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Abstract 

Modern Software Architectures often have to deal with mo- 
biie components. Therefore, the structure of these systems 
is dynamic and continuously changing. 

We introduce MobiS, a coordination language based on 
multiple tuple spaces and show through an example how it 
can be used for the specification of software architectures 
containing mobile components. The flexibility of the lan- 
guage encodes mobility in the model, so the specification of 
mobile components and of reconfigurable systems is easy. 

Due to the non-determinism of the coordination model 
the behaviors of components context-dependent can be spec- 
ified and used to make assumptions on the kind of architec- 
ture the component can be put into. 
Topic Area: Dynamic Architectures and Reconfiguration. 

1 Introduction 

The presence of mobile components in the modern software 
architectures is continuously increasing: this trend requires 
the introduction of languages able to specify the dynamics 
of the systems. 

Software Architecture deals with: ‘the structure of the 
components of a program/system, their interrelationships, 
and guidelines governing their design and evolution over 
time [7]. ” 

In presence of mobility the “evolution over time” of the 
system is a key issue: every specification language with the 
aim of specifying this kind of architectures must be able to 
define the behavior of the components with respect to the 
system. 

In this paper we introduce a coordination language for 
the specification of software architectures with mobile com- 
ponents. The coordination mechanism based on multiple 
tuple space allows the specification of mobility aspect at the 
software architectural level. 

AS the structure of these kind of systems is dynamic, 
the language used for the specification must be flexible: the 
multiple tuple space based model provides active rules for 
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the movement of the components, encapsulating the mobil- 
ity aspects inside the language. 

Many architectural description languages have been de- 
vised for the specification of software architecture, exam- 
ples include Wright [l], Darwin [lo], Cham [8]. Recently, 
the need of the specification of the dynamic aspects besides 
the static ones has increased. We associate this trend in the 
specification of dynamics to the need of coping with mobility 
and reconfigurability at the software architectural specifica- 
tion level. 

The coordination language we present deals with the cre- 
ation, movement and termination of architectural compo- 
nents, their communication activities, their distribution as 
well as the synchronization of their actions over time. 

As far as software engineering is concerned, the decou- 
pling between components and their coordination realized 
by the coordination languages can be regarded as fostering 
the distinction between components and their interconnec- 
tion which is at the root of research in languages and meth- 
ods for software architectures [la]. 

The paper is organized as follows: Section 2 contains an 
overview of the MobiS language and an example of specifi- 
cation. Section 3 shows how MobiS can be used to specify 
software architectures with mobile components. Finally in 
Section 4 we illustrate some related work and conclusions. 

2 Overview of MobiS 

MobiS is a specification language based on multiple tuple 
spaces. MobiS specifications are hierarchically structured: 
a MobiS specification denotes a tree of nested spaces that 
dynamically evolves in time. It is an enhanced version of 
PoliS [4]. 

The figure 1.a shows the MobiS structure of the nested 
spaces while figure 1.b shows the tree structure correspond- 
ing to the spaces in figure 1.a. 

MobiS spaces are first class entities, and can move. For- 
mally, a MobiS space contains three types of tuples: ordi- 
nary tuples, which are ordered sequences of values, program 
tuples, which represent agents, and space tuples, which con- 
tain subspaces. 

A program tuple denotes an agent, which can modify a 
space removing and adding tuples (and therefore spaces). 
However, an agent can only handle the tuples of the space it 
belongs to and the tuples of its parent space. This constraint 
defines both the “input” and the “output” environment of 
any agent, as represented by a program tuple. 

A space is modified by agents that are reactions that 
transform multi-sets of tuples in multi-sets of tuples. 
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Spaces are represented as space triples (“name” * SP) 
where name is the name of the space. SP is the specification 
of the contents of the space. A space is a multi-set of triples. 

Both agents and spaces are first class entities in MobiS. 
In fact, they are themselves part of spaces as program or 
space tuples, respectively, that can be read, consumed or 
produced just like ordinary tuples. 

A program tuple has the form ( “rule-id”: rule) where 
rule-id is a rule identifier and rule is the specification of the 
reaction (rule). While a space tuple has the form (“name” * 
SP) where name is the name that identifies the space, and 
SP is the space configuration. Program and space tuples 
have an identifier which simplifies reading or consuming pro- 
gram and space tuples (“rule-id” and “name”). 

Whenever disjoint multi-sets of tuples satisfy the activa- 
tion preconditions of a set of rules, such rules can be exe- 
cuted independently and simultaneously: every rule modifies 
only the portion of space containing the tuples that must be 
read or consumed and therefore other rules can modify other 
tuples in the space or other spaces. 

As they are first class entities, spaces can move. There- 
fore, whole subtrees (referring to the space tree of the MobiS 
specification) can migrate from one part of the tree to an- 
other. 

The mobility in MobiS consists of consuming and pro- 
ducing spaces tuples by the rules. As the scope of the rules 
is the local space and the parent space, the moving is per- 
formed “step by step”, from a space it its parent and so 
on. 

Tuples representing messages are put in a space shared 
by components which have to communicate. Hence, com- 
munication is decoupled because components do not know 
each other, since they access tuples by pattern matching. 
Since messages have no destination address, their contents 
determine the set of possible receivers, (communication is 
property driven). 

In summary, a space represents at the same time both a 
component performing a (chemical) computation and a per- 
sistent, multicast channel supporting communication among 
components it contains. 

El 
Figure 1: MobiS nested spaces and the tree of nested spaces 

3 Mobile Software Architecture and MobiS 

Our purpose is to show how software architectures with mo- 
bile components can be specified using the MobiS language. 

A component is specified in MobiS using a space. In this 
way each architectural component can be seen as a compo- 
sition of different sub-components (i.e. sub-spaces) or, more 
abstractly, as a single component (i.e. a space containing 
only program and ordinary tuples). 

The coordination model is a good framework to abstract 
from communication details: at the architectural level we 
would like to have an abstract view of the system: the tuple- 
based communication mechanism let the focus be put on 
the structure. On the other side, if the specification of the 
connection is important, it is possible to associate with the 
connector a space in order to define its particular behavior. 

As the components are spaces (i.e. first class entities of 
the model) they can move over the system. The architecture 
is dynamic reconfigurable as the components makes their 
assumptions on the external environment and can consider 
different possible behaviors (due to the non-determinism of 
the application of the rules of the MobiS language), depend- 
ing on what the environment offers. 

-The figure 2 contains an example of a Client-Server sys- 
tem where the Client and the Server exchanee reauests and 
replies. However the architecture is reconfigurable and when 
the network is busy the Client sends an Agent to the Server 
site in order to avoid heavy communication on the links. 
Then, the Agent and the Server communicate in the local 
server site. When the Agent has finished it goes back to the 
Client site. 

This is an example of a dynamic architecture that changes 
its configuration depending on the context. 

We can easily handle this situation using MobiS non- 
deterministic model that allows the components to make 
assumptions on the external environment and provide dif- 
ferent behaviors with respect to the different contexts: a 
similar approach has been studied in [9]. 

In order to give the flavor of the way in which MobiS 
specifications can be written we show the formalization of 
the Client comnonent in table 1. 

The Client ‘space contains an ordinary tuple indicating 
the name of the client (“name”, k) where I; is the formal 
parameter containing the name. It also contains the tuple 
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I Client 1 
CIient = (“name”, k), (“put” : PUT), (“reqlist”. T)> (“get” : GET). 

(“move” : MOVE), (“create” : CREATE), ( ‘iseruername”, s) D 
/ 

PC/T = 

4 

(~~~eq~~~t”,~),?((“name”,k),(“id~e”) 1 (t)-f(r) bQ T(“~eq”,i.t)l(“~)ait”) 1 
where f z) = (head(z)) 

GET = 

4 

T( “~eply”,i,r), (“reqlist”,t), 

D 
(3)-f(r) 

(“name”, i), (“wait”) 
where f z) = (diff(z,heud(l))) 

D 

1 

CREATE = 4 T( “networkbusy”), (“name”, i), (‘keglist” 
‘a’- ‘T,” f. ’ 

where f(z, y) = (a) 
7T) D >Q (a * .4GENT) 1 

MOVE = 1 (a * AGENT), (“se~ername”, k) B 
where f(z,y) = (concat(z,y)) 

(J)‘f(“rk) l 4 T(j + AGENT) B 

I 
GETAG = 1 I(u + AGENT)(“name”,k),ask(prefil(a,Ic) 1 - (1 (a*AGENT) 1 

I 

Table 1: Specification of the Client component 

Figure 2: MobiS nested spaces and the tree of nested spaces 

(“reqlist”, r) of the list of the requests for the server, the 
name of the server (“ser~ernume”, s), and some program 
tuples that refer to rules specified below in the table. 

The rules PUT and GET handle the communication 
with the server when the network is not busy. The rule 
PUT emits in the external space (the network) a request 
extracting it from the requests list. The rule GET gets the 
reply from the Server (i.e. it checks if a reply directed to the 
Client is present on the network), and stores it in the local 
space updating the requests list (it throws the first request 
in the queue as it has already been served). 

When the net is busy the rule CREATE generates an 
AGENT space storing the requests in it. The rule MOVE 
moves the Agent into the network. It also changes the name 
of the Agent appending the name of the Server to it in order 
to indicate the destination of the Agent. 

The last rule is GETAG that gets the Agent from the 
network when it come back after having finished its work on 
the Server site. 

The Client can choose the communication protocol de- 
pending on its context: when the network is not conges- 
tioned it sends requests and wait for replies, while when the 
network is very busy it build an Agent and sends it to the 
Server site to exploit local computation. 

4 Related Work and Conclusions 

Modern software architectures often deal with mobile com- 
ponents and there is a need of formalization of new archi- 
tectural patterns based on mobility. MobiS has an inter- 
esting application in the specification of mobility aspects: 
the coordination allows flexible moving of components and 
extensibility of the architecture. 

The MobiS language encodes mobility as a feature in its 
model and the specification of architectures in presence of 
mobile components is immediate. The space is a first class 
entity of the language: spaces represent components and 
can be nested, in this way compositional mechanisms can 
be exploited. 

New formal languages are being proposed for the spec- 
ification of mobility features; a short list includes Bauhaus 
[3], Ambit [2], Join Calculus [6], Klaim [5], and Mobile Unity 

WI. 
Our purpose has been is to focus on the architectural 

aspects of systems with mobile components and to reason 
about mobility at the architectural level. 

We are studying how security aspects can be introduced 
and analyzed at the software architecture level. We are also 
reasoning on the possible assumptions that every mobile 
component can make on the other components of the ar- 
chitecture: MobiS model of scoping of the reactions can be 
exploited for this kind of reasoning. 
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