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ABSTRACT
We address the problem of diagnosing and repairing spec-
ifications for hybrid systems formalized in signal temporal
logic (STL). Our focus is on the setting of automatic synthe-
sis of controllers in a model predictive control (MPC) frame-
work. We build on recent approaches that reduce the con-
troller synthesis problem to solving one or more mixed inte-
ger linear programs (MILPs), where infeasibility of a MILP
usually indicates unrealizability of the controller synthesis
problem. Given an infeasible STL synthesis problem, we
present algorithms that provide feedback on the reasons for
unrealizability, and suggestions for making it realizable. Our
algorithms are sound and complete, i. e., they provide a cor-
rect diagnosis, and always terminate with a non-trivial spec-
ification that is feasible using the chosen synthesis method,
when such a solution exists. We demonstrate the effective-
ness of our approach on the synthesis of controllers for var-
ious cyber-physical systems, including an autonomous driv-
ing application and an aircraft electric power system.

1. INTRODUCTION
The automatic synthesis of controllers for hybrid systems
from expressive high-level specification languages allows rais-
ing the level of abstraction for the designer while ensuring
correctness of the resulting controller. In particular, several
controller synthesis methods have been proposed for expres-
sive temporal logics and a variety of system dynamics. How-
ever, a major challenge for the adoption of these methods in
practice is the difficulty of writing correctly formal specifica-
tions. Specifications that are poorly stated, incomplete, or
inconsistent can produce synthesis problems that are unre-
alizable (no controller exists for the provided specification),
intractable (synthesis is computationally too hard), or lead
to solutions that fail to capture the designer’s intent. In this
paper, we present an algorithmic approach to reduce the
specification burden for controller synthesis from temporal
logic specifications, focusing on the case when the original
specification is unrealizable.

Logical specifications can be provided in multiple ways. One
approach is to provide monolithic specifications, combining
within a single formula constraints on the environment with
desired properties of the system under control. In many
cases, a system specification can be conveniently provided
as a contract to emphasize what are the responsibilities of
the system under control (guarantees) versus the assump-
tions on the external, possibly adversarial, environment [18,
17]. In such a scenario, besides “weakening” the guarantees,
realizability of a controller can also be achieved by “tight-
ening” the assumptions. Indeed, when the specification is
unrealizable, it could be either because the environment as-
sumptions are too weak, or the requirements are too strong,
or a combination of both. Finding the “problem” with the
specification manually can be a tedious and time-consuming
process, nullifying the benefits of automatic synthesis. Fur-
ther, in the reactive setting, when the environment is adver-
sarial, finding the right assumptions a priori can be difficult.
Thus, given an unrealizable logical specification, there is a
need for tools that localize the cause of unrealizability to
(hopefully small) parts of the formula, and provide sugges-
tions for repairing the formula in an “optimal” manner.

The problem of diagnosing and repairing formal require-
ments has received its share of attention in the formal meth-
ods community. Ferrère et al. perform diagnosis on faulty
executions of systems with specifications expressed in linear
temporal logic (LTL) and Metric Temporal Logic (MTL) [9].
They identify the cause of unsatisfiability of these properties
in the form of prime implicants, which are conjunctions of
literals, and map the failure of a specification to the failure
of these prime implicants. Similar syntax tree based defini-
tions of unsatisfiable cores for LTL were presented in [22]. In
the context of synthesis from LTL, Raman et al. [20] address
the problem of categorizing the causes of unrealizability, and
how to detect them in high-level robot control specifications.
The use of counter-strategies to derive new environment as-
sumptions for synthesis has also been much studied over the
past few years [12, 2, 13]. Our approach, based on exploit-
ing information from optimization solvers, is similar to that
taken by Nuzzo et al. [16] to extract unsatisfiable cores for
satisfiability modulo theories (SMT) solving.

In this paper, we address the problem of diagnosing and
repairing specifications formalized in signal temporal logic
(STL) [14], a specification language that is well-suited for
hybrid systems. Our work is conducted in the setting of
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automated synthesis from STL using optimization methods
in a model predictive control (MPC) framework [21, 19]. In
this approach to synthesis, both the system dynamics and
the STL requirements on the system are encoded as mixed
integer linear constraints on variables modeling the dynam-
ics of the system and its environment. Controller synthesis
is then formulated as an optimization problem to be solved
subject to these constraints [21]. In the reactive setting,
this approach proceeds by iteratively solving a combination
of optimization problems using a counterexample-guided in-
ductive synthesis (CEGIS) scheme [19]. In this context, an
unrealizable STL specification leads to an infeasible opti-
mization problem. We leverage the ability of existing mixed
integer linear programming (MILP) solvers to localize the
cause of infeasibility to so-called irreducibly inconsistent sys-
tems (IIS). Our algorithms use the IIS to localize the cause
of unrealizability to the relevant parts of the STL speci-
fication. Additionally, we give a method for generating a
minimal set of repairs to the STL specification such that,
after applying those repairs, the resulting specification is re-
alizable. The set of repairs is drawn from a suitably defined
space that ensures that we rule out vacuous and other un-
reasonable adjustments to the specification. Specifically, in
this paper, we focus on the numerical parameters in a for-
mula since their specification is often the most tedious and
error-prone part. Our algorithms are sound and complete,
i. e., they provide a correct diagnosis, and always terminate
with a reasonable specification that is realizable using the
chosen synthesis method, when such a repair exists in the
space of possible repairs.

The problem of infeasibility in constrained predictive con-
trol schemes has also been widely addressed in the litera-
ture, e.g., by adopting robust MPC approaches, soft con-
straints, and penalty functions [11, 23, 4]. Rather than
tackling general infeasibility issues in MPC, our focus is
on providing tools to help debug the controller specifica-
tion at design time. However, the deployment of robust or
soft-constrained MPC approaches can also benefit from our
techniques. Our use of MILP does not restrict our method
to linear dynamical systems; indeed, we can handle con-
strained linear and piecewise affine systems, mixed logical
dynamical (MLD) systems [3], and certain differentially flat
systems. We demonstrate the effectiveness of our approach
on the synthesis of controllers for a number of cyber-physical
systems, including an autonomous driving application and
an aircraft electric power system.

The paper is organized as follows. We begin in Sec. 2 and 3
with preliminaries and a running example. We formally de-
fine the diagnosis and repair problems in Sec. 4 and describe
our algorithms for both monolithic and contract specifica-
tions in Sec. 5 and 6. In Sec. 7 we illustrate our approach
on the case studies, and finally conclude in Sec. 8.

2. PRELIMINARIES
In this section, we introduce preliminaries on hybrid dy-
namical systems, the specification language Signal Temporal
Logic, and the Model Predictive Control framework.

2.1 Hybrid Dynamical Systems

We consider a continuous-time hybrid dynamical system:

ẋt = f(xt, ut, wt)

yt = g(xt, ut, wt),
(1)

where xt ∈ X ⊆ (Rnc × {0, 1}nl) represent the hybrid (con-
tinuous and logical) states at time t, ut ∈ U ⊆ (Rmc ×
{0, 1}ml) are the hybrid control inputs, yt ∈ Y ⊆ (Rpc ×
{0, 1}pl) are the outputs, and wt ∈ W ⊆ (Rec ×{0, 1}el) are
the hybrid external inputs, including disturbances and other
adversarial inputs from the environment. Using a sampling
period ∆t > 0, the continuous-time system (1) lends itself
to the following discrete-time approximation:

xk+1 = fd(xk, uk, wk)

yk = gd(xk, uk, wk),
(2)

where states and outputs evolve according to time steps
k ∈ N, where xk = x(bt/∆tc) ∈ X . Given that the sys-
tem starts at an initial state x0 ∈ X , a run of the system
can be expressed as:

ξ = (x0, y0, u0, w0), (x1, y1, u1, w1), (x2, y2, u2, w2), . . . (3)

i. e., as a sequence of assignments over the system variables
V = (x, y, u, w). A run is, therefore, a discrete-time signal.
We denote ξk = (xk, yk, uk, wk).

Given an initial state x0, a finite horizon input sequence
uH = u0, u1, . . . , uH−1, and a finite horizon environment se-
quence wH = w0, w1, . . . , wH−1, the finite horizon run of the
system modeled by the system dynamics in (2) is uniquely
expressed as:

ξH(x0,u
H ,wH) =

(x0, y0, u0, w0), . . . , (xH−1, yH−1, uH−1, wH−1),
(4)

where x1, . . . , xH−1, y0, . . . , yH−1 are computed using (2).
We finally define a finite-horizon cost function J(ξH), map-
ping H-horizon trajectories ξH ∈ Ξ to costs in R+.

2.2 Signal Temporal Logic
Signal Temporal Logic (STL) was first introduced as an ex-
tension of Metric Interval Temporal Logic (MITL) to reason
about the behavior of real-valued dense-time signals [14].
STL has been largely applied to specify and monitor real-
time properties of hybrid systems [8]. Moreover, it offers a
robust, quantitative interpretation for the satisfaction of a
temporal formula [7, 6], as further detailed below.

An STL formula ϕ is evaluated on a signal ξ at some time
t. We say (ξ, t) |= ϕ when ϕ evaluates to true for ξ at time
t. We instead write ξ |= ϕ, if ξ satifies ϕ at time 0. The
atomic predicates of STL are defined by inequalities of the
form µ(ξ(t)) > 0, where µ is some function of signal ξ at
time t. Specifically, µ is used to denote both the function
of ξ(t) and the predicate. Any STL formula ϕ consists of
Boolean and temporal operations on such predicates. The
syntax of STL formulae is defined recursively as follows:

ϕ ::= µ | ¬µ | ϕ ∧ ψ |G[a,b]ψ | F[a,b]ψ | ϕU[a,b]ψ, (5)

where ψ and ϕ are STL formulae, G is the globally opera-
tor, F is the finally operator and U is the until operator.
Intuitively, ξ |= G[a,b]ψ specifies that ψ must hold for signal
ξ at all times of the given interval, i. e., t ∈ [a, b]. Similarly



ξ |= F[a,b]ψ specifies that ψ must hold at some time t′ of
the given interval. Finally, ξ |= ϕ U[a,b]ψ specifies that ϕ
must hold starting from the current time until a specific time
t ∈ [a, b] at which ψ becomes true. Formally, the satisfaction
of a formula ϕ for a signal ξ at time t is defined as:

(ξ, t) |= µ ⇔ µ(ξ(t)) > 0
(ξ, t) |= ¬µ ⇔ ¬((ξ, t) |= µ)
(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.
(6)

The bound of an STL formula is defined as the maximum
over the sums of all nested upper bounds on the tempo-
ral operators of the STL formula. For instance, given ψ =
G[0,20]F[1,6]ϕ1 ∧ F[2,25]ϕ2, the bound can be calculated as
N = max(6 + 20, 25) = 26. An STL formula ϕ is bounded-
time if it contains no unbounded operators.

Robust Satisfaction. A quantitative or robust semantics is
defined for an STL formula ϕ by associating it with a real-
valued function ρϕ of the signal ξ and time t, which provides
a “measure” of the margin by which ϕ is satisfied. Specifi-
cally, we require (ξ, t) |= ϕ if and only if ρϕ(ξ, t) > 0. The
magnitude of ρϕ(ξ, t) can then be interpreted as an estimate
of the “distance” of a signal ξ from the set of trajectories sat-
isfying or violating ϕ.

Formally, the quantitative semantics is defined as follows:

ρµ(ξ, t) = µ(ξ(t))
ρ¬µ(ξ, t) = −µ(ξ(t))
ρϕ∧ψ(ξ, t) = min(ρϕ(ξ, t), ρψ(ξ, t))
ρG[a,b]ϕ(ξ, t) = mint′∈[t+a,t+b] ρ

ϕ(ξ, t′)
ρF[a,b]ϕ(ξ, t) = maxt′∈[t+a,t+b] ρ

ϕ(ξ, t′)
ρϕU[a,b]ψ(ξ, t) = maxt′∈[t+a,t+b](min(ρψ(ξ, t′),

mint′′∈[t,t′] ρ
ϕ(ξ, t′′)).

(7)

Using the definitions above, the robustness value can then
be computed recursively for any STL formula.

2.3 Model Predictive Control
Model Predictive Control (MPC), or Receding Horizon
Control (RHC), is a well studied hybrid system control
method [15, 10]. In RHC, at any time step, the state of
the system is observed and an optimization is solved over
a finite time horizon H, given a set of constraints and a
cost function J . When f , as defined in (2), is nonlinear,
we assume optimization is performed at each MPC step af-
ter locally linearizing the system dynamics. For example, at
time t = k, the linearized dynamics around the current state
and time are used to compute an optimal strategy uH∗ over
the time interval [k, k+H − 1]. Only the first component of
uH∗ is, however, applied to the system, while a similar opti-
mization problem is solved at time k + 1 to compute a new
optimal control sequence along the interval [k+1, k+H] for
the model linearized around t = k+1. While the global opti-
mality of MPC is not guaranteed, the technique is frequently
used and performs well in practice.

In this paper, we use STL to express temporal constraints on

the environment and system runs for MPC. We then trans-
late an STL specification into a set of mixed integer linear
constraints, as further detailed below [21, 19]. Given a for-
mula ϕ to be satisfied over a finite horizon H, the associated
optimization problem has the form:

minimize
uH

J(ξH(x0,u
H))

subject to ξH(x0,u
H) |= ϕ,

(8)

which extracts a control strategy uH that minimizes the cost
function J(ξH) over the finite-horizon trajectory ξH , while
satisfying the STL formula ϕ at time step 0. In a closed-loop
setting, we compute a fresh uH at every time step i ∈ N,
replacing x0 with xi in (8) [21, 19].

While (8) applies to systems without uncontrolled inputs,
a more general formulation can be provided to account for
an uncontrolled disturbance input wH that can act, in gen-
eral, adversarially. To provide this formulation, we assume
that the specification is given in the form of an STL assume-
guarantee (A/G) contract [18, 17] C = (V, ϕe, ϕ ≡ ϕe → ϕs),
where V is the set of variables, ϕe captures the assumptions
(admitted behaviors) over the (uncontrolled) environment
inputs w, and ϕs describes the guarantees (promised be-
haviors) over all the system variables. A game-theoretic
formulation of the controller synthesis problem can then be
represented as a minimax optimization problem:

minimize
uH

maximize
wH∈We

J(ξH(x0,u
H ,wH))

subject to ∀wH ∈ We ξH(x0,u
H ,wH) |= ϕ,

(9)

where we aim to find a strategy uH that minimizes the
worst case cost J(ξH) over the finite horizon trajectory, un-
der the assumption that the disturbance signal wH acts ad-
versarially. We use We in (9) to denote the set of distur-
bances that satisfy the environment specification ϕe, i.e.,
We = {w ∈ WH |w |= ϕe}.

Mixed Integer Linear Program Formulation. To solve
the control problems in (8) and (9) the STL formula ϕ can
be translated into a set of mixed integer constraints, thus
reducing the optimization problem to a Mixed Integer Pro-
gram (MIP). Specifically, in this paper, we consider control
problems that can be encoded as Mixed Integer Linear Pro-
grams (MILP).

The MILP constraints are constructed recursively on the
structure of the STL specification, and express the ro-
bust satisfaction value of the formula. We see from Sec-
tion 2.2 that the robustness value of formulae with tempo-
ral and Boolean operators is expressed as the min or max
of the robustness values of the operands over time. We
then demonstrate the encoding of the min operator. Given
min(ρϕ1 , . . . , ρϕn), we introduce Boolean variables zϕi for
i ∈ {1, . . . , n} and a continuous variable p. The resulting
MILP constraints are:

p ≤ ρϕi ,
∑

i=1...n

zϕi ≥ 1

ρϕi − (1− zϕi)M ≤ p ≤ ρϕi + (1− zϕi)M
(10)

where M is a constant selected to be much larger than |ρϕi |



Figure 1: Vehicles crossing an intersection. The red car is the
ego vehicle, while the black car is part of the environment.

for all i, and i ∈ {1, . . . , n}. The above constraints ensure
that p takes the value of the minimum robustness and zϕi =
1 if ρϕi is the minimum. To get the constraints for max, we
replace ≤ by ≥ in (10).

We solve the MILP with an off-the-shelf solver. If the reced-
ing horizon scheme is feasible, then the controller synthesis
problem is realizable, i.e., the algorithm returns a controller
that satisfies the specification and optimizes the objective.
However, if the MILP is infeasible, the synthesis problem is
unrealizable. In this case, the failure to synthesize a con-
troller may well be attributed to just a portion of the STL
specification. In the rest of the paper we discuss how in-
feasibility of the MILP constraints can be used to infer the
“cause” of failure and, consequently, diagnose and repair the
original STL specification.

3. A RUNNING EXAMPLE
To illustrate our approach, we introduce a running example
from the autonomous driving domain. As shown in Fig. 1,
we consider a scenario in which two moving vehicles ap-
proach an intersection. The red car, labeled the ego vehicle,
is the vehicle under control, while the black car is part of
the external environment and may behave, in general, ad-
versarially. The state of the system includes the position
and velocity of each vehicle, the control input is the accel-
eration of the ego vehicle, and the environment input is the
acceleration of the other vehicle, i.e.,

x̃t = (xego
t , yego

t , vego
t , xadv

t , yadv
t , vadv

t )

ut = aego
t wt = aadv

t .
(11)

We also assume the dynamics of the system is given by a
simple double integrator for each vehicle, e.g.,ẋego

ẏego

v̇ego

 =

0 0 0
0 0 1
0 0 0

xego

yego

vego

+

0
0
1

u. (12)

A similar equation holds for the environment vehicle which
is, however, constrained to move along the horizontal axis.
We assume the ego vehicle is initialized at the coordinates
(0,−1) and the other vehicle is initialized at (−1, 0). We
further assume all the units in this example follow the met-
ric system. We would like to design a controller for the ego
vehicle to satisfy an STL specification under some assump-
tions on the external environment, and provide diagnosis
and feedback if the specification is infeasible. We discuss
the following three scenarios.

Example 1 (Collision Avoidance). We want to
avoid a collision between the ego and the adversary vehicle.

In this example, we assume the environment vehicle’s
acceleration is fixed at all times, i.e., aadv

t = 2, while the
initial velocities are vadv

0 = 0 and vego
0 = 0. We encode our

requirements using the formula ϕ := ϕ1 ∧ ϕ2, where ϕ1 and
ϕ2 are defined as follows:

ϕ1 = G[0,∞)¬
(
(−0.5 ≤ yego

t ≤ 0.5) ∧ (−0.5 ≤ xadv
t ≤ 0.5)

)
,

ϕ2 = G[0,∞)

(
1.5 ≤ aego

t ≤ 2.5
)
.

(13)
We prescribe bounds on the system acceleration, and state
that both cars should never be confined together within a box
of width 1 around the intersection (0, 0) to avoid a collision.

Example 2 (Non-adversarial Race). We discuss a
race scenario, in which the ego vehicle must increase its ve-
locity to exceed 0.5 whenever the adversary’s initial velocity
exceeds 0.5. We then formalize our requirement as a con-
tract (ψe, ψe → ψs), where ψe are the assumptions made
on the environment and ψs are the guarantees of the system
provided the environment satisfies the assumptions. Specifi-
cally:

ψe = (vadv
0 ≥ 0.5),

ψs = G[0,∞)(−1 ≤ aego
t ≤ 1) ∧ (vego

t ≥ 0.5).
(14)

The initial velocities are vadv
0 = 0.55 and vego

0 = 0, while the
environment vehicle’s acceleration is aadv

t = 1 at all times.
We also require the acceleration to be bounded by 1.

Example 3 (Adversarial Race). We discuss an-
other race scenario, in which the environment vehicle ac-
celeration aadv

t is no longer fixed, but can vary up to a max-
imum value of 2. Initially, vadv

0 = 0 and vego
0 = 0 hold.

Under these assumptions, we would like to guarantee that
the velocity of the ego vehicle exceeds 0.5 if the speed of the
adversary vehicle exceeds 0.5, while maintaining an accel-
eration in the [−1, 1] range. Altogether, we capture the re-
quirements above via a contract (φw, φw → φs), where:

φw = G[0,∞)

(
0 ≤ aadv

t ≤ 2
)
,

φs = G[0,∞)

(
(vadv
t > 0.5)→ (vego

t > 0.5)
)
∧
(
|aego
t | ≤ 1

)
.

(15)

4. PROBLEM STATEMENT
In this section, we define the problems of specification diag-
nosis and repair in the context of controller synthesis from
STL. We assume the discretized system dynamics fd and
gd, the initial state x0, the STL specification ϕ, and a cost
function J are given. Then, the controller synthesis problem
denoted as P = (fd, gd, x0, ϕ, J) translates into solving (8)
(when ϕ is a monolithic specification of the desired system
behaviors) or (9) (when ϕ represents a contract between the
system and the environment).

If synthesis fails, the diagnosis problem is, intuitively, to re-
turn an explanation in the form of a subset of the original
problem constraints that are already infeasible when taken
alone. The repair problem is to return a “minimal” set of
changes to the specification that would render the resulting
controller synthesis problem feasible. To diagnose and repair
an STL formula, we focus on its sets of atomic predicates



and time intervals of the temporal operators. We then start
by providing a definition of the support of its atomic predi-
cates, i.e., the set of times at which the value of a predicate
affects satisfiability of the formula, and a notion for the set
of repairs that we allow.

Definition 1 (Support). The support of a predicate
µ in an STL formula ϕ is the set of times t such that µ(ξ(t))
appears in ϕ.

For example, given ϕ = G[6,10](xt > 0.2), the support of
predicate µ = (xt > 0.2) is the time interval [6, 10].

Definition 2 (Allowed Repairs). Let Φ denote the
set of all possible STL formulae. A repair action is a relation
γ : Φ→ Φ consisting of the union of the following:

• A predicate repair returns the original formula after
modifying one of its atomic predicates µ to µ∗. We
denote this sort of repair by ϕ[µ 7→ µ∗] ∈ γ(ϕ);

• A time interval repair returns the original formula
after replacing the interval of a temporal operator.
This is denoted ϕ[∆[a,b] 7→ ∆[a∗,b∗]] ∈ γ(ϕ) where
∆ ∈ {G,F,U}.

Repair actions can be composed to get a sequence of repairs
Γ = γn(γn−1(. . . (γ1(ϕ)) . . . )). Given an STL formula ϕ, we
denote as REPAIR(ϕ) the set of all possible formulae obtained
through compositions of allowed repair actions on ϕ. More-
over, given a set of atomic predicates D and a set of time
intervals T , we use REPAIRT ,D(ϕ) ⊆ REPAIR(ϕ) to denote
the set of repair actions that act only on predicates in D
or time intervals in T . We are now ready to provide the
formulation of the problems addressed in the paper, both
in terms of diagnosis and repair of a monolithic specifica-
tion ϕ (general diagnosis and repair) and an A/G contract
(ϕe, ϕe → ϕs) (contract diagnosis and repair).

Problem 1 (General Diagnosis and Repair).
Given a controller synthesis problem P = (fd, gd, x0, ϕ, J)
such that (8) is infeasible, find:

• A set of atomic predicates D = {µ1, . . . , µd} or time
intervals T = {τ1, . . . , τd} of the original formula ϕ,

• ϕ′ ∈ REPAIRT ,D(ϕ),

such that P ′ = (fd, gd, x0, ϕ
′, J) is feasible, and the following

minimality conditions hold:

• (predicate minimality) if ϕ′ is obtained by predicate re-
pair1, si = µ∗i−µi for i ∈ {1, . . . , d}, sD = (s1, . . . , sd),
and || · || is a norm on Rd, then

@ (D′, sD′) s.t. ||sD′ || ≤ ||sD|| (16)

and P ′′ = (fd, gd, x0, ϕ
′′, J) is feasible, with ϕ′′ ∈

REPAIRD′(ϕ).
1For technical reasons, our minimality conditions are pred-
icated on a single type of repair being applied to obtain ϕ′.

Detect IIS and map to 
predicates and intervals
 of the STL specification 

(Diagnosis)

Inform the 
designer 

Repair intervals 
and predicates (D’) 

of the STL

System 
Specification

Controller
Synthesized

Yes

No

D’

Convert to MILP 
and check feasibility

Not Repaired

Updated System
Specification

Repaired

Figure 2: Diagnosis and repair flow diagram.

• (time interval minimality) if ϕ′ is obtained by time in-
terval repair, T ∗ = {τ∗1 , . . . , τ∗l } are the non-empty re-
paired intervals, and ||τ || is the length of interval τ :

@ T ′ = {τ ′1, . . . , τ ′l}, s.t. ∃i ∈ {1, . . . , l}, ||τ∗i || ≤ ||τ ′i ||
(17)

and P ′′ = (fd, gd, x0, ϕ
′′, J) is feasible, with ϕ′′ ∈

REPAIRT ′(ϕ).

Problem 2 (Contract Diagnosis and Repair).
Given a controller synthesis problem P = (fd, gd, x0, ϕ ≡
ϕe → ϕs, J) such that (9) is infeasible, find:

• Sets of atomic predicates De = {µe1, . . . , µed},
Ds = {µs1, . . . , µsd̄} or sets of time intervals Te =
{τe1 , . . . , τel },Ts = {τs1 , . . . , τsl̄ }, respectively, of the
original formulas ϕe and ϕs,

• ϕ′e ∈ REPAIRTe,De(ϕe), ϕ′s ∈ REPAIRTs,Ds(ϕs).

such that P ′ = (fd, gd, x0, ϕ
′, J) is feasible, and D = De∪Ds,

T = Te ∪ Ts, and ϕ′ satisfy the minimality conditions of
Problem (1).

In the following sections, we discuss our solutions to the
above problems.

5. MONOLITHIC SPECIFICATIONS
The scheme adopted to diagnose inconsistencies in the spec-
ification and provide constructive feedback to the designer
is pictorially represented in Fig. 2. In this section we find
a solution for Problem 1, as summarized in Algorithm 1.
Given a problem P, defined as in Section 4, GenMILP refor-
mulates (8) in terms of the following MILP:

minimize
uH

J(ξH)

subject to fdyn
i ≤ 0 i ∈ {1, . . . ,md}
f stl
k ≤ 0 k ∈ {1, . . . ,ms},

(18)

where fdyn and f stl are mixed integer linear constraint func-
tions over the states, outputs, and inputs of the finite hori-
zon trajectory ξH associated, respectively, with the system
dynamics and the STL specification ϕ. We let (J,C) repre-
sent this MILP, where J is the objective, and C is the set of



Algorithm 1 DiagnoseRepair

1: procedure DiagnoseRepair

2: Input: P
3: Output: uH , D, repaired, ϕ′

4: (J, C)← GenMILP(P), repaired← 0

5: uH ← Solve(J,C)

6: if uH = ∅ then

7: D ← ∅, S ← ∅, I ← ∅,M← (0, C)

8: while repaired = 0 do

9: (D′,S′, I′)← Diagnosis(M, P)
10: D ← D ∪D′, S ← S ∪ S′, I ← I ∪ I′

11: options← UserInput(D′)
12: λ ← ModifyConstraints(I′, options)

13: (repaired,M, ϕ′)← Repair(M, I′, λ,S, ϕ)

14: uH ← Solve(J, M.C)

Algorithm 2 Diagnosis

1: procedure Diagnosis(M, P)
2: Input: M, P
3: Output: D, S, I′

4: IC ← IIS(M)

5: (D,S)← ExtractPredicates(IC,P)
6: I′ ← ExtractConstraints(M,D)

constraints. If problem (18) is infeasible, we iterate between
diagnosis and repair phases until the repaired feasible speci-
fication ϕ′ is obtained. We let D and I denote, respectively,
the set of predicates returned by the diagnosis procedure,
and the constraints corresponding to those predicates.

Optionally, we support an interactive repair mechanism,
where the designer provides a set of options that priori-
tize which predicates to modify (UserInput procedure) and
get converted into a set of weights λ (ModifyConstraints
routine). The designer can then leverage this weighted-cost
variant of the problem to define“soft”and“hard”constraints
in the controller synthesis problem. In the following, we de-
tail the operation of the Diagnosis and Repair routines.

5.1 Diagnosis
Our diagnosis procedure is summarized in Algorithm 2. Di-
agnosis receives as inputs the controller synthesis problem
P and an associated MILP formulation M. M can either
be the feasibility problem associated with the original prob-
lem (18), or a relaxation of it. This feasibility problem has
the same, possibly relaxed, constraints as (18) but zero cost.
Formally, we provide the following definition of relaxed con-
straint and relaxed optimization problem.

Definition 3 (Relaxed Problem). We say that a
constraint f ′ ≤ 0 is a relaxed version of f ≤ 0 if there
exists a slack variable s ∈ R+ such that f ′ = (f − s). In this
case, we also say that f ≤ 0 is relaxed into f ′ ≤ 0. Then,
an optimization problem O′ is a relaxed version of another
optimization problem O if it is obtained from O by relaxing
at least one of its constraints.

When M is infeasible, we rely on the capability of state-of-
the-art MILP solvers to provide an Irreducibly Inconsistent
System (IIS) [1, 5] of constraints IC , defined as follows.

Definition 4 (Irreducibly Inconsistent System).
Given a feasibility problem M with constraint set C, an
Irreducibly Inconsistent System IC is a subset of constraints
IC ⊆ C such that: (i) the optimization problem (0, IC) is
infeasible; (ii) ∀ c ∈ IC , problem (0, IC \ {c}) is feasible.

In other words, an IIS is an infeasible subset of constraints
that becomes feasible if any single constraint is removed. For
each constraint in IC , ExtractPredicates traces back the
STL predicate(s) originating it, which will be used to con-
struct the set D = {µ1, . . . , µd} of STL atomic predicates in
Problem 1, and the corresponding set of support intervals
S = {σ1, . . . , σd} (adequately truncated to the current hori-
zon H), as obtained from the STL syntax tree. D will be
used to produce a relaxed version of M as further detailed
in Section 5.2. For this purpose, the procedure also returns
the subset I of all the constraints in M that are associated
with the predicates in D.

5.2 Repair
The diagnosis procedure isolates a set of STL atomic pred-
icates that jointly produce a reason of infeasibility for the
synthesis problem. For repair, we are instead interested in
how to modify the original formula to make the problem fea-
sible. The repair procedure is summarized in Algorithm 3.
We formulate relaxed versions of the feasibility problem M
associated with problem (18) by using slack variables.

Let fi, i ∈ {1, . . . ,m} denote both of the categories of con-
straints fdyn and f stl in the feasibility problem M. We
reformulate M into the following slack feasibility problem:

minimize
s∈R|I|

||s||

subject to fi − si ≤ 0 i ∈ {1, . . . , |I|}
fi ≤ 0 i ∈ {|I|+ 1, . . . ,m}
si ≥ 0 i ∈ {1, . . . , |I|},

(19)

where s = s1...s|I| is a vector of slack variables added to the
subset of optimization constraints I, as obtained after the
latest call of Diagnosis, to make the problem feasible. Not
all the constraints in the original optimization problem (18)
can be modified. For instance, the designer will not be able
to arbitrarily modify constraints that can directly affect the
dynamics of the system, i. e., constraints encoded in fdyn.
Solving problem (19) is equivalent to looking for a set of
slacks that make the original control problem feasible while
minimizing a suitable norm || · || of the slack vector. In most
of our application examples, we choose the l1-norm, which
tends to provide sparser solutions for s, i.e., nonzero slacks
for a smaller number of constraints. However, other norms
can also be used, including weighted norms based on the set
of weights λ. If problem (19) is feasible, ExtractFeedback
uses the solution s∗ to repair the original infeasible specifi-
cation ϕ. Otherwise, the infeasible problem is returned for
another round of diagnosis to retrieve further constraints to
relax. In what follows, we provide details on the implemen-
tation of ExtractFeedback.



Algorithm 3 Repair

1: procedure Repair

2: Input: M, I, λ, S, ϕ
3: Output: repaired,M, ϕ

4: M.J ←M.J + λ>sI

5: for c in I do

6: if λ(c) > 0 then

7: M.C(c)←M.C(c) + sc

8: (repaired, s∗) ← Solve(M.J, M.C)

9: if repaired = 1 then

10: ϕ← ExtractFeedback(s∗,S,ϕ)

If a minimum norm solution s∗ can be found, then the slack
variables s∗ can be mapped to a set of predicate repairs sD,
as defined in Problem 1, as follows. The slack vector s∗ in
Algorithm 3 includes the set of slack variables {s∗µi,t}, where
s∗µi,t is the variable added to the optimization constraint
associated with an atomic predicate µi ∈ D at time t, i ∈
{1, . . . , d}. We then set

∀ i ∈ {1, . . . , d} si = µ∗i − µi = max
t∈{1,··· ,H}

s∗µi,t, (20)

H being the time horizon for (18), and sD = {s1, . . . , sd}.

To find a set of time-interval repairs, we proceed, instead,
as follows:

1. The slack vector s∗ in Algorithm 3 includes the set
of slack variables {s∗µi,t}, where s∗µi,t is the variable
added to the optimization constraint associated with
an atomic predicate µi ∈ D at time t. For each µi ∈ D,
with support interval σi, we search for the largest time
interval σ′i ⊆ σi such that the slack variables s∗µi,t for
t ∈ σ′i are 0. If µi /∈ D, then we set σ′i = σi.

2. We convert every temporal operator in ϕ into a com-
bination of G (timed or untimed) and untimed U by
using the following transformations:

F[a,b]ψ = ¬G[a,b]¬ψ,

ψ1U[a,b]ψ2 = G[0,a](ψ1U ψ2) ∧ F[a,b]ψ2,

where U is the untimed (unbounded) until operator.
Let ϕ̂ be the new formula obtained from ϕ after ap-
plying these transformations2.

3. The nodes of the parse tree of ϕ̂ can then be par-
titioned into three subsets, ν, κ, and δ, respectively
associated with the atomic predicates, Boolean opera-
tors, and temporal operators (G,U) in ϕ̂. We traverse
this parse tree from the leaves (atomic predicates) to
the root and recursively define for each node i a new
support interval σ∗i as follows:

σ∗i =


σ′i if i ∈ ν⋂
j∈C(i)

σ∗j if i ∈ κ ∪ δU

σ∗C(i) if i ∈ δG

(21)

2While the second transformation introduces a new interval
[0, a], its parameters are directly linked to the ones of the
original interval [a, b] (now inherited by the F operator) and
will be accordingly processed by the repair routine.

time 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
sl1 0 0 0 0 0 -0.26 0 0 0 0
su2 0 0 0 0 0 0 -0.07 0 0 0

Table 1: Slack variables for horizon, with ∆t = 0.2, and H = 10.

where C(i) denotes the children of node i, while δG
and δU are, respectively, the subsets of nodes associ-
ated with the G and U operators. We observe that
the children set of a G operator node is a singleton.
Therefore, with some abuse of notation, we also use
C(i) in (21) to denote a single node in the parse tree.

4. We define the interval repair τ̂j for each (timed) tem-
poral operator node j in the parse tree of ϕ̂ as τ̂j = σ∗j .
If τ̂j is empty for any j, no time-interval repair is possi-
ble. Otherwise, we map back the set of intervals {τ̂j}
into a set of interval repairs T ∗ for the original for-
mula ϕ according to the transformations in step 2 and
return T ∗.

We provide an example of predicate repair below, while time
interval repair is exemplified in Section 6.1.

Example 4 (Collision Avoidance). We diagnose
the specifications introduced in Example 1. To formulate
the synthesis problem, we assume a horizon H = 10 and a
discretization step ∆t = 0.2. The system is found infeasible
at the first MPC run, and Diagnosis detects the infeasibility
of ϕ1∧ϕ2 at time t = 6. Intuitively, given the allowed range
of accelerations for ego, both the cars end up with entering
the forbidden box at some time. Algorithm 1 chooses to
repair ϕ1 by adding slacks to all of its predicates, such that
ϕ′1 = (−0.5− sl1 ≤ yego

t ≤ 0.5 + su1)∧ (−0.5− sl2 ≤ xadv
t ≤

0.5 + su2). Table 1 shows the optimal slack values at each
t, while su1 and sl2 are set to zero at all t. We can then
conclude that the specification replacing ϕ1 with ϕ′1

ϕ′1 = G[0,∞)¬
(
(−0.24 ≤ yego

t ≤ 0.5)∧(−0.5 ≤ xadv
t ≤ 0.43)

)
(22)

is feasible, i.e., the cars will not collide, but the original
requirement was overly demanding.

Alternatively, the user can choose to run the repair procedure
on ϕ2 and change its predicate as (1.5−sl ≤ aego

t ≤ 2.5+su).
In this case, we decide to stick with the original requirement
on collision avoidance, and tune, instead, the control “effort”
to satisfy it. Under the assumption of constant acceleration
(and bounds), the slacks will be the same at all t. We then
obtain [sl, su] = [0.82, 0], which ultimately turns into ϕ′2 =
G[0,∞)

(
0.68 ≤ aego

t ≤ 2.5
)
. The ego vehicle should then slow

down to prevent entering the forbidden box at the same time
as the other car. This latter solution is, however, suboptimal
with respect to the l1-norm selected in this example.

Our algorithm offers the following guarantees, for which a
proof is reported below.

Theorem 1 (Soundness). Given a controller synthe-
sis problem P = (fd, gd, x0, ϕ, J), such that (8) is infeasi-
ble at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired for-
mula returned from Algorithm 1 without human interven-
tion, for a given set of predicates D or time interval T .



Then, P ′ = (fd, gd, x0, ϕ
′, J) is feasible at time t and (ϕ′,

D, T ) satisfy the minimality conditions in Problem 1.

Proof (Theorem 1). SupposeM is the MILP encoding
of P as defined in (18), ϕ′ is the repaired formula, and D
the set of diagnosed predicates, as returned by Algorithm 1.
We start by discussing the case of predicate repair. We let
M′ be the MILP encoding of P ′ and D∗ ⊆ D be the set
of predicates that are fixed to provide ϕ′, i.e., such that
s = (µ∗ − µ) 6= 0, with µ ∈ D. Algorithm 1 modifies M
by introducing a slack variable sµ,t into each constraint as-
sociated with an atomic predicate µ in D at time t. Such
a transformation leads to a feasible MILP M′′ and an op-
timal slack set {s∗µ,t|µ ∈ D, t ∈ {1, . . . , H}}. We now ob-
serve thatM′ andM′′ are both a relaxed version ofM. In
fact, we can view M′ as a version of M in which only the
constraints associated with the atomic predicates in D∗ are
relaxed. Therefore, each constraint having a nonzero slack
variable in M′′ is also relaxed in M′. Moreover, by (20),
the relaxed constraints in M′ are offset by the largest slack
value over the horizon H. Then, because M′′ is feasible,
M′, and subsequently P ′, are feasible.

We now prove that (ϕ′,D) satisfy the predicate minimal-
ity condition of Problem 1. Let ϕ̃ be any formula obtained
from ϕ after repairing a set of predicates D̃ such that the
resulting problem P̃ is feasible. We recall that, by Defini-
tion 4, at least one predicate in D generates a conflicting
constraint and must be repaired for M to become feasible.
Then, D̃ ∩ D 6= ∅ holds. Furthermore, since Algorithm 1
iterates by diagnosing and relaxing constraints until feasi-
bility is achieved, D contains all the predicates that can be
responsible for the infeasibility of ϕ. In other words, Algo-
rithm 1 finds all the IISs in the original optimization problem
and allows relaxing any constraint in the union of the IISs.
Therefore, repairing any predicate outside of D is redundant:
a predicate repair set that only relaxes the constraints asso-
ciated with predicates in D̄ = D̃ ∩ D, by the same amount
as in ϕ̃, and sets to zero the slack variables associated with
predicates in D \ D̄ is also effective and exhibits a smaller
slack norm. Let sD̄ be such a repair set and ϕ̄ the corre-
sponding repaired formula. sD̄ and sD can then be seen as
two repair sets on the same predicate set. However, by the
solution of Problem (19), we are guaranteed that sD has
minimum norm; then, ||sD|| ≤ ||sD̄|| will hold for any such
formulas ϕ̄, and hence ϕ̃.

We now consider the MILP formulationM′ associated with
P ′ and ϕ′ in the case of time-interval repairs. For each
atomic predicate µi ∈ D, for i ∈ {1, . . . , |D|}, M′ includes
only the associated constraints evaluated over time intervals
σ′i for which the slack variables {sµi,t} are zero. Such a
subset of constraints is trivially feasible. All the other con-
straints, enforcing the satisfaction of Boolean and temporal
combination of the atomic predicates in ϕ′ are also feasible
if the atomic predicate constraints are feasible. Then,M′ is
feasible.

To show that (ϕ′,T ) satisfy the minimality condition in
Problem 1, we observe that, by the transformations in step
2 of the time-interval repair procedure, ϕ is logically equiva-
lent to a formula ϕ̂ which only contains untimed U and timed
G operators. Moreover, ϕ̂ and ϕ have the same interval pa-

rameters. Therefore, if the proposed repair set is minimal
for ϕ̂, this will also be the case for ϕ. We now observe that
Algorithm 1 selects, for each atomic predicate µi ∈ D the
largest interval σ′i such that the associated constraints are
feasible, i.e., their slack variables are zero after norm mini-
mization3. Because feasible intervals for Boolean combina-
tions of atomic predicates are obtained by intersecting these
maximal intervals, and then propagated to the temporal op-
erators, the length of the intervals of each G operator in ϕ̂,
hence of the temporal operators in ϕ, will also be maximal,
which is what we wanted to prove.

Theorem 2 (Completeness). Assume the controller
synthesis problem P = (fd, gd, x0, ϕ, J) results in (8) being
infeasible at time t. If there exist a set of predicates D or
time-intervals T such that there exists Φ ⊆ REPAIRD,T (ϕ)
for which ∀ φ ∈ Φ, P ′ = (fd, gd, x0, φ, J) is feasible at time t
and (φ, D, T ) are minimal in the sense of Problem 1, then
Algorithm 1 returns a repaired formula ϕ′ in Φ.

Proof (Theorem 2). We first observe that Algorithm 1
always terminates with a feasible solution ϕ′ since the set
of MILP constraints to diagnose and repair is finite. We
first consider the case of predicate repairs. Let D be the
set of predicates modified to obtain φ ∈ Φ and D′ the set
of diagnosed predicates returned by Algorithm 1. Then, by
Definition 4 and the iterative approach of Algorithm 1, we
are guaranteed that D′ includes all the predicates responsi-
ble for inconsistencies, as also argued in the proof of The-
orem 1. Therefore, we conclude D ⊆ D′. sD and sD′ can
then be seen as two repair sets on the same predicate set.
However, by the solution of Problem (19), we are guaranteed
that sD′ has minimum norm; then, ||sD′ || ≤ ||sD̄|| will hold,
hence ϕ′ ∈ Φ.

We now consider the case of time-interval repair. If a for-
mula φ ∈ Φ repairs a set of intervals T = {τ1, . . . , τl}, then
there exists a set of constraints associated with atomic pred-
icates in ϕ which are consistent in M, the MILP encoding
associated with φ, and make the overall problem feasible.
Then, the relaxed MILP encodingM′ associated with ϕ af-
ter slack norm minimization will also include a set of pred-
icate constraints admitting zero slacks over the same set of
time intervals as in M, as determined by T . Since these
constraints are enough to make the entire problemM feasi-
ble, this will also be the case for M′. Therefore, our proce-
dure for time-interval repair terminates and produces a set
of non-empty intervals T ′ = {τ ′1, . . . , τ ′l}. Finally, because
Algorithm 1 finds the longest intervals for which the slack
variables associated with each atomic predicate are zero, we
are also guaranteed that ||τ ′i || ≥ ||τi|| for all i ∈ {1, . . . , l},
as also argued in the proof of Theorem 1. We can then
conclude that ϕ′ ∈ Φ holds.

In the worst case, Algorithm 1 solves a number of MILP
problem instances equal to the number of atomic predicates

3Because we are not directly maximizing the sparsity of the
slack vector, time-interval minimality is to be interpreted
with respect to slack norm minimization. Directly maximiz-
ing the number of zero slacks is also possible but computa-
tionally more intensive.



in the STL formula. While the complexity of solving a MILP
is NP-hard, the actual runtime depends on the size of the
MILP, which is linear in the number of predicates and op-
erators in the STL specification.

6. CONTRACTS
In this section, we consider specifications provided in the
form of a contract (ϕe, ϕe → ϕs), where ϕe is an STL for-
mula expressing the assumptions, i.e., the set of behaviors
assumed from the environment, while ϕs captures the guar-
antees, i.e., the behaviors promised by the system in the
context of the environment. To repair contracts, we can cap-
ture tradeoffs between assumptions and guarantees in terms
of minimization of a weighted norm of slacks. We describe
below our results in both the cases of non-adversarial and
adversarial environments.

6.1 Non-Adversarial Environment
For a contract, we make a distinction between controlled
inputs ut and uncontrolled (environment) inputs wt of the
dynamical system. In this section we assume that the en-
vironment signal wH can be predicted over a finite horizon
and set to a known value for which the controller must be
synthesized. With ϕ ≡ ϕe → ϕs, equation (9) reduces to:

minimize
uH

J(ξH(x0,u
H ,wH))

subject to ξH(x0,u
H ,wH) |= ϕ,

(23)

Because of the similarity of Problem (23) and Problem (8),
we can then diagnose and repair a contract using the
methodology illustrated in Section 5. However, to reflect
the different structure of the specification, i.e., its partition
into assumption and guarantees, we adopt a weighted sum
of the slack variables in Algorithm 1, allocating different
weights to predicates in the assumption and guarantee for-
mulas. We can then provide the same guarantees as in The-
orems 1 and 2, where ϕ ≡ ϕe → ϕs and the minimality
conditions are stated with respect to the weighted norm.

Example 5 (Non-adversarial Race). We consider
Example 2 with the same discretization step ∆t = 0.2 and
horizon H = 10 as in Example 1. The MPC scheme results
infeasible at time 0. In fact, we observe that ψe is always
true as vadv

0 ≥ 0.5 and aadv
t = 1 ≥ 0 holds at all times.

Since vego0 = 0, the predicate ψs2 = G[0,∞)(v
ego
t ≥ 0.5) in

ψs is found to be failing. As in Section 5.2, we can modify
the conflicting predicates in the specification by using slack
variables as follows: vadv

t + se(t) ≥ 0.5 (assumptions) and
vego
t + ss(t) ≥ 0.5 (guarantees). However, we also assign

a set of weights to the assumption (λe) and guarantee (λs)
predicates, our objective being λe|se| + λs|ss|. By setting
λs > λe, we encourage modifications in the assumption pred-
icate, thus obtaining se = 0.06 at time 0 and zero otherwise,
and ss = 0 at all times. We can then set ψ′e = (vadv

0 ≥ 0.56),
which falsifies ψe at time 0, so that ψe → ψs is satisfied over
the entire range. Alternatively, by setting λs < λe, we ob-
tain the slack values in Table 2, which lead to the following
predicate repair: ψ′s2 = G[0,∞)(v

ego
t ≥ −0.01).

We can also modify the time interval of the temporal opera-
tor associated with ψs2 to repair the overall specification. To

time 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
ss 0.51 0.31 0.11 0 0 0 0 0 0 0

Table 2: Slack variables used in Example 2 and 5.

Figure 3: Parse tree of ψ ≡ ψe → ψs used in Example 2 and 5.

do so, Algorithm 1 uses the parse tree of ψe → ψs in Fig-
ure 3. For any of the leaf node predicates µi, i ∈ {1, 2, 3},
we get a support σi = [0, 9], which is only limited by the fi-
nite horizon H. Then, based on the slack values in Table 2,
we can conclude σ′1 = σ′2 = [0, 9] (the optimal slack val-
ues for these predicates are always zero), while σ′3 = [3, 9].
For the given syntax tree, we also have σ∗1 = σ′1, σ∗2 = σ′2,
and σ∗3 = σ′3 for the temporal operator nodes that are par-
ent nodes of µ1, µ2, and µ3, respectively. Since none of the
above intervals is empty, a time interval repair is indeed pos-
sible by modifying the time interval of the parent node of µ3,
thus achieving τ∗3 = σ∗3 . This leads to the following proposed
sub-formula ψ′s2 = G[0.6,∞)(v

ego
t ≥ 0.5). In this example,

repairing the specification over the first horizon is enough to
guarantee controller realizability in the future. We can then
keep the upper bound of the G operator to infinity.

6.2 Adversarial Environment
When the environment can behave adversarially, the control
synthesis problem assumes the structure in (9). Specifically,
in this paper, we allow wt to lie in an interval [wmin, wmax]
at all times; this corresponds to the STL formula ϕw =
G[0,∞)(wmin ≤ wt ≤ wmax). We decompose a specification
ϕ of the form ϕw ∧ ϕe → ϕs, representing the contract, as
ϕ ≡ ϕw → ψ, where ψ ≡ (ϕe → ϕs). Our diagnosis and
repair method is summarized in Algorithm 4.

We first check the satisfiability of the control synthesis prob-
lem by examining whether there exists a pair of uH and wH

for which problem (9) is feasible (CheckSAT routine):

minimize
uH ,wH

J(ξH(x0,u
H ,wH))

subject to ξH(x0,u
H ,wH) |= ϕ

wH |= ϕw ∧ ϕe.

(24)

If problem (24) is unsatisfiable, we can use the techniques
introduced in Section 5.2 and 6.1 to diagnose and repair the
infeasibility. Therefore, in the following, we assume that (24)
is satisfiable, hence there exist uH0 and wH

0 that solve (24).
To check realizability, we use the following CEGIS loop
(SolveCEGIS routine). By first fixing the control trajectory
to uH0 , we find the worst case disturbance trajectory wH

1

that minimizes the robustness value of ϕ by solving the fol-



Algorithm 4 DiagnoseRepairAdversarial

1: procedure DiagnoseRepairAdversarial

2: Input: P
3: Output: uH , P′

4: (J, C)← GenMILP(P)

5: (uH0 ,w
H
0 , sat)← CheckSAT(J,C)

6: if sat then

7: W∗cand ← SolveCEGIS(uH0 ,P)
8: Wcand ←W∗cand
9: while Wcand 6= ∅ do

10: Pw ← RepairAdversarial(Wcand,P)
11: Wcand ← SolveCEGIS(uH0 ,Pw)

12: Wcand ←W∗cand, Pψ ← P
13: while Wcand 6= ∅ do

14: Pψ ← DiagnoseRepair(Pψ)

15: Wcand ← SolveCEGIS(uH0 ,Pψ)

16: P′ ← FindMin(Pw,Pψ)

lowing problem:

minimize
wH

ρϕ(ξH(x0,u
H ,wH), 0)

subject to wH |= ϕe ∧ ϕw
(25)

with uH = uH0 . The optimal wH
1 from (25) will falsify the

specification if the resulting robustness value is below zero4.
If this is the case, we look for a uH1 which solves (23) with
the additional restriction of wH ∈ Wcand = {wH

1 }. If this
step is feasible, we once again attempt to find a worst-case
disturbance sequence wH

2 that solves (25) with uH = uH1 :
this is the counterexample-guided inductive step. At each
iteration i of this CEGIS loop, the set of candidate distur-
bance sequences Wcand expands to include wH

i . If the loop
terminates at iteration i with a successful uHi (one for which
the worst case disturbance wH

i in (25) has positive robust-
ness), we conclude that the formula ϕ is realizable.

The CEGIS loop may not terminate if the set Wcand is infi-
nite. We, therefore, run it for a maximum number of itera-
tions. If SolveCEGIS fails to find a controller sequence prior
to the timeout, then (23) is infeasible for the currentWcand,
i.e., there is no control input that can satisfy ϕ for all dis-
turbances in Wcand. We conclude that the specification is
not realizable (or, equivalently, the contract is inconsistent).
While this infeasibility can be repaired by modifying ψ based
on the techniques in Section 5.2 and 6.1, an alternative so-
lution is to repair ϕw by minimally pruning the bounds on
wt (RepairAdversarial routine).

To do so, given a small tolerance ε ∈ R+, we find

wu = max
wHi ∈Wcand
t∈{1,...,H−1}

wi,t wl = min
wHi ∈Wcand
t∈{1,...,H−1}

wi,t (26)

and define su = wmax − wu and sl = wl − wmin. We
then use su and sl to update the range for wt in ϕw to
a maximal interval [w′min, w

′
max] ⊆ [wmin, wmax] and such

that at least one wH
i ∈ Wcand is excluded. Specifically, if

su ≤ sl, we set [w′min, w
′
max] = [wmin, wu − ε]; otherwise we

set [w′min, w
′
max] = [wl + ε, wmax]. The smaller the value

4A tolerance ρmin can be selected to accommodate approxima-
tion errors, i.e., ρϕ(ξH(x0,uH0 ,w

H
1 ), 0) < ρmin.

of ε, the larger the resulting interval. Finally, we use the
updated formula ϕ′w to run SolveCEGIS again until a realiz-
able control sequence uH is found. In Algorithm 4, assuming
a predicate repair procedure, FindMin provides the solution
with minimum slack norm between the ones repairing ψ and
ϕw.

Example 6 (Adversarial Race). We consider the
specification in Example 3. For the same horizon as in
the previous examples, after solving the satisfiability prob-
lem, for the fixed uH0 , the CEGIS loop returns aadv

t = 2
for all t ∈ {0, . . . , H − 1} as the single element in Wcand

for which no controller sequence can be found. We then
choose to tighten the environment assumptions to make the
controller realizable, by shrinking the bounds on aadv

t by us-
ing Algorithm 4 with ε = 0.01. After a few iterations, we
finally obtain w′min = 0 and w′max = 1.24, and therefore
φ′w = G[0,∞)

(
0 ≤ aadv

t ≤ 1.22
)
.

Under the assumption that SolveCEGIS terminates before
reaching the maximum number of iterations5, and within
the selected tolerance ε, the following theorems state the
properties of Algorithm 4.

Theorem 3 (Soundness). Given a controller synthe-
sis problem P = (fd, gd, x0, ϕ, J), such that (9) is infeasi-
ble at time t, let ϕ′ ∈ REPAIRD,T (ϕ) be the repaired for-
mula returned from Algorithm 4 without human interven-
tion, for a given set of predicates D or time interval T .
Then, P ′ = (fd, gd, x0, ϕ

′, J) is feasible at time t and (ϕ′,
D, T ) satisfy the minimality conditions in Problem 2.

Proof (Theorem 3). We recall that ϕ ≡ ϕw → ψ.
Moreover, Algorithm 4 provides the solution with minimum
slack norm between the ones repairing ψ and φw in the case
of predicate repair. Then, when ψ = ϕe → ϕs is modified
using Algorithm 1, soundness is guaranteed by Theorem 1
and the termination of the CEGIS loop. On the other hand,
assume Algorithm 4 modifies the atomic predicates in φw.
Then, the RepairArdversarial routine and (26), together
with the termination of the CEGIS loop, assure that ϕw
is also repaired in such a way that the controller is real-
izable, and the length of the bounding box around wt is
maximal within an error bounded by ε (i.e., it differs from
the maximal interval length by at most ε), which concludes
our proof.

Theorem 4 (Completeness). Assume the controller
synthesis problem P = (fd, gd, x0, ϕ, J) results in (9) being
infeasible at time t. If there exist a set of predicates D and
time-intervals T such that there exists Φ ⊆ REPAIRD,T (ϕ)
for which ∀ φ ∈ Φ, P ′ = (fd, gd, x0, φ, J) is feasible at time t
and (φ, D, T ) are minimal in the sense of Problem 2, then
Algorithm 4 returns a repaired formula ϕ′ in Φ.

Proof (Theorem 4). As discussed in the proof of The-
orem 3, if Algorithm 4 modifies ψ = ϕe → ϕs using Al-
gorithm 1, completeness is guaranteed by Theorem 2 and
5If this is not the case, then Algorithm 4 terminates with
UNKNOWN.



the termination of the CEGIS loop. On the other hand,
let us assume there exists a minimum norm repair for the
atomic predicates of ϕw, which returns a maximal interval
[w′min, w

′
max] ⊆ [wmin, wmax]. Then, given the termination of

the CEGIS loop, by repeatedly applying (26) and RepairAd-

versarial, it is also possible to produce a predicate repair
such that the corresponding interval [w′′min, w

′′
max] makes the

control synthesis realizable and is maximal within an error
bounded by ε (i.e., its length differs by at most ε from the
one of the maximal interval [w′min, w

′
max]). Hence, ϕ′ ∈ Φ

holds.

7. CASE STUDIES
7.1 Autonomous Driving
We consider the problem of synthesizing a controller for an
autonomous vehicle in a city driving scenario. We analyze
the following two tasks: (i) changing lanes on a busy road;
(ii) performing an unprotected left turn at a signalized in-
tersection. We use a simple point-mass model for the vehi-
cles on the road. For each vehicle, we define the state as
x = [x y θ v]>, where x and y denote the coordinates, and
θ and v represent the direction and speed, respectively. Let
u = [u1 u2]> be the control input for each vehicle, where u1

is the steering input and u2 is the acceleration. Then, the
vehicle’s state evolves according to the following dynamics:

ẋ = v cos θ
ẏ = v sin θ

θ̇ = v · u1/m
v̇ = u2,

(27)

where m is the vehicle mass. To determine the control strat-
egy, we linearize the overall system dynamics around the ini-
tial state at each run of the MPC, which is completed in less
than 2 s on a 2.3-GHz Intel Core i7 processor with 16-GB
memory. We further impose the following constraints on the
ego vehicle (i.e., the vehicle under control): (i) a minimum
distance must be established between the ego vehicle and
other cars on the road to avoid collisions; (ii) the ego vehicle
must obey the traffic lights; (iii) the ego vehicle must stay
within its road boundaries.

7.1.1 Lane Change
We consider a lane change scenario on a busy road as shown
in Fig. 4a. The ego vehicle is in red. Car 1 is at the
back of the left lane, Car 2 is in the front of the left lane,
while Car 3 is on the right lane. The states of the vehicles
are initialized as follows: xCar 1

0 = [−0.2 − 1.5 π
2

0.5]>,

xCar 2
0 = [−0.2 1.5 π

2
0.5]>, xCar 3

0 = [0.2 1.5 π
2

0]>, and

xego
0 = [0.2 − 0.7 π

2
0]>. The control inputs for ego and

Car 3 are initialized at [0 0]>; the ones for Car 1 and Car
2 are set to uCar 1

0 = [0 1]> and uCar 2
0 = [0 − 0.25]>. The

objective of ego is to safely change lane, while satisfying the
following requirements:

ϕstr = G[0,∞)(|u1| ≤ 2) Steering Bounds

ϕacc = G[0,∞)(|u2| ≤ 1) Acceleration Bounds

ϕvel = G[0,∞)(|v| ≤ 1) Velocity Bounds

(28)

The solid blue line in Fig. 4 is the trajectory of ego as ob-
tained from our MPC scheme, while the dotted green line is
the future trajectory pre-computed for a given horizon at a
given time. MPC becomes infeasible at time t = 1.2 s when

(a) (b)

Figure 4: Changing lane is infeasible at t = 1.2 s in (a) and gets
repaired in (b).

(a) (b)

Figure 5: Left turn becomes infeasible at time t = 2.1 s in (a)
and is repaired in (b).

the no-collision requirement is violated, and a possible col-
lision is detected between the ego vehicle and Car 1 before
the lane change is completed (Fig. 4a). Our solver takes 2 s,
out of which 1.4 s are needed to generate all the IISs, con-
sisting of 39 constraints. To make the system feasible, the
proposed repair increases both the acceleration bounds and
the velocity bounds on the ego vehicle as follows:

ϕnew
acc = G[0,∞)(|u2| ≤ 3.5)

ϕnew
vel = G[0,∞)(|v| ≤ 1.54)

(29)

When replacing the initial requirements ϕacc and ϕvel with
the modified ones, the revised MPC scheme allows the ve-
hicle to travel faster and safely complete a lane change ma-
neuver, without risks of collision, as shown in Fig. 4b.

7.1.2 Unprotected Left Turn
In the second scenario, we would like the ego vehicle to
perform an unprotected left turn at a signalized intersec-
tion, where the ego vehicle has a green light and is supposed
to yield to oncoming traffic, represented by the yellow cars
crossing the intersection in Fig. 5. The environment vehicles
are initialized at the states xCar 1

0 = [−0.2 0.7 − π
2

0.5]>

and xCar 2
0 = [−0.2 1.5 − π

2
0.5]>, while the ego vehicle is

initialized at xego
0 = [0.2 − 0.7 π

2
0]>. The control input

for each vehicle is initialized at [0 0]>. Moreover, we use
the same bounds as in (28).

The MPC scheme becomes infeasible at t = 2.1 s. The
solver takes 5 s, out of which 2.2 s are used to generate the
IISs, including 56 constraints. As shown in Fig. 5a, the ego
vehicle yields in the middle of intersection for the oncoming
traffic to pass. However, the traffic signal turns red in the
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Figure 6: Simplified model of an aircraft electric power system
(left) and counterexample trajectory (right). The blue, green and
red lines represent environment, state, and controller variables,
respectively, for a 380-ms run.

meanwhile, and there is no feasible control input for the ego
vehicle without breaking the traffic light rules. Since we do
not allow modifications to the traffic light rules, the original
specification is repaired again by increasing the bounds on
acceleration and velocity, thus obtaining:

ϕnew
acc = G[0,∞)

(
|u2| ≤ 11.903

)
ϕnew

vel = G[0,∞)

(
|v| ≤ 2.42

) (30)

As shown by the trajectory in Fig. 5b, under the assump-
tions and initial conditions of our scenario, higher allowed
velocity and acceleration make the ego vehicle turn before
the oncoming cars get close or cross the intersection.

7.2 Aircraft Electric Power System
Fig. 6 shows a simplified architecture for the primary power
distribution system in a passenger aircraft [18]. Two power
sources, the left and right generators G0 and G1, deliver
power to a set of high-voltage AC and DC buses (B0, B1,
DB0, and DB1) and their loads. AC power from the gen-
erators is converted to DC power by rectifier units (R1 and
R2). A bus power control unit (controller) monitors the
availability of power sources and configures a set of elec-
tromechanical switches, denoted as contactors (C0, . . . , C4),
such that essential buses remain powered even in the pres-
ence of failures, while satisfying a set of safety, reliability,
and real-time performance requirements [18]. Specifically,
we assume that only the right DC bus DB1 is essential, and
use our algorithms to check the feasibility of a controller that
accommodates a failure in the right generator G1, by rerout-
ing power from the left generator to the right DC bus in a
time interval which is less than or equal to tmax = 100 ms.
In addition, the controller must satisfy the following set of
requirements, all captured by an STL contract.

Assumptions. When a contactor receives an open (close)
signal, it shall become open (closed) in 80 ms or less. Let
the time discretization step ∆t = 20 ms, c̃i, i ∈ {0, . . . , 4}
be a set of Boolean variables describing the controller sig-
nal (where 1 stands for “closed” and 0 for “open”), ci,
i ∈ {0, . . . , 4} be a set of Boolean variables denoting the
state (open/closed) of the contactors. We can capture
the system assumptions via a conjunction of formulas of
the form: G[0,∞)(c̃i → F[0,4]ci), providing a model for
the discrete-time binary-valued contactor states. The ac-
tual delay of each contactor can then be modeled using
an integer (environment) variable ki for which we require:
G[0,∞)(0 ≤ ki ≤ 4).

Guarantees. If a generator becomes unavailable (fails), the

controller shall disconnect it from the power network in 20
ms or less. Let g0 and g1 be Boolean environment variables
representing the state of the generators, where 1 stands for
“available” and 0 for “failure.” We encode the above guar-
antees as G[0,∞)(gi → F[0,1]c̃i). A DC bus shall never be
disconnected from an AC generator for 100 ms or more,
i.e., G[0,∞)(¬bi → F[0,5]bi), where bi, i ∈ {0, . . . , 3} is a
set of Boolean variables denoting the status of a bus, where
1 stands for “powered” and 0 for “unpowered.” Additional
guarantees, which can also be expressed as STL formulas,
include: (i) If both AC generators are available, the left AC
generator shall power the left AC bus, and the right AC
generator shall power the right AC bus. C3 and C4 shall be
closed. (ii) If one generator becomes unavailable, all buses
shall be connected to the other generator. (iii) Two genera-
tors must never be directly connected.

We apply the diagnosis and repair procedure in Section 6.2
to investigate whether there exists a control strategy that
can satisfy the specification above over all possible values of
contactor delays. As shown in Fig. 6, the controller is unre-
alizable; a trace of contactor delays equal to 4 at all times
provides a counterexample, which leaves DB1 unpowered for
160 ms, exceeding the maximum allowed delay of 100-ms. In
fact, the controller cannot close C2 until C1 is tested as be-
ing open, to ensure that G1 is safely isolated from G2. To
guarantee realizability, Algorithm 4 suggests to either mod-
ify our assumptions to G[0,∞)(0 ≤ ki ≤ 2) for i ∈ {0, . . . , 4}
or relax the guarantee on DB1 to G[0,∞)(¬b3 → F[0,8]b3).
The overall execution time was 326 s, which includes formu-
lating and executing three CEGIS loops, requiring a total of
6 optimization problems.

8. CONCLUSION
We presented a set of algorithms for diagnosis and repair
of STL specifications in the setting of controller synthesis
for hybrid systems using a model predictive control scheme.
Given an unrealizable specification, our algorithms can de-
tect possible reasons for infeasibility and suggest repairs to
make it realizable. We showed the effectiveness of our ap-
proach on the synthesis of controllers for several applica-
tions. As future work, we plan to investigate techniques
that better leverage the structure of the STL formulas and
extend to a broader range of environment assumptions in
the adversarial setting.

9. ACKNOWLEDGMENTS
This work was partially supported by IBM and United
Technologies Corporation (UTC) via the iCyPhy consor-
tium, and by TerraSwarm, one of six centers of STARnet,
a Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

10. REFERENCES
[1] Gurobi Optimizer. [Online]:

http://www.gurobi.com/.

[2] R. Alur, S. Moarref, and U. Topcu. Counter-strategy
guided refinement of GR(1) temporal logic
specifications. In Formal Methods in Computer-Aided
Design, 2013.

[3] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints.

http://www.gurobi.com/


Automatica, 35, 1999.

[4] A. Bemporad and M. Morari. Robust model predictive
control: A survey. In Robustness in identification and
control, pages 207–226. Springer, 1999.

[5] J. W. Chinneck and E. W. Dravnieks. Locating
minimal infeasible constraint sets in linear programs.
ORSA Journal on Computing, 3(2):157–168, 1991.
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[7] A. Donzé and O. Maler. Robust satisfaction of
temporal logic over real-valued signals. In FORMATS,
2010.
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