
Soft,ware Architecture and Mobility

P. Ciancarini, and C. Mascolo
Dipartimento di Scienze dell’lnformazione

liniversitk di Bologna
Mura Anteo Zamboni 7, I-40127 Bologna, Italy

phone: +39 051 354506
e-mail: {ciancarini,mascolo}Bcs .unibo. it

Abstract

Modern Software Architectures often have to deal with mo-
biie components. Therefore, the structure of these systems
is dynamic and continuously changing.

We introduce MobiS, a coordination language based on
multiple tuple spaces and show through an example how it
can be used for the specification of software architectures
containing mobile components. The flexibility of the lan-
guage encodes mobility in the model, so the specification of
mobile components and of reconfigurable systems is easy.

Due to the non-determinism of the coordination model
the behaviors of components context-dependent can be spec-
ified and used to make assumptions on the kind of architec-
ture the component can be put into.
Topic Area: Dynamic Architectures and Reconfiguration.

1 Introduction

The presence of mobile components in the modern software
architectures is continuously increasing: this trend requires
the introduction of languages able to specify the dynamics
of the systems.

Software Architecture deals with: ‘the structure of the
components of a program/system, their interrelationships,
and guidelines governing their design and evolution over
time [7]. ”

In presence of mobility the “evolution over time” of the
system is a key issue: every specification language with the
aim of specifying this kind of architectures must be able to
define the behavior of the components with respect to the
system.

In this paper we introduce a coordination language for
the specification of software architectures with mobile com-
ponents. The coordination mechanism based on multiple
tuple space allows the specification of mobility aspect at the
software architectural level.

AS the structure of these kind of systems is dynamic,
the language used for the specification must be flexible: the
multiple tuple space based model provides active rules for

PmG.Sion to mak digital or hard copies ofall or pa~ ofthis wo,.k for
Personal Or &woom use is granted without fee provided that copies
arc “01 made Or dist~huted for prolit or commercial adrantage and [hat
coPies hcsr this n&cc and the full citation on [he first page. era copy
otherwiSe* to rwblish. to post on sewers or to redistribute to lists,
rewires prior specific permission ancl/or a fee.
JSAW3 *Jando Florida UsA
Qvyright ACM 1998 l-581 13-081-3/98/l 1...$5.00

the movement of the components, encapsulating the mobil-
ity aspects inside the language.

Many architectural description languages have been de-
vised for the specification of software architecture, exam-
ples include Wright [l], Darwin [lo], Cham [8]. Recently,
the need of the specification of the dynamic aspects besides
the static ones has increased. We associate this trend in the
specification of dynamics to the need of coping with mobility
and reconfigurability at the software architectural specifica-
tion level.

The coordination language we present deals with the cre-
ation, movement and termination of architectural compo-
nents, their communication activities, their distribution as
well as the synchronization of their actions over time.

As far as software engineering is concerned, the decou-
pling between components and their coordination realized
by the coordination languages can be regarded as fostering
the distinction between components and their interconnec-
tion which is at the root of research in languages and meth-
ods for software architectures [la].

The paper is organized as follows: Section 2 contains an
overview of the MobiS language and an example of specifi-
cation. Section 3 shows how MobiS can be used to specify
software architectures with mobile components. Finally in
Section 4 we illustrate some related work and conclusions.

2 Overview of MobiS

MobiS is a specification language based on multiple tuple
spaces. MobiS specifications are hierarchically structured:
a MobiS specification denotes a tree of nested spaces that
dynamically evolves in time. It is an enhanced version of
PoliS [4].

The figure 1.a shows the MobiS structure of the nested
spaces while figure 1.b shows the tree structure correspond-
ing to the spaces in figure 1.a.

MobiS spaces are first class entities, and can move. For-
mally, a MobiS space contains three types of tuples: ordi-
nary tuples, which are ordered sequences of values, program
tuples, which represent agents, and space tuples, which con-
tain subspaces.

A program tuple denotes an agent, which can modify a
space removing and adding tuples (and therefore spaces).
However, an agent can only handle the tuples of the space it
belongs to and the tuples of its parent space. This constraint
defines both the “input” and the “output” environment of
any agent, as represented by a program tuple.

A space is modified by agents that are reactions that
transform multi-sets of tuples in multi-sets of tuples.

21

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288408.288414&domain=pdf&date_stamp=1998-11-01

Spaces are represented as space triples (“name” * SP)
where name is the name of the space. SP is the specification
of the contents of the space. A space is a multi-set of triples.

Both agents and spaces are first class entities in MobiS.
In fact, they are themselves part of spaces as program or
space tuples, respectively, that can be read, consumed or
produced just like ordinary tuples.

A program tuple has the form (“rule-id”: rule) where
rule-id is a rule identifier and rule is the specification of the
reaction (rule). While a space tuple has the form (“name” *
SP) where name is the name that identifies the space, and
SP is the space configuration. Program and space tuples
have an identifier which simplifies reading or consuming pro-
gram and space tuples (“rule-id” and “name”).

Whenever disjoint multi-sets of tuples satisfy the activa-
tion preconditions of a set of rules, such rules can be exe-
cuted independently and simultaneously: every rule modifies
only the portion of space containing the tuples that must be
read or consumed and therefore other rules can modify other
tuples in the space or other spaces.

As they are first class entities, spaces can move. There-
fore, whole subtrees (referring to the space tree of the MobiS
specification) can migrate from one part of the tree to an-
other.

The mobility in MobiS consists of consuming and pro-
ducing spaces tuples by the rules. As the scope of the rules
is the local space and the parent space, the moving is per-
formed “step by step”, from a space it its parent and so
on.

Tuples representing messages are put in a space shared
by components which have to communicate. Hence, com-
munication is decoupled because components do not know
each other, since they access tuples by pattern matching.
Since messages have no destination address, their contents
determine the set of possible receivers, (communication is
property driven).

In summary, a space represents at the same time both a
component performing a (chemical) computation and a per-
sistent, multicast channel supporting communication among
components it contains.

El
Figure 1: MobiS nested spaces and the tree of nested spaces

3 Mobile Software Architecture and MobiS

Our purpose is to show how software architectures with mo-
bile components can be specified using the MobiS language.

A component is specified in MobiS using a space. In this
way each architectural component can be seen as a compo-
sition of different sub-components (i.e. sub-spaces) or, more
abstractly, as a single component (i.e. a space containing
only program and ordinary tuples).

The coordination model is a good framework to abstract
from communication details: at the architectural level we
would like to have an abstract view of the system: the tuple-
based communication mechanism let the focus be put on
the structure. On the other side, if the specification of the
connection is important, it is possible to associate with the
connector a space in order to define its particular behavior.

As the components are spaces (i.e. first class entities of
the model) they can move over the system. The architecture
is dynamic reconfigurable as the components makes their
assumptions on the external environment and can consider
different possible behaviors (due to the non-determinism of
the application of the rules of the MobiS language), depend-
ing on what the environment offers.

-The figure 2 contains an example of a Client-Server sys-
tem where the Client and the Server exchanee reauests and
replies. However the architecture is reconfigurable and when
the network is busy the Client sends an Agent to the Server
site in order to avoid heavy communication on the links.
Then, the Agent and the Server communicate in the local
server site. When the Agent has finished it goes back to the
Client site.

This is an example of a dynamic architecture that changes
its configuration depending on the context.

We can easily handle this situation using MobiS non-
deterministic model that allows the components to make
assumptions on the external environment and provide dif-
ferent behaviors with respect to the different contexts: a
similar approach has been studied in [9].

In order to give the flavor of the way in which MobiS
specifications can be written we show the formalization of
the Client comnonent in table 1.

The Client ‘space contains an ordinary tuple indicating
the name of the client (“name”, k) where I; is the formal
parameter containing the name. It also contains the tuple

22

I Client 1
CIient = (“name”, k), (“put” : PUT), (“reqlist”. T)> (“get” : GET).

(“move” : MOVE), (“create” : CREATE), (‘iseruername”, s) D
/

PC/T =

4

(~~~eq~~~t”,~),?((“name”,k),(“id~e”) 1 (t)-f(r) bQ T(“~eq”,i.t)l(“~)ait”) 1
where f z) = (head(z))

GET =

4

T(“~eply”,i,r), (“reqlist”,t),

D
(3)-f(r)

(“name”, i), (“wait”)
where f z) = (diff(z,heud(l)))

D

1

CREATE = 4 T(“networkbusy”), (“name”, i), (‘keglist”
‘a’- ‘T,” f. ’

where f(z, y) = (a)
7T) D >Q (a * .4GENT) 1

MOVE = 1 (a * AGENT), (“se~ername”, k) B
where f(z,y) = (concat(z,y))

(J)‘f(“rk) l 4 T(j + AGENT) B

I
GETAG = 1 I(u + AGENT)(“name”,k),ask(prefil(a,Ic) 1 - (1 (a*AGENT) 1

I

Table 1: Specification of the Client component

Figure 2: MobiS nested spaces and the tree of nested spaces

(“reqlist”, r) of the list of the requests for the server, the
name of the server (“ser~ernume”, s), and some program
tuples that refer to rules specified below in the table.

The rules PUT and GET handle the communication
with the server when the network is not busy. The rule
PUT emits in the external space (the network) a request
extracting it from the requests list. The rule GET gets the
reply from the Server (i.e. it checks if a reply directed to the
Client is present on the network), and stores it in the local
space updating the requests list (it throws the first request
in the queue as it has already been served).

When the net is busy the rule CREATE generates an
AGENT space storing the requests in it. The rule MOVE
moves the Agent into the network. It also changes the name
of the Agent appending the name of the Server to it in order
to indicate the destination of the Agent.

The last rule is GETAG that gets the Agent from the
network when it come back after having finished its work on
the Server site.

The Client can choose the communication protocol de-
pending on its context: when the network is not conges-
tioned it sends requests and wait for replies, while when the
network is very busy it build an Agent and sends it to the
Server site to exploit local computation.

4 Related Work and Conclusions

Modern software architectures often deal with mobile com-
ponents and there is a need of formalization of new archi-
tectural patterns based on mobility. MobiS has an inter-
esting application in the specification of mobility aspects:
the coordination allows flexible moving of components and
extensibility of the architecture.

The MobiS language encodes mobility as a feature in its
model and the specification of architectures in presence of
mobile components is immediate. The space is a first class
entity of the language: spaces represent components and
can be nested, in this way compositional mechanisms can
be exploited.

New formal languages are being proposed for the spec-
ification of mobility features; a short list includes Bauhaus
[3], Ambit [2], Join Calculus [6], Klaim [5], and Mobile Unity

WI.
Our purpose has been is to focus on the architectural

aspects of systems with mobile components and to reason
about mobility at the architectural level.

We are studying how security aspects can be introduced
and analyzed at the software architecture level. We are also
reasoning on the possible assumptions that every mobile
component can make on the other components of the ar-
chitecture: MobiS model of scoping of the reactions can be
exploited for this kind of reasoning.

References

[l] R. Allen and D. Garlan. A Formal Basis for Architectural
Connection. ACM Trawactions on Software Engineesing
and Methodology, 6(3):213-249, June 1997.

[2] L. Cardelli and A. Gordon. Mobile Ambients. In M. Ni-
vat, editor, PTOC. of Foundations of Software Science and
Computation Structures (FoSSaCS), European Joint Con-
ferences on Theory and Practice of Software (ETAPS’BB),
volume 1378 of Lecture Notes in Computer Science, pages
14&l%, Lisbon, Portugal, 1998. Springer-Verlag, Berlin.

[3] N. Carriero, D. Gelemter, and L. Zuck. Bauhaus Linda.
In P. Ciancarini, 0. Nierstrasz, and A. Yonezawa, editors,
Object-Based Models and Languages for Concur-Tent Sys-
terns, volume 924 of Lecture Notes in Comprter Science,
pages 66-76. Springer-V&a8 Berlin, 1995.

23

141 P. Ciancarini. F. Fran&, and C. Mascolo. A Coordination . .
Model to Specify Systems including Mobile Agents. In Proc.
9th IEEE Int. Workshop on Software Specification and De-
sign (IM’SSD), pages 96-105, Japan, 1998.-

[5] R. DeNicola, G. Ferrari, and Ft. Pugliese. KLAIM: A kernel
Language for Agents Imeraction and Mobility. IEEE Trans-
actions on Sofiu~urt Engineering, 24(5):315-330, 1998.

(61 C. Fournet, G. Gonthier, J. Levy, L. Maranget, and D. Remy.
A Calculus of Mobile Agents. In U. Montanari and V. Sas-
sane: editors. Proc. 7th Int. Conj. on Concvrrency The-
ory (CO.Nr(fR), volume 1119of Lecture Notes in Computer
Science, pages 406-421, Pisa, Italy, August 1996. Springer-
Verlag, Berlin.

[7] D. Garlan and D. Perry. Introduction to the Special Issue
on Soft\vare Architecture. IEEE Transactions on Software
Engzneertng, 21(4):269-274, April 1995.

[S] P. Inverardi and A. Wolf. Formal Specification and Analysis
of Software Architectures Using the Chemical Abstract Ma-
chine Model. IEEE Transactions on Software Engineering,
21(4):373-386. April 1995.

[9] P. Inverardi. A. Wolf. and D. Yankelevich. Checking assump-
tions in components dynamics at the architectural level. In
D. Garlan and D. LeMetayer, editors, Proc. 2nd Int. Conf.
on Coordination Models and Languages, volume 1282 of Lec-
ture Notes in Computer Science, pages 46-63, Berlin, Ger-
many, September 1997. Springer-Verlag, Berlin.

[lo] J. Kramer and J. Magee. Dynamic Configuration for Dis-
tributed Systems. IEEE Tranaactdons on Software Engi-
neering, 11(4):424-436, April 1985.

[11] G. Picco, G. Roman, and P. McCann. Expressing Code Mo-
bility in Mobile Unity. In M. Jazayeri and H. Schauer, ed-
itors, Proc. 6th European Software Eng. Conf. (ESEC 97),
volume 1301 of Lecture Notes in Compzlter Science, pages
500-518. Springer-Verlag, Berlin, 1997.

[12] M. Shaw and D. Garlan. Software Architecture. Perspectives
on an Emerging Discipline. Prentice-Hall, 1996.

24

