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Abstract

We present a new technique, based on a continuation method, for
oscillator analysis using harmonic balance. With the use of Krylov
subspace iterative linear solvers, harmonic balance has become a
very powerful method for the analysis of general nonlinear circuits
in the frequency domain. However, application of the harmonic
balance method to the oscillator problem has been difficult due to
the very small region of convergence. The main contribution of this
paper is a robust and efficient continuation method that overcomes
this problem.

1 Introduction

Oscillators are used to generate the signals that are used as the
time or phase references and are essential components in almost
any electronic system. The design of an oscillator, a nonlinear
circuit, requires a large signal steady state analysis. Using tradi-
tional time domain integration techniques for simulating these cir-
cuits can be very difficult, especially for high-Q crystal oscillators.
Without special intervention, such simulations settle to the trivial
DC solution. If oscillations do start, due to the high-Q, many cy-
cles have to be simulated before the steady state is obtained. In
addition, the truncation error tolerances need to be extremely strin-
gent. The accuracy requirements and the high-Q mean that, in some
cases, the simulation can take a few days. Even with more accurate
integration schemes [1], time domain simulation of oscillators is
inefficient.

Since many periodic waveforms typically consist of a funda-
mental frequency and a few harmonics, it is more natural to repre-
sent the waveforms with a truncated Fourier series. Contrast this
with use of piece-wise polynomials used in time domain simuia-
tions. Using the Fourier representation converts the differential-
alegbraic equations of the circuit equations to a set of nonlinear al-
gebraic equations which connect the Fourier coefficients of the sig-
nals. The harmonic balance method achieves the simultaneous so-
lution of these equations employing Newton—Raphson based meth-
ods. A very important advantage of harmonic balance is that the
truncation error inherent in time domain analysis is absent when
the waveforms are band limited. This makes harmonic balance the
method of choice for a large class of important circuits in the wire-
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less communications area. Also, the transient response of the cir-
cuit is completely ignored by the method, greatly speeding up the
analysis of the steady state response.

Harmonic balance has been applied to oscillator simulation by
adding the unknown frequency of oscillation to the set of state vari-
ables. However, oscillator simulation using harmonic balance has
proven to be difficult due to the small region of convergence and
the existence of the degenerate solution (the DC solution is a valid
steady state). This is due to nature of the oscillator circuit itself,
often requiring an extremely good guess for the frequency of os-
cillation and the oscillator waveforms to aid convergence. There
have been many methods to improve the convergence of harmonic
balance when applied to oscillator circuits [2], [3], [4]. However,
these techniques are not always suitable. In this paper we propose
a new continuation method that significantly improves our ability
to simulate oscillators using harmonic balance.

We first present an overview of the theory of harmonic balance,
including recent advances in the application of Krylov methods.
We then discuss the oscillator problem and present a new contin-
vation method. We conclude the paper with some examples that
demonstrate the robustness and efficiency of the new method.

2 State of the art of Harmonic Balance

Harmonic balance is well established as a simulation technique for
nonlinear circuits driven by one or more periodic inputs [5], [6],
[7). Harmonic balance exploits the fact that the periodic or quasi-
periodic waveforms in many circuits are most compactly described
in terms of their Fourier coefficients. If the period T of a waveform
z contains M uniformly spaced samples, then,

M-1
m=Y Xee?™H 1=0,...,M-1 (1)
k=0

The goal of harmonic balance is to find the Fourier coefficients, Xk,
of all the circuit waveforms. These are related by Kirchoff’s current
law (KCL), formulated in the frequency domain. KCL states that
the algebraic sum of currents entering each node of a circuit must
be zero.

Using the modified nodal analysis [8], the circuit can be de-
scribed by a system of algebraic—differential equations:

F@ ) + q@,t) =0 @

where f is a vector of the conductive contributions to the circuit
equations and g is the vector of charges and fluxes. Each node
contributes on equation arising from KCL. In addition, there are
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branch equations for the inductors and voltage sources. f and g are
functions of z, which in addition to the node voltages v, can consist
of inductor and independent voltage source currents.

Discretizing j‘;q(a:, t) yields the following nonlinear system of
equations:

h=F+DQ=0 &)

where D is a block matrix with diagonalvblocks and represents the
finite difference approximation of the differentiation operator, and
F and Q are vectors of length NM, with N the number of nodes
and A the number of samples of each waveform:

M1 pM-i]

F=[f0...f3... - i
'

Q=Ial...q%...q @

To obtain the KCL equations in the frequency domain, we apply
the discrete Fourier transform to Eq. 3 and obtain:

H=TF+TDr'rg=90 5)

where I is a block matrix of diagonal blocks and represents the
discrete Fourier transform. Since differentiation in time domain
transforms to multiplication by ww in the frequency domain, we
have

D =T"Lar )

where
wol

Q= )
wM_lI

and
vl F fo<ig< ML
T = 21:(1';1\!) if I\12—1 <i<M
I isthe N x N identity matrix. D is a dense block matrix with di-
agonal blocks, which exactly differentiates waveforms represented
by truncated Fourier series.

The Jacobian, .J, required for the solution of Eq. 5 using Newton-
Raphson methods is

Go Co
r ™! +2Qr rt
Gar—1 Cr—1

®

©
or
J =TGr ! +.r0r!

where G and C are the Jacobians of f and g respectively. G; and
C; are N x N matrices.

Because each node in a circuit is typically connected only to a
few other nodes, and all the Fourier coefficients are coupled, the
Jacobian is a block dense matrix with the blocks themselves being
sparse. The degree to which any two frequencies are coupled is
determined by the nonlinearity of the circuit.

For robust convergence of the Newton method, it is necessary
to invert the exact Jacobian. Applying direct linear solvers is pro-
hibitive as the storage required is O(INM?) and the factoring cost
is O(N*M?3), & = 1.5 — 2. This limited the broader applica-
tion of harmonic balance for many years. In recent years, Krylov
subspace based iterative methods have dramatically improved the
situation. These methods solve Az = b by repeatedly performing
matrix-vector multiplications involving A.
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Figure 1: By using the FFT and the Jacobian decomposition in (10)
in matrix—vector products, the cost of simulation grows almost lin-
early with number of frequencies. We compare both the QMR and
GMRES methods

2.1 Iterative Linear Solvers

The computational cost of harmonic balance is dominated by the
solution of
JAX =-H

at each Newton iterate, where H is given in Equation 5. A typi-
cal RFIC receiver front-end can require the solution of 1,000, 000
equations. Direct methods have been adapted with much success to
large, sparse linear systems that arise in circuit analysis. However,
for the large dense system of equations that arise in harmonic bal-
ance, direct solution methods require excessive storage and com-
putation and their use is prohibitive.

Krylov—-subspace methods [9], when combined with suitable
preconditioning, are powerful algorithms for the iterative solution
of large, sparse linear systems. One of the features of Krylov-
subspace methods is that they solve Az = b using the matrix A
only in the form of matrix vector products, and thus they readily
exploit the sparsity and structure of the linear problem.

Two Krylov methods exploited for harmonic balance are the
quasi-minimal residual (QMR) [10], [11] and generalized minimal
residual (GMRES) methods [12], [13].

2.2 Applying Krylov-subspace methods to Harmonic Bal-
ance

If the Jacobian in harmonic balance is explicitly formed by carrying
out the product

J=TGr™! +.Qrer, 10)

the cost of the matrix vector products required in GMRES is O(N M?),
The product JX can be performed more efficiently, in O(N Mloghf)
operations, if we use the decomposed Jacobian and execute the
multiplication from right to left:

JX =G X)) +:QI(C(I'1 X)) = I'(Gxz) +QI(Cxz)
mn
This exploits the FFT and the sparsity of the block diagonal G and
C matrices. Figure 1 shows the cost of a three~tone mixer simula-
tion as a function of the number of frequencies in the Fourier rep-
resentation. Notice that the cost grows only slightly superlinearly
with the number of frequencies. This circuit had 558 resistors, 216
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Figure 2: The block diagonal preconditioner (12) becomes increas-
ingly ineffective as the circuit is driven with larger signals. Notice
that GMRES is better than QMR

capacitors, 1 inductor, 4 diodes and 172 bipolar transistors, all to-
gether generating 900 nodes. Simulating this kind of circuit using
direct sparse matrix techniques is not practical.

The almost linear—time cost of harmonic balance shown in Fig-
ure 1 also depends on the convergence of GMRES in a few iter-
ations. To improve the convergence rate, GMRES is applied to a
preconditioned version of J:

JPlY=—-H PX=Y

where the preconditioner P should be an easily invertible approx-
imation of J. If the circuit deviates from linearity only mildly, we
can construct a good preconditioner by ignoring all frequency cou-
pling. This yields the block diagonal matrix

Go + woCo
P= (12)
Go + wir~1Co

where the elements of G and Cl are the time averages of the G
and C matrices respectively. This preconditioner has proven to be
very effective. For very nonlinear circuits, however, the precondi-
tioner is not very effective as shown in Figure 2 where we compare
the simulation cost of RF amplifier as the input signal to the circuit
is increased, driving the circuit into increasingly nonlinear opera-
tion.

A better preconditioner can be constructed by pruning the Ja-
cobian not all the way to a block—diagonal matrix, but to optimally
include the extent of frequency coupling. The cost of applying the
preconditioner increases with the extent of frequency coupling re-
tained. But this can be more than offset by the reduction in the
number of GMRES iterations required.

The efficiency of harmonic balance also depends on the error
tolerances specified for GMRES. In Figure 3 we compare the sim-
ulation time as r in || Az, — b} < 7{|b]] is varied. The convergence
of the Newton iterates is not effected by r but the cost of GMRES
can vary significantly.

3 The Oscillator problem

The periodic steady state of an oscillator is determined not by exter-
nal sources, but by the circuit itself, so the period is an additional
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Figure 3: The cost of simulation as a function of the relative error
tolerance in the linear iterative solver. The almost constant total
cost of loading the Jacobian, proportional to the number of New-
ton iterations, shows that convergence of Newton’s method is unaf-
fected.

unknown. With a smal! extension the harmonic balance method
discussed in the preceding sections can be applied to the analy-
sis of oscillators. One approach is to add the unknown frequency
to the harmonic balance equations of the circuit [14]. An addi-
tional equation fixing the phase of the fundamental component of
one waveform is added to choose one of many equivalent solutions.

H(X,w) = F(X)+QW)Q(X) = 0 (13)
$XH= 0 (14)

This set of equations can be solved using Newton-Raphson based
methods where the Jacobian is

J 8H
Jose = [ (erlz’im)T a(‘)” ] (15)
where
OH _ 40,
0w~ dw

J is the Jacobian in Eq. 9 and e1*™ is the unit vector that selects the
imaginary part of fundamental component of the n** waveform.

However, without an extremely good initial guess for both the
oscillation frequency and the node voltages, the method either tends
to converge to the trivial DC solution, or fails to converge at all. Os-
cillators are nonlinear and very frequency selective and Newton’s
method can fail because the unknown frequency is adjusted at ev-
ery iteration along with the node voltages. The node voltages at
the intermediate iterates are such that KCL is not satisfied, and at
some iterates, are quite unphysical. Updating the frequency based
on such node voltages can lead to divergence, or make convergence
difficult.

3.1 Review of past work

The oscillator problem consists of determining a good starting point
for the node voltages and frequency of oscillation, and avoiding the
DC solution. In this section we describe the techniques used to
estimate the frequency of oscillation and past attempts to improve
the convergence of harmonic balance in oscillator analysis.

The robustness and convergence rate of harmonic balance de-
pends greatly on the initial guess for the frequency of oscillation.



circuit guess actual
kurokawa pole—zero

1 10.0173MHz | 10.01966MHz | 10.01280MHz
2 2.23014MHz | 2.267678MHz | 2.209776MHz
3 723.7238KHz | 732.8542KHz | 730.2530KHz
4 159.155KHz | 159.1544KHz | 159.1549KHz
5 3.93757MHz | 3.799555MHz | 3.379978MHz
6 8.76376MHz | 8.394621MHz | 7.724068MHz
7 260.991KHz { 260.5295KHz | 273.3039KHz
8 1.21937KHz | 1.188461KHz | 1.213109KHz

Table 1: The difference between the large signal oscillation fre-
quency and that predicted by linear circuit analysis for various os-
cillators.

This is most readily obtained by studying the circuit stability around
DC. For some frequency, a circuit designed to be an oscillator will
amplify small signals. As these signals grow, the nonlinearity of
the circuit will limit the amplitude of oscillations and steady state
is reached. One linear analysis technique is to study the Nyquist
locus [15, 2]. A suitable value for the unknown frequency satisfies
the following

S{A(wo)] = 0
R[A(wo)] < 0

(16)
an

where A = det[Y (w)] is the determinant of the admittance ma-
trix, computed at the DC operating point. Another criteria, the
Kurokawa condition [16] can also be used to estimate the frequency:

${Z(wo)] = 0 (18)
R[Z(wo)] < O (19)

where Z is the driving point impedance at some port in the circuit.
Another method is to obtain the poles, A;, of the circuit. Poles that
lie in the right-half-plane indicate the frequencies at which small
signal perturbations to the DC state will grow. So, a good starting
frequency is

S(A)

Wy =
>0

£V

20
@n

With the recent advances in Krylov methods, pole—zero analysis
can be performed very efficiently even for very large circuits.

It is very important to understand that the actual frequency of
oscillation can be different from the frequency obtained using lin-
ear analysis techniques. Table 1 shows the difference between the
oscillation frequency and the frequencies predicted by linear anal-
ysis. The difference is because the capacitances and conductances
of semiconductor devices are nonlinear functions of the terminal
voltages. While the differences between the estimated and actual
frequencies is not large in most of the circuits, they are large when
compared to the domain of convergence of the solution.

To determine the initial values for the node voltages, Rizzoli et
al. [2] hold one Fourier component of one waveform fixed, while
minimizing H(X,wr) using the quasi-Newton method. But the
minimization problem can be as hard as the original problem of
solving the nonlinear equations.

Recently, Ngoya et al. [4] presented a two-tier approach to im-
prove oscillator simulation. They use the concept of a probe to
create a circuit—probe combination for which KCL can be satisfied
for any frequency. The probe is a voltage source at a specified fre-
quency and an open circuit at all other frequencies. In terms of the
circuit-probe combination, the oscillation condition is met when
the probe current is zero for a finite probe voltage. Then all the
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circuit equations are satisfied without the probe being a part of the
circuit.

In this approach oscillator simulation is formulated as a two-
level problem. In the upper level, the following two~dimensional
nonlinear problem:

§R(I}”‘obe (Vprabe, Wosc))
g(Iprobe (Vprobe, wasc))

0 (22)
0 (23)

is solved using a Newton method. Vj;ope is the probe voltage and
Iprobe is the probe cumrent. To select one of the many equivalent
solutions, the phase of V;,;cze is fixed, usually at zero. In the lower
level, given the probe magnitude and frequency specified by the
upper level iteration, the probe current is obtained using standard
harmonic balance. Notice that the frequency is updated only in
the outer level iterations, restricting the frequency iterates to follow
only those paths along which the voltages are such that KCL is
satisfied for the circuit-probe combination. This is a much more
stable process.

The above method converts the analysis of an autonomous cir-
cuit into an analysis of a series of closely related nonautonomous
circuits, easily handled using standard harmonic balance. We have
found the two-level method to be more robust than the direct solu-
tion of Equations (13) and (14). However, the upper level Newton
iteration requires the computation of the exact Jacobian

aR[Iprobzl am[’probe]
- OVorobe Ow
Jprobe = | salr)  0%Uprene] @4
Vprabe dw

for the upper level 2 x 2 system. This Jacobian can be constructed
by solving:

0X OH

a‘/prol“/e - aV}n‘obe (25)
X o0H

Tow = "o @0

For each outer-level Newton iteration, this adds two extra linear
system solves. Further, these linear systems must be solved very
accurately since the solution is used in constructing the outer-level
Jacobian. If the two-tier Newton scheme is applied directly, the
extra cost of constructing the upper—level Jacobian is not significant
because the outer—level Newton converges in a few iterations and
the total number of linear solves is much greater than the number of
linear solves needed for the sensitivity analysis. However, it is not
very efficient for use in a curve tracing or continuation algorithm.

The two-tier method requires a guess for the amplitude of the
fundamental component of the probe waveform. Ngoya et al. se-
lect this so that it minimizes the probe current at the initial estimate
for the frequency. If the initial estimate is exactly the oscillation
frequency, then the probe current vanishes when the probe ampli-
tude is the first harmonic of the free running oscillator waveform
at the probe terminals. If the frequency differs from the oscillation
frequency then the probe current will exhibit a minima. The idea is
that this can serve as a good starting point for the Newton iterations.

However, the starting point selected using this scheme may not
belong to the domain of attraction of the solution. An even more
serious limitation of the method is that it fails when the initial guess
for the frequency is not close enough to the actual oscillation fre-
quency. In some circuits, the probe current will exhibit a minimum
only if the frequency is extremely close to the true oscillation fre-
quency, as illustrated in Figure 4.

This is an important limitation since the frequency of oscillation
is estimated using linear analysis techniques, and the minima we
are searching for occurs far from the DC solution. Of course we
can search for the minima of [ Iprose (Vorobe )| at several frequencies
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Figure 4: [Iprope(Vprose)l at f = 8.763758MHz estimated
by kurokawa’s condition, at f = 8.394621MHz estimated by
pole-zero analysis and at the actual oscillation frequency f =
7.724068MHz. The scheme described by Ngoya et al. clearly fails
in this case.

in the neighbourhood of the frequency given by (17-21). However
this search can be expensive since it involves repeatedly solving
many harmonic balance problems for each trial frequency.

Before leaving this section, we note that in order to avoid con-
verging to the DC solution, many authors [3], [2], [4] suggest solv-
ing the modified system:

H(X,wosc)
— = 27
] @n

where the X,. = X — X4.. This may not always work since
it can still exhibit a local minimum at X, = 0 to which New-
ton’s method can easily be attracted. Even otherwise, this function
may not offer any advantages in terms of convergence of Newton’s
method.

Clearly, we need a method for oscillator simulation that does
not require a good initial guess for the amplitude of oscillation.

3.2 A New Continuation Method

As shown in the previous section, the method of Ngoya et al. [4] is
limited because Iprobe (Vprobe) may not have a minima if the initial
guess for frequency is not close enough to the oscillation frequency.
To develop a better method to generate a starting point for oscillator
analysis, let us consider the process of oscillation build-up. When
the oscillation is small amplitude and Kurokawa’s condition is sat-
isfied, R[Iprobe] < 0. As the oscillation amplitude grows, the ac-
tive devices and the positive feedback responsible for the negative
input resistance begin to saturate, and pull the poles of the circuit
toward the imaginary axis. Ultimately, the amplitude stabilizes and
the probe current is zero. If the amplitude grows beyond this, the
active devices respond so that the oscillations are damped. In other
words, as the amplitude grows, the port resistance becomes pos-
itive and so does the probe current. As the oscillation amplitude
changes, the frequency also changes.
This leads us to a natural continuation strategy that will identify
or bracket the solution we are seeking. We retain the idea of a
probe. But, instead of keeping the frequency fixed while searching
for a good starting point for the probe amplitude, we fix the phase
of Iprobe to zero, and let the frequency vary. We then trace the
curve
g[Iprobe(Vprobe;w)] =0 (28)
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Figure 6: Curve S[Iprobe(Vprote, f = 3=)] = 0 showing many
turning points.

starting with a small signal for Vprore. As the probe amplitude
increases, we let the frequency adjust to satisfy $[Iprote] = 0.

As the curve (28) is traced, a change in sign of R[Irobe] signals
that we have bracketed the solution for R[Iprote] = 0. Figure 5
shows R[I,rope] as a function of Vyrope for a typical oscillator.

This method is robust because the continuation method is started
with a small signal excitation at the probe. So the frequency of os-
cillation estimated by linear analysis methods is valid. In addition,
this method is also suitable for obtaining all steady state solutions
when mulitiple solutions exist.

In tracing the curve (28), we can treat V},oz. as a continuation
parameter. Because the curve (28) can be very complex, as shown
in Figure 6, with many turning points, we use a curve tracing algo-
rithm [17], [18]. We use the backward—difference formulas as pre-
dictors, with automatic step-length and order control to efficiently
trace (28). At each step along the curve we solve

H= F(X: I/probe) + ZQ(U.))Q(X, I/probe) =0 (29)

g[I;robe] =0 (30)
(Vorobe — Cv)® + (w — C,)* = 67 31)
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Figure 7: Schematic of a crystal oscillator.

where 4 is the step size and (Cv, C.,) is the previous point on the
curve. Vprobe is the value assigned to the real part of the probe
voltage. The imaginary part of the probe voltage is set to zero, to
pick on of many equivalent solutions. This set of equations can be
solved using Newton-Raphson based methods where the Jacobian
is

J aH 8H
Bw anrabe
Ji trace = eT 0 (32)

0 2(w-—-0C.) 2(Virose —Cv)
where
6H _ OF oQ
3Vprabe avprobe anrobe
and e is the unit vector that selects the imaginary part of fundamen-

tal component of the probe current which, in the MNA formulation,
is part of X. A suitable preconditioner for (32) is

+ 120

P 8H oH
Ow Vprobe
P, trace — eT 0 (3 3)

0 2w=0Cu) 2(Vprose —Cv)

where P, given in Eq. 12, is the preconditioner used in standard
harmonic balance.

The continuation method can also be formulated to trace the
R[Iprobe(Varose)] characteristic as shown in Figure 5. We have
also implemented an efficient method for this purpose by explic-
itly switching parameters between Vprope and Iprobe at the turning
points.

4 Examples

In this section we present a few examples of oscillator simulation.
First, we consider the simulation of a Pierce oscillator. Then we
simulate the characteristics of a 2 GHz VCO. We conclude this
paper with an example of efficient oscillator startup simulation.

4.1 Pierce oscillator

Consider the Pierce oscillator shown in Figure 7. The element val-
ues for the Pierce oscillator are: Ry1=100K, R,=2.2KQ, C1=100pF,
C>=100pF, Cp= 25pF, Cs=99.5(F, Rs = 6.4 and Ls=2.55mH.

The bipolar transistor has § = 500. The circuit has poles at (1.467978x

10*,6.295085 x 107) and (1.467978 x 10*,—6.295085 x 107),
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Figure 8: The curve S{Iprote (Vprote, £)] = 0 for the pierce oscil-
lator.
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Figure 9: Plot of R[Iprose (Vprobe)) for the pierce oscillator. The

trace, including the final solution was completed in 15 seconds on
a 200MHz ultraSPARC workstation, taking 150 steps.

that lie in the right half plane. So, we set f = 10.01894MHz as
the starting point for the oscillation frequency. The crystal Q is
approximately %€ = 2.5 x 10°,

We introduce the probe across the collector and emitter termi-
nals of the transistor. For this configuration, Figure 8 shows the
curve ${Iprobe] = 0, and Figure 9 shows the probe current as a
function of probe voltage along this curve.

The Fourier expansion of the waveforms in this circuit was trun-
cated at M = 64. The entire simulation took 15 seconds on a
200MHz ultraSPARC workstation, The frequency of oscillation is
determined to be f,.. = 10.00676335199140MHz. The oscillator
waveforms at the base and collector of the transistor are obtained
using the inverse fast Fourjer transform and shown in Figure 10.

We also attempted to simulate this oscillator with the method
described in {4]. However, we could not obtain a suitable start-
ing point for the probe amplitude required by the method. At f =
10.01894MHz, | Is obe (Vprobe )| does not exhibit any minimum. At
the exact frequency of oscillation, as determined by our continua-
tion method, there exists a minimum (which is also a zero). How-
ever, at a frequency f = 1.01f,sc, which is only slightly away
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Figure 11: Magnitude of probe current as a function of probe am-
plitude at f = f,sc = 10.00676335199140MHz and at f =
1.01 fosc = 10.01068309855113MHz. Because the frequency of
oscillation is not known, the task of finding the minimum is frus-
trating.

from the exact oscillation frequency, this minimum disappears, as
shown in Figure 11. Since it is impossible to guess the frequency
of oscillation so accurately, the limitations of the method in [4] are
clear.

Although the above circuit is simple, it illustrates the general
difficulties in oscillator simulation and how our continuation method
overcomes them. Our method was successfull in finding the solu-
tion in all circuits in our test-suite containing 15 oscillators. The
largest of these contained 30 active devices. We found the 2-level
direct newton method to be very sensitive to the supplied guess for
the amplitude of oscillation. Contrast this with our method where
the continuation is started with a small (or even zero) amplitude.
This also makes our method faster compared to other methods be-
cause harmonic balance converges very quickly when the probe
amplitude is small, and along the continuation path, we have a very
good guess for the solution at each step. Each step along the con-
tinuation path takes only 2-3 iterations.
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Figure 12: Dependence of the oscillation frequency on supply volt-
age.
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Figure 13: Oscillation amplitude at fundamental as a function of
supply voltage.

4.2 VCO characteristics

Here, we simulate the characteristics of a VCO. It consists of 4
BJTs and a total of 30 nodes. Figure 12 shows how the frequency
of the oscillator depends on the supply voltage. Figure 13 shows
how the supply voltage effects the amplitude of oscillation at the
fundamental. At low supply voltages, the oscillator waveform is
almost a square wave, and at high supply voltages it is sinusoidal.
The simulation, sweeping the supply voltage from 0.5V to 5.0V in
steps of 0.1V took less than 10 minutes.

4.3 Simulating Oscillator Startup

In the introduction we mentioned the problem of simulating the
long startup of a high-Q oscillator. Using a time-varying Fourier
representation, we can write a differential equation for the evolu-
tion of the Fourier coefficients [19). This allows us to follow the
start up without having to take the extremely small time-steps nec-
essary to capture the high frequency oscillations. The high fre-
quency oscillations are simulated in the frequency domain using
harmonic balance whereas the startup envelopes are simulated in
the time domain. As an example, we simulate the startup of a crys-
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Figure 14: Fast simulation of startup transients using a mixed
frequency-time method.

tal oscillator.

The circuit, a 20MHz oscillator, consisted of 30 MOSFETS and
a total of 80 nodes. We used 4 harmonics in the Fourier represen-
tation of the oscillator waveforms and simulated the evolution of
these harmonics as a function of time. The supply is initially on,
then turned off, and then turned back on as shown in Figure 14.
Also shown in the figure are the dc and fundamental components
of the oscillator output. Notice the initial increase in the dc and fun-
damental components as the supply is turned off. This is due the
active devices temporarily entering the high gain region of opera-
tion. Then, when the power supply is turned on, initially only the dc
component of the oscillator waveform can respond to the increas-
ing supply voltage. After some delay, the fundamental component
starts to build-up. The entire simulation takes only 10 minutes com-
pared to several hours using purely time domain simulation. All the
features captured using the mixed frequency-time simulation were
also observed in the purely time domain simulation.
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