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ABSTRACT
Non-functional requirements (NFRs) are commonly distin-
guished from functional requirements by differentiating how
the system shall do something in contrast to what the system
shall do. This distinction is not only prevalent in research,
but also influences how requirements are handled in practice.
NFRs are usually documented separately from functional
requirements, without quantitative measures, and with rela-
tively vague descriptions. As a result, they remain difficult
to analyze and test. Several authors argue, however, that
many so-called NFRs actually describe behavioral properties
and may be treated the same way as functional require-
ments. In this paper, we empirically investigate this point of
view and aim to increase our understanding on the nature
of NFRs addressing system properties. We report on the
classification of 530 NFRs extracted from 11 industrial re-
quirements specifications and analyze to which extent these
NFRs describe system behavior. Our results suggest that
most “non-functional” requirements are not non-functional
as they describe behavior of a system. Consequently, we
argue that many so-called NFRs can be handled similarly to
functional requirements.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications

Keywords
Non-functional requirements, classification, model-based de-
velopment, empirical studies

1. INTRODUCTION
One conventional distinction between non-functional re-

quirements (NFRs) and functional requirements is made by
differentiating how the system shall do something in contrast
to what the system shall do [24, 25]. This distinction is not
only prevalent in research, but it also influences how require-
ments are elicited, documented, and validated in practice [1,
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3, 9, 26]. As a matter of fact, up until now there does not
exist a commonly accepted approach for the NFR-specific
elicitation, documentation, and analysis [3, 26]; NFRs are
usually described vaguely [3, 1], remain often not quanti-
fied [26], and as a result remain difficult to analyze and
test [1, 3, 26]. Furthermore, NFRs are often retrofitted in
the development process or pursued in parallel with, but
separately from, functional requirements [9] and, thus, are
implicitly managed with little or no consequence analysis [26].
This limited focus on NFRs can result in the long run in
high maintenance costs [26].

Although the importance of NFRs for software and systems
development is widely accepted, the discourse about how
to handle NFRs is still dominated by how to differentiate
them exactly from functional requirements [6, 14]. One point
of view is that the distinction is an artificial one and we
should rather differentiate between behavior (e.g., response
times) and representation (e.g., programming languages).
The underlying argument is that most NFRs actually de-
scribe behavioral properties [14] and should be treated the
same way as functional requirements in the software devel-
opment process [5]. Behavioral properties subsume classical
functional requirements, such as “the user must be able to
remove articles from the shopping basket” as well as NFRs
which describe behavior such as “the system must react on ev-
ery input within 10ms”. Representational properties include
NFRs that determine how a system shall be syntactically
or technically represented, such as “the software must be
implemented in the programming language Java” [5, 6].

In this paper, we empirically investigate this point of
view and aim to increase our understanding on the nature
of NFRs addressing system properties. To this end, we
classify 530 NFRs extracted from 11 industrial requirements
specifications with respect to their kind. Our results show
that 75% of the requirements labeled as “non-functional”
in the considered industrial specifications describe system
behavior and only 25% describe the representation of the
system. As behavior has many facets, we further classify
behavioral NFRs according to the system view they address
(interface, architecture, or state), and the behavior theory
used to express them (syntactic, logical, probabilistic, or
timed) [5, 6]. Based on this fine-grained classification, we
discuss the implications we see on handling NFRs in the
software engineering disciplines, e.g., testing or design.

Based on the results of our study, we conclude that most
“non-functional” requirements are misleadingly declared as
such because they actually describe behavior of the system.
This in turn means that many so-called NFRs can be handled
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similarly to functional requirements. Please note that the
focus of this paper is not to criticize the term “non-functional”
but to expose the artificial separation of functional and non-
functional (or quality) requirements in practice.

The remainder of the paper is structured as follows: In
Section 2, we discuss background and related work, and,
subsequently, we present our study design in Section 3. We
report on the results in Section 4 and discuss the threats
to validity and our mitigation strategies in Section 5. In
Section 6, we provide a discussion of the overall results and
their impact on theory and practice, before concluding our
work in Section 7.

2. BACKGROUND & RELATED WORK
In this section, we provide background and related work

on NFR classifications and on the implications of NFRs on
software development.

Previously published material. In our previously pub-
lished paper [12], we presented a research proposal with the
goal of analyzing natural language NFRs taken from indus-
trial requirements specifications to better understand their
nature. Our study reported here, relies on and extends our
previous study design. We present the results in full detail,
and provide a comprehensive discussion on the implications
on software engineering disciplines.

NFR classifications. There exist several classification
schemes for NFRs in literature (e.g., [8, 14, 16, 23, 25, 29]).
One example for such a classification, which is based on a
quality model, is the ISO/IEC 9126 [16]. It defines external
and internal quality of a software system and derives sev-
eral quality characteristics (e.g., Functionality–Security or
Portability–Installability). Sommerville further provides a
classification scheme based on a distinction between process
requirements, product requirements, and external require-
ments [25]. We base our distinction of NFR classes on the
ISO/IEC 9126 classification. Furthermore, we exclude pro-
cess requirements from our study, as they do not describe
properties of the system itself.

Pohl [23] discusses the misleading use of the term “non-
functional” and argues to use “quality requirements” for
product-related NFRs that are not constraints. Glinz [14]
performs a comprehensive review on the existing definitions
of NFRs, analyzes problems with these definitions, and pro-
poses a definition on his own. He highlights three different
problems with the current definitions: a definition prob-
lem, i.e., NFR definitions have discrepancies in the used
terminology and concepts, a classification problem, i.e., the
definitions provide very different sub-classifications of NFRs,
and finally a representation problem, i.e., the notion of NFRs
is representation-dependent. In our study, we faced all of
the three problems: we motivate our study based on the def-
inition and classification problem and during the execution
of our study, we faced the representation problem (see also
our discussion on threats to validity in Section 5). Although
we agree on the critique about the obsolete and misleading
notion of the term “non-functional”, it still dominates the
way requirements are handled in practice, as reflected in our
data.

Mairiza et al. [19] perform a literature review on NFRs,
investigating the notion of NFRs in the software engineer-
ing literature to increase the understanding of this complex
and multifaceted phenomenon. Amongst others, they found
about 114 different NFR classes. As a result of a frequency

analysis, they found that the five most frequently mentioned
NFR classes in literature are performance, reliability, us-
ability, security, and maintainability (in that order). In our
study, we got similar results: we found that the five most fre-
quently used NFR classes in our industrial specifications are
security, reliability, usability, efficiency, and portability (in
that order).1 While Mairiza et al. performed their analysis
on available literature, our study analyzes NFRs documented
in industrial projects.

NFRs and their implications on software develop-
ment. One of the first studies that analyzed how to sys-
tematically deal with NFRs in software development was
conducted by Chung and Nixon [9]. They argue that NFRs
are often retrofitted in the development process or pursued
in parallel with, but separately from, functional design and
that an ad-hoc development process often makes it hard
to detect defects early. They perform three experimental
studies on how well a given framework [22] can be used to
systematically deal with NFRs. Svensson et al. [26] perform
an interview study on how quality requirements are used in
practice. Based on their interviews, they found that there
is no NFR-specific elicitation, documentation, and analy-
sis, that NFRs are often not quantified and, thus, difficult
to test, and that there is only an implicit management of
NFRs with little or no consequence analysis. Furthermore,
they found that at the project level, NFRs are not taken
into consideration during product planning (and are thereby
not included as hard requirements in the projects) and they
conclude that the realization of NFRs is a reactive rather
than proactive effort. Borg et al. [3] analyze via interviews
how NFRs are handled in practice by the example of two
Swedish software development organizations. They found
that NFRs are difficult to elicit because of a focus on func-
tional requirements, they are often described vaguely, are
often not sufficiently considered and prioritized, and they
are sometimes even ignored. Furthermore, they state that
most types of NFRs are difficult to test properly due to their
nature, and when expressed in non-measurable terms, test-
ing is time-consuming or even impossible. Ameller et al. [1]
perform an empirical study based on interviews around the
question How do software architects deal with NFRs in prac-
tice? They found that NFRs were not often documented, and
even when documented, the documentation was not always
precise and usually became desynchronized. Furthermore,
they state that NFRs were claimed to be mostly satisfied at
the end of the project although just a few classes were vali-
dated. With respect to model-driven development, Ameller
et al. [2] show that most model-driven development (MDD)
approaches focus only on functional requirements and do not
integrate NFRs into the MDD process. They further identify
challenges to overcome in order to integrate NFRs in the
MDD process effectively. Their challenges include model-
ing of NFRs at the PIM-level, which includes the question
which types of NFRs are most relevant to the MDD process?
According to Ameller et al. [2], the few MDD approaches
that support the modeling of NFRs can be classified into
approaches that use UML extensions [13, 28, 31] or a spe-
cific metamodel [15, 18, 21] to model NFRs. In all of the
approaches, functional requirements and NFRs are modeled
separately. Damm et al. [11] suggest to overcome this sepa-
ration and propose a so-called rich component model based

1We excluded functionality from this list, as it is not a
classical NFR class.



on UML that integrates functional and NFRs in a common
model. Similar approaches exist for specific classes of NFRs
(e.g., for availability [17]). The results of our study provide
empirical support for the claim that NFRs and functional
requirements are not very different with respect to behavior
characteristics and, therefore, can be integrated in a common
system model.

All these studies highlight, so far, that NFRs are not inte-
grated in the software development process and furthermore
that several problems are evident with NFRs. In this paper,
we use these problems as motivation and analyze what NFR
classes can be found in practice and discuss how they can be
integrated in the software development process.

3. STUDY DESIGN
In this section, we describe our overall goal, our research

questions, and the design of our study.

3.1 Goal and Research Questions
The goal of this study is to increase our understanding on

the nature of NFRs addressing system properties2. In par-
ticular, we are interested in understanding to which extent
these NFRs and their respective classes (e.g., security or reli-
ability) describe system behavior and what kind of behavior
they address. This allows us to discuss the implications on
handling NFRs in the software engineering disciplines (e.g.,
testing or design).

To achieve our goal, we formulate the following research
questions (RQs), which we cluster in two categories:

1. Distribution of NFR classes in practice.
We examine the distribution of NFR classes in practice

via two research questions:

RQ1 What NFR classes are documented in practice?
With this RQ, we want to get an overview of the NFR
classes that are documented in practice.

RQ2 What NFR classes are documented in differ-
ent application domains? Under this RQ, we ana-
lyze whether there is an observable difference between
the application domains w.r.t. the documented NFR
classes.

2. Nature of the NFR classes.
We analyze the NFR classes with respect to their nature

(behavioral or representational) and their kind of behavior
via three research questions:

RQ3 How many NFRs describe system behavior? With
this RQ, we want to better understand how many NFRs
describe system behavior and how many describe the
representation of a system (behavioral vs. represen-
tational) and whether this varies for different NFR
classes.

RQ4 Which system views do behavioral NFRs ad-
dress? With this RQ, we want to better understand
the relation between NFR classes and the system (mod-
eling) views that the NFRs address, e.g., interface,
architecture, or state behavior.

2In our study, we exclude those NFRs going beyond system
properties, e.g., process requirements.

RQ5 In which type of behavior theory are behavioral
NFRs expressed? With this RQ, we want to better
understand the relation between NFR classes and be-
havior theories used to express the NFRs, e.g., logical,
timed, or probabilistic description.

3.2 Study Object
The study objects used to answer our research questions

constitute 11 industrial specifications from 5 different com-
panies for different application domains and of different sizes
with 346 NFRs3 in total. We collected all those requirements
that were explicitly labeled as “non-functional”, “quality”,
or any specific quality attribute. The specifications further
differ in the level of abstraction, detail, and completeness.
We cannot give detailed information about the individual
NFRs or the projects. Yet, in Table 1, we summarize our
study objects, their application domain, and show exemplary
(anonymized) NFRs as far as possible within the limits of
existing non-disclosure agreements.

3.3 Data Collection and Analysis Procedures
To answer our research questions, we prepared the NFRs

from our study object and then performed a classification
and analysis. The procedure was performed by the first two
authors in a pair. Both have over three years of experi-
ence in requirements engineering research and model-based
development research.

3.3.1 Data Preparation
The NFRs from our study objects differ in their level of

abstraction, detail, and completeness. Therefore, we went
through the set of NFRs and processed each of them in either
one of the following ways:

• Full interpretation: We considered the NFR as it is.

• Sub interpretation: We considered only a part of
the NFR that we clearly identified as desired system
property and disregarded the rest of the NFR (e.g., due
to unnecessary/misleading information).

• Split requirement: We split the NFR into a set of
singular NFRs because the original NFR addressed
more than one desired property of a system.

• Exclude from study: We excluded the NFR if it was
not in the scope of our study (e.g., process require-
ments), or if we were not able to understand the NFR
due to missing or vague information.

In total, we excluded 56 requirements (≈ 16%) from the
study and considered 76 requirements (≈ 22%) only partially.
We split 97 requirements (≈ 28%) into an overall of 337
requirements. Together with the 117 requirements (≈ 34%)
that we considered as they are, we ended up with a set of
530 requirements that we used for our classification.

3.3.2 Data Classification
We classified each of the 530 NFRs according to the fol-

lowing classification schemes:

3In the data preparation phase, we split non-singular NFRs
into singular NFRs. Thus, the final number of analyzed
NFRs is 530.



Table 1: Overview of the study objects

Spec. Application Domain1 # Reqs # NFRs % NFRs Exemplary NFR (anonymized due to confidentiality)

S1 BIS (Finance) 200 61 30.5% The availability shall not be less than [x]%. That is the current
value.

S2 BIS (Automotive) 177 40 22.6% An online help function must be available.

S3 BIS (Finance) 107 5 4.7% The maximal number of users that are at the same time active in
the system is [x].

S4 ES/BIS (Travel Mgmt.) 38 14 36.8% The [system] must run on [the operating system] OS/2.

S5 ES/BIS (Travel Mgmt.) 69 16 23.2% It must be possible to completely restore a running configuration
when the system crashes.

S6 ES (Railway) 35 14 40.0% The delay between passing a [message] and decoding of the first
loop message shall be ≤ [x] seconds.

S7 ES (Railway) 122 19 15.6% The collection, interpretation, accuracy, and allocation of data re-
lating to the railway network shall be undertaken to a quality level
commensurate with the SIL [x] allocation to the [system] equip-
ment.

S8 ES/BIS (Traffic Mgmt.) 554 128 23.1% Critical software components shall be restarted upon failure when
feasible.

S9 ES (Railway) 393 12 3.0% The [system] will have a Mean Time Between Wrong Side Failure
(MTBWSF) greater than [x] h respectively a THR less than [x]/h
due to the use of [a specific] platform.

S10 ES (Railway) 122 31 25.4% The [system] system shall handle a maximum of [x] trains per line.

S11 BIS (Facility Mgmt.) 24 6 25.0% The architecture as well as the programming has to guarantee an
easy and efficient maintainability.

Σ 11 Σ 1.841 Σ 346 18.8%

1 We distinguish BIS (Business Information Systems), ES (Embedded Systems), and hybrids of both. For reasons of simplicity, we group various
domains (e.g. “Finance”) according to single family of systems and use the term “application domain” for that classification.

• NFR class: We used the quality model for external
and internal quality of the ISO/IEC 9126 [16] to assign
a quality characteristic to each NFR (Functionality–
Suitability, Reliability–Maturity, . . . ; see [16] for details).
In our study, the ISO/IEC 9126 quality characteristics
represent the NFR classes we consider.

• System view: We based our classification on Broy’s
structured views [5, 6] to assign a system view to each
NFR. As illustrated in Figure 1, structured views parti-
tion NFRs into representational NFRs that refer to the
way a system is syntactically or technically represented,
described, structured, implemented, or executed (e.g.,
NFR of S4, Table 1), and behavioral NFRs that de-
scribe behavioral properties of a system. Behavioral
NFRs are further partitioned into NFRs that describe
black-box behavior at the interface of a system (e.g.,
NFR of S10, Table 1) and NFRs that address a glass-
box view onto a system describing its architecture (e.g.,
NFR of S8, Table 1), or its state behavior (e.g., NFR
of S5, Table 1).

• Behavior theory: Each behavioral NFR uses a cer-
tain behavior theory to express the desired properties
of the system. We differentiate between the following
classes of behavior theories for our classification:

Syntactic The NFR is expressed by a syntactic structure on
which behavior can be described (e.g., NFR of S2,
Table 1).

Logical The NFR is expressed by a set of interaction pat-
terns (e.g., NFR of S8, Table 1).

Timed The NFR is expressed by a set of interaction pat-
terns with relation to time (e.g., NFR of S6, Ta-
ble 1).

NFR

RepresentationalBehavioral

Glass-box

StateArchitecture

Black-box
interface

Figure 1: Classification of NFRs by means of the addressed
system view.

Probabilistic The NFR is expressed by probabilities for a set of
interaction patterns (e.g., NFR of S1, Table 1).

Timed and probabilistic The NFR is expressed by probabilities for a set
of interaction patterns with relation to time (e.g.,
NFR of S9, Table 1).

To assess the feasibility and clarity of this classification
scheme, we performed a pre-study on a subset of the NFRs
(reported in our previously published material [12]). One re-
sult of this pre-study was a decision tree for the classification
of NFRs. We created this tree to improve the reproducibility
of our classification (Figure 1 shows a simplified version of
the taxonomy on which the decision tree is based)4.

During the pre-study, we also recognized multiple occur-
rences of NFRs following a common pattern. For example,

4The decision tree can be found under:
http://www4.in.tum.de/˜eckharjo/DecisionTree.pdf

http://www4.in.tum.de/~eckharjo/DecisionTree.pdf


many specifications contained an NFR following the pattern:
“The system shall run/be installed on platform X”. We iden-
tified a list of 13 of such patterns and assigned a common
classification that we applied to all NFR instances following
that pattern.5

3.3.3 Data Analysis Procedures
To answer RQ1, we analyzed the distribution of NFRs

with respect to the ISO/IEC 9126 quality characteristics.
We provide two views onto this distribution. One detailed
view that shows the distribution of NFRs with respect to
all 27 quality characteristics contained in the standard and
one coarse-grained view that shows the distribution of NFRs
with respect to only 7 aggregated quality characteristics.
In the aggregated quality characteristics, we subsumed low-
level quality characteristics (such as Functionality–Suitability
and Functionality–Accuracy) to their corresponding high-
level quality class (Functionality in this case). We made
one exception: we created for Functionality–Security an own
class, as most other NFR classifications handle security sepa-
rately. This results in the following aggregated list of quality
characteristics: Functionality, Usability, Reliability, Security,
Efficiency, Maintainability, and Portability (in the following
we will refer to this list as ISOa quality characteristics).

To answer RQ2, we analyzed the distribution of NFRs in
the ISOa quality characteristics with respect to the applica-
tion domain of the corresponding system.

To answer RQ3, we contrast the number of representational
NFRs with the number of behavioral NFRs. To answer RQ4,
we analyze the distribution of the behavioral NFRs with
respect to interface, architecture, and state behavior. To
answer RQ5, we analyze the distribution of the behavioral
NFRs with respect to the behavior theory used to express
them. For each RQ, we present the results for the set of all
requirements and structured according to the ISOa quality
characteristics.

4. STUDY RESULTS
In the following, we report on the result for our research

questions structured according to the research questions
introduced in Section 3.

4.1 Distribution of NFR Classes in Practice

RQ1: NFR Classes
Table 2 shows the number (count) and percentage of NFRs
(relative to the total number of NFRs) for each quality charac-
teristic. Table 3 further shows the distribution with respect to
the ISOa quality characteristics. As shown in Table 2, the two
classes Functionality–Suitability and Functionality–Security
stand out with in total 221 NFRs (≈41.7%). Functionality–
Suitability is defined as “the capability of the software product
to provide an appropriate set of functions for specified tasks
and user objectives” [16]. This essentially corresponds to a
classical understanding of a functional requirement. Further-
more, we classified up to 40 NFRs (≈7.5%) as Reliability–
Maturity, Usability–Operability, or as Efficiency–Time Be-
haviour.

In the aggregated results shown in Table 3, one can see that
the most common classification of NFRs is Functionality with
5The complete list of patterns and the corresponding classi-
fication can be found under:
http://www4.in.tum.de/˜eckharjo/PatternList.pdf

Table 2: Distribution of NFRs with respect to the ISO/
IEC 9126 quality characteristics

Quality characteristic count %

Functionality - Suitability 117 22.1%
Functionality - Security 104 19.6%
Reliability - Maturity 40 7.5%
Usability - Operability 40 7.5%
Efficiency - Time Behaviour 37 7.0%
Reliability - Reliability Compliance 29 5.5%
Efficiency - Resource Utilization 21 4.0%
Portability - Adaptability 21 4.0%
Portability - Installability 18 3.4%
Maintainability - Changeability 12 2.3%
Reliability - Recoverability 11 2.1%
Functionality - Functionality Compliance 10 1.9%
Usability - Learnability 10 1.9%
Functionality - Accuracy 9 1.7%
Usability - Usability Compliance 9 1.7%
Functionality -Interoperability 8 1.5%
Usability - Understandability 8 1.5%
Maintainability - Analyzability 7 1.3%
Reliability - Fault Tolerance 6 1.1%
Maintainability - Stability 4 0.8%
Portability - Replaceability 4 0.8%
Portability - Co-Existence 3 0.6%
Maintainability - Maintainability Compliance 1 0.2%
Usability - Attractiveness 1 0.2%

Table 3: Distribution of NFRs with respect to the ISOa

quality characteristics.

Quality characteristic count %

Functionality 144 27.2%
Security 104 19.6%
Reliability 86 16.2%
Usability 68 12.8%
Efficiency 58 10.9%
Portability 46 8.7%
Maintainability 24 4.5%

around 27%. Furthermore, around 20% of all NFRs concern
Security, 16% concern Reliability, and 13% concern Usability.
Efficiency (≈ 11%), Portability (≈ 9%), and Maintainability
(≈ 5%) occur only to a small extent in our data.

RQ2: Relation to Application Domain
The results for RQ2 are given in Figure 2 showing the dis-
tribution of NFR quality characteristics with respect to the
application domain of the corresponding system (Business
Information System (BIS), Hybrid (ES/BIS), or Embedded
System (ES)).

One can see a clear difference in the distribution of quality
characteristics among the application domains. For example,
for business information systems, we classified most NFRs
as Security or Functionality, while for embedded systems,
most NFRs are classified as Reliability. In hybrid systems,
the distribution among the quality characteristics is more
balanced compared with the other application domains.

Although we expected to see different distributions of NFR
classes between application domains, we were surprised by
the extent of this difference. We see these results as a strong
argument for domain-specific handling of NFRs. In Section 6,
we will discuss this in more detail.

http://www4.in.tum.de/~eckharjo/PatternList.pdf
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Figure 2: Relative distribution of NFRs over the ISOa quality
characteristics w.r.t. the application domain.

4.2 Nature of NFR Classes

RQ3: Amount of NFRs Describing System Behavior
The results for RQ3 are shown in Figure 3. The table shows
the distribution of behavioral and representational NFRs for
all NFRs from our data set while the bar chart shows the
distribution with respect to the ISOa quality characteristics.
More precisely, the bar chart shows the percentage of NFRs
that we classified as black-box (black), glass-box (dark gray),
or representational (light gray) within each ISOa class.

Quantitative results of RQ3:
74.7% of all NFRs describe behavior of the system
(black-box or glass-box) while 25.3% describe represen-
tational aspects.

More than half of each of the NFRs in the Functionality,
Usability, Reliability, and Efficiency classes describe black-
box behavior defined over the interface of the system. For
example, most efficiency requirements describe desired or
expected time intervals between events that are observable at
the system interface. Reliability requirements often describe
the observable reaction of the system at the interface if an
error occurs within the system, such as “The [system] must
have a mean time between failures greater than [x] h”.

The only class where the largest share of NFRs is classi-
fied as glass-box behavior is Maintainability. That means,
maintainability requirements, if they consider system proper-
ties, often describe the desired internal structure or behavior
within this structure (glass-box), as for example the require-
ment “The configuration [of the system] shall be independent
from the system software and application software”. However,
a substantial amount of glass-box behavior can also be found
in the Functionality, Reliability, Security, Efficiency, and
Portability classes. Thus, NFRs within these classes also
describe internal behavior, as for example the Portability
requirement “The server software shall have the capability to
run together with other applications on the same hardware
whenever possible”.

Considering the amount of representational NFRs, one can
see that the NFR classes Usability, Portability, and Secu-

Behavioral vs. Representational count %

Behavioral 396 74.7%
– Black-box 273 51.5%
– Glass-box 123 23.2%

Representational 134 25.3%
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Maintainability

Efficiency
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Usability

Functionality
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Black−box
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Figure 3: Distribution of behavioral and representational
NFRs: black-box (black), glass-box (dark gray), and repre-
sentational (light gray).

rity stand out. For usability and portability, this is as we
expected. Usability requirements often describe representa-
tional aspects of the user interface with the goal to support
the user in understanding and controlling a system, as for
example the requirement “[The] GUI shall provide a common
look and feel whenever possible”. Portability requirements
demand the system to be represented in a way that it fits a
specified environment, as for example the requirement “The
system shall run on platform X”. However, for security, we
did not expect such a high portion of representational NFRs.
Therefore, we analyzed these in detail and found that many
representational NFRs in the Security class contain a refer-
ence to a standard. For example, we found a high number of
NFRs stating, “The security class of the interface to system X
with respect to data confidentiality is high”. Excluding those
NFRs that reference standards from the results, around 54%
of security NFRs describe black-box behavior, 39% describe
glass-box behavior, and only 7% describe representational
aspects. This shows that some aspects of security are visible
at the interface, as for example user authentication, and
some aspects are internal to the system, as for example an
encrypted communication within sub-systems.

Another point interesting to us was that none of the NFR
classes is exclusively black-box, glass-box, or representational.
For example, in the Functionality class, most NFRs describe
black-box behavior. However, around 31% of the NFRs de-
scribe glass-box behavior and 17% describe representational
aspects. This is because the Functionality class does not only
include behavior over the interface, but also internal behavior
like “A system component shall save a user’s edits whenever
possible”, and also representational aspects like “The backup
data must be stored according to [the company’s] policies”.



System view count %

Interface 273 68.9%
Architecture 85 21.5%
State 38 9.6%
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Figure 4: Distribution of behavioral NFRs with respect to
the system view they address: interface (black), architecture
(dark gray), and state (light gray).

RQ4: Distribution of Behavioral NFRs w.r.t. System
Views
The results for RQ4 are shown in Figure 4. The table shows
the distribution of NFRs with respect to the system view
they address while the bar chart shows this distribution with
respect to the ISOa quality characteristics. More precisely,
the bar chart shows the percentage of NFRs that we classified
as interface (black), architecture (dark gray), or state (light
gray). For RQ4, we considered only behavioral NFRs and
neglected NFRs classified as representational, as they do not
describe behavior.

Quantitative results of RQ4:
68.9% of all behavioral NFRs describe behavior over the
interface of the system, 21.5% describe architectural
behavior, and 9.6% describe behavior related to states
of the system.

We can see that in the Functionality, Usability, Reliability,
Security, and Efficiency classes most behavioral NFRs are
classified as interface. For the Maintainability and Porta-
bility classes, the most common classification is architecture.
Usability is the only NFR class without any NFR classified
as architecture. We can further see that all NFR classes
but Efficiency contain NFRs that describe state-related as-
pects, as for example the Functionality requirement “[The
system] must ensure that submitted offers can neither be
modified nor deleted”. This shows that behavioral NFRs
describe externally visible behavior but also behavior con-
cerning the architecture (see structuring the functionality
by functions [4]) or state-related behavior (see operational
states of a system [27]). For example, in the Security class,
there are NFRs that describe behavior over the interface
like “There has to be an authentication mechanism”, some

Behavior theory count %

Syntactic 47 11.9%
Logical 277 69.9%
Timed 54 13.6%
Probabilistic 7 1.8%
Probabilistic & Timed 11 2.8%
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Figure 5: Relative distribution of behavioral NFRs with re-
spect to their behavior theory : syntactic, logical, timed, prob-
abilistic, and probabilistic and timed (from black to white).

NFRs describe architectural behavior like “[The system] must
provide intrusion detection mechanisms”, and some describe
state-related aspects like “The password shall be valid for at
most 30 days”.

RQ5: Distribution of Behavioral NFRs w.r.t. Behavior
Theories
The results for RQ5 are shown in Figure 5. The table shows
the distribution of NFRs with respect to the behavior theory
they use and the bar chart shows this distribution with re-
spect to the ISOa quality characteristics. More precisely, the
figure shows the percentage of NFRs that we classified as syn-
tactic, logical, timed, probabilistic, or probabilistic and timed
(from black to white). For RQ5, we considered only behav-
ioral NFRs and neglected NFRs classified as representational
as they do not describe behavior.

Quantitative results of RQ5:
Most behavioral NFRs are logical (69.9%), 18.2% are
timed and/or probabilistic, and only 11.9% are syntac-
tic.

Over all NFR classes, most NFRs are logical (around
69.9%), while 13.6% are timed, 11.9% are syntactic, 2.8%
are probabilistic and timed, and 1.8% are probabilistic. Most
timed and also probabilistic and timed NFRs belong to the
Efficiency class. Moreover, the Reliability class stands out,
as it also contains many timed, probabilistic, and timed and
probabilistic NFRs.

4.3 Summary of Results
Figure 6 provides a consolidated quantified view on our

overall results.



Figure 6: Relative distribution of NFRs within the NFR
classes w.r.t. the addressed system view and the used behavior
theory.

It shows the distribution of NFRs among the NFR classes
with respect to the addressed system view and the used
behavior theory. The figure shows a table with one diagram
per cell; the rows display the NFR classes and the columns
display the addressed system view and an additional column
for the representational NFRs. Within each cell, the relative
distribution per behavior theory is shown (relative per NFR
class, i.e., the values in all cells of each row sum up to 100%).

In conclusion, most NFRs address interface behavior, mostly
expressed by logical or timed assertions. The NFR classes
Usability, Security, and Portability include, in contrast to
the other classes, a high portion of representational NFRs.
Furthermore, all classes but Usability contain architectural
aspects (see column Architecture), while the highest percent-
age of those NFRs are in the Maintainability class.

5. THREATS TO VALIDITY
In the following, we discuss the threats to validity and

mitigation measures we took. We discuss them along the
different problems as they arose during our work.

5.1 Data Representativeness Problem
Inherent to the nature of our study is the data representa-

tiveness on which we built our analysis. The concerns range
from the representativeness of the way the NFRs are specified
to the completeness of the data as it currently covers only
the particularities of selected industrial contexts. We cannot
mitigate this threat but consider our data set large enough
to allow us to draw first conclusions on the state of the
practice. The relation to existing evidence (see Section 7.1)
additionally strengthens our conclusions.

5.2 NFR Selection Problem
We collected only those requirements explicitly labeled

as non-functional or quality. With this selection procedure,
some relevant NFRs might have been missed or irrelevant
ones might have been included. To address this problem,
we plan to perform the classification on the whole data
set as future work, including functional and non-functional
requirements.

5.3 Preparation Problem
In our data preparation phase, we excluded NFRs from

the study if they were not in scope of our study (e.g., process
requirements) or if we were not able to understand them
(due to missing or vague information). This exclusion process
could threaten the overall conclusion validity, but as we
excluded only about 16%, we do not consider this as a major
threat.

5.4 Classification Problem
Prior to our study, we performed a pre-study with several

independent classification rounds [12]. The inter-rater agree-
ment between the independent raters was, however, so low
that we had to conclude that the classification dimensions
are not clear enough. To resolve this issue, we performed
several refinements of the classification and created a decision
tree and a pattern catalogue that supports the classification
process [12]. In the end, we did the classification in a pair of
researchers and individually discussed each NFR.

5.5 Representation Problem
Although classifying in a pair of researchers, we still faced

the representation problem discussed by Glinz [14], which
threatens the internal validity. If an NFR stated “The system
shall authenticate the user”, we classified it as black-box
interface, and logical as it describes a black-box behavior
over the interface. However, if an NFR stated “The system
shall contain an authentication component”, we classified it
as glass-box architecture and logical as it requires an internal
component for authentication.



5.6 Contextualization Problem
We consider the reliability of our conclusions to be very

much dependent on the possibility to reproduce the results,
which in turn is dependent on the clearness of the context
information. The latter, however, is strongly limited by
NDAs that too often prevent providing full disclosure of the
contexts and even the project characteristics. To mitigate
this threat, we anonymized the data as much as possible and
disclosed all information possible within the limits of our
non-disclosure agreements.

6. DISCUSSION
Based on the results, we identified a set of insights which

we discuss in the following paragraphs.

NFRs are not non-functional. It is commonly acknowl-
edged that functional requirements describe logical behavior
over the interface of the system. From a broader view, one
could even say that functional requirements describe any
kind of behavior over the interface of the system, including
timing and/or probabilistic behavior. From this perspective,
we conclude that many of those NFRs that address system
properties describe the same type of behavior as functional
requirements do (see column Interface in Figure 6). This is
true for almost all NFR classes we analyzed; even for NFR
classes which are sometimes called internal quality attributes
(e.g., portability or maintainability) [20]. Hence, we argue
that—at least based on our data—most “non-functional” re-
quirements describe functional aspects of a system and are,
thus, basically not non-functional. From a practical point
of view, this means that most NFRs can be elicited, speci-
fied, and analyzed like functional requirements. For example,
NFRs classified as black-box interface requirements, are can-
didates for system tests. In our data set, system test cases
could have been specified for almost 51.5% of the NFRs.

Functional requirements are often labeled as NFRs.
Moreover, functional requirements in the classical under-
standing were often labeled as NFRs in our examined speci-
fications. We classified 22.1% of our overall NFR population
as Functionality–Suitability, which is a quality characteristic
that addresses the functionality of a system (“The capabil-
ity of the software product to provide an appropriate set of
functions for specified tasks and user objectives” [16]). Given
that NFRs are usually not tested and analyzed as thoroughly
as functional requirements [1, 3, 26], this means that, one
out of five NFRs in our data set elude a thorough analysis
process just because they are labeled as NFRs.

NFRs are often specified by reference to standards. As
already indicated within our results for RQ3, we realized that
several examined NFRs describe requirements by pointing
to a standard (e.g., company style guides or safety stan-
dards). More specifically, 68 of 530 NFRs (≈ 13%) contained
references to standards. We classified these as represen-
tational since we were not able to access these standards
due to availability and time constraints. However, these
standard-referencing NFRs might be interesting to explore
in future investigations. On the one hand, they allow a con-
cise specification; on the other hand, they introduce much
implicitly necessary knowledge and assume that the reader

of the specification has knowledge about and access to those
standards.

Only few NFRs deal with architectural aspects. While
in literature the relation of NFRs to architecture and archi-
tectural constraints of a system is often emphasized [10, 23,
30], the NFRs of our sample dealt with architecture only to
a small degree (see column Architecture in Figure 6). Only
for Efficiency, Maintainability, and Portability, roughly one
quarter of the NFRs considered architectural aspects of a
system. Following this, we argue that—at least based on our
data—only few NFRs actually describe architectural aspects
of a system. It is an interesting point for future research to
mirror our findings with the notion of architecturally signifi-
cant requirements (ASRs) [7]. ASRs are those requirements
which have a measurable impact on a software system’s ar-
chitecture. They are often difficult to define and articulate,
tend to be expressed vaguely, are often initially neglected,
tend to be hidden within other requirements, and are sub-
jective, variable, and situational [7]. Certainly, all NFRs
that we classified as addressing the system view architecture
can be considered as ASRs. However, also NFRs that we
classified as addressing the system view interface or state
may have an impact on the architecture, as for example the
requirement “the system should provide five nines (99.999
percent) availability”. The difference is that NFRs address-
ing the system view architecture make the impact on the
architecture explicit. For other NFRs, an architect needs to
decide whether they are ASRs or not.

No NFR class is uniquely affiliated with only one be-
havior characteristic. Our analysis shows that none of
the considered NFR classes is characterized by only one
specific system view or behavior theory. Accordingly, most
NFR classes contain representational and behavioral NFRs
which address all system views and using all behavior the-
ories. While a classification of NFRs according to quality
characteristics may be helpful to express the intent of an
NFR, the quality characteristic should not determinet how
an NFR is specified, implemented, or tested. This decision
should rather be made based on the addressed system view
and the behavior theory used to express the NFR.

The application domain influences NFRs. As our results
indicate, the application domain of the corresponding system
influences the relevancy of NFR classes. We therefore con-
clude that specification and analysis procedures should be
customized for different application domains. For example,
in the embedded systems domain, the need for probabilistic
analysis techniques is stonger compared with the business
information systems domain due to the larger amount of reli-
ability NFRs that are often described in a probabilistic man-
ner. On the other hand, for business information systems,
we should support specification techniques that integrate
functional requirements and behavioral NFRs, since around
70% of the NFRs from BISs were classified as functionality
or security (excluding the NFRs referencing standards from
the security class, most NFRs in the security class concern
the interface), which describe logical interface behavior to a
large extent.



NFRs are specified at different levels of abstraction. In
our data set, we found NFRs at different levels of abstraction
varying in their degree of detail and completeness. NFRs
ranged from high-level goal descriptions like “The availability
shall not be less than [x]%” to very concrete and detailed
descriptions of behavior like “The delay between passing a
[message] and decoding the first loop message shall be ≤ [x]
seconds”. This is in tune with the view of Pohl [23]; He
states that non-functional requirements are underspecified
functional requirements. In a development process, high-level
NFRs need to be refined to detailed functional requirements.
To make this refinement explicit, we need an approach for
relating high-level NFRs (or quality goals) to low-level func-
tional requirements. A first approach in this direction is
proposed by Broy in his recent work [6].

7. CONCLUSIONS
In this paper, we reported on a study where we analyzed

and classified 530 NFRs extracted from 11 industrial require-
ments specifications with respect to their kind and their rela-
tion to system views and behavior theories. Our goal was to
gain a better understanding on the nature of system-specific
NFRs, i.e., those NFRs that address system properties. We
were able to show, for example, that most of the NFRs in our
sample actually describe black-box interface behavior. Our
overall conclusion is that NFRs are in their nature not non-
functional. Therefore, we argue that many so-called NFRs
can be handled similarly to functional requirements and,
thus, can be integrated into a seamless software engineering
development process.

7.1 Relation to Existing Evidence
Our results show various relations to existing evidence.

For instance, during our classification, we faced all three
problems described by Glinz [14]. We also experienced same
or similar terminological confusions on NFRs as reported by
Ameller et al. [1]. In particular, we found that categories such
as availability were often misinterpreted in the documents and
used in different ways, e.g., as performance. Furthermore,
they found that the four NFR classes most important to
software architects were performance, usability, security, and
availability (in that order). We could support their results
via quantitative results: Their four NFR classes are in our
list of the top four NFR classes (in a different order). Finally,
our results also resemble the results of Mairiza et al. [19] with
respect to the five most frequently mentioned NFR classes
in literature.

Apart from supporting existing evidence, we provide first
empirical evidence on what non-functional (system) require-
ments are in their nature by analyzing and classifying them
with respect to various facets. Summarizing our findings, we
conclude that most so-called “non-functional” requirements
in our sample describe functional aspects of a system and
are, thus, essentially not non-functional.

7.2 Impact/Implications
Our results strengthen our confidence that many require-

ments that are currently classified as NFRs in practice can
be handled equally to functional requirements, which has
both a strong theoretical and practical impact. Existing
literature (e.g., [1, 3, 9, 26]) indicates that the development
process for a requirement differs depending on whether it
is classified as “non-functional” or “functional”. In contrast

to functional requirements, requirements classified as NFR
are often neglected and properties like testability are not
supported. In industrial collaborations, we have also seen
that NFRs and functional requirements were documented in
separate documents, which has led to failing acceptance tests
performed by an external company. Our results suggest that
this separation is artificial to a large extent. We argue that
treating NFRs the same as functional requirements would
have major consequences for the software engineering pro-
cess. However, there are currently no empirical studies that
investigate this argument in detail.

A long-term vision that emerges from our results is that
we might be able to better integrate NFRs into a holistic soft-
ware development process in the future. Such an integration
would yield, for instance, seamless modeling of all properties
associated with a system—no matter if they are functional
or non-functional in a classical understanding. The bene-
fits of such an integration include that NFRs would not be
neglected during development activities, as it is too often
current state of practice; from an improvement in the trace-
ability of requirements over an improvement of possibilities
for progress control to an improvement of validation and
verification.

7.3 Future Work
Our analysis is based on an inherently incomplete set of

requirements specifications gathered from practical environ-
ments. Hence, our study can be considered as a first attempt
to improve the understanding on the nature of NFRs from
a practical perspective. This has certain implications on
the validity of our results (see Section 5). However, they
still provide a suitable basis to draw first conclusions, which
need to be strengthened via additional studies; for instance,
by increasing the sample size, by taking into account fur-
ther application domains, but also by including functional
requirements into the analysis. So far, our results are suit-
able to trigger critical, yet important discussions within the
community.

We are planning three concrete next steps based on our
data set: First, we will include the remaining 1495 functional
requirements (the ones not labeled as “non-functional” or
quality attribute) in our study. Second, we are planning to
advance the integration of NFRs into software development
by providing specification blueprints (based on an integrated
model) for practitioners. Third, as discussed in Section 7.2,
we will investigate the consequences of labeling a require-
ment as “NFR” for the development process. We expect to
find consequences for how requirements labeled as NFRs
are tested or when they are considered in the development
process.
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