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Abstract

\Ve present a method for optimizing and automating compo-
nent and transistor sizing for CMOS operational amplifiers.
lVe observe that a wide variety of performance measura can be
formulated as po~nomial functions of the design variablw. As
a resul~ ampfifier design problems can be formulated as age-
ometricprogram, a special me of convex optimimtion problem
for which very efficient global optimization methods have re-
centiy been developed. The synth~s method is therefore fas~
and determines the ~obdy optimal d~~, in particular the
finsd solution is completely independent of the starting point
(which can even be infeasible), and infeasible specifications are
unambiguously detected.

After briefly introducing the method, which is dmcribed in
more detail in [1], we show how the method mn be appHed to
six common o~amp architectures, and give several example de-
signs.

1 Introduction

As the demand for mixed mode integratedcircuits increases, the
design of analog circuits such as operationrdamplifiers(op-amps)
in CMOS technology tiomes more critical. Many authors have
noted the disproportionately large dtiign time devoted to the anflog
circuitry in mixed mode integrated circuits. In [1] we introduced a
new method for determining the component vahses and transistor
dimensions for CMOS op-amps. The method handles a wide vari-
ety of specifications and constraints, is atremelyfmt, and results
in globally optimal designs. We have developd a simple op-amp
synthesis tool, called GPCAD, based on our method.

We have formulatd the op-arnp design problem as a special
type of convex optimization problem called a geometric program
(GP). Methods to solve convex optimization problems have several
advantages when compared to general purpose optimization meth-
ti they find the globally optimrd solutiom the solution can be
computed extremely fast even for large problem$ and, if a solution
exists, convergence is guarantd. The disadvantage of convex OP
tirnization methods is that they apply to a more restricted class of
problems than the generrd methods. The contribution of this paper
is to demonstrate the surprising result that a wide variety of op-amp
design problems can be formulated with considerable accuracy as
convex programming problems.

In this paper we describe how the method appfies to six dif-
ferent types of op-amps two simple op-amps (OTAS),a two-stage
op-amp, a two-stage cascoded op-arnp, a foldd-cascode opamp,
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and a telescopic op-arnp. We rdso give some design examples.
In ~2, we give a brief overview of previous approaches to OF

amp synthesis. In ~3, we describe geometric programming, the
optimization problem which is the basis of the method. In $4, we
briefly describe the transistor model used, which we crdl the GP1
model. ~ls simple model gives reasonable agreement with sophis-
ticated BSIMI models over a range of lengths, widths, and bias
currents, and moreover, is compatible with the GP method. In S5,
we describe the six op-amp architectures we consider. In $6, we
show how a variety of performance measures can be cast in the
GP framework. To simplify the discussion (and dso due to lack of
space) we concentrate our discussion on a single typicrd op-arnp,
and use a simple transistor model ba5ed on a classical long channel
square law. The same ideas and methods, however, can be used to
formulate the GP for the other five architectures we consider, and
the more accurate GP1 MOS model. In 37, we give design exam-
ples for the different op-amps. More details on geometric program-
ming, transistor models and how the method applies, can be found
in [1, 2].

2 Other approaches

We can classify previous methods for analog circuit CAD into four
groups.

Classical optimization methods

Classical optimization methods, such as steepest descent, sequen-
tird quadratic programming and Lagrange multiplier methods, have
b~n widely used in analog circuit CAD. The general purpose op-
timization codes NPSOL [3] and MINOS are used in, e.g., [4, 5].
Other CAD methods based on classical optimization methods, and
extensions such as a minimax formulation, include OPASYN [6],
OAC [7], and STMC [8]. These classicrd methods can be used
with complicated circuit models, including full SPICE simdations
in each iteration, as in DELIGHT.SPICE [9].

The main disadvantage of classical methods is that they ordy
find locally optimal designs. ~Is means that it is possible that
some other set of design parameters, faraway from the one found,
results in a better design. The same problem arises in determin-
ing feasiblfity: they can fail to find a feasible design, even if one
exists. In order to avoid IOCAsolutions, the minimization method
is carried out from many different initial designs. ~Is increases
the likelihood of finding the globally optimrd design but it dso de-
stroys one of the advantages of clrtssicrdmethods, i.e., speed, since
the computation effort is multiplied by the number of different ini-
tials designs that are tried. It dso requires human intervention (to
give “goo& initial designs), which makes the method less autw
mated. Nso, these methods become slow if complex models are
used, as in DELIGHT.SPICE.
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Knowledge-based methods

Knowledge-basd and expert-systems methods have dso been widely
used in analog circuit CAD. Examples include genetic rdgorithms
or evolution systems like DARWN [10] and special heuristics based
systems like IDAC[11 ] and OASYS [12].

~ese methods have few limitations on the ~pes of problems,
specifications, and performance measures that can be considered
but they have several disadvantages. ~ey find a Iocrdly optimal
design (or, even just a “good’ or “reasonable” design). me find
design depends on the initial design chosen and the algorithm pa-
rameters. ~ese methods require substantial human intervention
either during the design process, or during the training process.

Global optimization methods

Global optimization methods such as branch and bound and sim-
ulated annealing have rdso been used, e.g., in [13]. Branch and
bound unambiguously determines the globrd optimal design but it
is atremely slow, with computation growing exponentially with
problem size. Simulated annealing (SA) is another very popular
method that can avoid becoming trapped in a Iocrdly optimal de-
sign. In principle it can compute the globrdly optimal solution, but
in practical implementations there is no guarantee at dl; termina-
tion is heuristic. Like classicrd and knowledge-based methods, SA
allows a very wide variety of performance measures and objectives
to be handed. Simulated anneting has been used in several tools
such as AS~OBLX [14] and O~MAN [15]. me main disad-
vantages of SA are that it can be very slow, and in practice it cannot
guarantee a globrd optimal solution.

Convex optimization methods

In a convex optimization problem we minimize a convex objective
function subject to linear equality constraints, and inequality con-
straints that are expressed as upper bounds on convex functions.
me great practical advantages of convex optimization are begin-
ning to be widely appreciated, mostly due to the development of
extremely powerful interior-point methods for general convex op-
timization problems in the last five years (e.g., [16, 17]). ~ese
methods can solve large problems, with thousands of variables and
tens of thousands of constraints, very efficiently (e.g., in minutes
on a small workstation). Problems involving tens of variables and
hundreds of constraints are considered smrdl, and can be solved on
a small current workstation in less than one second.

One very great advantage of convex optimization, compared to
general purpose optimization methods, is that the global solution is
alw!ays found, regardless of the sttiing point. Unfeasibilityis un-
ambiguously detected, i.e., if the methods do not produce a feasible
solution, they produce a certificate that proves that the problem is
infeasible.

3 Geometric Programming

Geometric programming (GP) is a special type of convex optisniza-
tion problem. It has been known and usd since the late 1960s
(see [18]); more recenfly it has been widely used in transistor and
wire sizing for Elmore delay minimization in digitd circuits, as in
~OS [19]. As far as we know, it has not been usd before in
anrdog amplifier design.

Utzbeavector (zl,..., Zn) of n rerd, positive variables. A
finction ~ is c~led a polynomial function of z if it has the form

t

where cj > 0 and ~ij c R. When there is only one term in the
sum, i.e., t= 1, we cdl f a monomial finction. Note that posyn-
omirds are closed under addition, multiplication, and nonnegative
scaling. MonorniAs are closed under multiplication and division.

A geometric program is an optimization problem of the fom

minimize fo (x)
subject to f~(x) <1, i = 1,... ,m,

gi(z)=l, i=l,...,p,
(1)

Xi >0> i=l ,.. .,n,

~d ~ncti~~g fm are posynomid functions and gl,..., gP are mono-where fo,

If f is a posynomid and g is a monomial, then the constraint
f(z) < g(z) can be handled by expressing it as f(x)/g(x) <1.
In a similar way if gl and gz are both monomird functions, then we
can handle the equ~ity constraint gl (x) = g2(c) by expressing it
as gl(z)/g2(z) = 1.

We say that a function his inverse-polynomial if l/h is a posyn-
ornid function. If h is an inverse-polynomial and f is a posyno-
mid, then GP can handle the constraint f(x) < h(x) by express-
ing it as f(z) (l/h(x)) < 1. If h is an inverse-posynomid, then
we can maximize it, by minimizing l/h. Inverse-posynosnirds are
closed under products, and dso parrdlel combinatiort~ if h and k
are inverse-posynorniti then so is hllfi = l/(1/h+ l/k).

Geometric programming in convex form

A geometric program can be reformulated as a convex optimiza-
tion problem, by changing variables and considering the logs of the
functions involved. We define new variables vi = log z~, and take
the logarithm of a posynomird f to get

h(y) =logf(ey’,..., e

()

‘“) = log ~ ea$y+b’
k=l

where a$ = [al, --- ank] and bk = log Ck. It carsbe shown that h
is a conva function of the variable y.

~us, we can convert the standard geometric program (1) into
a convex program by expressing it as

minimize ho(y) = log fo(eyl,..., ey” )
subject to hi(y) = log fi(eyl,.. ., eym) <0, (2)

V;(y) =Ioggi(eyl,..., eym) = O.

~is is the so-called qonentialform of the geometric program (1)
(see, e.g., [20]).

fiere are several methods for solving geometic programs. One
option is to solve the exponentkd form of the geometric program
using a generrd purpose optimization code such as NPSOL or MI-
NOS. ~ese general purpose codes will in principle find the glob-
rdly optimal solution, but codes specificrdly designed for solving
geometric programs offer greater computational efficiency. Re-
centiy, Kortanek et d. have shown how the most sophisticated primrd-
durd interior-Doint methods used in linear uromamminz can be ex-.-
tended to GP;resulting in an dgonthm with efficiency approaching
that of current interior-point linear programming solvers [21].

For use in GPC~ we have implemented, in MA~AB, a very
simple pnmrd barrier method, which is described in [1] and [20].
Despite the simplicity of our rdgorithm and the overhead of an inter-
preted language, the GPs arising in this paper are solved in l~s than
two seconds on a S~l ~~-SPARC 1 (170MHz) workstation.
A more efficient rdgorithm and implementation would make it con-
siderably faster.

k=l
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4 Transistor modeling

!

The transistor model we use has the following form, which we cdl
a GPI tnodel.

● The overdrive voltage Vg~—VTH isa monornid function of
transistor length L, transistor width W and transistor drain
current 1.

● The transconductance g~ is a monornid function in L, W,
and I.

● The output conductance gOis given by ago,m where gO,mis
monomird in L, W, and I, and a is a constant. We use two
different vahres of a, depending on whether the transistor in
question typically operates with large or Small Vd$.

● Capacitances between the terrninds and bulk are posynomird
in L, W, and I.

The traditiorrd long channel MOS transistor model (level 1 in
HSPICE) fits exactly the format of the GPI model (see [1]). By
simple data fitting techniques [20], we have obtained GPI models
that have reasonable agreement with HSPICE higher order models
(BSIMI models), over large ranges of length, width, and bias cur-
rents. To model submicron devices, we are now developing more
sophisticated and accurate models that are still compatible with ge-
ometric programming basal design. These models, which we crdl
GP2, are described in [2].

5 Op-amp architectures

We will apply the method to the six different op-amp architectures,
or topologies, shown in figures 14. These are

●

●

●

●

●

●

a two-stage op-amp (figure 1)

a simple OTA op-arnp (figure 2)

an OTA op-amp (figure 3)

a two-stage cascoded op-amp (figure 4)

a folded-cascode op-amp (figure 5)

a telescopic op-amp (figure 6)

Vdd
t

I 1 I I

v,,

Figure 1: Two stige opamp.

Vdd

v+

I I
I-

K,

Figure X Simple OTA op-amp.

Vdd

I I

L

Figure 3: OTA opamp.

Vdd

I“””w
v,,

Figure 4 Wo stage wcoded op-amp.

‘CL
I
vs.

6 Petiormance specifications/constraints

In this section we show how a variety of performance measures and
constraints can be formulated using geometric programming. To
simplify the discussion (as well as to save space) we concentrate on
one op-arnp topology, the two-stage op-amp of figure 1, and assume
a simple MOS model; more details can be found in [1]. In each
section we tive short comments about how the method extends to
the other fi~e op-arnp architwtures, as well as more sophisticate
MOS models.

The design variables are the transistor sizm (width and length),
the vrdue of the passive components (capacitors and resistors), and
the value of bias currents and bias voltages. For this particular two-
stage op-amp, there are nineteen design variables.
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Figure 5 Folded-cascode op-amp.
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Figure 6: Telescopic op-arnp.

Symmetry and matching

In many op-amps there are some symmetry and matching con-
straints that must be met. For example, the input transistors should
be identicrd and the bias transistors should have the same length to
improve the matching among them. ~ese condhions can be ex-
pressed as monornkd constraints of the form

W; = Wjt Li =Lj. (3)

@quivdently we can simply work with a smrdler number of vari-
ables, e.g., using Wi to represent the widths of several transistors.
For the sm~l problems we encounter, however, k~ping the extra
variables and equrdity constraints results in a very smrdl computa-
tiomd penalty.)

Device sizes

Lithography limitations and layout rules impose lower limits on the
device sizes:

Lmin~Li, Wd. <Wi, i=l, -.., n. (4)

These constraints are monomial and can be handed by GP.
Another common constraint that cmot be handed by GP is

that the lengths and widths can ordy assume discrete values, e.g.,
multiples of some smrdl dimension. In practice this is not a problem
since many transistors end up Wing minimum length, and transis-
tor widths are often much larger than the minimum grid resolution
mting the rounding error for device width smrdl.

An approximate expression for the active device op-amp die area
A is given by the sum of the sum of transistor and capacitor ares,

A=ao+a1Cc+a2 2 WiLi, (5)
i=]

where the ~i are positive constants. This expression is a posyno-
mid function of the design parameters, so we can impose an upper
bound on the area, or use the area as the objective to be minimized.

Current equations

Biasing is typically accomplished by mirroring a reference current
to the different stages of the op-amp. In this case the bias currents
become monomirds of the design parameters. In the two-stage op-
amp, for example, if we define the bias currents 15 and 1? through
transistors M5 and M7, respectively, we have,

Since these expressions are monornird we can use 15 and 17 as part
of the design variables, considering (6) as an equality constraint.
This reduces the complexity of the other design equations, at some
(negligible) computatiomd cost. Note that the bias reference cur-
rent, lti= can be fixed (by the biasing scheme of the IC) or can be
a design variable.

Bias conditions

For the correct operation of most op-amps the transistors need to re-
main in the saturation region for the specified input common mode
rmge ([Km,min, Km,m~]) and}he specified output voltage swing
([Kut,min, Vout,m= .]) These bias, input common mode, and out-
put swing constraints turn out to have posynomid form. For exam-
ple, using the long channel square-law MOS transistor model in the
two-stage op-amp, the condition for MS remaining in saturation is

&+m’vdd-’.m=+vTp‘7)
which is a posynornird constraint.

Quiescent power

For the two-stage op-amp the quiescent power has the form

P = (Vdd - V,.) (~ti~ + 15 + 17) , (8)

which is a posynomird finction of the design parameters, so we can
impose an upper bound on, or minimize, quiescent power. Similar
equations hold for the other archhectures we consider.

Open-loop DC gain

For the two-stage op-amp, the open-loop voltage gain is given by

which is an inverse-posynornid function of the design parameters.
We can therefore impose a minimum required open-loop voltage
gain or we can maximize the gain.

me other five op-amp topologies have different expressions for
the open-loop voltage gain, but in each case the gain is inverse-
posynornird. This can be explained as follows. The totrd op-amp
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gain is the product of the gain of the stages. the gain of each stage
has the typical form G~ = g~/gout where g~ is the transconduc-
tance of the stage input transistor and gOUtis the output conduc-
tance seen by the transistor. Since gout is a sum of severrd load
conductance, each of which is monomifl in the design variables,
the stage gain is inverse-posynomid. Therefore the overall gain is
inverse-posynomird.

Uni&-gain bandwidth

The op-amps we consider are designed to have a dominant pole.
For the two-stage op-amp the dominant pole is given by

P1 = gml/(AvCc), (lo)

and the unity gain bandwidth is given by the expression

w== gml/c=, (11)

which is monomial. For the other architectures, the unity-gain
bandwidth is given by the ratio of the transconductance of some
device to the compensation (or output) capacitance, and is either
monomial or inverse-posynomid. Therefore we can impose lower
bounds on, or maximize, the unity-gain bandwidth.

Non-dominant pole conditions

Whh the choice of the compensation resistor & = l/gm6, the
two-stage op-amp has three non-dominant poles given by

p2 = 9m6C./(ClCc + clcTL + C.CTL) (12)

P3 = 9m3/c2 (13)

p4 = gm6/cl, (14)

where Cl, CL and C2 can be expressed as posynomid expressions
of the transistors widths and lengths,

c1 = Cgs6 + Cdb2 + Cdb4 + Cgd2 + Cgd4

CTL = CL+ cdb6 + cdb7 + cgd6 + cgd7

C2 = cgs3 + cgs4 + Cdbl + cdb3 + Cgdl .

The important point is that the non-dominant poles p2, p3 and p4
are given by inverse-posynomid functions of the design parame-
ters. We can therefore impose a lower bound on the non-dominant
poles (e.g., limiting them to be a decade above the unity-gain band-
width). For the other architectures as well, the non-dominant poles
are given by inverse-posynomid expressions.

Phase margin

For large gains, the phase due to the dominant pole at the unity-gain
frequency will be ve~ nmly 90°. For smrdl phase shifts (less than
25° ), we have arct an (x) x a, so the phase margin constraint can
be approximated as

4

x “’approx < ; – PMtin,
pi

i=2

(15)

which is a posynomid inequrdity in the dmign variables. The ap-
proximation error is very smW since the phase contributed by each
non-dominant pole is small (less than 250).

In the general case, the phase margin depends on the sum of
phase shifts, at the unity-gain frequency, contributed by the non-
dominant poles and zeros. bft h~f plane poles and right hrdf
plane zeros contribute phase shifts that can be approximated, using
arcta(z) x Z, as posynornid expr~sions. For the six op-arups
considered, the resulting phase margin constraints are posynomi~.

Slew Rate

The slew rate is typicrdly determined by the amount of current that
can be sourced or sinked into the compensation (or output) capac-
itance. For the two-stage op-amp the condhions to ensure a minim-
um slew rate SRmin are

C./(2I1) < l/SRmi.j (C. + cTL)/17 s l/sRtin, (16)

which are posynomird inequrdities. A similar situation holds for the
other architectures.

CMRR

For the two-stage op-arup, the common mode rejection ratio is
given by

CMRR =
2gmlgm3

(g03 + gel) go5 ‘
(17)

which is inverse-posynoruird, so we can impose a minimum CMRR.
For the other five op-amp topologies, the expression for the CMRR
is rdso inverse-posynornid. In simple op-amps the CMRR is just
the ratio of the differential gain of the first stage to the common
mode gain of the first stage and is proportional to the output resis-
tance of the biasing network.

There are several other specifications that can be handed using
geometric programming, but are omitted here for space consider-
ations. These include, for example, minimum gate overdrive volt-
age, minimum 3dB bandwidth, and limits on input-refereed spot
noise, or total RMS noise in a band (see [1]).

7 Design examples

In this section we provide some sample designs for the two-stage
op-amp using a standard 1.2pm CMOS process (described in more
detail in [1]). The load capacitance is 5pF and the supply voltages
Me vdd = 5V and v~~= OV.

A simple design example

Table 1 describes the sample design problem, and shows the perfor-
mance of the design obtained by GPCAD using GP1 models, and
the simulated performance with BSIM1 models (HSPICE level 13).
The objective was to maximize the unity gain bandwidth subject to
the other given constraints. The first column in table 1 identifies the
performance measure (and its units); the second gives the specifi-
cation (showing whether it is an upper or lower bound). The third
column, labeled GPCAD, shows the performance of the design ob-
tained, according to the GP1 model of GPCAD. The fourth column,
labeled HSPICE, shows the vrdue of the specification as simulated
by BSIM1 from our design.

We can see that there is close agreement between the predicted
results from GPCAD and the HSPICE simulations. Recrdl that the
GPCAD values are based on simple posynomird expressions, as
well as a number of approximations; the HSPICE simulations are
based on sophisticate MOS models, and no approximations (e.g.,
of transfer functions). The close agreement between the two shows
that our posynornid models and approximations, though simple,
are adequate for red design.

The computer time required for the design is approximately
two seconds, using an inefficient MA~AB implementation of an
interior-point method. (An efficient implementation wotid be far
faster.)

The optimal design parameters found are shown in table 2. It
is interesting to note that ofly device ~G is minimum length. This
can be easily explained. BSIM1 models and our GP1 models take
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into account the fact that the output conductance of the device de-
creases with increasing transistor length. Since the gain require-
ment is high, longer devices are neded to obtain 80dB of open-
loop gain. The output conductance of Ml, ~3, ~6 and ~7 affect
the find gain but ody device ~6 is minimum length. me reason
is that the second non-dominant pole position is proportiomd to the
transconductance of ~6. Since the phase margin requirement is
stringent, GPCAD decides to increase the transconductance of ~6
by making it as short as possible. If the gain requirement is dropped
to 60dB, dl transistors are minimum length and the unity-gain fre-
quency is 25MHz. One may rdso think that transistor Ml should be
minimum length so its transconductance is maximum. me prob-
lem is that for larger unity-gain bandwidths it is very hard to meet
the phase margin specification, and GPCAD opts for a lower Ml
transconductance.

We remind the reader that the design found by GPCAD is gfob-
ally optimal, and not merely (as with Iocd methods) a locally op-
timrd design. Please note dso that our discussion above is offered
otiy as an explanation for what GPCAD obtained; GPCAD ob-
tained the design by solving a geometric program, and not using
any circuit design reasoning!

Performance measure Spec GPCAD HSPICE
Area (pm’) ~ 2.5k 2.5k 2.5k
Max. output~) >4.5 4.5 4.5
Min. output ~) <0.5 0.1 0.1
Power (m~ ~ 5 0.5 0.6
DC gain (~) >80 80 83
Unity-gain BW @Hz) Max. 9 8
Phase margin (0) >60 60 66
Slew rate ~/ps) >10 10 11
CM~ (~) >60 80 84
Psw (dB) >80 91 94
Psmp (dB) >80 95 97
Noise, lkHz(nV/~) <600 600 590
~dn (pm) >1.2 1.2 1.2
Wtin@m) >2 2.3 2.3

Table 1: Design specifications for twmstage o~amp.

Variable Value
W1 = W2 41.3Um
W3 = W4

W5

w6

W7

wa

L1 = L2
L3 = L4
Ls
L6
L7
La
cc
Iw.a

18.2~m
5.4pm
520pm
109pm
2.3pm
3.3pm
1.7pm
2.6pm
1.2pm
2.6pm
2.6pm
0.58pF
2.6uA

Table A Optirmdd~gn for d~gn example.

A globally optimal tradeoff cuwe

By repeatdy solving the design problem while varying one of
the s~ifications, we can sweep out the globally optiml trade-off
curve between competing objectives (with the others fixd). In fig-
ure 7 we plot a trade-off curve for the two-stage op-arnp, obtained

~ 70-
z
=60 -
=
=
350 -
~
-40 -~ ..,-- ”--’-”-’-’-’-’-”-.-’-. -’-’--’-’.

10-:

o~ I
5 10 15

Power dsipation in mW

Figure % GlobMy optimrd trade-off curve between maximum
unity-gain bandwidth and mtimum power, for different sup-
ply voltages.

by maximizing unity-gain bandwidth, while varying the maximum
allowed power dissipation, for three different supply voltages. The
rest of specifications are set to the values given in table 2, except
the area, which is relaxed to 104pm2. It is interesting to note that
the curves cross, with different power supply voltages being opti-
mal for different maximum powers (or unity gain bandwidths). We
see that for low power designs we obtain a higher bandwidth with
lower supply voltages but when power is not a limit we are better
off with a higher supply voltage. The reason is that for a given
power, the low voltage design can use more current than the high
voltage design.

Each trade-off curve was computed in under two minutes, by
solving each problem from scratch, i.e., “cold start”. ms would

be far faster with an efficient implementation, using “warm start”,
i.e., starting from the previous design found.

Designs for the other architectures

In this section we give d~ign examples for the other opamp topolo-
gies studied simple ~A op-amp (figure 2, table 3), ~A opamp
(figure 3, table 4), two-stage cascoded op-amp (figure 4, table 5),
folded-cascode op-amp (figure 5, table 6), and telescopic op-amp
(figure 6, table 7).

For each problem the objective was to minimize area. The other
specifications are given in the table as the first entry; the next two
entries give the value obtained by GPCAD, using the GP1 model,
and the simulated value from HSPICE BSIM1. The specifications
are similar, but not the same, since the op-amps differ considerably
in achievable gain, bandwidth, etc. As in the example design above
for the two-stage op-arnp, the results obtained from GPCAD agree
quite closely with HSPICE simulation. ,

Tradeoff cumes for telescopic and folded-cascode
op-amps

In figure 8 we show the globally optimal trade-off curves ktween
DC gain and unity-gain bandwidth, for the telescopic op-arnp and
the folded-cascode op-runp, each subject to the same specifica-
tions. The curves show that the telescopic op-amp achieves more
gain at higher unity-gain bandwidths. me reason is that for the
same quiescent power, the input transistors in the telescopic op-
amp carry approximately twice the current of the input transistors
in the foldd-cascode op-arnp. In this example, the output volt-
age swing constraint was set to ordy 2V. If this last requirement is
tougher the folded-cascode outperforms the telescopic oprunp.
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Performance measure SW GPCAD HSPICE
c,. (Dm 1 1 1

Performance measure Spec GPCAD HSPICE
CL (Pm 11 1—-.=—,

DC gain (dB)
Uni~-gain BW(MHZ)
Phase margin (0)
Power (mW)
PsRRp (dB)
PSRRn (dB)
Output swing N)
Slew Rate N/ps)
Area(um2)

>40 40 39
>50 50 50
>60 65 70
<1 0.4 0.4
z 20 65 70
>20 40 40
~ 2.3 3.5 3.6
~ 10 37 40
Min. 400 400

Table 3: Simple OTA d=ign.

Performance measure Spec GPCAD HSPICE
CT.(Dm 1 1 1—.. ,
DC gain (dB) >40 40 44
Unity-gain BW(MHZ) 225 25 25
Phase margin (0) ~ 45 53 58
Power (mw <1 0.75 0.75
PSRRp (dB) >40 40 42
PSRRn (dB) ~ 40 49 52
Output swing N) ~ 2.5 3 2.8
Slew Rate W/ps) ~ 35 48 50
Areafum2) Min. 300 300

Table A OTA design.

Performance measure Spec GPCAD HSPICE
CL (PF) 11 1
DC ~tin (dB) ~ 60 92 95
Unity-gain BW(MHZ) ~ 10 10 10
Phase margin (0) ~ 60 60 59
Power (mm <1 0.14 0.14
PSRRp (dB) ~ 20 86 88
PSRRn (dB) >40 70 72
Output swing W) >2 3.5 3.5
Slew Rate W/ps) z 2 7 6
Area(Km*) Min. 1900 1900

Table 5: Wo stage wcoded op-amp ddgn.

Performance m~ure Spec GPCAD HSPICE
Cr. fD~ 1.25 1.25 1.25—- ...
DC gain (dB)
Unity-gain BWwHz)
Phase margin (0)
Power (mw
PSRRp (dB)
PSRRn (dB)
Output swing W)
Slew Rate ~/ps)
Area(urnz)

>70 70 70
>50 50 50
~ 60 60 74
<1 0.94 0.9
>70 77 79
>70 70 69
>1 2.1 2.4
>50 50 52
Min. 720 720

Table 6: Folded-cascode op-amp d&gn.

~ls example points out a very important feature of GPCAD.
By itself, GPCAD does not design circuit topology or arcbitectur~
it merely designs component vrdues and transistor dimensions for
a given architecture. By solving the same problem (i.e., identicd
constraints and objective) for severrd different architectures, GP-
CAD can decide which architecture is best. Here again the fact that
GPCAD finds @obrdlyoptimrd solutions for each architecture, and
not just locrdly optimal solutions, is critical. It allows us to say with
certainty that, for a given set of specifications, one architecture is

DC gain (dB) ~ 80 80 78
Unity-gain BW(MHZ) ~ 20 33 33
Phase margin (0) ~ 60 60 70
Power (mm <1 0.1 0.13
PSRRp (dB) ~ 70 74 78
PSRRn (dB) >70 75 76
Output swing (V) >2 2 2.2
Slew Rate ~/ps) >20 20 22
Area(pm*) Gin. 440 440

Table 7: Telwcopic op-amp dmign.

better than another.

126

124 - ~-

122 -

120 -

gl16 -

:116 -
z
~114 -.

112 -

110 -

108 -
$,.

1060 ,~ ;0
60 70 60

Uni~~in b~titis~ MHz

Figure 8: Maximum achievable gain versus unity-gain band-
widti for folded--code and telescopic op-amp architectures.

8 Conclusions and extensions

We have shown how geometric programming can be used to design
CMOS op-arups. The method is very efficient, can handle a wide
variety of constraints and provides globrdly optima designs. Even
with relatively simple transistor models, we achieve good agree-
ment with SPICE simulations based on sophisticated models. We
are currently developing more sophisticated and accurate models,
that are compatible with geometric programming dfiign, and are
very accurate even for subruicron, short channel d~igns [2].

GPCAD can rdso be effectively combined with a (Iocd) opti-
mization method that uses more accurate model equations, or even
circuit simulation (such as DELIGHT.SPICE). Thus, GPCAD is
used to get close to the (presumably globrd) optimum, and the find
design is tuned using the more accurate model or direct circuit sim-
ulation. ~ls would reduce the search time of the Iocrd optimizer
considerably while still prmerving extreme accuracy.

We mention here seved important features that space timita-
tions did not allow us to mention above. When the geometric pro-
gram is solvd, we get a complete sensitivity analysis of the prob-
lem, without any additiond computationrd effort. Th=e sensitivity
numbers provide extremely useful information to the designe~ it
shows which constraints are ‘most’ binding, which constraints can
be relaxed to obtain a great improvement in the objective function,
and which constraints can be tightend without much cost. See [1]
for a complete discussion of this topic (as well as the sensitivities
for some of the designs described in this paper).
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Another useful fature of GPCAD is its ability to develop ro-
b~t designs, i.e., designs that guarant~ a set of specifications are
met for a variety of different processes and technology parameter
values. This is done by replicating the design constraints for the
different operating conditions, which is practicrd ordy because the
computationrd effort for solving geometric programs grows approx-
imately linearly with the number of constraints.

Mthough GPCAD does not directly design op-amp topology, it
can be usd to choose the best op-amp topology out of a number of
topologies. This would work as follows: first, a library of topolo-
gies is develo@, for each one we have a method for translating
the op-arnp specifications into an associated geometric program.
~us, in this paper we consider a small library of six topologies.)
Then for a specific set of design specifications, one can perform
the design for each op-amp architecture in the libr~. ~Is evi-
dently identifies the best architec~re in the library, for the given
specifications. Note that (as in the example above) which archi-
tecture is best depends on the specifications. Since each design is
very fast (i.e., 2 seconds with our current, inefficient implementa-
tion), a large library (with, say, hundrds of architectures) can be
scanned quic~y. ~ls process can be spedd up in several ways.
For example, the optimization process for a given architecmre can
be terminated once it is clear that the optimal vrdue is more than
the best optimal value found so far. Again, this is ordy practicrd
kause geometric programs can be solved so efficiently.

We end our discussion by explaining what needs to be done to
apply geometric programming to the design of a specific circuit,
i.e., to develop a library entry for a given circuit topology that has
not yet been anrdyzed. The task is to express the desi~ constraints
and performance specifications in a form appropriate for geometric
programming. At this point, we have no method for automating
this step, although we envision using some type of symbolic ana-
lyzer (e.g., [22]) to aid in this procws. Of course, this step is done
ordy once for each topology; once the library entry exists, specific
design problems involving that topology are solvd within a few of
seconds, since ofly geometric programming is involved.

In a similar way, new GPI models have to be developed for
each new process technology. This step, which is based on fitting
monornids to given tabulated data (which come from a sophisti-
cated model, or even from empirical device measurements) is com-
pletely automatd it ordy takes a few minutes (assuming the data
are aheady available). WIS is discussed in depth in [2].
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