continuous-time
case. This distribution is defined as follows:

δ(n)=

{

∞, if n = 0

0, otherwise,

+∞
∫

−∞

δ(s) ds=1. (3)

It is interesting to note, that Kronecker δ is a function,
whereas Dirac δ is not, that is, it makes sense only within
an integral. Starting with Cauchy and up to Dirac, it took
a long time to properly define this distribution [10, 6].

The main motivation for developing the impulse window-
ing primitive, was the ability to extract the instantaneous
action of a function at a particular moment of time. For ex-
ample, the impulse provided by a baseball bat when hitting
the ball. This fundamental ability, allows to describe any
discrete (or continuous) signal x as an infinite summation
(or integral):

x(n)=
∞
∑

i=−∞

x(n−i)δ(i), x(t)=

+∞
∫

−∞

x(t−s)δ(s) ds. (4)

This infinite sum (or integral) is denoted as x ∗ δ and it is
called the convolution of x and δ. Convolution is commuta-
tive, that is, x∗y= y∗x. Since x=x∗δ, convoluting x with
δ is an identity transformation. Its main appeal, is that it
allows to express any linear, time-invariant (LTI) function
f , as the convolution of its response y to an impulse δ at the
origin, with its (lagged) input u. For the discrete-time case
(the continuous-time case is analogue), one can write:

f(
∞
∑

i=−∞

u(n−i)δ(i))=
∞
∑

i=−∞

u(n−i)f(δ(i)), (5)

where y(i)= f(δ(i)) is the response of f to δ at time zero.
This response can be seen as the filtering kernel, and there-
fore f , as a linear, time-invariant filter. The popularity of
such filters stems from the fact that the response of f to an
impulses δ at the origin is easy to determine experimentally.

In order to motivate the use of various kernels (windows),
and to establish a link between LTI-filtering and the se-
mantics of MTL’s finally operator, we borrow an example
from [8]: measuring the firing rate of a spiking neuron.
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Figure 2: Windowing function types

If one ignores the duration and the pulse-like shape of a
spike (also called an action potential), a spike sequence ρ
can be simply characterized as a sum of Dirac distributions:

ρ(t)=

n
∑

i=0

δ(t−ti), r=
1

T

T
∫

0

ρ(s)ds, (6)

where ti is the time where the neuron generates a spike. The
normalized integral r of ρ(t) over an interval [0,T], is called
the spike-count rate for that interval.

Now suppose one would like to approximate the spike rate
of a neuron from an experimentally-obtained spike train. For
example, Figure 1(A) shows the spike train obtained from
a monkey’s inferotemporal-cortex neuron, while watching a
movie. There are various ways to computing this rate.

A very simple-minded way is to divide the signal’s time
domain in a set of disjoint bins, say of length ∆t, count
the number of spikes in each bin, and divide by ∆t. For
example, Figure 1(B) shows this approach, for ∆t=100ms.
The result is a discrete (in multiples of 1/∆t), piecewise
constant, function. Decreasing ∆t increases the temporal
resolution, at the expense of the rate resolution. Moreover,
the bin placement has an impact on the computed rates,
too.

One can avoid an arbitrary bin-placement, by taking only
one bin (or window) of duration ∆t, slide it along the spike
train, and then counting for each position t, the number
of spikes within the bin. This approach is shown in Fig-
ure 1(C), where the window size is ∆t=100ms. A centered
discrete-time window can be defined as follows:

w∆t(n)=
1

∆t

+∆t/2
∑

i=−∆t/2

δ(n−i). (7)

A centered continuous-time window of size ∆t can be de-
fined as follows (this would work in discrete-time, too):

w∆t(t)=

{

1/∆t, if −∆t/2≤ t≤∆t/2

0, otherwise.
(8)

The bin sliding along the spike train, the counting, and
the normalization with ∆t, can be succinctly expressed in
terms of convolution, either in discrete or continuous time:

r(n)=
T
∑

i=0

ρ(i)w∆t(n−i), r(t)=

T
∫

0

ρ(s)w∆t(t−s) ds, (9)
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Figure 3: Rectangular windows w+
[1,4][t] and w−

[1,4][t]

where [0, T ] is the domain of the spike train ρ(t). If ρ(t) is
defined to be 0 outside [0, T ] one can take the sum (or the in-
tegral) over [−∞,+∞]. The convolution equation defines a
discrete (and continuous) linear filter with kernel w∆t. Note
that the rates r(t) at times less than one bin apart are cor-
related, because they involve common spikes. Moreover, the
discontinuous nature of r(t) is caused by the discontinuous
nature of the window w∆t at its borders.

One can smoothen r(t) and reduce the correlation between
bins, by using a Gaussian window N(0, σ) with σ=100ms,
as shown in Figure 1(D). A Gaussian is defined as follows:

N(µ, σ)(t)=
1

σ
√
2π
e
−

(t−µ)2

2σ2 . (10)

In fact, one could use any windowing function, as long as
the area below the window (the integral) is one.

The spike train ρ(t) discussed above could as well repre-
sent the truth-values of a discrete-time MTL signal x. Alter-
natively, connecting equal, successive values in ρ(t), would
result in the truth-values of a continuous-time MTL signal x.
Hence, the LTI-filters above can be understood as a quantita-
tive semantics for the MTL operators finally and once inter-
preted over x: The percentage of satisfaction of x within the
associated window. The size and the shape of the windows
allow (as shown in the next section) to introduce a temporal
jitter with respect to a satisfaction. Moreover, considering
only square windows, and interpreting (+,×, 0, 1) over the
idempotent dioid (max, min, 0, 1) gives a logical, qualitative
semantics to the LTI-filter as the classic finally operator.

5. MTL AS LTI-FILTERING
As it has already been mentioned before, all LTI-filters are

characterized by the particular type of the kernel (window).
Although there are a lot of such kernels, the main idea is
the same: a kernel function should have a bounded support,
that is, a bounded domain where the function is not zero.

General definitions allow such kernels to go sufficiently
rapid towards zero. The simplest finite support window is
when the function is constant inside of some interval, and
zero elsewhere. This function is called a rectangular window
or “Boxcar” (see Figure 2). A smooth Gaussian window is
the second type of a window, because it extends to infinity.
So it should be truncated at the ends of the window. The
main advantage of such a function is its smooth nature.

Let us start with a rectangular window definition: for a
given continuous-time MTL formula with constrained time
interval I = 〈a, b〉, a rectangular window function wI(t) :
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Figure 4: Qualitative discrete-time semantics.

R → [0, 1] is constructed as follows:

w+
I (t)=

{

1
|I|
, if t ∈ Ĩ

0, if t 6∈ Ĩ ,
w−

I (t)=

{

1
|I|
, if t ∈ I

0, if t 6∈ I,
(11)

where Ĩ = 〈−b,−a〉 is used for the future MTL operators
1

I
or 0 I and I = 〈a, b〉 for the past MTL operators Q

I
or ` I . If I = [a, a] is singular, then w[a,a] is defined as the
Dirac-δ distribution. We will denote this window by w{a}.

For discrete-time, open intervals can always be replaced
with closed intervals. Hence we restrict I to closed intervals,
only. In this case, we define wI in terms of Kronecker-δ, as
follows:

w+
I [t] =

1

|I |
∑

i∈ I

δ(t+ i), w−
I [t] =

1

|I |
∑

i∈ I

δ(t− i), (12)

where the + and the − superscripts correspond to the future
and past MTL operators, respectively.

Note that for past MTL operators one needs to delay the
kernel, so the sign is negative, and for future MTL opera-
tors one has to rush the kernel, so the sign is positive. For
instance, consider the discrete-time MTL formulas 1

[1,4]
p

and Q [1,4] p. The windows used by these formulas:

w+
[1,4][t] =

1

4

4
∑

i=1

δ(t+ i), w−
[1,4][t] =

1

4

4
∑

i=1

δ(t− i), (13)

are shown graphically in Figure 3(A) and (B), respectively.

5.1 Qualitative Semantics
In this section, we show that all temporal operators of

MTL can be defined in terms of LTI-filtering. For this pur-
pose, we interpret addition, multiplication, and their associ-
ated neutral elements over ({0, 1},max,min, 0, 1) the max-
min idempotent dioid with value domain {0,1}. In this dioid
one can define the complement ¬v of a value v as 1−v. More-
over, the normalization factor in the definition of the win-
dow function wI(t) should be omitted in order to preserve
Boolean values.

5.1.1 Discrete-time semantics
In the discrete-time domain, any signal is bounded (re-

member that we only consider bounded MTL), and therefore
all the intervals of the MTL operators are bounded, too. As

0 1 2 3 4 5 6 7 8 9 10 11 12
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(B) (x, i) |= q
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(C) (x, i) |= p S[2,4] q

Figure 5: Continuous-time semantics for pS [2,4]q

a consequence, the number of discrete points in each interval
is finite, and we can extend the binary max operator to an
n-ary max operator, which we can use for the convolution
integral. Thus, the discrete-time semantics of MTL can be
formulated as below:

(x, i) |= p ⇐⇒ xp[i]

(x, i) |= ¬ϕ ⇐⇒ 1− ( (x, i) |= ϕ )

(x, i) |= ϕ ∨ ψ ⇐⇒ max ((x, i) |= ϕ, (x, i) |= ψ)

(x, i) |= 1

I
ϕ ⇐⇒ max

j ∈ T

min
(

(x, j) |= ϕ, w+
I [i− j]

)

(x, i) |= 0 Iϕ ⇐⇒ 1− ( (x, i) |= 1

I
¬ϕ )

(x, i) |= Q

I
ϕ ⇐⇒ max

j ∈ T

min
(

(x, j) |= ϕ, w−
I [i− j]

)

(x, i) |= ` Iϕ ⇐⇒ 1− ( (x, i) |= Q

I
¬ϕ )

(x, i) |= ϕU Iψ ⇐⇒ max
j ∈ I

min
(

(x, i) |= 0 [1,j−1]ϕ,

(x, i) |= 1

{j}
ψ
)

(x, i) |= ϕS Iψ ⇐⇒ max
j ∈ I

min
(

(x, i) |= ` [1,j−1]ϕ,

(x, i) |= Q

{j}
ψ
)

.

In fact, we can define the entire semantics of MTL in terms
of LTI-filtering, by using the Kronecker-δ kernel:

(x, i) |= p ⇐⇒ max
j ∈ T

min (xp[j], δ(i− j))

(x, i) |= ¬ϕ ⇐⇒ max
j ∈ T

min (1− ((x, j) |= ϕ), δ(i− j))

(x, i) |= ϕ ∨ ψ ⇐⇒ max
j ∈ T

min
(

max
(

(x, j) |= ϕ, (x, j) |= ψ
)

, δ(i− j)
)

.

In order, to illustrate the qualitative, discrete-time seman-
tics for various temporal operators, consider the example
shown in Figure 4. In Figure 4(A) we show the values xp

of discrete-time signal x, for which it satisfies proposition p.
This signal is defined over the interval [0, 30], with ∆t=1.
In other words, the domain of x is {0, 1, . . . , 30}.

In order to interpret the MTL operators Q and ` over
x, we use two indexing windows I , for both: The first is I =
[2, 3], and the second is I = [0, 2]. To simplify the caption
in the Matlab figures, we use the textual representation of
the temporal operators: F (finally) for 1 , G (globally) for
0 , O (once) for Q , and H (historically) for ` .
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(E) (x, i) |= H[0,2]p

Figure 6: Qualitative continuous-time semantics.

The satisfaction of the MTL formulas Q

[2,3]
p and Q

[0,2]
p

for the signal xp are shown in Figure 4(B-C). Similarly, the
satisfaction of ` [2,3] p and ` [0,2] p for the signal xp are
shown in Figure 4(D-E). The dependence on the length of
the interval I is precise: Increasing the length, increases the
number of points where the operator Q

I
p is satisfied and

` I p is not. Moreover, the shift of the interval’s beginning
point leads to the same shift of the output signal.

For the qualitative, discrete-time semantics of an MTL
formula ϕ with respect to a signal x, it is straight forward
to show, that the semantics is sound, in the sense that, if it
produces the value 0, then the formula is not satisfied in the
classical semantics, and if it produces 1 then it is satisfied.
Let us index satisfaction with C as classic semantics, and
with L as LTI-filtering semantics in the following theorem.

Theorem 1 (Soundness). For an MTL formula ϕ and
a discrete-time signal x, it holds that x satisfies ϕ in the
LTI-filtering interpretation, if and only if, it satisfies ϕ in
the classic interpretation. More formally one can write:

(x, i) |=L ϕ ⇐⇒ (x, i) |=C ϕ.

Proof. (Sketch) First, observe that the Boolean oper-
ators are interpreted the same way, as the max-min dioid
provides a logical interpretation for the set {0,1}: the truth
tables for conjunction and min, disjunction and max, and
negation and complement, are all the same, respectively.
Second, the existential quantifier in the classic interpreta-
tion, corresponds to max in the max-min dioid, which leads
to the same interpretation for 1

I
and Q

I
. Through the

properties of negation, we immediately establish the same
interpretation for 0 I and ` I . Finally, the definition of
U I and S I can be written solely in terms of the previous
temporal operators, as we did in the LTI-filter semantics.

5.1.2 Continuous-time semantics
In the continuous-time semantics, each bounded interval

is going to have an infinite number of points, except for the
singular intervals, which contain only a single point. As a
consequence, we have to interpret the integral in this case,
as the supremum operator, which is the proper extension of
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(B) [[O[3,4]p]][t]
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(C) (x, t) |= O[3,4]p

Figure 7: Soundness of discrete-time semantics.

max over infinite domains.

(x, i) |= p ⇐⇒ xp(i)

(x, i) |= ¬ϕ ⇐⇒ 1− ( (x, i) |= ϕ )

(x, i) |= ϕ ∨ ψ ⇐⇒ max ((x, i) |= ϕ, (x, i) |= ψ)

(x, i) |= 1

I
ϕ ⇐⇒ sup

j ∈ T

min
(

(x, j) |= ϕ, w+
I (i− j)

)

(x, i) |= 0 Iϕ ⇐⇒ 1− ( (x, i) |= 1

I
¬ϕ )

(x, i) |= Q

I
ϕ ⇐⇒ sup

j ∈ T

min
(

(x, j) |= ϕ, w−
I (i− j)

)

(x, i) |= ` Iϕ ⇐⇒ 1− ( (x, i) |= Q

I
¬ϕ )

(x, i) |= ϕU Iψ ⇐⇒ sup
j ∈ I

min
(

(x, i) |= 0 (0,j)ϕ,

(x, i) |= 1

{j}
ψ
)

(x, i) |= ϕS Iψ ⇐⇒ sup
j ∈ I

min
(

(x, i) |= ` (0,j)ϕ,

(x, i) |= Q

{j}
ψ
)

.

In order to illustrate the qualitative, continuous-time seman-
tics for various temporal operators, consider the example
shown in Figure 6. In Figure 6(A) we show xp, the value
of continuous-time signal x, for which proposition p is true.
This signal is defined over the interval [0, 12]. Every sub-
interval in the plot is left-closed and right-open.

In order to interpret the MTL operators Q and ` over
x, we use, the same indexing windows as before: First, I =
[2, 3] and next, I = [0, 2]. The satisfaction of the MTL
formulas Q

[2,3]
p and Q

[0,2]
p for the signal x are shown

in Figure 6(B-C). Similarly, the satisfaction of ` [2,3] p and
` [0,2] p for the signal x are shown in Figure 6(D-E).
The qualitative, continuous-time semantics of the since

operator (x, i) |= pS [2,4]q is shown in Figure 5. The seman-
tics of (x, i) |= p (signal xp) is shown in Figure 5(A) and
the semantics of (x, i) |= q (signal xq) shown in Figure 5(B).
Finally, the semantics of (x, i) |= pS [2,4]q is shown in Fig-
ure 5(C). It should be emphasized that, the obtained quali-
tative semantics corresponds to a standard MTL semantics.

Theorem 2 (Soundness). For an MTL formula ϕ and
a continuous-time signal x, it holds that x satisfies ϕ in the
LTI-filtering interpretation, if and only if, it satisfies ϕ in
the classic interpretation. More formally one can write:

(x, i) |=L ϕ ⇐⇒ (x, i) |=C ϕ.

Proof. (Sketch) The proof is very similar to the one for
the discrete-time, qualitative semantics. The only difference
is that we work now with windows having dense (infinite)
domain, and max have to be therefore extended to sup, the
proper extension on such domains.
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Figure 8: Quantitative discrete-time semantics.

5.2 Quantitative Semantics
If we interpret addition, multiplication, and their associ-

ated neutral elements over ([0, 1],+,×, 0, 1), the field of reals
restricted to the interval [0,1], we recover the standard defi-
nition of LTI-filtering. This definition allows us to associate
a quantitative semantics to MTL temporal formulas.

This semantics measures the normalized, maximum num-
ber of times the formula is satisfied within its associated
window. Since 0 I and ` I can be satisfied only once within
I , the measure returns 1, in case of satisfaction, and 0, oth-
erwise. However, 1

I
and Q

I
are more interesting, as they

may be satisfied several times in I . As in Section 5.1, we
distinguish between discrete- and continuous-time seman-
tics, and use summations and integrals, respectively.

Moreover, we give up the duality property between the
0 I and 1

I
operators (same for past operators ` I and

Q

I
). In the rest of the paper we will stick to the posi-

tive normal form representation of an MTL formula, where
negations may only occur in front of atomic propositions
[18].

5.2.1 Discrete-time semantics
Assume we are given a discrete signal with [0, T ] duration

interval. Then the quantitative semantics for MTL can be
formulated as follows:

Jx, pK[i] = xp[i]

Jx,¬pK[i] = 1− Jx, pK[i]

Jx, ϕ∨ψK[i] = max(Jx,ϕK[i], Jx, ψK[i])

Jx, ϕ∧ψK[i] = min(Jx,ϕK[i], Jx, ψK[i])

Jx, 1
I
ϕK[i] =

∑

j ∈ T

Jx,ϕK[j] · w+
I [i− j]

Jx, Q
I
ϕK[i] =

∑

j ∈ T

Jx,ϕK[j] · w−
I [i− j]

Jx, 0 IϕK[i] = min
j ∈ i+I

Jx, ϕK[j]

Jx, ` IϕK[i] = min
j ∈ i−I

Jx, ϕK[j]

Jx, ϕU IψK[i] =
1

|I |
∑

j ∈ I

Jx, 0 [1,j−1]ϕK[i] · Jx, 1
{j}
ψK[i]

Jx, ϕS IψK[i] =
1

|I |
∑

j ∈ I

Jx, ` [1,j−1]ϕK[i] · Jx, Q
{j}
ψK[i],

where the window superscripts + and − correspond to the
window direction, according to Equations (12).

For example, consider the discrete-time signal x over the

Table 1: Quantitative semantics values

MTL Formula Time point

3 4 5 6 7 8 9 10

JQ
[1,4]

pK 1
4

1
2

3
4

1 1 3
4

1
2

1
4
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(B) (x, t) |= q
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(D) (x, t) |= p S[2,4] q

Figure 9: Discrete quantitative semantics for S I .

interval [0, 12], with ∆t=1, shown in Figure 8. Since it is
discrete-time, its domain is {0, 1, . . . , 12}. In order to inter-
pret the MTL operator Q

[1,4]
p, we construct the rectan-

gular windowing function w−
[1,4]

[i] as shown at the beginning

of Section 5. The representation of this window is shown in
Figure 3(B). Since the MTL formula, is a past formula, the
corresponding window is formally defined as follows:

w−
[1,4][i] =

1

4

4
∑

j=1

δ(i− j). (14)

Now we are able to evaluate the quantitative semantics of
signal x with respect to the Once-formula given below:

JQ
[1,4]

pK [i] =
12
∑

j=0

p[j] · w−
[1,4]

[i− j].

The quantitative-values of the result are given in a Table 1,
and their graphical representation is shown in Figure 8.

For the quantitative, discrete-time semantics of an MTL
formula ϕ and signal x, it is straight forward to show, that
the semantics is sound, in the sense that, it produces a mea-
sure greater than 0, if and only if, the formula is satisfied by
the discrete-time qualitative semantics, and 0, otherwise.

Theorem 3 (Soundness). For a positive normal form
MTL formula ϕ and a discrete-time signal x, it holds that
x satisfies ϕ, if and only if, its quantitative semantics is
strictly greater than 0. It does not satisfy ϕ, if and only if,
its quantitative semantics is 0:

(x, i) |= ϕ ⇐⇒ Jx, ϕK[i] > 0,

(x, i) 6|= ϕ ⇐⇒ Jx, ϕK[i] = 0.

Proof. (Sketch) First, as shown in Theorem 1, the qual-
itative discrete-time semantics in terms of LTI-filtering over
the idempotent dioid (max,min, 0, 1), is the same as the clas-
sical MTL semantics. Second, the interpretation of Boolean



MTL formulas p, ¬p, ϕ∨ψ, and ϕ∧ψ over x is the same in
both the qualitative and quantitative semantics. Third, the
interpretation of the temporal MTL formulas 0 I and ` I

over x is also the same. Fourth, the interpretation of MTL
formulas 1

I
and Q

I
ensure that they are strictly positive

only if they are satisfied by x and 0, otherwise. Fifth, the
interpretation of U I and S I are properly derived from 0 I

and 1 I , ` I and Q I , respectively.

In order to illustrate the relation between the qualitative
and the quantitative, discrete-time semantics, consider the
example shown in Figure 7. In Figure 7(A) we show the
signal xp. This signal is defined over the set {0, . . . , 30}.
In Figure 7(B) we illustrate the quantitative semantics of
the formula Q

[3,4]
p with respect to x, and in Figure 7(C)

we show the qualitative semantics of the same formula with
respect to x. As Figures 7(B-C) show, the two are in agree-
ment, that is whenever the quantitative semantics is strictly
greater than 0, the formula is satisfied, and whenever the
quantitative semantics is 0, the formula is not satisfied.

In Figure 9 we illustrate the interplay between the once
and the historically operators as they occur in the definition
of the since operator. Note that the outside sum also plays
the role of an enclosing temporal operator. In Figure 9(A)
and (B) we show the discrete-time signals xp and xq, respec-
tively. In Figure 9(C) we show the quantitative semantics of
pS [2,4]q with respect to xp and xq. Finally in Figure 9(D),
we show the qualitative semantics of the same formula with
respect to xp and xq. As one can see from Figure 9(C-D),
the quantitative semantics is sound.

5.2.2 Continuous-time semantics
In the continuous-time semantics, we restrict ourselves

to piecewise constant cadlag signals [17]. Such signals are
right-continuous and have left limits everywhere. As a con-
sequence, we do not consider signals that may have a distinct
value in some isolated point. Since this property has to be
preserved by temporal operators, we adopt the MTL frag-
ment from [17], where temporal modalities are restricted to
be closed intervals only. Assume we are given a signal x with
domain [0, T ). Then the quantitative semantics for MTL is
defined as follows:

Jx, pK(i) = xp(i)

Jx,¬pK(i) = 1− Jx, pK(i)

Jx, ϕ∨ψK(i) = max(Jx,ϕK(i), Jx, ψK(i))

Jx, ϕ∧ψK(i) = min(Jx,ϕK(i), Jx, ψK(i))

Jx, 1
I
ϕK(i) =

∫

T

Jx,ϕK(j) · w+
I (i−j) dj

Jx, Q
I
ϕK(i) =

∫

T

Jx,ϕK(j) · w−
I (i−j) dj

Jx, 0 IϕK(i) = inf
j ∈ i+I

Jx, ϕK(j)

Jx, ` IϕK(i) = inf
j ∈ i−I

Jx, ϕK(j)

Jx, ϕU IψK(i) =
1

|I |

∫

I

Jx, 0 (0,j)ϕK(i) · Jx, 1 {j}ψK(i)dj

Jx, ϕS IψK(i) =
1

|I |

∫

I

Jx, ` (0,j)ϕK(i) · Jx, Q
{j}
ψK(i)dj,
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(C) (x, t) |= O[2,4]p

Figure 10: Soundness of continuous-time semantics.

where the window superscripts + and − correspond to the
direction of the window according to (12). As usual, the inf
operation over an empty set is assumed to be 1.

Like in the discrete-time case, it is relatively straight-
forward to show that the quantitative semantics of an MTL
formula ϕ with respect to a continuous-time signal x, is
sound.

Theorem 4 (Soundness). Let ϕ be a positive normal
form MTL formula and x be a continuous-time signal. Then
the following properties hold:

Jx,ϕK(i) > 0 =⇒ (x, i) |= ϕ,

(x, i) 6|= ϕ =⇒ Jx, ϕK(i) = 0.

Proof. (Sketch) The proof goes along the same lines as
the one for the discrete-time semantics, but with a set of
complementary remarks. First, one has to observe that inf
operator properly extends min and the integral properly ex-
tends the sum operator. Second, the Dirac-δ is the proper
substitute of the Kronecker-δ within the integral. Third, if
the MTL formula is valid only in a punctual interval within
the given time constraints, it is not allowed to measure the
normalized number of times the formula is satisfied within
the window. In this case the quantitative measure is equal
to zero and it is essential to drop the contrary claim.

In order to illustrate the quantitative, continuous-time se-
mantics for various temporal operators, and their relation to
the qualitative, continuous-time semantics, consider the ex-
ample shown in Figure 10. In Figure 10(A) we show the
signal xp. This signal is defined over the interval [0, 30).
In Figure 10(B) we illustrate the quantitative semantics of
the formula Q

[2,4]
p with respect to x, and in Figure 10(C)

we show the qualitative semantics of the same formula with
respect to x. As Figures 10(B-C) show, the two are in agree-
ment, that is whenever the quantitative semantics is strictly
greater than 0, the formula is satisfied, and whenever for-
mula is not satisfied, the quantitative semantics is 0.

Remark 1. Note that for a singular interval I = {a}, the
semantics of 1

I
ϕ or Q

I
ϕ is not necessarily zero (although

a point has zero area), because this interval is represented
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Figure 11: Smooth evaluation of JQ [1,6] pK [t].

by the Dirac-δ distribution which is an “infinite” value at a:

Jx, Q
{a}

ϕK(t) =

T
∫

0

Jx,ϕK(s) · w−
{a}(t− s) ds = Jx, ϕK(t− a),

Jx, 1
{a}

ϕK(t) =

T
∫

0

Jx,ϕK(s) · w+
{a}(t− s) ds = Jx, ϕK(t+ a).

Moreover, the semantics of 0 I and ` I is also not zero,
because of the infimum operator over a single point. As a
consequence, we have that 0 I ≡ 1

I
and ` I ≡ Q

I
.

In order to illustrate the effect of applying various smooth
kernels to a signal xp, consider the example shown in Fig-
ure 11. In Figure 11(A) we show the signal xp. In Fig-
ure 11(B) we illustrate the quantitative semantics with re-
spect to a square kernel. In Figure 11(C) we show the same
semantics with respect to a sigmoidal window. This auto-
matically adds tolerance to a time-jitter at the boundaries of
the kernel. Finally, in Figures 11(D-E) we show the result of
applying Gaussian kernels, with reciprocal of standard de-
viation 8 and 3, respectively. Note how they influence the
domain of satisfaction.

In Figure 12 we illustrate the since operator with respect
to continuous-time signals xp and xq. In Figures 12(A-B)
we show these two signals. In Figure 12(C) we show the
quantitative semantics of pS [1,3]q with respect to xp and xq.
Finally in Figure 12(D), we show the qualitative semantics of
the same formula with respect to xp and xq. As one can see
from Figures 12(C-D), the quantitative semantics is sound.

6. CONCLUSIONS
We have shown that linear, time-invariant (LTI) filtering

corresponds to metric temporal logic (MTL) if addition and
multiplication are interpreted as max and min, and if true
and false are interpreted as one and zero, respectively.

We have also provided a quantitative semantics to tempo-
ral MTL formula with respect to a discrete- or continuous-
time signal, measuring the normalized, maximum number of
times, the formula is satisfied within its associated window.
This semantics is sound, in the sense that, if its measure is
strictly greater than zero, then the formula is satisfied.
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Figure 12: Cont. quantitative semantics for S I .

In future work we would like to explore alternative quan-
titative semantics for MTL, which are more informative, in
case the MTL formula is not satisfied. We would also like to
explore the logical meaning of other types of LTI-filter ker-
nels, such as band-pass and high-pass. Moreover, we would
like to investigate how the correspondence between MTL
and LTI-filters can be exploited in order to build very effi-
cient MTL monitors, using digital signal processors (DSPs).
These are specialized microprocessors, optimized for filtering
and compression operations in signal processing.

7. ACKNOWLEDGMENTS
This work was partially supported by the Austrian FFG

project HARMONIA (nr. 845631), the Doctoral Program
Logical Methods in Computer Science funded by the Aus-
trian FWF, the Austrian National Research Network (nr. S
11405-N23 and S 11412-N23) SHiNE funded by the Austrian
Science Fund (FWF), the EU ICT COST Action IC1402
on Runtime Verification beyond Monitoring (ARVI), the
US National-Science-Foundation Frontiers project Cyber-
Cardia, the MISTRAL project A-1341-RT-GP coordinated
by the European Defence Agency (EDA) and funded by the
Joint Investment Programme on Second Innovative Con-
cepts and Emerging Technologies (JIP-ICET 2). The au-
thors also would like to acknowledge César Sánchez from
IMDEA Software Institute for helpful insight and comments
that greatly improved the paper.

8. REFERENCES
[1] T. Akazaki and I. Hasuo. Time robustness in MTL

and expressivity in hybrid system falsification. In
Proc. of CAV 2015: the 27th International Conference
on Computer Aided Verification, Part II, volume 9207
of LNCS, pages 356–374. Springer, 2015.

[2] S. Almagor, U. Boker, and O. Kupferman. Discounting
in LTL. In Proc. of TACAS 2015: the 20th
International Conference on Tools and Algorithms for
the Construction and Analysis of System, volume 8413
of LNCS, pages 424–439. Springer, 2014.

[3] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and
S. Sankaranarayanan. S-taliro: A tool for temporal
logic falsification for hybrid systems. In Proc. of
TACAS 2011: the 17th International Conference on



Tools and Algorithms for the Construction and
Analysis of Systems, volume 6605 of LNCS, pages
254–257. Springer, 2011.

[4] E. Bartocci, L. Bortolussi, L. Nenzi, and
G. Sanguinetti. System design of stochastic models
using robustness of temporal properties. Theor.
Comput. Sci., 587:3–25, 2015.

[5] U. Boker, K. Chatterjee, T. A. Henzinger, and
O. Kupferman. Temporal specifications with
accumulative values. ACM Trans. Comput. Log.,
15(4):27:1–27:25, 2014.
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la surface d’un fluide pesant d’une profondeur
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