
PULSE-DSSA -
A Method for the Development of
Software Reference Architectures

Jean-Marc DeBaud Oliver Flege Peter Knauber
Fraunhofer Institute for Experimental Fraunhofer Institute for Experimental Fraunhofer Institute for Experimental

Software Engineering (IESE) Software Engineering (IESE) Software Engineering (IESE)
Sauetwiesen 6 Sauerwiesen 6 Sauetwiesen 6

D-67661 Kaiserslautern, Germany D-67661 Kaiserslautern, Germany D-67661 Kaiserslautern, Germany
debaud @ iese.fhg.de flege@ iese.fhg.de knauber@iese.fhg.de

1. ABSTRACT
Software architectures are one of the most important assets
developed and used in the software development life-cycle.
They are an appropriate means for specifying a system,
understanding it, and communicating its high-level static and
dynamic aspects to the various stakeholders. In the context
of software product lines, software architectures are even
more important because all members of the product line are
meant to share the same reference architecture. Nevertheless,
almost no approaches exist for the systematic development
of reference software architectures. This position paper
presents PuLSE-DSSA, a method for the systematic and
iterative development of reference architectures for software
product lines.

1.1 Keywords
software reference architecture, architecture development,
software product lines

2. INTRODUCTION
Software architectures play a key role in the software life-
cycle. During system development, they can be used for
specifying the static and dynamic structure of an upcoming
system and for guiding incremental development; during
maintenance, they help to ensure conceptual integrity.
Throughout the life-cycle, they facilitate communication
among the various stakeholders. Despite the significance of
software architectures, up to now only few systematic and
well-defined methods exist for architecture development and
analysis. Probably the best-known method for the analysis of
architectures is the Software Architecture Analysis Method
(SAAM) which has been developed at the Software
Engineering Institute [2].

For product lines, architectures are even more important than

l%mission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies
arc no1 made or distributed for prolit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise. to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
lSAW3 Orlando Florida USA
Copyright ACM 1998 l-581 13-081-3/98/l 1...$5.00

for single systems. Contrary to a set of similar but one-at-a-
time developed systems, the members of a product line share
a common reference architecture which ensures their
conceptual integrity. Developing systems based on instances
of this common architecture implies a high potential for
reuse and related benefits like increased quality, cost
reduction, decreased time-to-market, etc. However, due to
the required degree of flexibility, product line architectures
are even more difficult to conceptualize than those for
individual systems.

At the Fraunhofer IESE, we are currently developing a
product line methodology for software systems called
PuLSE (poduct Line Software Engineering). PuLSE
encompasses six technical components that cover all aspects
of product line development and evolution. One component,
PuLSE-DSSA (domain-Specific software gchitecture), is a
framework for developing product line reference software
architectures. Although it addresses a number of issues
specifically related to product lines, this framework can also
be used for the development of single system architectures.

Section 3 presents a high level view of the PuLSE-DSSA
process model. Its resulting work products are described and
prototyping aspects of architecture development are
discussed shortly. Section 5 summarizes this position paper
and highlights some lessons we learned from the first two
PuLSE-DSSA applications in currently running industrial
transfer projects.

3. PULSE-DSSA - THE PROCESS

3.1 Key Elements
Before we present an overview of the architecture
development process in section 3.2, we will describe its key
elements.

Development and Analysis Aspect. PuLSE-DSSA provides
both a framework for systematic development of a reference
architecture, and a way to analyze the quality of software
architectures with respect to specific properties.

Scenarios. PuLSE-DSSA uses scenarios similar to the task
scenarios in SAAM [I]. For the purpose of PuLSE-DSSA,
scenarios are categorized as either generic or property-

25

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288408.288415&domain=pdf&date_stamp=1998-11-01

related.

Generic scenarios represent architecturally significant
functional requirements of a product line. Each of them may
either cluster and represent a range of variability within the
domain, or it may represent a common functionality of all
product line members. As in SAAM, generic scenarios are
represented using textual descriptions. Although this is
likely to require a transformation of input workproducts (see
section 4), it is nonetheless necessary to consolidate their
respective information as well as to provide it in a unified
form for the architecture development process.

Property-related scenarios focus on domain-independent
quality aspects such as coupling and cohesion, performance,
and extensibility. Because of their domain-independence,
they can be provided in a library where they are grouped in
categories and stored together with models on how they
should be applied.

Configuration Model. During the development of the
reference architecture, certain decisions have to be made
that are not driven by the domain itself (e.g., use of different
database systems or of alternative implementation
strategies). These decisions may introduce domain-
independent variabilities and therefore have to be captured
explicitly in the PuLSE-DSSA configuration model.

Traceability. During architecture development, traceability
links are established from components of the product line
model (see section 4) to scenarios, and from scenarios to
components and connections in the reference architecture.
These links are maintained during the lifetime of the
product line and used to keep the product line model and the
reference architecture consistent. Of course, the full
potential of traceability information can only be exploited if
PuLSE-DSSA is performed within a full PuLSE
development life-cycle (see section 4).

3.2 Process Overview
The basic idea of PuLSE-DSSA is to incrementally develop
a reference architecture guided by generic scenarios that are
applied in decreasing order of architectural significance.

At first, generic scenarios are developed using information
from the product line model (or whatever workproducts are
available as input). These scenarios are then sorted
according to their architectural significance. A basic set of
them is used to build an initial architecture. After that, the
remaining scenarios are applied one by one to the current
architecture candidate to refine or extend it. This leads to
new candidates that are analyzed and ranked based on
functional coverage and coverage of property-related
scenarios. The best one(s) serve(s) as input for the next
iteration step. This iteration stops after all generic scenarios
have been applied. Figure 1 shows a high-level version of
the PuLSE-DSSA process model

3.3 Process Description
This section describes PuLSE-DSSA in detail, the
paragraph numbers correspond to the step numbers in figure

1. The process starts with step 1 to 3, then an iteration over
step 4 to 7 is performed.

Generic scenarios are derived from the (functional and
non-functional) requirements that have been determined
during the modeling of the product line. Input from the
modeling component of PuLSE are a set of generic sto-
ryboards with a decision model capturing domain-
related decisions and other domain-specific workprod-
ucts that together comprise the domain model (see sec-
tion 4).
Like the task scenarios used in the SAAM method the
scenarios used by PuLSE-DSSA are textual descrip-
tions. They represent those requirements for the system
to be developed which are important enough to be con-
sidered on an architecture level.

For each generic scenario, property-related scenarios are
selected from a library provided by PuLSE-DSSA. The
library contains a list of those property-related scenarios
grouped in categories together with models on how they
should be applied. The scenarios allow the evaluation of
aspects such as coupling and cohesion, performance,
and extensibility. To convey a sensible meaning in the
context of a particular generic scenario, the property-
related scenarios have to be instantiated and adapted
(i.e., parameterized) to this very context. Of course, not
every property-related scenario can and should be
applied to each generic scenario, thus they have to be
carefully selected and are then attached to the respective
generic scenario.

The generic scenarios are sorted according to their archi-
tectural significance. Scenarios representing important
variability aspects should be considered first, then those
addressing structural issues and at last the ones dealing
with less essential functional requirements for the sys-
tem (or the systems in the domain).
Being a subjective task, the sorting of the scenarios must
be performed carefully and should be documented thor-
oughly.

To start with architecture development, a basic set of
generic scenarios is selected that is used to create the ini-
tial components and connections of the architecture. In
the following iterations, the architecture is refined and
extended step by step until all generic scenarios have
been applied and the architecture description has
evolved to its final state.
It is important to state that PuLSE-DSSA sets no restric-
tions on the method actually used for the design of the
architecture components and connections though it can
be used for that purpose. It provides a framework that
guides the logical application of the method(s) already
established within the development organization. The
same statement holds for step 7.

Depending on the selected scenarios, more than one can-
didate architecture may result from step 4. In this case,
the property-related scenarios attached to the currently
used generic scenarios are used to evaluate and rank the
candidates (i.e., to identify the best one(s) under struc-

26

select I instantiate --,
scenarios I

I

sort scenarios
I

I

y-1 Fl build initial architecture

+ +
rank candidate architectures
I build I ---.m--------------*
L architecture prototype -------I I

I t

leaend;
0 product
-1 process

r - 7 optional product --

c q J optional process

- - 0 data flow
b control flow

0 reference to
section 3.1

Figure 1. PuLSEDSSA Process Model

tural aspects). To support the ranking, architecture proto-
types may be developed (see section 3.4).

6 According to the ranking in step 5, the best candidate (or
a set of them if no single best candidate can be deter-
mined) is selected for further evolution.
If no more generic scenarios are left, the development
process is finished.

7 The next scenario from the list is applied to the selected
candidate architecture(s) and the corresponding refine-
ments or extensions necessary are determined. As a
result of these steps, again more than one candidate may
have been produced and the development process is con-
tinued with step 5.

We do not believe that it is possible to operationalize step 4
and 7 in a way that a “method” could replace the creativity
and experience of a system architect. However, the iterative
application of scenarios in decreasing order of architectural
significance can help to guide and streamline the design
process. Consequently, the order of scenario application has
a high impact on architecture development. The wrong
prioritization of the generic scenarios in step 3 may lead to
inadequate architecture candidates and thus cause
backtracking to the sorting step 3, where the ranking of
some of the scenarios is changed. Then the architecture
development can be continued starting with the architecture
state that was developed by applying the unchanged part of
the scenario list.

The major assets produced by PuLSE-DSSA are the
description of the reference architecture and the

configuration model (and, if prototyping is applied
throughout the process, an architecture prototype, see
section 3.4). In another workproduct, the ranking of the
generic scenarios and especially the reasons for their
ranking are captured. This information is used, if the
scenario order has to be changed in a possible backtracking
step (see figure 1). Also, the history of scenario applications
is recorded to establish traceability from specific scenarios
to design decisions. Whenever some of the scenarios change
during the lifetime of the software system, the ramifications
of these changes for the architecture can be identified using
that history information.

3.4 Prototyping Aspects of PULSE-DSSA
An important customization aspect of PuLSE-DSSA is to
decide whether or not to adopt a prototyping approach and if
so, to which extent.

From our experience we learned that it is very hard to
develop a (product line) architecture from scratch on a
purely conceptual basis (i.e., by using diagrams, informal
language, and perhaps ADLs). The first, and most
important, shortcoming of such an approach is that
fundamental risks cannot be eliminated by just reasoning
about them. Such risks are, for example, the integrability of
COTS components, the compatibility of different
development tools, the achievement of the required
performance, and, especially for product lines, the
suitability of those mechanism that allow for variability. A
second shortcoming is that the comparison of architecture
candidates and their subsequent ranking can not be based on

27

objective criteria. There are very few measures that can be
applied to architecture descriptions, and for those that do
exist, the significance and interpretation of the measurement
results is unclear (especially if a reference architecture is
considered).

If it has been decided to use prototyping, this can be done in
two ways. The first approach is to develop several
throwaway prototypes, where each prototype focuses on the
validation of a single aspect. This allows for fast
prototyping and does not impede backtracking during
architectural development too much, but it is likely that
certain risks are not evaluated at all and that contradicting
aspects of multiple architectural decisions will not be
uncovered. The second approach is to build an evolutionary
prototype during PULSE-DSSA that is then used and
extended in subsequent components. It might seem as a
drawback that it takes more time to build such a prototype.
But the availability of a solid, stable, and validated
architectural baseline at the end of PuLSE-DSSA is the best
indication for the success of a project.

4. THE CONTEXT: PULSE
The PuLSE methodology (&oduct Line Software
Engineering) enables the conception and deployment of
software product lines within a large variety of enterprise
contexts. PULSE consists of six technical components that
deal with:

Customizing: how to perform an enterprise baselining
and customize PuLSE to the environment

Scoping: how to effectively scope the product line focus-
sing on products (i.e., not on epistemic application
domains)
Modeling: how to model the product characteristics
found within the scope of the product line and explicitly
denote the product family members
Architecting (PuLSE-DSSA): how to develop the refer-
ence architecture while maintaining the traceability to
the model
Instantiating: how to specify and instantiate product line
members
Evolving and managing: how to evolve product line
assets, and deal with configuration management issues
as products accrue over time

PuLSE-DSSA is preceded by the modeling component and
followed by the instantiating component. In the modeling

component the product line concepts and their
interrelationships are elicited, structured, and documented
in the product line model. ‘Ihe workproducts used are
defined during the customizing step. We distinguish
between generic storyboards and other domain specific
workproducts. The storyboards are used to capture relevant
types of action sequences in the domain. Examples are
workllow diagrams and message sequence charts. Other
workproducts capture additional views on the product line.
To derive product line member specifications from a product
line model, a decision model is created. The decision model,
the generic storyboards, and the other workproducts are
passed to PuLSE-DSSA.

The instantiation component of PuLSE aims at specifying,
instantiating, and validating one member of the product line.
This tasks includes the instantiation of the reference
architecture. Driven by the product specification and the
configuration model, the architecture for the product is
defined.

5. SUMMARY
This position paper gives an overview on PuLSE-DSSA, a
systematic method for the development of software
architectures. PuLSE-DSSA was originally designed for
product line purposes but works as well for architecture
development of single systems.

We started to apply PuLSE-DSSA in two currently running
projects. Our first experiences indicate that task scenarios
are a good means not only for the analysis (that was
reported by the authors of SAAM) but also for the
development of software architectures. A key step within
PuLSE-DSSA is the prioritizing of the scenarios because
the order in which they are ranked and then applied directs
major design decisions. In the context of product line
development, scenarios representing the types of variability
planned for should be ranked most significant but also the
early consideration of quality aspects proved to be
important.

6. REFERENCES
[l] R. Kazman, G. Abowd, L. Bass, P. Clements: Scenario-

Based Analysis of SofIware Architecture, IEEE Soft-
ware, 1 l/1996

[2] L. Bass, P. Clements, R. Kazman: Software Architec-
tures in Practice, Addison-Wesley, 1998.

28

