
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’98. San Francisco, CA
 1998 ACM 0-58113-034-1/98/11... $5.00

59

An Insidious Haptic Invasion:
Adding Force Feedback to the X Desktop

Timothy Miller and Robert Zeleznik
Department of Computer Science

Box 1910
Brown University

Providence, RI 02912
(401) 863-7653

tsm@cs.brown.edu, bcz@cs.brown.edu

ABSTRACT
This paper describes preliminary work in a project to add
force feedback to user interface elements of the X Win-
dow System in an attempt to add true “feel” to the window
system’s “look and feel”. Additions include adding ridges
around icons and menu items to aid interaction, alignment
guides for moving windows, and other enhancements to win-
dow manipulation. The motivation for this system is the ob-
servation that people naturally have many skills for and in-
tuitions about a very rich environment of interaction forces
in the non-computer world; however, these skills are largely
unused in computer applications. We expect that haptic mod-
ifications to conventional graphical user interfaces, such as
those we present, can lead to gains in performance, intuition,
learnability, and enjoyment of the interface. This paper de-
scribes details of the implementation of the haptic window
system elements, in addition to higher-level haptic design
principles and informal observations of users of the system.

KEYWORDS: force feedback, haptic user interface,
graphical user interface

INTRODUCTION
Current graphical user interfaces (GUIs) involve the sense of
touch only in what amounts to anaccidental manner: haptic
feedback comes entirely from the basic physical properties
of input devices and does not change with the state of the
human-computer interaction (as anyone knows who has used
a computer that has crashed). Haptic feedback in these GUIs
is limited to the feel of mouse buttons as they are pressed,
the feel of keys on the keyboard, and the friction and propri-
oception involved in moving the mouse. Although unrelated
to the state of the interface, these forms ofaccidentalhap-
tic feedback often correlate with the user’s input and, further,
prove useful during interaction. For example, Barrett and
Krueger [1] found that both touch typists and casual users
had significantly better performance with and more positive

feelings toward a standard keyboard than a flat keyboard that
did not provide any haptic feedback as keys were pressed.
In the context of the virtual environment that user interfaces
attempt to provide, however, accidental haptic feedback is
impoverished when contrasted with the rich haptic feedback
generally present in real-world interactions. Thus, adding
explicit control of haptic feedback can radically change an
interface and add true feel to the interface’s “look and feel”.
Moreover, since people develop many skills that rely on the
rich haptic feedback of everyday contexts, it seems reason-
able that similar skills might be utilized in 2D graphical user
interfaces and might well enhance performance, intuition,
and enjoyment.

This paper describes the initial stages of a project for haptic
augmentation of standard GUI elements of the X Window
System [10]. The device used to provide force feedback is
a 1.0-workspace PHANToM [4] with encoder gimbal, made
by SensAble Technologies, Inc. This device (see Figure 1)
is a 6-degree-of-freedom (DOF) position input/3-DOF force
output device with a stylus grip; the switch mounted on the
stylus is mapped by this program to X’s button 1.

PREVIOUS WORK
Traditional GUIs have long attempted to provide what might
be considered workarounds for their lack of interaction-
dependent haptic feedback. These workarounds typically
rely on snapping unconstrained mouse input to the con-
strained range needed by an input technique (e.g., manipu-
lating the tab of a scrollbar or drawing a constrained line in
a drafting application). However, this snapping technique
is not completely satisfactory: during a scrolling operation,
for example, drifting off the scrollbar reduces the correspon-
dence of the interaction as the angle between the user’s direc-
tion of motion and the scrollbar’s orientation varies. Force
feedback can ameliorate this problem by physically con-
straining the user’s input to valid positions.

Rosenberg and Brave [6,8] used a 2-DOF input/2-DOF out-
put force-feedback joystick to enhance GUIs for people with
neuromotor disabilities, noting that the techniques have more
general potential applicability; Rosenberg [7] announced the
extension of these techniques to numerous other GUI ele-
ments for nondisabled users, using a mouselike 2-DOF out-

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288392.288573&domain=pdf&date_stamp=1998-11-01

60

Figure 1: The 1.0-workspace PHANToM force feed-
back device in its tilted home (see Implementation De-
tails for why it’s tilted).

put device. Munch and Stangenberg [5] used a modified
mouse with vibrotactile and braking feedback to add pre-
dictive target acquisition aids to a 2D GUI. The PHANToM
used in this project provides different DOFs from both of
these and is in addition held by the fingers in a pen-style grip
rather than by the whole hand like a joystick or mouse, thus
lending itself to different interface choices.

HAPTIFIED X
Guiding Principles
Literally haptifying the 2D GUI in the sense of adding forces
according to the gradient of the pixel intensities might pro-
duce advantages, but we do not believe it would take full
advantage of haptics. To exploit haptics further we identified
three principles for designing haptic interfaces:

Reduction of Errors Through Guidance We want to use
haptics to reduce two types of user movement errors. The
first type relates to large-scale human motor-control errors,
such as the natural drift occurring when users attempt to draw
a straight line. An example of this in 2D GUIs is the ten-
dency to drift off menus or hierarchical menu items. The
second kind of error is smaller-scale noise in the user’s in-
put, which is magnified by small workspaces. This error is
particularly important because users of our system tend to
work in the small area defined by their fine-motor, fingertip
interactions. To address these errors, haptic user interface el-
ements are needed in both targeting and basic motion control
(e.g., friction).

Force As Feedback In general, we provide force as feed-
back based on, but not controlling, the user’s input. Thus
force feedback is frequently used to indicate, but not pre-
clude, an impending transition, say to warn the user when
sliding between two menu items. In addition, even when as-
sisting the user in a motor control task, say to move along a
straight line, we provide only force feedback that is directly

proportional to the input forces applied by the user. In this
latter example, the difference between force feedback based
on the user’s input and force control of the user’s position is
subtle and more a matter of degree than of kind. In either
case, our principle, restated more specifically, is that forces
should beuser-inspired: the forces output should be scaled
by the force of the user’s input, generally along some direc-
tion other than that influenced by the output force. For in-
stance, both friction and ridges in the surface exert a lateral
force that depends on the user’s perpendicular force.

Overridable Guidance Previous systems have imple-
mented the idea that guiding haptic constraints can be over-
ridden by forcibly “popping through” them; we expand this
principle to include the ability to sidestep a constraint by go-
ing around it in the third dimension. Thus the user can move
around a constraint known to be irrelevant without having to
struggle through it.

Implemented Techniques
So far, only some of the many potential haptic GUI elements
and techniques have been implemented. The intent of this
paper is not to describe a final organized symphony of tech-
niques, but rather to give some examples within a loose over-
all structure to point the way towards that symphony.

Workspace The basic haptic workspace is a shallow box
50mm� 40mm� 2mm whose longest dimensions corre-
spond to the1280�1024 screen and are horizontal; the tip of
the stylus is constrained to remain inside the box. That2mm

of vertical distance may seem small, but it actually feels quite
large when using the interface. Nearly all the forces in the
implemented techniques occur through interaction with the
surfaces of thebox, which may have slight changes in their
geometry (ridges added along windows, for instance). The
bottom of the box, thefloor, is the primary interaction sur-
face; the side walls currently merely prevent the stylus from
getting out of range. The upper surface, theceiling, has a
mirror image of all the interaction features of the floor and
in addition has one special interaction described below for
raising windows.

Icons Icons1 are slightly dimpled, making a slight ridge
around their edges to aid targeting. When an icon is being
dragged to a target, the target icon has a deeper dimple (thus
providing feedback about the potential valid targets as well as
making them easier to target). In early evaluations, however,
users often moved so fast that they would start to coarticu-
late their button presses and releases with the ends of their
movements, so that, for instance, they clicked slightly be-
fore reaching an icon and then jammed up against the ridge
around the icon.

To improve interface behavior here, a check is made for the
user running into the ridge of an icon less than a tenth of a
second after clicking (or releasing) the button, provided that
the cursor is moving towards the icon at the time of the click
or release. From informal observations, this check appears
to catch nearly all occurrences of this kind of coarticulation,

1The icon haptification was done in an earlier pilot project and has not
yet been integrated with the rest of the system.

61

and does not not trigger erroneously when the user wants to
drop an icon near the target or intends to click before reach-
ing an icon. Negative viscosity in the direction of the target
was also implemented, but, seemed to have no significant ef-
fect. (Nor do many people seem to notice—presumably be-
cause the implementation is gentle enough to offset only vis-
cosity naturally present in the device itself, the user’s body,
etc. Levels high enough to be noticeable feel disruptive and
destabilizing.)

Windows Most of the haptic elements implemented so far
have concerned window manipulation. From our observa-
tion, many people like their windows constrained to be en-
tirely on the screen when dragging them, but occasionally
want to override this constraint. To facilitate this, very small
ridges were added to the surface when dragging a window
that prevent dragging the window off the screen as long as
the stylus is in contact with the floor, but do not interfere with
motion if contact is not maintained. This lets the user switch
smoothly between constrained and unconstrained dragging
without having to distinguish them by the use of different
combinations of modifier keys or the like.

Our informal observation also indicates that some people
want to align their windows to be just adjacent to each other
without necessarily being tiled rigidly, although they fre-
quently want to break such alignment constraints. To sup-
port this alignment, small ridges were again used that could
be “popped” through by applying a sufficient lateral force. In
addition, since people often align windows in this way within
groups with little regard to relationships between groups, col-
lision checking is done only within the same “layer” of win-
dows (this has no relation to visual layering on the screen; see
the implementation details section for more information).

An earlier pilot program constrained the cursor and corre-
sponding stylus tip to remain inside the program’s window,
and thus gave many users the intuition that they ought to be
able to move the window by pushing against the side walls.
This has been implemented in the present project by slightly
dimpling client windows, leaving a small ridge on the edge
that when pushed sideways moves the window. There are
currently significant implementation constraints on this tech-
nique; see the implementation details section.

Placing ridges around the client windows made it somewhat
harder to select the window manager’s decoration border in
order to raise an obscured window, particularly annoying
if the titlebar is obscured or is far away from the cursor.
(Our window manager setup uses a keyboard-input-follows-
mouse-focus policy and requires windows to be raised ex-
plicitly, not just whenever the user clicks in them.) This
problem was addressed by letting the user raise the window
under the cursor by pulling up. The force sensation of rais-
ing a window is like pulling up on an inverted physical but-
ton. However, if the cursor is over a window that cannot be
raised, users simply feel the hard surface of the ceiling when
they pull up. Thus, the haptic feedback matches the possibil-
ity of performing the window-raise operation.

A final haptic technique was added to windows to let them
be moved across the screen merely by pressing much harder

than usual against the floor over the window, as if sliding a
piece of paper across a desk. Making the force required to
move the window too large results in discomfort and inter-
mittent loss of the window, yet making it too small results
in accidental moves of the window; the current setting is a
compromise. The non-computer world has a similar ambi-
guity: the force required to slide a sheet of paper is quite
similar to the force required to write on the paper. Thus this
might be a good opportunity to apply two-handed input, just
as in the non-computer world where the non-dominant hand
is typically used to steady a sheet of paper for writing.

Menus Force feedback was added to menus by putting
ridges between adjacent menu items. The intent was to make
it easier to stop at a given item without overshoot, and, in hi-
erarchical menus, to make it easier to remain on a given item
while sliding onto its submenu. Unfortunately, the initial im-
plementation of the ridges seems too “sticky” and menu se-
lection is considerably harder: the user must exert significant
force to overcome the ridge and winds up overshooting even
more. This problem can probably be fixed, perhaps by mak-
ing the bottoms of the ridges rounded or by allowing “tunnel-
ing” between menu items, particularly since Rosenberg and
Brave [8] report increased performance with their menu hap-
tification. Once the user gets to the right menu item, however,
staying on it to select a hierarchical submenu does informally
seem to be easier with our technique.

Observations
In preliminary refinement and informal evaluations of the
drag-and-drop interface on a repetitive task of simply drag-
ging icons to a target one after another, one author’s speed
seemed about double that when using the mouse. Others in
our lab less familiar with the interface or device seemed to
approach that level of speed with modest practice, on the or-
der of 30 minutes. Clearly, these reports are not the whole
story: they concern only performance, not comfort, usabil-
ity, intuitiveness, naturalness, or other aspects; they concern
only a very artificial task, not taking into account all the other
tasks involved in normal use of a computer, some of which
(such as typing) will be unaffected by this interface; and they
also need to be confirmed with a user study. However, these
reports do seem to indicate that this may be a promising av-
enue for exploration.

A radical change in the character of the interface is that, un-
like traditional GUIs with which users visually attend to the
pointer and target during targeting [2, 3], users of our sys-
tem can instead visually attend to “what they are doing”2,
combining approximate spatial memory of their target with
fine tuning from the haptic clues. It also appears that the
usual deceleration time in targeting motions can be greatly

2“What the user is doing”, in the sense of the interesting parts of the
interaction, may not be the same as the target of a motion. Consider drag-
ging a number of icons to a target that presents no information other than
targeting feedback. Although [2, 3] do not address this case, [2] does report
that lack of visual feedback significantly impairs targeting tasks, suggesting
that some other kind of feedback would be necessary if the users were to
attend to the icons to be dragged instead. From our own informal observa-
tions, attending to the next icon to be dragged yielded a significant fraction
of the improvement in using the PHANToM over the mouse, while trying
this strategy with the mouse impaired performance due to errors.

62

reduced, since users can anticipate the stopping force of the
ridge around a target and maintain muscle tension so that that
force will be sufficient to stop their motion.

The ergonomics of the device and setup for this application
have elicited some negative comment, generally because of
its prototype nature. Some users experience some cramping
after moderate use; this is probably due in part to the lack
of proper counterbalancing (see the implementation details)
and in part to the unnaturally stretched arm positioned neces-
sary to reach the device. The former can probably be reme-
died simply with mechanical expertise, but the latter seems
to require more radical redesign of the physical desktop, as
simply moving the PHANToM closer to the edge of the desk
would leave no space to rest the hand. It is also difficult cur-
rently to grasp the stylus as close to the tip as one would like
for good control; this is partly because the stylus button is
too far back, as well as being a little big and clumsy, and
partly because the encoderhousing gets in the way. Both
of those drawbacks should be simple for the manufacturer to
resolve.3 The current setup is also designed for right-handed
people; the PHANToM can certainly be flipped around to
become left-hand oriented, although this is something of a
chore with the current mounting.

IMPLEMENTATION DETAILS
Architecture and X Interface
This system was implemented on an SGI O2 with an R10000
processor, using SensAble Technologies’ GHOST haptic
toolkit. The X pointer was controlled through the (fairly stan-
dard) XInput extension; SGI provides an addition to X that
allows new input devices to be made available through that
extension without having to recompile the X server.

The primary principle guiding this part of the implementa-
tion was to run the same applications with and without hap-
tics with a completely seamless transition, ideally without the
programs even needing to check whether haptics is running
or not. To that end, all of the haptics-specific communication
from X clients to the haptics process is done by the clients
setting X properties on their windows. The one part of the
current implementation that doesn’t meet our ideal is that the
window manager must check whether the haptics process is
running to know whether to constrain windows to the screen
(in the absence of haptics) or not when doing a constrained
move. The only things other than pure simulation of a stan-
dard mouse’s behavior that the haptics process must currently
send back to X are indications of when the user is pressing
down hard enough to move a window, and when the user
has pulled up to raise a window. These are both currently
communicated by pretending that the device has two extra
buttons, one for each user action.

Since the PHANToM only has one button mounted on its
stylus, while three would be preferable use with typical X
applications, the haptics process uses the XInput extension
to open the mouse device and get its middle and right but-
ton states to forward them as if they were the PHANToM’s.
Since other styli, such as many made for use with tablets,

3In fact, the newest version of the PHANToM, shown at SIGGRAPH’98,
resolves both these drawbacks and the counterbalancing problem.

come with multiple buttons, this would not seem difficult to
fix in the PHANToM’s hardware. The XTEST extension was
used to make the haptics process immune to X server grabs,
thus preventing deadlock arising when the haptics process
needs information from the server to release a button, and
certain interface techniques wait for a button release before
ungrabbing the server.

To facilitate rapid changes and prototyping of the client
interaction with the haptics process, the first client
haptification was of gwm, the Generic Window Man-
ager (available by anonymous ftp fromftp.x.org in
contrib/window_managers/gwm), because it is pro-
grammable in a variant of Lisp and thus does not require re-
compiling to make changes to its interface. As a result, only
slight C-code modifications were necessary, primarily to al-
low setting of X properties on the window manager’s win-
dows rather than just the client windows. This made it possi-
ble to communicate the layering of windows for interwindow
collision checking simply by having the window manager set
a property on its top-level window indicating which layer the
window should be in. As a result, the window manager can
easily have user preferences determine which layer a given
client window should go in.

Haptic Details
In an earlier pilot program, it was discovered that trying
to use the stylus as a pen with the PHANToM in its stan-
dard orientation (rotated90Æ clockwise from Figure 1) made
the armature interfere with the stylus and user’s hand often
resulting inaccidental button clicks. The PHANToM was
therefore mounted in the makeshift structure shown in Fig-
ure 1. Unfortunately, the encoders at the tip of the stylus are
not counterbalanced against gravity, so that the users feel a
force attempting to twist the stylus out of their hands. Some
experiments with makeshift counterbalances seem to indi-
cate that this can be overcome, but the attempts were truly
makeshift and fell apart fast.4 In order to encourage a sty-
lus grip more closely approximating that of a normal pen,
the haptic workspace was set to have the floor as close to
the physical desktop as possible without encoder interfer-
ence, and four stacked mousepads were provided as a han-
drest whose top then is at about the level of the workspace
floor. That floor is currently horizontal, although it seems
likely that some tilt toward the user would be better.

A number of force parameters must be set in the implemen-
tation. For most of these, our initial guess worked out well
and has not been adjusted. Closer attention has been paid to
a few, however: the basic friction of the surface was set to try
to approximate the friction between pencil and paper while
maximizing controllability of pointer movement, and the re-
sulting static and dynamic friction coefficients were both
0.15. The basic surface spring constant is set to0:8N=mm,
and the user must exert at least3:2N downward to slide win-
dows.

Since the PHANToM cannot be constrained mechanically to
remain exactly on the surface of an object, GHOST uses a
virtual surface contact point (SCP) to calculate the force that

4Again, the newst version of the PHANToM appears to resolve this issue.

63

should be applied from interaction with the virtual surface.
This SCP is, roughly, the closest point on the surface of the
object to the PHANToM, except that it is not allowed to pop
through the surface and thus depends on the motion history.
To implement friction, an additional SCP, thestictionpoint,
is maintained that tends to stay in the same place on the ob-
ject’s surface but “slides” across the surface if the tangential
force exerted by the user exceeds the force of static friction.
(This discussion is based on the description in [9], which is
presumed to be the technique employed in GHOST because
their behaviors match and because at least two of the authors
iare involved with with SensAble.)

However, the tangential force appears to be computed in
GHOST based on the SCP reported by the object, rather than
on the user’s position; this means that when the user comes
to a concave-outward corner that “traps” the SCP, the stic-
tion point remains some distance away from the corner, no
matter how hard the user pushes. Since the stiction point is
the SCP value reported by GHOST to the user interface, the
user cannot move the cursor all the way to the edge of the
screen in the presence of friction. The effect of this is small
in terms of physical movement, but becomes very noticeable
with the large magnification between the haptic workspace
and the screen size of this application. It also gets worse as
the user grows more frustrated and thus presses the stylus
down harder, increasing the force of static friction. To work
around this problem, the program implements its own fric-
tion in the object’s SCP computation routine by controlling
the SCP it reports and moving it based on a pseudo-SCP that
is the projection of the user’s current point onto the line be-
tween what the current SCP would be without friction and
the previous stiction point. (GHOST’s friction constants are
set to zero.) If the stiction SCP and current frictionless SCP
do not share any face in common, the reported SCP is simply
set to the frictionless SCP.

GHOST’s implementation of surface contact damping ap-
pears to damp velocity in all directions whenever the stylus
is in contact with the surface; the surfaces thus feel as though
they have more friction than they should, which is partic-
ularly bad for low friction surfaces. To work around that,
the program implements its own damping in a gstEffect that
damps only the component of velocity perpendicular to the
surface.

Menu items, icons, and windows all had the ridges around
them implemented by dimpling each user interface element
into the surface of the floor, as shown in Figure 2. The sides
of the ridges always sloped in at a45Æ angle; the sloped
slides of all elements except drag-and-drop targets were one
pixel wide, while drag-and-drop targets had 12.5-pixel-wide
sides. The abrupt disappearance of the dimples, for instance
when a menu is removed, means that the PHANToM is sud-
denly under the surface and as a result displays no forces;
to avoid this, the system offsets the workspace by the depth
of the dimple and gradually restores it to its original posi-
tion at a rate of1mm=s. (This is implemented with a gst-
Dynamic subclass so that GHOST maintains the proper SCP
positions.)

The infinitesimal ridges used to constrain windows onscreen

Top View Side View

Figure 2: Geometry of the haptic dimple used in menu
items, icons, and windows.

and for interwindow collision were implemented by having
the desktop object prevent its reported SCP from moving out-
side of the appropriate region; this feels like a little ridge as
long as the user is on the surface, but disappears as soon as
the stylus is lifted off it. If the user exerts more than2N side-
ways against a ridge, the SCP pops through that constraint by
temporarily suspending it.

The ridges placed around windows that allow them to be
moved by pushing are currently active only for windows that
are completely unobscured on the screen (currently deter-
mined by watching X VisibilityNotify events). In the future,
we expect to track the layering of all the windows so that
forces can be generated for all visible window borders (and
for pushing from the outside too). The technique of pushing
down into the floor to slide windows is available for partially
visible windows as well.

The “click” the usef feels when pulling up to raise a win-
dow is implemented by having the program compute its own
normal force (setting GHOST’s parameter to zero) in a gst-
Effect subclass working in conjunction with the desktop ob-
ject. This allows the program to simulate a standard button
model with an initial springy area, dead band, and hard stop.
Both the initial springy area and hard stop have the same
spring constant as the rest of the ceiling, while the dead band
currently has a constant restoring force of0:5N. The click
feedback occurs only when the pointer is over a window that
can be raised, which is determined by checking if the pointer
is contained in any mapped, non-override-redirect top-level
window but not contained in any mapped, override-redirect
top-level window.

CONCLUSIONS AND FUTURE WORK
Adding force feedback to 2D GUIs does seem to be a promis-
ing direction to explore. In particular, using a third DOF in
this study offers control advantages over 2-DOF devices. The
gain seems to be significant when users change their strate-
gies to direct visual attention to the area of interest for their
next activity. We explored this issue in the case where users
had a general idea of where to move, and where haptic feed-
back was sufficient to guide them the rest of the way to the
target. It seems reasonable that this gain results from the ad-
ditional bandwidth introduced by the haptic channel. More
careful and systematic studies in this area are clearly needed.

All the user-inspired forces tried in this project were either
vertical displacement or displacement of the stylus tip into
the simulated surface. There may be other ways in which
forces can be inspired by the user’s actions, but it certainly
seems to work well to have vertical displacement control en-
gagement of objects, constraints, and guides, with displace-
ment into the simulated surface controlling the intensity of

64

feedback forces. Unfortunately, this conclusion seems not
to be completely general, as the attempt with menu items
didn’t work well; some other principles may well be identi-
fied in future work, perhaps relating how smoothly the sur-
face slope would change or to how closely objects or features
are packed.

There are a number of techniques that would be interesting
to prototype in this system. One is to have buttons with se-
quences of pressure levels, like the focus-hold or light-meter
feature of the shutter button on many cameras. A possible
mapping of operations is to show a preview of the main op-
eration (by temporarily inserting text for a paste operation or
bringing up a transparent window for a find operation) for
light pressure, undoing the preview by releasing and confir-
miing it by pressing harder. Other possible operations to map
include simple help labels, more extensive help, and chang-
ing settings. It would also be nice to implement more exten-
sively the idea of preventing clicking where clicking is not
accepted.

It may be fruitful to prototype haptic user interface ideas
using a general device like the PHANToM, and then see
whether specific techniques can be extracted and made to
work with other devices. The PHANToM does not have
the best possible ergonomics for this application, but it is
the best existing device the authors are aware of and this
project may be regarded as prototyping for future more er-
gonomic devices. The PHANToM is also expensive, and if
the multiple-pressure-level idea is viable, it could presum-
ably be implemented using an ordinary mouse whose buttons
have been modified to have multiple pressure stops (perhaps
with a simple clutching mechanism to provide limited feed-
back). Another alternative is to reduce the cost of the PHAN-
ToM itself; SensAble has said that PHANToMs with smaller
workspaces can be made less expensively than the current
ones, and the results reported here indicate that a very much
smaller workspace is viable for this application.

Other future work includes user studies, integrating the
earlier drag-and-drop program elements with the current
X version, smoothing dimples in some way (perhaps via
force shading) to address the sticking problem with the cur-
rent menus, adding force feedback to other simple UI ele-
ments such as scrollbars, URL targets in web browsers, etc.,
and constructing a toolkit of UI techniques so that haptic
user interface elements could be assembled and prototyped
from those techniques rather than implementing them from
scratch.

ACKNOWLEDGMENTS
Thanks to Lee Markosian, Katrina Avery, John Hughes, and
Joseph LaViola for reading this paper and making sugges-
tions. Thanks also to the helpful suggestions of the anony-
mous reviewers. This work is supported in part by the NSF
Graphics and Visualization Center, Alias/Wavefront, Ad-
vanced Networks and Services, Autodesk, Microsoft, Sun
Microsystems, Silicon Graphics, Inc., and TACO.

REFERENCES
1. BARRETT, J.,AND KRUEGER, H. Performance effects

of reduced proprioceptive feedback on touch typists and

casual users in a typing task.Behaviour and Infor-
mation Technology 13, 6 (November–December1994),
373–381.

2. ELLIOTT, D., LYONS, J., AND DYSON, K. Rescal-
ing an acquired discrete aiming movement: Specific or
general motor learning?Human Movement Science 16,
1 (February 1997), 81–96.

3. KENNEDY, A., AND BACCINO, T. The effects of
screen refresh rate on editing operations using a com-
puter mouse pointing device.The Quarterly Journal of
Experimental Psychology 48A, 1 (1995), 55–71.

4. MASSIE, T. H. Initial haptic explorations with the
phantom: Virtual touch through pointer interaction.
Master’s thesis, Massachusetts Institute of Technology,
February 1996.

5. MÜNCH, S.,AND STANGENBERG, M. Intelligent con-
trol for haptic displays.Computer Graphics Forum 15,
3 (September 1996), C217–C226. Proceedings of EU-
ROGRAPHICS’96.

6. ROSENBERG, L., AND BRAVE, S. Using force feed-
back to enhance human performance in graphical user
interfaces. InCHI 96 (April 1996), ACM SIGCHI,
pp. 291–292.

7. ROSENBERG, L. B. FEELit mouse: Adding a re-
alistic sense of FEEL to the computing experience.
http://www.force-feedback.com/feelit
/white-paper.html , October 1997.

8. ROSENBERG, L. B., AND BRAVE, S. The use of
force feedback to enhance graphical user interfaces. In
Stereoscopic Displays and Virtual Reality Systems III
(1996), M. T. Bolas, S. S. Fisher, and J. O. Merritt, Eds.,
pp. 243–248. proc SPIE 2653.

9. SALISBURY, K., BROCK, D., MASSIE, T., SWARUP,
N., AND ZILES, C. Haptic rendering: Programming
touch interaction with virtual objects. In1995 Sympo-
sium on Interactive 3D Graphics(1995), ACM SIG-
GRAPH, pp. 123–130.

10. SCHEIFLER, R. W., AND GETTYS, J. X Window Sys-
tem, third ed. Digital Press, Burlington, MA, 1992.

