
Architectural Structures and Views
Alexander Ran

Nokia Research Center,
3 Burlington Woods Drive #260,

Burlington, MA 012803, USA
alexander.ranQ research.nokia.com

1. ABSTRACT
This is an outline of a conceptual framework for
architecting complex software. The framework identifies
multiple independent structures of software that support
different kinds of requirements, making possible to partition
requirements so that each group can be supported by a
different architectural structure. Architectural views are
separated from architectural structures making it easier to
define different processes and allocate different
development stages for design and description of
architectural structures and views.

1.1 Keywords
Requirements, software architecture, architectural views,
structures of software

2. INTRODUCTION
Many new projects developing software intensive products
begin from design of system software architecture. Often
one of the first steps in this process is building a common
for the project members understanding what is software
architecture. Being present in project meetings addressing
this question often I have to present my opinion.

In such situations I always remember the classical definition
by Perry and Wolf of architecture being elements, form,
and rationale [I]. Though this definition masterfully
captures the essence of architecture, I don’t usually dare to
pronounce it as an answer to a product development team.
This is because their real question is “what is an appropriate
conceptual framework for design and description of
software architecture for this product?“.

This paper is an outline of a conceptual framework for
architecting complex software. Here I present my
understanding regarding what are architectural structures of
software, why they are different from each other, and how
they can be used to support desired system properties - the
rationale for the elements and the form. I will describe how

Copyright ACM 1998 l-581 13-081-3/98/l l...$S.OO

different architectural structures support different kinds of
requirements, suggesting that there are ways to partition
requirements so that each group can be supported by a
different architectural structure. I will discuss partitions of
requirements based on architectural structures that play
major role at different stages of software lifecycle like write
time, configuration time, (re)-start time, or run time. Some
of the ideas may be only applicable to embedded software,
as this is the domain I am having in mind when writing this
paper.

3. ARCHITECTURAL STRUCTURES
Architecture of software directly affects system-wide
properties like availability, reliability, security, etc. Well-
structured software also supports requirements for change,
reusability, interoperability with other systems, etc. If all
different requirements were supported by the same
architectural structure it would be impossible to satisfy
them independently. And indeed this is often the case. For
example requirements concerning performance and
reliability interact since software execution structure affects
both kinds of requirements.

Software exists in multiple component domains as a set of
modules, a set of set threads, a set of processes, a set of
files, etc. In each component domain a system can form a
different structure. Often system requirements may be
grouped so that requirements in different groups may be
addressed by different and at least partly independent
software structures established by partitions of software in
different component domains. Such partitions exist
simultaneously and often are independent of each other.

A few examples:

Run-time requirements are addressed by partitioning
software into execution threads of varying priority (or
utility), specifying thread scheduling policies, regulating
use of shared resources, etc.

Portability requirements are addressed by defining software
layers and establishing conformance of layers and their
interfaces to existing standards.

Reuse requirements are addressed by partitioning software
into modules - substitutable, unit-testable components
having well-defined boundaries, predictable interaction
with the environment, and minimal, well-specified
dependencies on other modules.

117

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288408.288438&domain=pdf&date_stamp=1998-11-01

Effective work division is addressed by partitioning
software into subsystems that limit the domain expertise
necessary for their development and further partitioning the
subsystems into separately testable components that
implement a meaningful in the product domain function,
with minimal interaction with other functions that can be
modeled and controlled.

An architectural structure is created by configuration of a
partition. By configuration I mean an instantiation of
components (parts) and their relationships.

As it happens these and other useful structures of software
in different component domains may be very different from
each other.

Structure / Requirements Component
Stage Domain Domain

Execution Performance, Execution
structure is availability, threads,
essential at run- reliability communication
time channels,

schedulers,
shared resources

Loading structure Independent re- Processesiexecuta
is essential at start I upgrade, bles, data stores
start-up / shut- protection
down time

Module structure Change Modules,
is essential at management (for provided and
“write” time or evolution, required
construction time porting, interfaces

diversification),
incremental /
concurrent
development,
reuse,

Increment
structure is
essential at
integration time

Incremental
system
development
integration and
testing

Increments

Subsystem Work division, Subsystems
structure is concurrent
essential at work development,
division time outsourcing,

Table 1 Architectural Structures of Software

For example the partition into modules has little or no
relationship to partition into execution threads. Partition
into modules is done to enable incremental construction,
testing, evolution, and reuse of specific functionality.
Layers of a protocol stack are an example of partitioning
data communication functionality into modules. Partition
into execution threads is done to simplify system design

while addressing performance and possibly reliability and
availability requirements. The same module structure such
as a protocol stack for example may get assigned to or split
over an arbitrary structure of interacting execution threads.
Thus there needs to be no relation between the two
structures.

As another example consider the partition of software into
processes. This partition is used to address requirements for
independent loading and protection. Though processes
bound sometimes execution threads, often execution threads
span multiple processes. Such could be the case when parts
of a protocol stack need to be independently (re)loadable
and / or upgradable. One way to address these requirements
is by partitioning the stack into different processes. At the
same time the passage of a packet through a protocol stack
happens in a single execution thread. Also the very
existence of remote procedure call mechanism is due to the
fact that a single execution thread may get partitioned into
multiple processes.

One effective way to identify independent (or partly
independent) requirements and component domains is by
identifying structure of software that play major role at
alternative stages of software life cycle. A typical (though
somewhat simplified) set of stages when different partitions
of software play major role include write-time, build-time,
configuration-time, start-time, and run-time.

Thus write-time related requirements like feature addition
and evolution, porting, and diversification are primarily
addressed by appropriate module structures that play major
role at write-time. Similarly, start-time related requirements
(like order, presence, independent operation and failure
modes) are primarily addressed by appropriate process
(executable) structures - the startup / shutdown unit or
component. And, of course, run-time related requirements
like performance or availability are addressed by the
structure of execution threads - the primary run-time
software component.

Table 1 lists some of the most common partitions, their
requirement domains, component domains, and software
lifecycle stages concerned.

In many software development projects there is significant
pressure to structure the system identically in different
component domains. This invariably leads to problems in
development and occasionally in final products (see [2] for
some real life examples). Therefor it is very important to
recognize the existence of multiple component domains,
independent partitions of software, and their relations to
different requirement domains.

It is interesting to notice that architectural structures can be
(and often are) defined without ambiguity. For example the
module partition specifies names and interfaces of modules,
and module configuration specifies module instantiation
and binding.

118

n

Subsystems are essentially groupings of modules and are
best described by specifying the modules that they contain.
Subsystems are commonly “vertical” sections. Such
subsystems usually aggregate modules that implement
related functions

Loading partition can be specified by names of the
programs, shared (dynamically linked) libraries, data stores,
and parameter data. The configuration of loading partition
is specification of loading and unloading order often
indirectly defined by process dependencies.

Though architectural structures must be described
unambiguously in most cases such descriptions do not
necessary require a special architecture description
language unless a specific kind of analysis or generation
can be performed. In the later case the main question is
whether the analysis or generation capabilities would justify
the overhead of additional language.

If we were able to establish all architectural partitions
necessary to address product and development
requirements we would have not needed architectural
views. However this is not the case for most non-
trivial systems.

It is usually too hard to design or even to understand
all architectural partitions without some graduate
approach through simplified conceptual models of
software. Such simplified conceptual models that are
needed for design of architectural partitions and their
configurations constitute architectural views of
software.

4. ARCHITECTURAL VIEWS
For most software systems it is possible to identify
three classes of important concepts: application
domain concepts, implementation domain concepts,
and architectural concepts. Application domain
concepts result from application domain analysis and
jointly form domain model. Implementation domain
concepts result from implementation domain analysis
and jointly define infrastructure, virtual machine or
platform.

Architectural concepts are not found from analysis of
requirements or implementation platform. Key
concepts for architecture of software need to be
invented to simplify the task of bridging the product
requirements and implementation platform.

Thus one of the primary tasks of software architects is
to establish and communicate to the rest of the team
all the important concepts necessary for effective
software design and implementation. A proven way to
approach this goal is by creating partial models that
relate different architectural concepts and their role in
addressing architectural problems and concerns. These
models reflect various aspects of software construction and
execution and provide partial views on architecture of the

software. Together these views make conceptual
architecture of software.

Architectural views are created before the system is
designed to any significant degree of detail and usually
exist more as a vague intuition than a precise structure. To
communicate these intuitions to the development team, to
define architectural partitions, and to develop detailed
designs, architects must rely more on evocative concepts
than formal descriptions. This is the primary reason why
verbal interaction is considered so important for successful
communication of conceptual architecture.

The term “architectural views” is commonly used to mean a
broader category of architectural descriptions following the
well-known work of Philippe Kruchten on the “4+1” views
model of software architecture [3]. In the ‘4+1” model
architectural descriptions are grouped into logical,

Write-time (Module)

Write-time Infrastructure
abstraction, parametrization,

configuration, binding,

Figure 1 Partitioning Requirements Architecture and
Infrastructure along run-time / write-time line

119

development, process, and physical view. While the logical
view is a set of conceptual models, the other views of the
“‘4+1” model correspond to concrete architectural structures
of software.

There are several good reasons to clearly separate concrete
software structures that exist at write-time, or start-time, or
run-time, from abstract views necessary for early
conceptualization, design, or understanding of complex
software and its architectural partitions. While conceptual
views of software architecture need to be built prior to more
detailed design concrete architectural structures are best
described along with detailed design and often after
implementation is completed. Also the degree of detail and
precision in describing conceptual models and architectural
structures is different. Finally, it is significantly easier to
communicate to software developers importance of
concrete architectural structures than abstract conceptual
models. Understanding the relationship between conceptual
architectural views and concrete structures makes
architecture more accessible to development team and thus
increases its healthy life time,

Figure 1 shows an example of partitioning requirements
architecture and infrastructure along run-time / write-time
line. Additional partitions can be introduced as necessary
for start-up time, configuration time, and other important
stages of software lifecycle. The links on this diagram are
not marked because they carry multiple meanings. The most
general interpretation of the links is indication of
dependency or flow of influence. This implies an order for
definition, or in a spiral development order of progress in
definition.

The diagram on Figure 1 also emphasizes separation of
application architecture from infrastructure and shows that
product (or rather product family) requirements influence
design of infrastructure. Though the value of this partition
is well understood it is often not seen as something to be
designed as a part of product software architecture. This is
quite acceptable for many types of computer software
where advanced infrastructure is well established and is
refined through use in numerous applications. Embedded
software is quite different in this respect. It runs on top of
application domain specific hardware machines that often
consists of multiple devices integrated to provide functions
necessary for a specific product or product family. Therefor
embedded software architects need to specifically design
the infrastructure appropriate for the product.

All the ideas we discussed in application to architecture are
also applicable to infrastructure. This includes concepts
definition, partial problem-oriented views, identification of
independent structures, and partition of requirements in
correspondence with available independent architectural
structures.

Existence of write (or construction) time infrastructure may
need some clarification. Construction time dimension of the
implementation domain for software based solutions is
made of techniques and support tools for software
construction. This includes code generation tools, macro
facilities, interpreters, compilers, configuration
management tools and techniques, etc. Just as run-time
infrastructure must be identified and managed to provide
adequate support for execution architecture, construction
time static infrastructure must be identified and often
specifically designed for the particular product family.
Write time infrastructure supports modularization of
software. The key issue of modularization is localization of
definitions for functionality that is subject to change.
Though programming languages and other software
construction tools are designed to solve the general
problem, specific application domains may require and
often can benefit from application specific write-time
infrastructure that allows to localize definitions of
functionality which otherwise would have to be replicated.
Typical examples of advanced write-time infrastructure are
meta-facilities, preprocessors, application specific
languages, and some other code-generation technologies.

Just as run-time architecture rests on run-time
infrastructure, module architecture rests on write-time
infrastructure.

5. SUMMARY
In the early stages of software design one can only expect to
outline partial models for structuring software that form
abstract views of software architecture and communicate
ideas for addressing different architectural concerns on an
intuitive level. Later concrete architectural structures need
to be designed and described precisely. Existence of
multiple independent structures in different software
component domains makes it possible to support different
kinds of requirements at the same time. An effective
conceptual framework for software architecture needs to
specify a partition of requirements to independent
architectural structures.

6. REFERENCES
[l] Perry, D.E. and Wolf, A.L. “Foundations for the Study

of Software Architecture”, Software Engineering
Notes, ACM SIGSOFT, vol. 17, no. 4, October 1992

[2] Ran, A. and Kuusela, J., Selected Issues in Architecture
of Software Intensive Products, in Proceedings of the
Second International Software Architecture Workshop,
ACM Press, 1996.

[3] Kruchten, Ph. “The “4+1” View Model”, IEEE
Software, 1995

120

