
Wkeplmning in Logic Synthesis*

Wllsin Gosti Amit Nwayan+ Robert K. Brayton Mberto L. SanQovanni-Vncentelti
Dept. of EECS, University of Cfiforni& Berkeley, CA 94720

+ Monterey D~i~ Systems, Sunnyvale, CA 95139
Emti: {wilsin, anarayan, brayton, dberto}@~s.berkeIey.du

Abstract

h this paper, we proWse a new logic synthesis methodology to deal
with the increasing imprtance of the interconnect delay in deep-
submicron technologies. We first show that conventional logic syn-
thesis techniques can produce circuits which wi~ have long paths even
if placed optimally. Then, we charactetie the conditions under which
this cm happen and propose logic synthesis techniques which pmduw
circuits which are “bettefl for placement. Our proposed approach still
separates logic synthesis from physical design.

1 h~uction

Gnventiomd logic synthesis assumes that the delay of a circuit de-
pends ody on the delays of the gates in the circuit and mosdy ig-
nores the effect of kterconnect delay. However, as we move to-
wards smaller geometries, intercosmect delay is becoming an increas-
ingly larger fraction of the total delay. k fac~ Semiconductor Indus-
trid Mfimce’s National Twhnology Roadmap for Semiconductor for
1997 [1] predicts that interconnect delay will start dominating the total
gate delay as we move down to 0.15p technology and below. Another
study by Wutzer, et rd [5] shows that for O.Mp technology and below,
interconnect delay can contribute anywhere fmm 5070 to 8070of the
total delay. Therefore, logic sWthesis can no longer afford to ignore
the effect of interconnect delay during opttilzation.

h Wlspaper, we adopt a diametrically opposite approach to that of
conventiomd logic synthesis. We perform logic synthesis to optimize
ody for interconnect delay, ignoring the effect of gate delays. Our
approach is based on the simple observation that if an output o depends
on an input i, then the best way to mnnect i to o is through a path which
is monotonic from i to 0, that is, there are no diversions in the path
from i to o. We first show, by means of m example, that conventiomd
logic synthesis can produce a circuit for which it is impossible to find a
plamment with no diversions in the input~utput paths. Therefore, no
matter how good a place& route tool is, it may not be able to produce
a circuit which is optimal in terms of interconnect delay.

We define the notion of illegal nodes. htuitively speaking, a node
is illegal if it introduces a diversion in the circuit no matter where it is
placed. We characterize the condition under which anode is dlegd and
give a procedure to convert an arbitmry circuit into a circuit which has
ordy legal nodes. We cdl such a circuit a legal circui~ We show that
for a legal circui~ there always exists a point plawment of the nodes

‘~i wwk w supptid in pm by SRC-98-K-324.

Peti.sion to de &@taJor tid copie of aff or part of ti ~vorkfor pemrraJ or
cl~ssroom w<ek ~nted \\tithout f~ pro~ided tit copies =e not ~de or distri~
uted for profit or comnrer&l ad~,mbge md tit copis b- h notice and the ti
dhtion on ttre &t page. To copy otherrtie, to repubkh, to ~t on sews or to
redktibute to &&, rqfi= prior spdc petision and/or a fe.
1CC~98, Sm Jose,C& USA
@ 199sAal 1-5s113as-29s/wl 1..ss.m

such that every input~utput path is monotonic. We also provide a set
of logic synthesis transformations which are guaranteed to preserve
the “legality” of a circuiL

The proposed approach has the advantage that it sti~ maintains a
distinction between the logic s~thesis and plain& route stages. It
does not need to tightly couple synthesis ad placement by frquently
dtemating be~een tie two which can be inefficient and may not mn-
verge at dl.

2 Rtious Work

So far very fittle work has been done to model the effect of intercon-
nect delay at the logic level. ~ls is maidy due to the fact that at the
logic level, very littie information is available about the intercomw~
Most of these approaches [9,8, 14] use a rough mmpanion placement
to estimate the cost of various logic synthesis oprations and make de-
cisions based on this cost. In [13] an iterative approach to combine
synthesis and plawment is presented. hstead of using a companion
placement to guide synthesis, they use acturd placement which can be
modified incrementally based on the netlist changes. In [15] a heuris-
tic to miniiize the layout cost is proposed which doesn’t employ a
companion plamment solution. The method in [15] is based on mini-
mizing the average fmout range and everdy distributing fanouts in the
chip. It was shown that the chip delay codd be reduced by this ap-
proach if dl the input pins are located on one side of the chip and rdl
the output pins on the opposite. tike [15], our approach dso dow not
employ a companion placement We analyze conditions under which
a neflist is not “good for placement given the locations of Uopins and
try to tmnsfom it into one which is.

Definition 1 A logic circuit L is a 3-tuple (I, O, ~). I is a set of
primaq input pins or simply primary inputs. O is a set of primary
output pins or simply pnhna~ outputs. Each element of I and O is a
binary variable. An element fj E ~ is afinction fj: B~l~ H B. Each

fj is c~led the g[ob~~ction of the pri~~ o~put O}

A logic circuit is represented by a Boolerusnetwork [3]. E nk is an
immediate frsnout of nj in the Boolean network we write ~j + n~.

A logic circuit is pits-assigned if each primary input i is labeled with
a position (~i,yi) and each primary output o with position (xO,YO).
A logic circuit L is placed if eveq node n of the Boolean network
representing L has a position, i.e. every node n is labeled with (xrr,yn),
and the resulting placement is denoted by PL. A point placement of L
is a placement of L where each node is represented as a point. Gven a
point-placed circuit, a path, p(i,o), from a primary input i toa primary
output o is a sequence of connected nodes from i to o, and the length
of the path, d(i,o), is the length of dl the wires along the path from i
to o. The path p[i,o) is called monotonic if its length is equal to the

!

26
I

I

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288548.288556&domain=pdf&date_stamp=1998-11-01

—-.. L . ——.,

Manhattan distance from i to o. The plawment PL of L is optimrd if
there is no other placement of L whose length of the longest path is
shorter than that of PL.

The coordinate system that we use in the paper assumes that the
x-axis goes from left to right and they-axis goes from top to bottom.

4 Problem kcfiption

Given a logic circuit L, the god is to find a placed circuit N such
that the interconnect delay of the circuit is miniized. Due to effi-
ciency reasons, we want to maintain the demuphng of the problem
into a separate synthesis phase followd by a place & route phase as
in the eonventiond approach. Given a logic circuit L = (1, O, ~), we
adhss the problem of finding a Boolean network ~, which when
placed optirn~y, leads to a circuit with minimum interconnect delay.
It is up to the placement tool to find the optimal placement for such
a network. htuitively s~aking, we are trying to create a circuit for
which a “goo~ placement exists.

We assume that the die is represented by a rutangle R with width
~R and height hR and the given logic circuit is pin-assigned. We as-
sume that the delay of a path is a finear function of its length. In
general, the interconnect delay depends quadratically on the length of
the interconnec~ However, it can be made finear by buffer insertion
and wire sizing, as shown in recent studies by Otten and Brayton [~
and Cong and Pan [4]. A circuit is said to be optimal in terms of inter-
connect delay if the length of a path from any primary input i to any

primary output o is its Manhattan distance (monotonic), i.e.

d(i,.)= Ixi ‘~ol + lYi‘YOI

This definition is motivated by the pin-to-pin delay model of Kuki-
moto and Brayton [6]. Under this model, a delay number is assignd
for every input-output pair. This model is particdarly suited for in-
tellectual property @) blocks where the arrival time of the pins are
not known in advanw. Consequently, any input-output path can end
up being a criticrd path. Therefore, to minitie the delay, we have to
minimize the delay for dl input+utput paths. We cdl this problem the
IP-based sytihsis problem.

We will dso be addressing a stightiy different problem called the
slack-based symksis problem, where the ordy difference from the@-
based prublem is the objective function. Instead of mintilzing the
length of the path from any primary input to any primary outpu~ we
minimke the longest path of the circui~ i.e.

rein{ max d(i,~)}
(i61,aEO)

k this paper, we will mainly focus on the ZP-based symbsis prob-
lem. However, the approach can be modifiti to address the slack-
bmed problem as we~. We will very briefly discuss this in Section 7.

5 Approach

To understand the problem better, let us first look at an example where
the conventional logic synthesis which considers only gates during op-
tindntion may not be able to find a circuit with minimum interconnect
delay.

yl-zc+z. t yz-z+..

v

yl

‘2 ‘*
Z z-(a+b)cd bacd

Figure 1: Network G. and its optimal placemen~

5.1 Lo@c SWthwk and htemonnect Delay An Ex-
ample

bt usmnsider a rniniium tited boolean network %, witi 10 lit-
eds as shown in Figure 1 on the lef~ Assuming that the pin positions
are given, the optimal plamment of ~n is shown in F]~ 1 on the
right. Pins e and f are not shown and are assumed to be close to yl.
In this solution, them are two longest paths of eqti length, i.e. one
path from b to yl and the other fim b toy2. This circuit is not optimal
in terms of both the F-based and the slack-based synthesis problems
bwause there is a better dwomposition of the circuit that produws
shorter longest paths. The better decomposed network with 11 hteds
is shown in Hgure 2 together with its optimal plammen~ Mthough
network ~n has fewer Eteds than ~’, it has an extra path from b
to y2. Consequently, the placement tool places node z to minimize the
longest paths from b to yl and y2. However, as we see in Figure 2, y2
is independent of b and therefore, b can be removed from the support
of~~. This leads to the network in Figure 2 whose optimrd placement
has shorter longest path as ampared to ~m.

yl -Zc+z. f y2=x+a.

v

yl yz

Z z-(a+b)x
‘w

bacd

X x-cd

Figure 2 Network ~’ and its optimal placement.

Athough network ~’ is better than %, in terms of both ~-based
and slack-based synthesis problems, there is yet a better decomposi-
tion for the IP-based synthesis problem. In ~’, the path from c to yl
is greater than its Manhattan distance. The same is true for the path
from d to y2. A better demmposed circuit ~“ with 11 titeds and its
optimal placement are shown in Figure 3.

yl-ze+z. f

3

y2-cd+a.

yl

G ‘w
Z z-(a+b)cd bacd

Figure 3: Network ~“ and its optimrd placement.

Frum the example above, we see that sometimes the output of a
logic synth=is is not “goo& for plammen~ i.e. no matter how we
pla~ the nod=, them is at least one path which is longer than its Man-
hattan distance. In our approach, the aim is to guide logic synthesis
such that it produces a circuit which is good for placement. It is up to
the placement tool to find the optimrd placement for the decomposed
circuit in the plamment phase.

h tiIs swtion we define what we mean by a circuit which is “goti
for placement and then give a set of transformation ties which can
find such a circui~ Our approach”canbe dividd into two broad stages:
constraint generation and constraint driven synthesis. In the constraint
generation step, we partition the die into regions and identify the types

i

I

,

27

of functions that are Wowed to fill them. We define the notion of
illegal nodes. Intuitively spaking, a node is illegal if it can not be
plawd somewhere on the die without causing a diversion in the circui~
We show that if a circuit consists of otiy Iegd nodes then there exists
a mint placement of the nodes such that every input+utput path is
monotonic. We can such a circuit a fegd circuit. We characterize the
condition under which anode is iflegal and give a procedure to convert
an arbihary circuit into a legal circuit.

Since nodes have areas, in the constraint driven synthesis step, we
synthesize the !egd circuit to find another legal circuit with mWl-
mum ar~. We extend the algebraic transformations and don’t care
minimization such that they operate on Iegd nodes smdproduce Iegd
nodes. As in the conventiomd logic synthesis case, we use the number
of factored-form liteds as our area intimates since it has been proven
to be a good indication of the size of a Boolean network.

5.2 Contir&t Generation

Since the length of every path from aprirnary input to apnmary output
is restricted to its Manhattan distance (monotonic), there is a well de-
fid region where a Boolean node can be placed. bt us define region
formally.

Definition 2 A region r= {x/,yt,X,,yb}, where xl <x. ~d Yt < Yb,

is the set of dl points in the rectangle boun&d at opposite cornem by
tk pOiMS (Xl,yt) ~ (Xr,yb). Mathematically r = {(x,y)]XI < x <

Xrdy~ <Y<yb}.

Wfinition 3 Given two points pl = (xl ,yl) ad ~ = (X2,M), the
region de$ned by pl and PZ is region r~P,,m) = {m~(xpl ,xPz),

fin(ypl ,YW),m~(xpl ,xm)}m~(ypl ,Ym)}.

Whh these definitions, we go back to andye why node z of the
Boolean network ~’ in Figure 2 is “go& but not x. B=ause node z

fans out toyl and its support set is {a, b,c,d}, z should be placd in the
region r~, ~), which is rz in Figure 4, so that the path from any primary
input in the support seq i.e. a, b, c, or d, to yl is monotonic. For the
same example, there is no good region to plain node x because there
are two conflicting requirements. One requirement says that node x
shodd be placed in region r~,,c), which is rl in Figure 5, for the path
from c to yl to be monotoni~ whale the other says that node x should
be placed in region r~,d), which is r2 in Figure 5, for the path frum d
to y2 to be monotonic. As shown in the figure, x can not be placed in
both rl and rz. Henw, x is not a desirable factor.

“uyz
bacd

Figure 4 bgd region of node Z.

Figure 5: CoMicting Iegrdregion requirements for x.

52.1 Region Pbcement Constrrdnts

me example above illustrates that if there is a path from a primary
input i to a primary output o, then for the path to be monotonic, fll the
logic gates along the path should be placed in the regionr(i).). ~s

leads us to first partition the die into rectangles rdong the pin positions
and label each region with functions that can be placed in it. Contimr-
ing with our example, the die ma associated with YI,Y2,a, b, c, and d
is partitioned into regions ~= {rl, r2, r3, r4, r5} as shown in Figure 6.
Region rl is labeled with {a, b,c,d}y, to mean that factors whose sup-
ports are a subset of {a, b,c,d} and &ansitively fan out only to yl are
allowed to be plawd in rl. Region r3 is Iabeld with {c,d}Y, and
{a,b}J, to mean that factors whose supports w a subset of {c,d} and
transitively fan out ody to yl or factors whose supports are a subset
of {a,b} and transitively fans out ordy to y2 are allowed to be placd
in r3. Other regions are labeled in a sti]lar fashion. Refering back to
Boolean network ~’, we see that node z is a “goofl node and can be
placed in rl bmause its support set is {a, b,c,d} and it transitively fans
out ordy to yl. ~s matches the label of rl. Node x is not a “goti
node because there is no region whose label contains its support set
{c,d} and both of its trmsitive fanouts areyl andy2.

yl ~1
Q ‘3 w

y2
‘5

[%b.c. ~] [ac. d~] [~d&l {dlyl
[b~~ {ab\z {a b.c~: lab. c. ~

b a c d

Figure 6: Regions and labels of regions.

Definition 4 A placement constraint d is a 2-tuple (d,&), where
& ~ O, and ~ ~ I. ~ is called the output set and ~ the support

set of d. We ~so write d ~ {i1ji2,. ..}01,02,...) w~re ~ = {i1,i2,-..}
and~ = {ol,q,...}.

Each region is labeled with a set of placement constraints, e.g. rl is
labeld with {a, b,c,d}Y, and r3 is labeled with {c,d}yl and {a,b}J2

as shown in Figure 6. A placement constraint on a region r is called
its region placement constraint.

Henm, each region plawment mnstraint d, = (~, d) in a region r
denotes that Boolean nodes that fan out only to a subset of the primary
outputs in ~ and have at most Or in their support can be placed in r.

522 Node Pkcement Constints

We see that given a region r, only certain types of nodes cm be placed
in r and this is captured in its region placement constrm”nt. We now
define the durd for nodes. Given a node n, it can ordy be placed in cer-
tain regions. For example, node z of Boolem network ~’ in Figure 2
can ordy be placed in region rl as shown in Figure 6. Hence, we label
each node with a placement mnstraint and it is called its na& plae-
tnent comtrahrt. me node placement constraint of node n denotes the
support of n and its transitive primary outputs. For example, the node
plawment mnstraint of z of Boolean network ~’ is {a, b,c,d}yl.

me node placement constraints of nodes of a Boolean network can
be easily computed by traveming the Boolean network in a bradth-
first manner horn the primary inputs to compute the support sets and
from the primary outputs to compute the output sets.

28

— — .

523 Properties of Pbcement Constraints on Boolean Networks

h this section, we show what “go@ nodes mean and having a
Boolean Network with only “go@ nodes can lead to a monotonic
point placement of the network

htuitively, a “goo~ node is one that can be placed in a region. We
define such “goo~ nodes as legal. However, before we can forma~y
define the legafity of a node, we need the definition of containment of
plaument constraints.

Definition 5 Placement constraint da = (@,&) is contained in
placement constraint db = (~, d), denoted as da ~ db, if ~ ~ @
andegd.

Definition 6 Boolean node n with node placement constraint d. is
legal with respect to region r with region placement cowtraints

{d,, ,dn,.. .}, ¬ed as n $ r, ifthere m.sts a jsuch that dn c d,j.

Definition 6 says that node n is Iegd with respect to region r if n
can be placed in r.

Definition 7 A Boolean node n is Iegrd ifthere is a region r such that
n$r.

Definition 7 says fiat node n is Iegd if there is a region r where n
cm be placd. ~is definition and Definition 6 are about the legafity
of a Boolean node. Now given anode, the next definition defines the
region in which the node is Iegrd.

Definition 8 The legal regions of a node n, denoted as R(n), is the set
ofregiom ~= {rl, r2,..., rl } such that for any region rj E % n $ r~

For cltity p~ses, we denote the legrd region of a node n with
node placement constraint dn as R(dn). We will then assume that given
anode placement constrain~ the node is implicitly defind.

It can be easily seen that R({i~}O,) is the region r(ik,O,).E we define
R(dl) n R(d2) to be the overlapping region between R(dl) and R(d2),
then it is easy to see that R({il, i2,... ,i~}o, ,02,...,0fl)is equal to:

R({il }01)nR({i2}0,)n,.. nR({im}O,) n
R({il }@) nR({i2}o,) n... nR({i~}02) n

.. .n

R({il}0.)nR({i2 }~”)n... nR({i~}).).

~is iscrdled the intersection rule. For example, as shown in Figure 7,
for node z of Boolean netwo~ ~’,

R(z) = R({a,b,c,d}Y,)

= R({a}Y,) nR({b}Y,) nR({c}~,) nR({d}Yl)

= rz,nranr=nra

= rz

Basal on Definition 7, the Iegafity of a node n witi node plamment
constraint d“ = (d, d) can be chwkd by traversing dl regions and
check if n is legal for each region. Assuming 111>101, the complex-
ity for this dgorithrn is 0(1112 10]) because the number of regions is
0(1Ii 10]) md the number of region placement constraints in a region
is O(\ 1[+ 10/). A better dgonthm would be to chwk if the legal re-
gion of n is empty or not. ~ls can be done by using the intersection
tie defined above. me complexity is then 0(1~1 Id]), which can be

yl t““uyz
bacd b.cd

71 Y1 yi y2

bad bard

“uy’
bncd

Figure 1 Region intersection for node z of ~’.
I
I

much smaller. However, there is a linear dgorithrn with complexity
I

0(1~1 + ld 1)according to the next three lemmas. I
hmrna 1 below says that nod= that transitively fan out to ordy one

output are rdways Iegd. I

Lemma 1 For a node placement constr~.nt {it ,i2,..., i~}o, ,Oz,...,O~ ,

with n = 1, R({il, i2,... ,im}~,,ti,...,~m) # O.

Proofi For {ii, i2,..., im}0,, the point (xOl,yO,) is in
R({il, i2,...,i~}0,). ■

Lemma 2 below enumerates the cases when nodes that transitively
fan out to two outputs are Iegd.

Lemma 2 For a node placement constraint {il ,i2,..., i~}o, ,Oz,...,on

}with m >2 and n = 2, R({il, i2,... ,i~ ~,,@,...)On)#o~

2. R({il, i2, . . . ,im}o,) is a point, i.e. XO,=X02 AViyi = C, ory~, =

y@ AVixi = C,for some C G ~.

1. ~t us assume without loss of generality that (VIVOXi >

X~ A yi 2 Y~), md let itin = (rnh{xi},rnin~i})md O- =

(msx{xO},max{yo}), then the Iegrd region is r(im,o-) and it
is not empty.

2. If the Iegd region is a poin~ then it is not empty.

Only tipti Without loss of generality =sume that the Iegd region
is not empty and it is not a poin~ but xil < XO1< xiz, i.e.01 is onthe
top side of the die, tien R({il ,i2}0,) is a point if both il and i2 are
on the top side as well @lgure Sax it is a fine otierwise (Figure 8b).

Since R({il, i2}~,,02)= R({il ,i2}~,) AR({il, i2}~2),it isnot empty iff
yi, =yiz ~d x., = x.Z* i.e. 01 ~d 02 ~ at oppsite side Flm 8c).
If we have mom than two inputs, then they dl have to be either on
the top or tie bottom side of the chip for the Iegd region to be non-
empty and the legal region has to be a point (Figure 8d). Hence, it is a
conbadiction. ■

(a) 0) (c) (d)

Figure 8: Figure for proof of Lemma 2.

me following lemma says if a node hrmsitively fans out to more
than two outputs, then there can ody be one case where it is legrd.

29

hmma 3 For a node placement constraint {il, i2,... ,im}o,,oz,...,oa
withm~z andn>z R({il, i2, . . . ,im}o,,q,...,o~) # O ifl(VtVox~ >
X. /\yi ~~O)V(VIVOXj > xOAyi <yo)V(VIVOXi <XO Ayi ~yo) V
(VMOXi~ X. Ayi ~yO).

-f: me proof is stillar to the proof of bmma 2.
Epti ~s is the same as the first case of the if part of bmma 2

proof.
Only if- Whhout loss of generality assume that the legal region

is not empty but ~il < XO1< xiz, i.e. 01 is on the top side of the die,
then R({il,i2}0,isa mint if both il and i2 are on the top side as well
~lgure 8a); it is a fine othewise @igure 8b). Since R({il ,i2}~,,q) =

~({il,i2}0,)/\~({il,i2}02),it is not empty iffyil = yiz md X~l= X~2,
i.e. 01 and 02 are at opposite side @gure SC).mere is no way to add
a Wid ouqut to {il, i2}0, ,Ozwith a non%mpty legal region. Hence, it
is a contradiction. ■

By the input~utput symmetric nature of Iegd regions, the above
three lemmas apply with the role of m and n interchanged.

ht the condition (V/Voxi~ XOAyi ~ yO)V(Vt~oxi ~xOAyi <yO) V
(VIVo~i~ X. A}~i~ yO)V (VNoxi ~ X. Ayi ~ yo) be Cdd the non-

overlapping rendition. men, with these three lemmas, the legdty of
anode with node placement mnshaint {il, i2,..., im}., ,02,...,0Dcan be
checked with the following dgoriti:

1.

2.

3.

4.

If n is 1, then the node is legal.

If the nonaverlapping condition is me, then the node is legal.
~s can be checked in O(m+n) by first finding the largest and
Srndlest x and y coordinates of both inputs and outputs and then
check for the overlapping condition using these values.

If the node placement constraint satisfies Condition 2 of
hmrna 2, then it is Iegd.

If none of the above are satisfied, then the node is illegal.

It is obvious that this legtity checking algorithm is O(m+n). Henm,
it is very efficienL

GrOl@ 5.1 mere exists a corner point p= of
R({il,i2, . . . ,im}d,,q,...)ofi) that is closest in distance to dl out-
puts, and a comer point pffirthestfim dl outputs. ~ point p= is
called the closest point of the region& pf the fitihest point.

hrnma 4 1. ~ R({il, i2,... ,im}o, ,oz,...,o~) n R({ik}O,,oz,...,O~),
where ik # {ii, i2,... }, im , is not empty, then it contains the
closest point of R({il, i2,..., i~}o, ,Oz,...,O~).

2. If R({il ,i2,..., im}a,,w,...,oz) n R({il ,i2,... ,im}ok, where Ok #

{0,,02,... , on], is not empty, then it contahts the @rthest point
of R({il, i2,... ,im}n,,oz,...,oc).

hfi Assume that m ~ 2 and n >2. me proof is similm for other
cases.

1. Assume (ViVoxi > XOAyi > yo) (the proofs of the other cases
are the same), then XL> XOAy~ > yO.Kxk is greater tha the x-
mrdinates of any other inpu~ then R({il, i2,... ,im}o,,oz,...,ofl) n

R~{ik}ol,02,...,0n) = ~({il,i2,... ,im}~,,~,,...,~n).If xk is Ius than
the x~ordinate of au other inputs, then the verticrd tine going
through i~ partitions R({il, i2,..., ire}., ,q,...,ofi) into two regions
and R({il, i2,... ,im}0,,02,...,0m)nR({ik}O,,%,...,Ofl) is the partition
that includes the closest poin~

2. me proof is stillar to case 1.

■

hmma 4 says tha~

1. Adding inputs to a node placement anstraint will not change the
closest pint of its legal region.

2. Adding outputs to a node placement constraint will not change
the farthest point of its legal region.

At this poin~ we have defined what Iegd nodes are and how to
check for Iegtity of nodes. We now put the legrd context into Boolean
networks and discuss the implication of Iegdlty of Boolean network
on placement.

Defition 9 A Boolean network is Iegd is every node in the netwoti

is Iqd

fiere is a nice property of a legal Boolean network as described by
the following theorem.

~eomm 5.1 Given a legal boolem network them exists a mono-
tonic poiti placement for the network

-R
~s is an induction proof. We traverse the Boolean network in a

reverse topological order, i.e. anode is visited ody after au its fanouts
have been visited.

me base case is where we have all primary outputs. ht o be an
arbitrary primary outpuL then place o at its pin location. For o, its pin
location is its closest paint. me induction hypothesis is that fanouts of
a node n are placed at their closest points and still maintaining mono-
tonicity, i.e. the distances from their closest points to their primary
outputs are their Manhattan distances. we show that n can dso be
plamd at its closest pint while still maintaining monotonicity.

Ut nf be an arbitrary fanout of n. bt d be the node placement
constraint of n~ with au fanins exmpt n removed. Mso let the node
plawment constraints of n and nf be c and cf. men cf is derived
from &by adding the primary inputs of fanins of n~ other than n and
c is derived from c’ by adding the prim~ outputs of fanouts of n

other than n~ We know hat R(c’) # O because c’ ~ c and R(c) # O
by the assumption that n is legal. By applying hmma 4 for each
pfiary input added to c’ to fom cf, R(c~) includes the closest pint
of R(d). Since R(c) ~ R(d), the distance from the closest point of
R(c) to a primary output o is the same as tie sum of the distance from
the closest point of R(c) to the closest point of R(cf) and the distance
from the closwt point of R(c~) ad o. Hence, the monotonic prope~
is maintainti and n can be placd at the closest point of R(c).

9
~eorem 5.1 reduces our problem of finding a monotonic point

placement of a circuit into the problem of finding a Iegd Boolem
network. me logic synthmis transformations we use to mnvert an
illegal Boolean network into a Iegd one is called m&Jegd, and it is
explained below.

52.4 Mak~d

me Adegd operation takes a Boolean network as its input and
pmduws a Iegrd Boolean network. In the effort of producing a Iegd
Boolean network it attempts to minimke the number of new Boolean
nodes created

30

me following lemma and coronary guarant= that a Boolean net-
work can always be made Iegd.

Qmma 5 Zfn ~ nf, and n is illegal but nf is legal, then collapsing n
into nf will not& nf illegal.

-k Collapsing n to nf does not change the support of nf, nor does
it add any primary output to the transitive fanout of nfi ~erefore, the
node plawment constraint of nf does not change and hence nf stays
Iegd. E

By the proof of ~eorem 5.1, we know that every primary output is
legal. fien it is easy to see the following mroflary.

CorOl@ 52 An illegal Boolean network can always be made legal
by collapsing dl nodes into theprima~ output nodes.

Beside mllapsing, node duplication cm dso Iegdlze a node.

~mma 6 Zfn ~ nf, n ~ ng, and n is illegal but both ns and ng are
legal, then duplicating n into nl ~ nf and n2 ~ ng ds nl and n2
legal.

hfi me support of n is a subset of both the supports of nf and
ng, but the output set of the node placement mnstraint of n is a superset
of the node placement constraints of both nf and ng. By duplicating
n into n, + nf and n2 a ng, node placement cons~int of nl is con-
tained in that of nf and thus nl is Iegd. Stillarly for n2. E

Makedegrd traverses the Boolea network in a reverse topological
order, i.e. anode is visited after all its fmouts have been visitd. Dur-
ing the tiaversal, if it sees an illegal node, it collapses the node into its
fanouts until the node becomes legal. Hence, there is a frontier moving
from each primary output to primary inputs in its support where every
node is legal on the side of the frontier toward tie primary outpu~ M
the sum-f-product expression of the fanou~ as a result of collapsing a
node into one of its fanouts, exceeds a user-defined parameter, t,ntun-
ber of fiterals, the node is replicated for each fanout untfi it becomes
legal. me intuition behind tils parameter is that large nodes tend to
have more common subfunctions with other nodes and thus allow for
sharing. However, the parameter shodd not be too large since it can
restit in explosion in memory usage.

As shown above, Iegdity of a node can be checked efficiently, that
is, it is finear in the ske of the node plawment constraint. Hence, the
hlegal operation is efficien~

53 Constrbt-Dtiven Synthds

me constraint generation step takes a pssibly itiegrd Boolean net-
work and makes it Iegd. ~eomm 5.1 guarantees that there exists
a point placement for this network However, by definition of the
point placement of a circui~ nodes are assumed to be a poin~ henm,
they have no area h reality, nodes have area and the length of a
longest path depends s~ongly on the size of a Boolean network. me
constrainttiven synthwis step is responsible for minimizing the ua
of an Aeady IegrdBoolean network whale preserving its Iegfity. AS
mentioned in Section 5, we use the number of factored-form literrds of
a BOOIW network as a measure of the area of the circuit represent
by the Boolean network. So tils step is to optirniie the network such
that we get a minimum Iiterd Iegd Bmlean network.

We leverage the well develo@ algebraic transformations in the
conventional logic synthesis by extending them to derd with and pro-
duce Iegrd Boolean nodes. Each of these operations is explained be-
low.

~ejatdract dgonthm isexplained in [16]. It basicrdly looks for
a tw~ube divisor or a two-literal cube that rduces the most number
of fiteds in every iteration.

When cleating with Iegd Boolem network this dgoriti may re-
sdt in illegal divisom. For example, assume that node n is the best
divisor found and it divides nodes x, y, and Z. fien the output set of
the node plamment constraint of n is the union of the output sets of the
node placement constraints ofx, y, and Z. From Section 5.2, we know
that the legal region of n may be empty and n may therefore be illegal.
However, it maybe the case that n remains legal if it only divides x
and y, or x and Z, etc. Hence, the fas~xtract dgonthrn is modifid
such that the best legal divisor is chosen in every iteration.

~ node n divides a set of nodes N, then complexity of finding a
subset NI of N which preserves the Iegtity of n and has the largest re-
duction in the number of Iiterds is exponential in the size ofN. Hence,
a heuristic is used to select an optimal subset. First the nodes in N are
ordered in decreasing sties of the legd regions to form a list N~Otied.
men N~Onedis finearly traversed. Each node is added to the subset N1
if the legality of n is preserved. Node n is used as a divisor if it reduces
the number of Iiterrds in the network.

h Wlspaper, the fastixtract implemented in S1Sis used.

532 Rwbstihtion

In the conventional logic synthesis, a node n is resubstitutd into an-
other node x if n divides x. ~ls may affect the Iegfllty of both n and
x. me following observation states when n and x can bemme illegal.

Obsmtion 1 Zfn divides x and both n andx are legal b~ore resub-
stitution, then @er resubstitution

1. x can become illegal ifits suppo~ is not the superset of that of n

2. n can become illegal ifits output set is not the superset of that of
x.

h this paper, n can ordy be resubstituted into x if the legfllty of n is
preserved. Henm, a chwk is made before every r~ubstitution.

533 FulMimpfily

mere are two types of don’t cares, i.e. the observability don’t cares
(ODCS)and the satisfiability don’t cares (SDCS). Computing the exact
OWS of a node is computation~y expensive. In practice, a subset of
the ODCScalled the compatible ODCS (COMS) are computd. ~ese
CODCs are expressd in terms of the primary inputs. men together
with the extemd don’t cares -s) of the pritn~ outputs, a don’t
care set in terms of the immediate fanins is mmputed using a im-
age amputation. h mmputing the SNS, a support filter is used. A
node is includd in the SDCS if its support set intersects the support
set of the node being considered. Employing SDCS in the minimi~-
tion promdure can result in boolem resubstitutions. me support filter
prowdure can dso be usd in the image computation of the CODCS
and ~s. Once the SDCS are mmputed and the ~s and CODCS
are expressed in terms of immediate fanins, a two-level minimtiation
rdgorithm is invoked to find an opttilud expression. ~ls is simply
a brief dmcription of thefill~implifi. For a more detail explanation,
we refer the ~aders to [10].

31

I

Wmms 7 Thmughowfillsimplifi computation, the otdy steps that
can introduce illegality into the netwofi are the image computation
and the SDC computation

Proof: ht node n be the node we are mmputing don’t cares for.
bgdity of the Boolean network can ordy change if an dge is added
to the network. During the whole til~implify process, only the fanin
edges of n can be addd. Edges of fanins of other nodes can not
change. Adding a fanin edge ton means that a resubstitution happens
and Observation 1 appfies. Potential new fsnin edges of n are addd
osdy during the image computation and SN computation through the
support filter, which basically says that a node x is a potential divisor
of n if the support of x interswt the support of n. ■

We therefore constrain this operation by rdlowing a node x to be
in the support filter when computing full~impfifi for node n if the
inclusion of node x preserves the Iegfity of the network awording to
Observation 1.

53.4 synti* mow

Whh dl the above basic operations, a synthesis flow is then a script
sti]lar to the script. mgged in S1S. An empirical study needs to be
conducted to derive an optimal script.

6 Expetimenti Restifi

To see the effect of the proposed approach, we have implemented the
basic operations describd in Section 5.3. An optilzstion script has
kn created and we call it scr@t.wim, which consists OE

make-legal
eliminate 5
sueep; eliminate -1
simplify -rn nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
ftil-simplif y -m nocomp

Our ex~riment uses S1S and Riturd version 3.4, a timing-driven
standard cell placer [12]. The input bfif file and a randomly gener-
ated pad assignment file is read into S1S.The script.wire optimization
script is run in S1S to generate m opttilzed logic nedis~ The op-
timized netist is mapped to the standard cell technology library std-
cel12Q.getiib of S1S.The mapped nedist is then plamd by Ritti with
a fixed pad assigrunen~ We measure the length of the longest path and
tie delay of the Rhurd output. The distance of two cells is measured
as the Manhattan distance from the center of both cells. The length of
a path is the sum of dl distances be~een consecutive cells along the
path.

Table 1shows the results for four circuits. The circuit bbaraComb is
obtained fmm the Sequentialcircuit bbara by removing dl latch= and
mating the outputs of the latches as primary inputs and the inputs to
the latches as primary outputs of the network. Column 2,3, and 4 show
the number of literals in factored fores of the scripts scrip~rugged,
scrip~delay, and serip~wire respectively. Columns 5, 6, and 7 fist the
length of the longest path for each scrip~ Columns 8,9, and 10 show

the CPU time. The experiments were run on a DEC MphaServer WOO
with 2GB of memory. The runtime is for the technology independent
step.

As shown in this table, although tie number of fiterals in script.wiw
approach is more than that of script. rugge~ the length of its longest
path is the same for rti3 and better in other circuits. The longest paths
are much shorter than script. delay results. As seen from this table, the
runtime is comparable. This is expected since the legafity checking
is linear in the size of the node placement mnstraints and hence its
runtime is a minor part of the total runtime.

Table 2 shows the delay mmputed by Ritual for the four circuits.
Columns 2,3, and4 show the cell delay for each script The wire delay
is shown in columns 5,6, and 7. The toti delay is fisted in columns 8,
9, and 10. Except for the totrd delay of z4ml running script. delq, the
total delay of dl circuits is the best using script.wire.

Rgure 9: Number of lite~ds~s ;~{~r o~nodes legrdized for C1355.

7 Open hsuw ad Futi Work

Though the results in the previous section shows that the approach per-
foms satisfactorily, these circuits are fairly small. For bigger circuits,
the number of nodes in a Iegd network can be large and opttilzing
such large networks using operations likefmt~ract andfill~implifi
can be very expensive.

To illustrate tils, we plot the number of IiteAs versus the number of
nodes in the constraint generation step for C1355 as shown in Rgure 9.
On the x-axis is the number of illegrd nodes hat are Iegdized. On the

Y-MS is fie n~ber of liter~s ti the Boolean network The network
increases from 1032Iiterrdsto 23709 fitedsafter216 nodes have been
Iegfllzed outofatotrdof514 nodes in the network.

There are three various dwections that can be pursued to address this
problem. The first one is to improve the area optimization algorithm
presented in tils paper. Rewiring and rdundancy removal is a tech-
nique that falls into this direction. SP~s [2] can be used to mintilze,
rewire circuits, and potentially Iegrdizing nodes. In tiis pa~r, we are
assuming that we are given a circuit represent as a Boolean network.
We then apply makelegrd and several rdgebraic &msformations fol-
lowed by don’t care minimization. The final circuit depends on the
qudhy of the initial Boolerm network. Ntematively, the Boolean net-
work can first be collapsed as much as possible into a two-level circuit
where rdlprimary outputs are expressed in terms primary inputs. Then
functiomd dwomposition, like [11], can be used to decompose the net-
work into a minimum Iited legrd Boolean network.

The swond direction which we believe is more promising is to relax
the constraint that every path must be monotonic. In other words, this
is about solving the slack-based synthesis problem instead of the more
restrictive IP-based synthesis problem. This carsbe done by applying

I

32

I

I

Table 1: Path length comparison of sctipt.mgged, script. delq, rmdscript.wire for ~-based syntiesis.

Number of Literals hngth of Longest Path CPU fime
Name Sc.rugged sc.delay sc.wire scngged sc.delay sc.wire sc.rugged sc.delay sc.wire
z4ml 41 84 49 1324 1342 1025 0.2 0.3 0.3
rd53 42 62 50 1122 1624 1122 0.1 03 0.2
rd73 74 17s 87 1689 2457 1680 0.8 1.8 1.2
bbaraComb 69 79 109 2021 1573 1464 0.5 05 03

Table 2 Delay comparison of script. mgged, script. delq, and script.wirefor IP-basd synthesis.

Cell Delay II Wre nPlav II Tntal nplnv I,, .. ----.-, ,, .“.- -“. -,

the P-based synthesis rdgorithnr otiy to a subset of the paths. h~-
itively, we can wifeplan only the crhicd paths so that no diversions
w dlowd in them; other paths carshave diversions. One approach
would be to modify the definition of legrdity so that Iegdity is checked
basal on the primary inputs and outputs that are relevant ordy to the
critical patis. Ordy the nodes on the critical paths are legafized. We
have done some preltiln~ experiment and our results show that if
you select top few longest paths and Iegdize all the nodes on those
paths, then the area pemdty is not very high. However, at present there
is no easy way to perform a meaningful comparison of tils approach
~.e. modified ~-based algorithm to solve the slack-based synthesis
problem) with the conventional approach. For tha~ we need a place-
ment tool that uses the same delay model as ours and we have not been
successful at makiig Rhtrd use our model.

One other issue that needs further attention is that of pin assignment
me approach in this paper assumes that the pin assignment is given.
h the design process, usually ody partial pin assignment is given.
However, the quality of the find solution strongly depends on the pin
locations. Therefore, we need to look kto algorithms to find good
pin assignment during synthesis. Such an dgonthrn can dso be used
to extend this approach to handle sequential circuits by finding good
placement for the latches present.

The optimization that we have shown are technology independen~
We have not yet addressed the issue of technology mappkg. Mso,
we have completed ignored gate delays. We are presentiy looking
into both of these issues, i.e. technology mapping and how to best
incorporate gate delays in our approach.

Finally we we dso Iookmg into extending the proposed approach
to handle other interconnect issues, fike crosstalk and reliability.

8 Conclwiom

We have proposed a new approach to ded with the increasingly im-
portance of wire delays in deep submicron technologies. It is based
on the fact that the shortest path between any two pints in a circuit is
the Manhattan distance be~een them. We showed an example of why
conventional logic synthesis may produce circuits where the minimum
distance can not be achieved.

11 I
_.—.

1

rd53 9.73 I 737 I

The proposed approach stfil dwouples logic synthesis phase and
plain & route phase. It mnsists of a constraint generation step which
produces a legsdBoolean network which can be plawd such that ev-
ery path is monotonic, and a constraint-driven synthesis step which
minimizes tie Iegd Boolean network whale preserving legality. We
show an example of how this approach can be extended to solve the
slack-based synthesis problem. Finally, we describe dwections for fu-
ture work which includes an investigation into a new placement tool
that works together with the propsed approach.

Refemncw
[1]

[2]

[3]

[4]

[5]

[6]

P]
[s]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[lq

SendcmrductorIndustid AUianc&Ntiiorral Techo/ogy RotiapfarSemicodu-
Iom. 1997.

KK Bmyton. Underatanting SPFDS A new method for spw@lng fletibfity.
WG, May 1997.

RK Brayron,AL. Sangiomni-VinmnteM, and G. Hmhtel. hlulti-!evel lo~c syn-
ti=ia. Proceedhgs of th IEEE, vol. 78(no. 2]2W3~, February 1990.

J. Cong and Z. Pan. InterconnectPerfornranceEstimationModek for Syntbeah and
Design Planning In WH 98.

K Wutir, ~. Newton, and N. Shenoy.The futureof logic syntbesk and physicaf
design in dccp$ubticron pmcss gcontim. In lSPD, pages 218-224,1997.

Y. fitioto and R.K Brayton. Hiemrcbid functional drrdnganatjsk. In DAC,
199s.

R H.J. M. Oaen and R K Bmfion. Planningfm Perf~ce. InDAC,June 1998.

M. Pedmm and N. Bk hynut hven WC RcsmcNrin@o~mition. In
IC~, pag~ 1%137, November 1991.

M. Pedraroand N. Bh& hyrrut Driven technologyhlapping. In DAC, pages 9%
105,June 1991.

H. Savoj. Don ? cares h mdti-le},el netrvofiopttiizdiors. PhD ti~k, Univmity of
CaSiforrd%B&ley, hlay 1992.

C. SchoUand P. Mohtor. Comunimtion breed ~A synthesis for multi~utput
bool- finctions. In ASP-DAC, pages 279-2SS, Au~t 1995.

L Sriniw, K Cbaudbary,and E. S. fib. Riti apcrfomce dfivenplmerwent
aIgoritim IEEETrmsaaions on Cimits dSytiem II:AndosdDigitd Signal
Pmcessirrg, 39(ll~S25440, No\,errrber1992.

G. Steu B. M. RI=, B. Rohflekch, and E hl. J&ann=. Tting ~ven Placemrrt
in Intemtion with Netit T=fomtions. In ISPD 97, Napa VaUey,CA 1997.

H. Vfimv and M. Pedraro. Routabiity-Mven Fanuut Op-on. In DAC,
pag= 23&235, June 1993.

H. V&hnavand M. P- Mlnindtirrgthe RoutingCost DuringLogicE~tion.
In DAC, pages 7&75, June 1995.

J. Vasude-urthy and J. RajshT A methd for conwmnt d-mrrpaition and fw-
torition of Buolean mprmions. In ICM, pag= 51&513, No\renrber19W.

33

