A General Approach for Regularity Extraction in Datapath Circuits

o Amit Chowdhary!, Sudhakar Kale!, Phani Saripellaf, Naresh Sehgalf, Rajesh Guptat

Check for
Updates

{amitc, skale, phani, nsehgal}@scdt.intel.com

1 Intel Corporation

Santa Clara, CA 95052

Abstract

In majority of high-performance custom IC designs, design-
ers take advantage of the high degree of reqularity present in
circuits to generate efficient layouts in terms aree and per-
formance as well as to reduce the design effort. In this paper,
we present a general and comprehensive approach to extract
functional regularity for datapath circuits from their behav-
ioral or structural HDL descriptions. The fundamental step
is the generation of a large set of templates, where a temnplate
15 o subcircuil with multiple instances in the circuit. Two
novel template generation algorithms are presented — one
for templates with a tree structure, and the other for a spe-
cial class of multi-output templates, called single-principal-
output (single-PQ) templates, where all outputs of a tem-
plate are in the transitive fanin of a particular output. The
set of templates generated is complete under a few simplify-
ing, yet practical, assumptions. This is key to oblaining a
desirable cover of the circuit using templates. We show that
ezcellent covers are oblained for various circuits, including
ISCAS benchmarks. We also demonstrate that the regular-
ity extracted for these circuits can be used to understand
their underlying structure. We have successfully used our
approach to identify bit slices of very large datapath circuits
from general-purpose microprocessors.

1 Introduction

Datapath circuits perform various arithmetic and multiplex-
ing operations on wide busses. Such circuits have a very high
degree of regularity. Designers often exploit this regularity
in circuits to achieve layouts with a small area and a high
performance. Design effort can be reduced by identifying
regularity in circuits, thus improving the productivity of de-
signers. Therefore, an important task in circuit design is
to extract the regularity inherent in the circuits. Currently,
datapath circuits in general-purpose microprocessors are de-
signed almost entirely by hand [5], since the existing CAD
tools can not extract and utilize regularity to the extent
necessary for competitive designs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

ICCADS98, San Jose, CA, USA

@ 1998 ACM 1-58113-008-2/98/0011..85.00

rgupta@ics.uci.edu

1 University of California
Irvine, CA 92697

Template 1 (3 instances)

. Template 2 (4 snstances)

P?7 P& Ps 13

Figure 1: A 4 x 4 multiplier with inputs X3,..., X0, and
Y3,...,Y0, which is covered by two templates.

‘We assume that circuits are described by a hardware de-
scription language (HDL), such as Verilog or VHDL. The
operators in the HDL descriptions can be either logic gates,
such as AND, OR and multiplexers, or arithmetic operators,
such as adders and shifters. Regularity in a circuit implies
that there exists subcircuits, called templates, which have
multiple instances in the circuit. The task of regularity ex-
traction is to identify a set of templates, and cover the circuit
by a subset of these templates, where the objective is to use
large templates with many instances. The regularity extrac-
tion involves a tradeoff, since a large template usually has
a few instances, while a small template has many instances.
For a 4 x 4 multiplier of Fig. 1, the template 1 composed
of a diagonal array has only three instances, while a tem-
plate composed of the SUM function has 12 instances. If the
structure of the multiplier is unknown, then the extraction
technique should generate a cover, such as the cover of only
two templates (Fig. 1). In general, an extraction approach
should be able to generate a range of covers given only its
high-level description.

Regularity in a given circuit can be either functional,
structural or topological. Given a high-level (behavioral or
structural) description, a functionally-regular circuit uses a
set of functionally-equivalent operations or subcircuits (tem-
plates). Functional regularity can be used to restructure the
HDL code, for instance to improve the quality of high-level
synthesis results by identifying opportunities for resource
sharing {9]. Structure in an HDL description typically refers

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288548.289050&domain=pdf&date_stamp=1998-11-01

to declaratively specified blocks [6] consisting of a netlist
which can be described schematically by assigning a hor-
izontal or vertical direction to the nets. Finally, a topo-
logically regular design consists of an ordered set of blocks
which gives a good initial placement for the circuit. An
ideal synthesis approach for datapath circuits should iden-
tify functional and structural regularity in HDL descriptions
and use it to build topologically regular circuits. This paper
concerns only with functional regularity.

Various techmiques for extraction of functional regular-
ity have been proposed in the literature [1, 3, 10, 11]. Rao
and Kurdahi [11] use a string matching algorithm to find
all instances of user-specified templates in the circuit, and
then heuristically choose a subset of the set of templates to
cover the circuit. The final cover is sensitive to the tem-
plates provided by the designer. Corazao et al. [3] also
assume that a template library is provided, but they gen-
erate all complete as well as partial instances of a given
template in the circuit. Other approaches by Nijssen et al.
[10] and Arikati et al. [1] choose small logic components,
such as latches, as templates, and then grow them to obtain
bigger templates. These approaches are highly dependent
on the initial choice of templates. The problem of finding
all instances of a given template is similar to matching in
technology mapping, where the input circuit is covered by
cells (templates) from a given library [8]. We found that all
prior techniques address the problem of covering a circuit
by templates, where the templates are assumed to be either
provided by the designer, e.g. as a library, or generated in an
ad-hoc manner. None of these techniques deal with the sys-
tematic generation of a set of templates for a circuit. From
our experiments, formulation of a good set of templates is
crucial since: (o) it allows tradeoffs among multiple criteria,
such as area, timing and power, and (b) it allows user to
build multi-technology designs, such as using a combination
of static and dynamic logic.

We propose a novel approach to extraction of functional
regularity, where the set of all possible templates is gener-
ated automatically for the input circuit under a set of sim-
plifying but practical assumptions discussed in Section 3.
Our approach then chooses a subset of this set of templates
to cover the circuit. The major contributions of this paper
are two algorithms that generate a sufficiently large set of
templates for a given circuit, one to generate templates with
a tree structure, and the other to generate a special class of
multi-output templates, where every output of the template
lies in the transitive fanin of a particular output. There has
been no prior attempt at generating such a large set of tem-
plates, which is key to obtain a wide range of efficient covers.
In the event that a template is specified, our approach can
be used to generate its all possible instances, either complete
or partial, in the input circuit. We identify the structure of
regular circuits of unknown description, since a template li-
brary need not be specified, unlike prior techniques. We will
demonstrate the effectiveness of our approach by identifying
regularity in several circuits, including some ISCAS bench-
marks whose high-level structure have been identified earlier
[7, 13] to help in various CAD applications, such as high-
level test generation [7], hierarchical timing analysis [13] and
FPGA technology mapping [2].

The rest of the paper is organized as follows. Section
2 formulates the regularity extraction problem in terms of
template generation and then circuit covering by templates.

333

Convention

.

d,

il

(2) (b)

Figure 2: Representing the logic functions of circuit compo-
nents in G: (a) 2-to-1 mux; (b) AND-OR gate.

The complexity of template generation is discussed in Sec-
tion 3. Section 4 discusses the algorithm for generation of
templates with a tree structure. Section 5 extends it to a
special class of multi-output templates. The heuristic tech-
nique of circuit covering is discussed in Section 6. We present
results on benchmark circuits in Section 7. Section 8 con-
cludes with some future extensions.

2 Problem formulation

The input to regularity extraction is a circuit C composed
of logic components that can be either logic gates or arith-
metic operators. C is usually described using an HDL. We
represent C by a directed graph G(V, E), where the nodes in
V correspond to the logic components or the primary inputs
of C, and the edges in E correspond to the interconnection
among the components and primary inputs of C. The set
V can be partitioned into two subsets I and L, which corre-
spond to the sets of primary inputs and logic components,
respectively. The set O of primary outputs is a subset of
L. We represent the logic functions of components of C in
G by a pair of functions. We first define a logic function
1:L— {1,.,l}, where lp is the total number of distinct
types of logic functions. If I[u] = I[v], then u and v corre-
spond to the same logic function, e.g. a 2-to-1 multiplexer.
Similarly, we associate an index k: E — {1,..,ko} with ev-
ery edge in E, where k(u1,v) = k(u2,v) implies that the two
incoming edges of v are equivalent. Figure 2a shows a mul-
tiplexer whose input edges have all distinct indices, while
the AND-OR gate of Fig. 2b has four edges assigned to only
two indices.

A subgraph of G is a graph G:(V;, E;) such that V; C V
and E; C E. V; is partitioned into I, and L;. The set O,
of primary outputs is again a subset of L;. A subgraph of
G corresponds to a subcircuit of C. We consider only those
subgraphs which satisfy the condition that if v € L;, then
u € I; UL; for every node u connected to v by an edge (u, v)
in G. We call such subgraphs feasible subgraphs of G, since
they correspond to meaningful subcircuits of C. (From here
on, a subgraph will imply a feasible subgraph.)

We consider two subgraphs G; and G; functionally equiv-
alent, if and only if (a) they are isomorphic, i.e. there exists
a one-to-one mapping ¢ between V; and V;, (b) the logic
functions of corresponding nodes are same, i.e. {[v] = l[¢[v]],
and (c) the indices of corresponding edges are also the same,
ie. kfu,v] = E[¢[u], $[v]l. We call the equivalence class of
this relation a temnplate. Any set S of subgraphs of G can be
partitioned into m templates, Sy, ..., Sm, where a template
S; contains |5} subgraphs. We estimate the area of a sub-
circuit that corresponds to the template S, by area[S,] =

dove L. a[l[v]], where a[j] is the area estimate of a node of
logic function j.

A cover of G is a set C(G) = {G1,...,Gn} of feasible
subgraphs of G that satisfies the following conditions:

1. Every node of G belongs to at least one subgraph in
C(G),ie. VCVIU...UV,.

2. If a node v is a primary input of a subgraph, then it
is either a primary input of G or an output of another
subgraph, ie. forallv € ;, v€ TUO1 U...UOx.

The problem of regularity extraction is stated below.
Regularity Extraction Problem: Given a circuit repre-

sented by a graph G, find a cover C(G) = {Gy,...,Gr},
which is partitioned into m templates Sy, ..., Sm, such that
the number n of subgraphs and the overall area) ..~ area[S;]
of the templates are maximized. 0o

Maximizing the number of subgraphs will reduce the effort
needed to design the circuit, while maximizing the area of
templates will reduce the overall area and delay by facili-
tating better optimization during technology mapping and
layout. The above two objectives are conflicting, since a
large template usually has only a few subgraphs.

The problem of finding an optimal cover is NV P-complete,
even when the subgraphs are selected from a given set. Here,
the problem is even more complex, since there is no such set
of subgraphs for selecting the cover. We reduce the problem
complexity by decomposing it into two steps, where a set of
templates is first generated, followed by selecting a subset
of the template set to cover G. We state these two sub-
problems below.

Template Generation Problem: Given a circuit repre-
sented by a graph G, generate the complete set of templates
where each template has at least two subgraphs. O

Graph Covering Problem: Given a circuit represented
by a graph G and its set Sr(G) = {51,...,Sp} of tem-
plates, find a cover C(G, St) = {G1,...,Gr} of G, which
is partitioned into m(< p) templates, such that the number
n of subgraphs and the overall area) .- area[S;] of the
templates are maximized. O
As mentioned earlier, prior techniques do not address the
template generation problem due to its high complexity.
The graph covering problem is similar to the binate-covering
problem [4], which has been well studied in various CAD ar-
eas, including regularity extraction [11].

3 Complexity of template generation

The problem of generating all templates of G is similar
to enumerating the equivalence classes of G under isomor-
phism, which is inherently difficult. We now present a few
practical assumptions, which will reduce the number of tem-
plates addressed to within V2. These assumptions will be
justified in the context of regularity extraction. We will later
demonstrate that this set of templates will lead to efficient
covers for various datapath circuits.

First, we propose the following assumption, since we
would like to extract regularity to the maximum extent.
Assumption 1. Restrict the set S of subgraphs of G to
include only those subgraphs of G which are not a subgraph
of any other subgraph in S and which have at least one
distinct equivalent subgraph in S. m]

334

D

/

Graph G1

e
Qvgoﬂn

L %

(®

/

Template S1

[> Graph G2

o®

(@

),
-}

@

s
gﬁ

Temphte s2

(a)
Figure 3: (a) The graph G'; (b) its two templates obtained

by permuting the incoming edges of the nodes; (c) the graph
G with the number of templates given by O(2").

a4} al5] al6}
b
YN w1 N el
x[1) 41 3 151 3 16] 3

I

Figure 4: Representing the HDL assignment “for i = 4 to
6 {z[il = alil-b[il+c[i]-d[il}” in G. Note that the
edge indices are different from those in Fig. 25 as a result of
Assumption 2.

The number of templates can be O(2") even after consid-
ering Assumption 1. Consider the graph G’ of Fig. 3a com-
posed of two unconnected trees, where the incoming edges of
every node have the same index. It has two templates shown
in Fig. 3b. Now, consider the graph G of Fig. 3¢ which is
composed of two unconnected binary trees such that all the
internal nodes have the same function I[v] = 1, while the
leaf level is composed of one of the two subgraphs, G or
G2. The number of templates of G is O(2"), since every
pair of subgraphs G1 and G2 can be matched using either
of the templates of Fig. 3b.

‘We make the following assumption that does not allow
permuting the incoming edges of a node even though the
two edges (u1,v) and (u2,v) have the same index k[u1,v] =
E[uz,v]. For example, the two input edges of a node corre-
sponding to an OR gate would be assigned different indices,
even though they are equivalent.

Assumption 2. For every node v of G with incoming edges
from nodes s, .. ., us, every edge is assigned a unique index
of kfui,v] =14, forall1 <i< f. u]
The above assumption will rule out S; (Fig. 3b) as a tem-
plate for the graph of Fig. 3a. As a result, the graph G’ of
Fig. 3¢ also has a single template. The justification for the
above assumption is that G is constructed from an HDL de-
scription of C, which ensures that nodes with the same func-
tion are defined identically. For example, the HDL assign-
ment statement “ for i = 4 to 6 { x[i] = a[il- b[i]
+ c[i]- d[i] }” will correspond to three nodes which are
transformed identically in building G; see Fig. 4. There-
fore, the above assumption does not rule out the regularity

=0

ev ‘iz

g0 s BP0 .
D\@/

Figure 5: The tree templates for the graph of Fig. 3a gen-
erated by the algorithm of Fig. 6. Ss is compactly repre-

sented by root_fn[8] = 1, childrentemplates = {Ss,S7}
and root_nodes = {o,p}.

W@

inherent in the HDL description.

4 Generation of tree templates

A tree template, as the name implies, is a template, which
has a single output and no internal reconvergence. We
present an algorithm for generating all tree templates of a
given graph G under Assumptions 1 and 2. It can be shown
that the number of tree templates is reduced to within V?
under these two assumptions, which makes the enumeration
of such templates practical. We will analyze the complexity
for the case where the fanin of the nodes in G is bounded.
The templates are stored in a set St = {S1,...,Sn}. where
every template S; is a class of functionally-equivalent sub-
graphs. Instead of storing each template completely, we
store a template as a set of hierarchically organized tem-
plates. A template S, can be completely defined by the
logic function of its root node, denoted by root_fn[i], and
the list of templates children templatesfi] = {Sh,...,Sf}
to which the subgraphs rooted at the f fanin nodes of the
root node belong to. For example, Fig. 5 illustrates the
templates of the graph G’ shown earlier in Fig. 3a. The
template Sz can be precisely defined by root_fn[8] = 1
and childrentemplates[8] = {Ss,S7}. We also reduce the
space required for storing the subgraphs of each template
by simply storing the root node of the subgraphs in the
list root_nodes[i]. In case of the template Sg in Fig. 55,
root_nades[8] = {0, p}. It can be shown that the subgraphs

of a template S; can be precisely reconstructed using root.. fnld,

and the lists children_templates(i] and root_nodesfi].

For efficiency reasons, we sort the template list St by
a composite key of size f + 1, defined as key = {root_fn,
children_templates}. The template generation algorithm is
presented in Fig. 6. We explain the algorithm using the ex-
ample of Fig. 5. First the nodes of G are topologically sorted.
Then, for every pair of nodes, the function Largest. Template
generates a template with two subgraphs, once rooted at
each node. Largest.Template compares the logic function
of the two nodes, and then constructs the list of children
templates. The template Sy, thus generated, is compared
with previously-generated templates by a binary search on
St using key. If Sn is equivalent to an existing template
Sy, then its subgraphs are added to Sy; otherwise Sy, is
stored in St as a new template. For the graph of Fig. 5a,
first the trivial templates S,...,Ss are generated. Then,
from the remaining nodes {a,b,c,d,0,p} (Fig. 30), S5 is
generated by comparing a and b, and Ss is generated by

335

/* A tree template S; is completely defined by
(i) root_fnli); (i) children_templates[i] — list of
children templates; (%)} root_nodes[n] — list of
root nodes of subgraphs of S, =/

01 Generate_Templates(G(V, E))

02 begin

03 topologically sort the nodes of G as {v1,...,ux};

04 Sp:=g; [x ST stores the list of templates =/

05 m:=0; [*misno. of templates generated so far */

06 template[m CUNLVL...UN] = 05
/* template['u,,v]], if non-zero, is the index of template to
which equlvalent. subgraphs rooted at v; and v; belong %/
07 fori=1to N
08 forj=i+1toN
09 m:=m+1; [+*new template to be stored in Spx/
10 Sm = Largest_Template(v,, v;);
11 if Sm#op

12 k:= Fmd_Equlvalent_Template(Sm, S7);
/#* find Sy, in St equivalent to Sy, =/

13 template[v;, v;] == k;

14 if k=m [x Sy is a new template */

15 St = Sp U {Sm}; /* St remains sorted */

16 else

17 root_nodes[k] := root_nodes[k]U {vi,v; };

18 m::=m—1;

19 return Sp;

20 end

/* generates largest equivalent trees rooted at u and v %/
21 Largest_Template(u, v)
22 if l[u] # l[v] /*u and v have different logic functionss/
23 returng;
24 else
25 root_fn{m] := l[u]; /* setting fields of template Sp+/
26 fori=1to fdo

/* u(v) have f fanin nodes {u1,...,u5} ({v1,...,v5}) */
27 if u; and v, have a single fanout each
28 add template[u;, v} to children_templates[m];

29 root-nodes[m] := {u,v}; [* Sm has two subgraphs */
30 return Sp;

/* performs a binary search on S7 = {S;,...,5,} */
31 Find_Equivalent_Template(Sn,, St)
32 ifSr=9¢
33 returnm

34 if key[m] < key[ZEL] /% check first half of Sy */
35 return Find_Equivalent_Template(Sy,

{860,811
36 else if key[m] > key[ZEL] /xcheck second half of Sr+/
37 return Find_Equivalent_Template(Sy,,

{S%+1""’Sj});

38 return %1, /* Sit; and Sy, are equivalent =/
F3

Figure 6: Algorithm for generating the complete set of tree
templates of G under Assumptions 1 and 2.

O AND pute wth paoangats

‘A . (o]
i
~=B CARRY lunduca

A 2 Cu

2
1B SUMs.on

comparing 2 and ¢. The template obtained by comparing a
and d is found to be equivalent to Ss, so d is stored in the
root.nodes of Ss. The remaining two templates, S and Sg,
are generated by comparing the node pairs, (b,d) and (o0,p),
respectively. Largest.Template returns a NULL template, in
the case of remaining node pairs. Note that every template
has only two subgraphs, except Ss with six subgraphs given
by root_nodes = {a,b,¢,d, 0, p}.

Largest. Template takes a constant time for bounded-fanin
graphs. Binary search on St (lines 31-38) as well as insertion
of S;n in St (line 15) take O(logV') time, both of which are
called for every node-pair. Thus, the overall time complexity
is O(V2.IogV). We store root_frn and children_templates
for every template, which requires a memory of O(V?). The
storage required for subgraphs is also O(V?), since a sub-
graph is stored just as its root node. Thus, the overall stor-
age complexity is O(V?).

5 Multi-output templates

The template generation algorithm of Fig. 6 gives excellent
covers for datapath circuits composed of sparsely intercon-
nected subcircuits, but it might not perform well for circuits
with a high number of multiple-fanout nodes. If we apply
this algorithm to the multiplier of Fig. 1, also shown as a
graph in Fig. 7, then three trivial tree templates — AND
gate, CARRY and SUM functions, are obtained. We now
extend the algorithm for tree templates to a special class
of multi-output templates. We restrict ourselves to only
those multi-output subgraphs, whose every output lies in
the transitive fanin of a particular output. We refer to this
particular output as the principal output of the subgraph,
and such a subgraph (template) as a single principal-output
subgraph (template) or a single-PO subgraph (template).
For example, the two subgraphs shown in Fig. 8a of the
graph of Fig. 7 are single-PO graphs with P5 and P4 as the
respective principal outputs. Single-PO graphs have several
interesting properties. They can have internal reconvergence
as well as cycles, and can have any number of outputs, as
opposed to trees. The main advantage of using single-PO
subgraphs is that despite their complex structure, the num-
ber of such subgraphs of G under the Assumptions 1 and 2
is also restricted to V2, provided the subgraphs satisfy the
convex property that if u,» € V(G,), then every node w on
a path from u to v also belongs to V(G.).

A tree template was earlier represented by a list of chil-

336

Tewplate, Template s,

Template §,

(b)

©

Figure 8: (a) Two functionally-equivalent subgraphs Gps
and Gp4 of the graph of Fig. 7; (b) the two templates with
overlapping nodes which are merged to form the template
Sa.

dren templates which are non-overlapping. However, the
children templates can overlap in single-PO templates. Fig-
ure 8c shows the template S3 with the two subgraphs of
Fig. 8a-b. Ss has two children templates, Sy and S», which
have overlapping nodes, such as ¢l of subgraph Gps and ¢2
of Gp4. Therefore, S; cannot be completely specified just
by the list of its children templates. Instead, every tem-
plate has to be specified individually. We store the nodes
of a subgraph G, by a list nodelist using the depth-first
search order. The motivation for using a depth-first or-
der is that it is unique for all isomorphic subgraphs. The
subgraph of template S1 rooted at node al has nodelist =
{al,b1,cl,dl,el, f1,g1}. With every node in nodelist, we
store its fanin and fanout links as well. Thus, memory
required to store a subgraph is O(V) for bounded-fanin
graphs.

We replace the two functions in Fig. 6 by the correspond-
ing functions in Fig. 9 in order to generate the complete set
of single-PO templates. We explain these functions using
the example of Fig. 8. Prior to the call Largest Template
(P5, P4), the template S; is already generated with two
subgraphs, G., and Ga,. Similarly, S2 is also generated
with subgraphs, G, and Gh,. The nodelists of G, and
Gh, (Ga, and Gp,) are combined to obtain the nodelist of
Gps (Gpa). After lines 07-09, nodelist[Gps] = {P5,al,bl,
cl,dl, el, fi,g1, h1,il,cl, di,el, f1} and nodelist[Gp4] =
{P4, a2,b2, ¢2,d2, 2, 2, ¢2,h2,i2,¢2,d2, €2, f2}.

There can be multiple paths from a node w to the root
node v through different incoming edges of v. As a result,
w occurs multiple times in nodelist[Gy]. For example, cl is
connected to P5 through the edges (al, P5) and (h1, P5) in
Fig. 8a, and hence, it occurs twice in nodelist[Gps]. We de-
fine a list path[w,v] (lines 10-12) which contains the indices
of the incoming edges of v through which w is connected
to v, e.g. path[bl, P5] = {1}, while path[cl, P5] = {1,2}.
We then pairwise compare the nodes in nodelist of G, and
Gy (line 13). If the path lists of the corresponding nodes
are different, then these nodes have to be removed from
the respective subgraphs (lines 14-15). Otherwise, if the
two path lists are same, but have multiple indices, then the
remaining copies of these nodes have to be removed. For
example, the second occurrence of the node ¢l (¢2) in Gps
(Gps) is deleted. Finally, after line 21, nodelist|Gps] =
{P5,al,b1,cl, di,el, gl,hl,i1} and nodelist[Gps) = {P4,

/* generates the largest equivalent single-PO subgraphs
rooted at u and v */

01 Largest_Template(u, v)

02 if lfu] # l[v]

03 return g;

04 else

05 nodelist{Gy] := {u}; /+root node is the first nodex/
06 nodelist|G,] := {v};

07 fori=1to f do

/# u (v) have f fanin nodes {uy,...,us} ({v1,...,v5}) #/
add nodelist{Gy,] at the end of nodelist[G,];

09 add nodelist{G,,] at the end of nodelist[Gy];
10 for w;y € nodelist[Gy;] and w2 € nodelist[G.,]
11 add 7 to path[wi,u];
12 add ¢ to path{ws,v];
/* there is a path from w; (w2) to u (v) through */
/* the incoming edge of u (v) with index ¢ =/
13 for w1 € nodelist{G,] and w2 € nodelist[G,]
14 if pathfwi,u] # path{wa, v}
15 delete all copies of w1{wsz) from nodelist[Gu(Gv));
16 else if path[w),] has more than one element
17 delete remaining copies of w(w2)
from nodelist[G.(Gy));
18 Sm = {Gu,Gy};
19 return Sp;
20 Find.Equivalent_Template(Sy, St)
21 for:=1tok
22 if nadelist]S,] = nodelist[Sm)
23 return i;
24 return m;

Figure 9: Algorithm to generate the complete set of single-
PO templates of G under Assumptions 1 and 2.

a2,b2,c2, d2,e2, g2, h2,i2}. The function Find_Equivalent._
Template compares a template with every other template
in the set St by matching corresponding nodes in the two
nodelist’s, since the depth-first order of the nodes of a graph
is unique.

The procedure Largest_Template takes O(V') time, since
it constructs two nodelist’s and then traverses them twice.
Find_Equivalent Template takes O(V?) time, since it com-
pares two nodelist’s at most V2 times. These two functions
are called for every node-pair (line 07-08, Fig. 6), result-
ing in the time complexity of O(V®). The nodelist of every
subgraph requires a storage of O(V'), resulting in a storage
complexity of O(V*). We found that the execution time for
circuits with about 2,000 nodes was no more than a few
minutes, since the total number of templates is very small
compared to V2. If the number of single-PO templates of G
is bounded by S, then the overall time and space complexity
are given by O(S?- V) and O(S - V), respectively.

If designer provides a template Gr, we can generate all
its complete as well as partial matches in the input graph G
by calling the function Largest Template (line 10, Fig. 6)
for every node-pair (v,,,), where v; and v; belong to G and
Gr, respectively. This feature allows the designer to control
the extraction approach and improve the circuit cover as
desired.

6 Covering of graph by templates

So far, we have presented algorithms to generate a set Sr of
templates of G. St can be either a set of all tree templates

337

or a set of all single-PO templates of G under the Assump-
tions 1 and 2. Let S denote the set of all subgraphs in the
templates stored in St. Now, we present a solution to the
graph covering problem, where given G and Sr, the objec-
tive is to find a subset C(G, St) of the set .S of all subgraphs
that forms a cover of G.

Since a large set S of subgraphs are generated to choose
the cover and the binate covering problem is inherently dif-
ficult, we focus on efficient heuristics to solve the covering
problem. Our approach, at every step, selects a template S,
with the maximum objective function out of all templates in
St, deletes all nodes of G that belong to the non-overlapping
subgraphs of S;, and then generates the set Sr of templates
for the remaining graph. This step is repeated until either
all nodes of G are covered, or if St is found to be NULL.
If some nodes are left uncovered and Sr becomes NULL,
then we store the remaining nodes in a template with a sin-
gle subgraph. (In case of datapath circuits, this template
correlates to its control logic.)

‘We use the following two covering heuristics based on the
objective function used for selecting templates.

1. Largest-Fit-First (LFF) heuristic: Select the template
S; with the the maximum area area[S;).

2. Most-frequent-Fit-First (MFF) heuristic: Select S; with
the maximum number |S;| of subgraphs.

Usually, these two heuristics give different covers, since a
template with a large area has few subgraphs, and vice-
versa. The cover of the 4 X 4 multiplier of Fig. 7 obtained
using the LFF heuristic contains six templates, where the
largest template shown in Fig. § covers more than half of the
circuit. (The cover of two templates shown in Fig. 1 cannot
be obtained, since our algorithm is restricted to single-PO
templates.) If the MFF heuristic is used, then the cover
of three small templates — AND gate, CARRY and SUM
functions, is obtained.

7 Experimental results

The only input to our regularity extraction technigue is the
graph G of a circuit C. The input circuit can be described
in any format, such as an HDL or the Berkeley logic inter-
change format (blif), from which G can be constructed in
a straightforward manner. We extract the regularity for a
variety of circuits, including adders, 74X series circuits [12)
and ISCAS benchmark circuits. The ISCAS benchmarks
are already described in the blif format. We have written
input descriptions for adders and 74X circuits from their
functional descriptions. We obtained a set of four covers for
each circuit, depending on whether tree templates or single-
PO templates are generated, or whether the LFF or MFF
covering heuristic is used.

We analyze interesting covers for several circuits, and
then summarize the results for the complete set of circuits.
Ripple-carry function: Figure 10 shows a 16-bit ripple-
carry function. A cover of a single template S1 with two
instances is obtained by using the LFF heuristic on the set
of single-PO templates. If only the tree templates are con-
sidered, then the cover of a smaller template S4 with 16
instances is obtained. In fact, we recursively extract the
regularity from template S1 to get a set of covers given by
{51(2)}, {52(49)}, {S3(8)}, and {54(16)}, where {Si(n.)}

@ 1%

)Jn N ”‘ﬂ

U

s

50
mli

= \ev (|1 1
il ,f““%' il N
| ‘ i JHL
A ‘ j .3 Il
L. tim
B o H: £ L
H ! HH ot
ad [i ;’sz ri “
‘ i iy L
..J{ } JUSNIR RN
» U1 2 — 4 et <14
2 ; = P
£7 Hd H-1 =~ 3
o + IS '
}_) h —]
. me n
T c1 J- T [o
A¥ P !, AF &3 4 Al Y
5 L—Js¢ B8 g BIS]

Figure 11: A 16-bit carry-lookahead circuit; most of its
nodes are covered by the largest template S1.

implies a cover of n; instances of template Si. Thus, our
technique can generate a hierarchy of template covers.

Carry-lookahead function: Figure 11 shows a 16-bit carry-

lookahead logic block which is realized using sub-blocks of
four bits each. The largest single-PO template is S1 with
two instances, one rooted at C8 and the other at C16. Se-
lecting S1 results in the cover {S1(2),52(4), 53(4), S4(4)}
shown in Fig. 11. Further, S1 can be shown to be composed
of just one template with two instances.

74181 4-bit ALU: This ALU of Fig. 12 [7] is found to have a
single-PO template S1 with four instances which cover most
of the circuit, except the carry-lookahead logic.

7485 magnitude comparator: The gate-level realization
of 74L85 magnitude comparator [12, 7] is composed of two

M

Figure 12: The 74181 ALU has a single template with four
instances.

338

S1 1@_
o OD30
32
generator
1G]
|$:4 S8{7:4] 7 Ul
R__T ODIE
% H oD15—
ODl4—
i B H OD13tem
3 ODIZ2—
H oD
~)| Si3:01 [vo
[g;o Syndromz a
& WB!
4
e e K7 =

Figure 13: The largest template of the c499 ISCAS circuit
covers the entire syndrome generator logic and a part of the
remaining error correction logic.

carry-lookahead modules, which are identified as expected.
€499 (c1355): This ISCAS-85 benchmark circuit of Fig. 13,
described in [7], is a single-error-correcting circuit which
reads in a 32-bit bus, generates a set of eight syndrome
lines, and then corrects the appropriate bit in the output
bus. The largest single-PO template is shown to cover all
of the syndrome generation logic and some of the remaining
error correction logic. The remaining circuit is covered by
five templates. The ¢1355 benchmark implements the same
logic as ¢499, except that each XOR gate is represented by
four NAND gates. We get the same largest template as for
¢499, which proves that our algorithm effectively handles
internal reconvergence in the circuit.

¢2670: This ISCAS benchmark is an ALU with two iden-
tical comparator subcircuits [13] apparently used for fault-
tolerant reasons. As expected, we are able to identify two
instances of the comparator of 12-bit inputs.

Finally, we summarize the results obtained for above set
of circuits. Table I gives the covers obtained by apply-
ing the covering heuristics on the sets of tree and single-
PO templates. Every node is assigned a unit area. The
quality of covers can be compared using the area of the
largest template and a measure called regularity indez, de-
fined by the area of all templates in the cover, given by
Z:.’;l area[S:], as a percentage of the total area of G, given
by > v, |Si] - arealS,). Assuming that a template is syn-
thesized only once for all its subgraphs, a small regularity
index implies that a low effort is needed during synthesis and
layout stages, while a large template implies that a better
optimization can be achieved during synthesis and layout.
The results indicate that the LFF heuristic generates covers
with large templates, e.g., the two instances of the largest
single-PO template of ¢1355 together account for two-thirds
of the overall area. Such covers have a high regularity index
which can be reduced by hierarchically extracting regularity
in the largest template. On the other hand, covers obtained
using the MFF heuristic have a small regularity index as
well as small templates. Figure 14 shows the wide variation
in the regularity indices for the covers of some benchmark
circuits. In fact, covers with intermediate values of regular-
ity index can be obtained by using a combination of LFF
and MFF heuristics, or other covering heuristics.

LFF heuristic
50 @ (single-PO
templates)
5 a0
B [[] LEF heuristic
‘230 (tree templates)
}3 20 MFF heuristic
g" D (single-PO or
& 10 tree templates)
0 n

c132 499 c880 cl355 c2670

Figure 14: Regularity indices of the covers for some ISCAS
benchmarks.

8 Conclusions

We have presented a comprehensive approach to extract reg-
ularity inherent in the behavioral or structural HDL descrip-
tions of datapath circuits. Identifying regularity would sig-
nificantly reduce the design effort in subsequent technology
mapping and layout stages. Our approach reduces the prob-
lem complexity by first generating a set of templates and
then selecting its subset to cover the circuit. The major con-
tributions of this paper are the novel algorithms developed
to generate two special classes of templates — tree tem-
plates and single-PO templates. Our algorithm generates
the complete set of these two classes of templates under a
few practical assumptions, which is key to achieving a range
of efficient covers. We have obtained a variety of covers for
several benchmark circuits by using two different covering
heuristics. We have also demonstrated that these covers help
in understanding the underlying structure of the circuits. A
hierarchical representation of circuit regularity can also be
obtained by recursive application of our approach.

A useful extension to our extraction approach is to gen-
erate templates with multiple outputs, which would lead to
more efficient covers, such as the cover of just two templates
for the 4 x 4 multiplier (Fig. 1). However, the number of
such templates is not restricted by V2 under the two as-
sumptions presented in this paper. Our approach explicitly
enumerates the templates, which raises the following ques-
tion: is it possible to consider all the templates in the cover-
ing step without explicitly enumerating the set of templates
generated by our algorithm?

References

[1] ARIXATI, S. R., AND VARADARAJAN, R. A signature based
approach to regularity extraction. In Proc. Int’l Conf. on
CAD (Nov. 1997), pp. 542-545.

CHOWDHARY, A., AND HAYES, J. P. Technology mapping for
field-programmable gate arrays using integer programming.
In Proc. Int’l Conf. on CAD (Nov. 1995), pp. 346-352.

[3] Corazao, M. R., KHALAF, M. A., GUERRA, L. M., POTKON-
JAK, M., AND RABAEY, J. M. Performance optimization us-
ing template mapping for datapath-intensive high-level syn-
thesis. IEEE Trans. on CAD 15, 8 (Aug. 1996), 877-887.

[4] pE MicHELI, G. Synthesis and Optimization of Digital Cir-
cuits. McGraw-Hill, New York, 1994.

[5] DoBBERPUHL, D. W. Circuits and technology for Digital’s
StrongARM and ALPHA microprocessors. In Proc. Conf.
on Advanced Research in VLSI (Sept. 1997), pp. 2-11.

[6] GueTa, R., AND Li1ao, S. Using a programming language for
digital hardware design. IEEE Design and Test of Comput-
ers (April 1991), 72-80.

[7] Hansen, M. C., aND HAYEs, J. P. High-level test generation
using physically-induced faults. In Proc. VLSI Test Symp.
(May 1995), pp. 20-28.

[8] KEutzer, K. Dagon: Technology binding and local opti-
mization by DAG matching. In Proc. 2{th Design Automa-
tion Conf. (June. 1987).

(9] L1, J., AND GUPTA, R. HDL code restructuring using TDTs.
In Proc. Int’l Workship on Codesign (March 1998).

[10] Nussen, R. X. T., AND VAN EuK, C. A. J. Regular layout
generation of logically optimized datapaths. In Proc. Int’l
Symp. on Physical Design (1997), pp. 42-47.

[11] Rao, D. S., AND KURDAHL, F. J. On clustering for maximal
regularity extraction. IEEE Trans. on CAD 12, 8 (Aug.
1993), 1198-1208.

[12] Texas INSTRUMENTS INc.
Texas, 1988.

[13] Yarcin, H., HAYEs, J. P., AND SAKALLAH, K. A. An ap-
proximate timing analysis method for datapath circuits. In
Proc. Int’l Conf. on CAD (Nov. 1996), pp. 114-118.

2

-

The TTL Data Book, Dallas,

No. LEF heuristic (tree templates) | MFF heuristic (tree or single-PO templates) | LEF heuristic (single-PO templates)

of # templates | Largest | Reg. | # templates | Largest Reg. # templates | Largest Reg.
Ckt. gates | (subgraphs) | template | index | (subgraphs) | template index (subgraphs) | template index
ripple- | 64 1(16) 6.3 63 | 2(64) 13 31 1(2) 50 50
carry
16-bit | 43 6(40) 6 17 6(48) 3 3 (19 38 7}
CLA
7AI81 | 41 i(17) 7.3 33 5(21) 73 32 2(5) 22 32
7485 15 3(7) 33 26.7 4(13) 6.7 6.7 3(7) 33 36.7
muit. | 40 3(40) 25 10 4(40) 35 10 6(16) 25 5
ci32 160 9(39) 3.1 11.9 7(159) 0.6 5 9(58) 75 514
499 302 7(66) 85 17 6(202) 0.5 3 65(42) 20.7 36.1
880 383 18(178) 3.6 15.1 9(383) 0.3 2.3 19(127) 123 35.2
cl355 | 546 8(298) 3.1 5.1 7(546) 0.2 1.3 7(74) 313 355
c1908 | 880 18(425) 0.3 5.3 12(879) 0.1 15 27(171) 5 g
c2670 | 1193 | 23(604) 3.7 11.6 | 12(1193) 0.1 1 26(262) 155 437
3540 | 1669 | 44(652) 3.9 212 | 15(1669) 0.1 0.9 38(224) 288 134
5315 | 2307 | 37(815) 06 73 15(2307) 0.1 0.6 30(264) 17.3 104

Table I: Covers obtained using largest-fit-first and most-frequent-fit-first heuristics. MFF heuristics on tree templates and single-PO
templates result in identical covers. The largest template is specified in terms of its area as a percentage of overall circuit area.

339

