
A General Approach for Regularity Extraction in Datapath Circuits

Amit Chowdharyt, Sudhk Kalet, Phani Saripellat, Naresh Sehgalt, Rajesh Gupta~

{mite, skale, phani, nsehgal}@scdt. intel. com rgupta@ics .uci. edu

~ Intel Corporation $ University of California

Santa Clara, CA 95052 Irvine, CA 92697

Abstract

Inmajority ojhigh-performance custom ICdesigns, design-
ers tuke advantage of the high degTee of Regularitypresent in
circuits to generate eficient layouts in terms area and per-
fomance aswellas to Teducethe design effort. Inthis paper,
we present a general and comprehensive approach to extTact
functional regularity for datapath ciTcuits from their behav-
ioralor structural HDL descn.ptions. The fundamental step
is the generation ofa large set of templates, where a template
as a subcircuit with multiple instances in the ciTcuit. Two
novel template generation algorithms aTe presented — one
fortemplates with a tree structure, andtheother foraspe-
cial class of multi-output templates, called single-p n.ncipal-
output (single-PO) templates, wheTe all outputs of a tem-
plate are in thetransitive faninof a particular output. The
set of template$ generated is complete under a few simplify-
ing, yet practical, assumptions. This is key to obtaining a
desirable couerof theciTcuit using templates. Weshow that
excellent cover$ are obtained for van”ous circuits, including
ISCAS benchmarks. We also demonstrate that the regular-
itg extracted for these circuits can be used to understand
their under[ging structure. We have successfully used our
approach to identify bit slices of very large datapath circuits
from general-purpose microprocessors.

1 Introduction

Datapath circuits perform various arithmetic and multiplex-
ingoperations onm~idebusses. Suchcircuits have averyhigh
degree of regularity. D~igners often exploit this regularity
in circuits to achieve layouts with a small area and a high
performance. Design effort can be reduced by identifying
regularity in circuits, thus improving the productivity of de-
signers. Therefore, an important task in circuit design is
to extract the regularity inherent in the circuits. Currently,
datapath circuits in general-purpose microprocessors are de-
signed almost entirely by hand [5], since the etisting CAD
tools can not extract and utilize regularity to the extent
necwsary for competitive designs.

Peti.sion to tie digiti or tid copies of fl or pti of this }vorkfor persoti or
dssroom w.e is granted \\itiout fee prottided &t copi~ are not made or distib
uted for profit or commerd ad~,antageand tit copies bear this notice and the M
titation on the fit page. To copy othersi~e, to repubkh, to ~t on smers or to
redistibrrte to kts, r~~ prior S-C permission and/or a fee.
ICC~98, Sm Jo% CA USA
@1W8A~l l-58113@B-U98/Ml1.S5.M

it .-.-–L–. .,

H P6 Pa

Figure 1: A 4 x 4 multiplier with inputs X3,..., XO, and
Y3,..., YO, which is covered by NO templates.

We assume that circuits are described by a hardware de-
scription language (HDL), suh as Verilog or VHDL. The
operators in the HDL descriptions can be either logic gates,
such as AND, OR and multiplexer, or arithmetic operators,
such as adders and shifters. Regularity in a circuit impfi~
that there etists subcircuits, called templates, which have
multiple instances in the circuit. The tmk of regularity ex-
traction is to identify a set of templat~, and cover the circuit
by a subset of these templ~tes, where the objective is to use
large templates tith many instances. The regularity extrac-
tion involves a tradeoff, since a large template usually has
a few instances, while a small template has many instances.
For a 4 x 4 multiplier of Fig. 1, the template 1 composed
of a diagond array has only three instances, while a tem-
plate composed of the SUM function has 12 instances. If the
structure of the multiplier is unknom, then the extraction
tednique should generate a cover, such as the cover of only
two templates (Fig. 1). In general, an extraction approach
should be able to generate a range of covers given only its
high-level description.

Regulmity in a given circuit can be either functional,
structured or topologicti. Given a high-level (behavioral or
structural) description, a functionally-regular circuit uses a
set of functionally-equivalent operations or subcircuits (tem-
plates). Functional regularity can be used to restructure the
HDL code, for instance to improve the quality of high-level
synthesis results by identi~lng opportunities for resource
sharing [9]. Structure in an HDL description typically refers

332

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288548.289050&domain=pdf&date_stamp=1998-11-01

to declaratively specified blocks [6] consisting of a netlist
w’hich can be described schematically by assigning a hor-
izontal or vertical direction to the nets. Finally, a top~
logically regulm design consists of an ordered set of blocks
which gives a good initial placement for the circuit. An
ided synth~is approach for datapath circuits should iden-
ti~ functional and structural regularity in HDL descriptions
and use it to build topologicdly regular circuits. This paper
concerns only w’ith functional regularity.

Various techniques for extraction of functional regular-
ity have been proposed in the hterature [1, 3, 10, 11]. Rao
and Kurdahi [11] use a string matching algorithm to find
dl instances of user-specified templates in the circuit, and
then heuristically choose a subset of the set of templates to
cover the circuit. The final cover is sensitive to the tem-
plates provided by the designer. Corazao et al. [3] dso

assume that a template library is provided, but they gen-
erate all complete as }vell as pmtid instancw of a given
template in the circuit. Other approaches by Nijssen et al.
[10] and Mlkati et al. [1] choose smrdl lo@c components,
such as latches, m templates, and then grow-them to obtain
bigger templates. These approaches are highly dependent
on the initial choice of templat~. The problem of finding
dl instances of a given template is similm to matching in
technology mapping, ~vhere the input circuit is covered by
cells (templat es) from a given library [S]. We found that all
prior techniques address the problem of covering a circuit
by templates, w’here the templates are assumed to be either
provided by the designer, e.g. as a library, or generated in an
ad-hoc manner. None of these techniqu~ ded with the sys-
tematic generation of a set of templatm for a circuit. From
our experiments, formulation of a good set of templates is
crucial since: (a) it allom’stradeoffs among multiple criteria,
such as area, timing and pow~er,and (b) it allows user to
build multi-technology designs, such as using a combination
of static and dvnamic 10Mc.

We propos; a novel a~proach to extraction of functional
regularity, w’here the set of dl possible templatw is gener-
ated automatically for the input circuit under a set of sim-
plifying but practical assumptions discussed in Section 3.
Our approach then chooses a subset of this set of templates
to cover the circuit. The major contributions of this paper
are tivo algorithms that generate a sufficiently large set of
templates for a given circuit, one to generate templatm \vith
a tree structure, and the other to generate a special class of
multi-output templates, m~hereevery output of the template
ties in the transitive fanin of a particular output. There has
been no prior attempt at generating such a large set of tem-
plates, ~’hich is key to obtain a wide range of efficient covers.
In the event that a template is specified, our approach can
be used to generate its dl possible instancw, either complete
or partial, in the input circuit. We identify the structure of
regular circuits of unknown description, since a template li-
brary need not be specified, unlike prior techniqu~. We wrill
demonstrate the effectiveness of our approach by identifying
regularity in several circuits, including some ISCAS bench-
marks whose high-level structure have been identified earlier
[7, 13] to help in various CAD applications, such as high-
level test generation [7], hierartilcrd timing an~ysis [13] and
FPGA technology mapping [2].

The rest of the paper is organized as follows. Section
2 formulates the regularity extraction problem in terms of
template generation and then circuit covering by templates.

(a) (b)

Figure 2: Representing the logic functions of circuit comp~
nents in G: (a) 2-twl mu% (b) AND-OR gate.

The comple.tity of template generation is discussed in Sec-
tion 3. Section 4 discusses the algorithm for generation of
templates with a tree structure. Section 5 extends it to a
special class of multi-output templates. The heuristic tech-
nique of circuit covering is discussed in Section 6. We present
results on benchmark circuits in Section 7. Section S con-
cludes with some future extensions.

2 Problem formation

The input to regularity extraction is a circuit C composed
of logic components that can be either logic gatw or arith-
metic operators. C is usually described using an HDL. We
represent C by a directed graph G(V, E), where the nodes in
V correspond to the logic components or the primary inputs
of C, and the edges in E corrwpond to the interconnection
among the components and primary inputs of C. The set
V can be partitioned into two subsets I and L, whid corre
spend to the sets of primary inputs and logic components,
respectively. The set O of primary outputs is a subset of
L. We represent the logic functions of components of C in
G by a pair of functions. We tist define a logic function

J:L+{l)..Z} , 0 , Tvhere10 is the total number of distinct
types of logic functions. If z[u] = l[v], then u and v corre-
spond to the same logic function, e.g. a 2-t~l multiplexer.
Similarly, we associate an indti~ k : E + {1, ... ko} with ev-
ery edge in E, where k(ul, v) = k(uz, v) impliw that the tw’o
incoming edges of v are equident. Figure 2a shows a mul-
tiplexer whose input edges have dl distinct indices, while
the AND-OR gate of Fig. 2b has four edges assigned to only
t~voindices.

A subgraph of G is a graph Gi(~4, Ei) such that U < V
and Ei ~ E. Vi is partitioned into I, ad Li. The set 0,
of primary outputs is again a subset of Li. A subgraph of
G corresponds to a subcircuit of C. We consider only those
subgraphs ~vhich satisfy the condition that if v G La, then
u ~ Ii ULi for every node u connected to v by an edge (u, v)
in G. We cdl such subgraphs jeasible subgraphs of G, since
they correspond to meaningful subcircuits of C. (From here
on, a subgraph ~vill imply a feasible subgraph.)

We consider two subgraphs Gi and Gj fnnctiondly equiv-
alent, if and only if (a) they are isomo~hic, i.e. there e.tists
a one-to-one mapping @ between Vi and Vj, (b) the logic
functions of corresponding nodes are same, i.e. l[v] = l[~[v]],
and (c) the indices of corresponding edges are dso the same,
i.e. k[u, v] = k[@[u], ~[v]]. We cdl the equivalence CIWSof
this relation a template. Any set S of subgraphs of G can be
partitioned into m templates, S1,..., Sn, where a template
Sj contains IS,] subgraphs. We estimate the area of a sub-
circuit that corresponds to the template S, by areu[S,] =

333

~VeL, u[l[v]], where au] is the area estimate of a node of
logic function j.

A cover of G is a set C(G) = {Gl,..., G~} of feasible
subgraphs of G that satisfiw the folloting conditions:

1. Every node of G belongs to at least one subgraph in
C(G), i.e. V ~ VI U... U Vn.

2. If a node v is a primary input of a subgraph, then it
is either a primary input of G or an output of another
subgraph, i.e. for dl v ~ Ii, v G IUOI U... UOn.

The problem of regularity extraction is stated below.
Regularity Extraction Problem: Given a circuit repr~
sented by a graph G, find a cover C(G) = {Gl,..., G.},
which is partitioned into m templates S1, ..., S-, such that
the number n of subgraphs and the overall area ~~1 area[Si]
of the templates are maximized. ❑

hIaximizing the number of subgraphs till reduce the effort
needed to design the circuit, while maximizing the mea of
templates w“ill reduce the overall area and delay by facih-
tating better optimization during technology mapping and
layout. The above tw~oobjectives are conflicting, since a
large template usually has only a few subgraphs.

The problem of finding an optimal cover is NP-complete,
even \vhenthe subgraphs are selected from a given set. Here,
the problem is even more complex, since there is no such set
of subgraphs for selecting the cover. We reduce the problem
complexity by decomposing it into two steps, where a set of
templates is fist generated, followed by selecting a subset
of the template set to cover G. We state these tio sub-
problems belo~v.

Template Generation Problem Given a circuit repre
sented by a graph G, generate the complete set of templates
w’here each template has at least two subgraphs. ❑

Graph Covering Problem: Given a circuit represented
by a graph G and its set ST(G) = {S1,..., Sp} of tem-
plates, find a cover C(G, ST) = {GI,..., G~} of G, which
is partitioned into m(< p) templat~, such that the number
n of subgraphs and the overall area ~~1 area[Si] of the
templates are m~simized. ❑

As mentioned earlier, prior techniquw do not address the
template generation problem due to its high complexity.
The graph covering problem is similar to the binat-covering
problem [4], w’hich has been well studied in various CAD ar-
eas, including regularity extraction [11].

3 Complexity of template generation

The problem of generating all templates of G is similar
to enumerating the equivalence C1=SW of G under isomor-
phism, w’hich is inherently difficult. We now present a few
practical assumptions, Nhlch will reduce the number of tem-
plates addressed to within V2. These assumptions till be
justified in the context of re~larity extraction. We will later
demonstrate that this set of templates will lead to efficient
covers for various dat apath circuits.

First, w’e propose the follo~ving assumption, since we
wrouldlike to extract regularity to the maximum extent.
Assumption 1. Ratrict the set S of subgraphs of G to
include only those subgraphs of G which are not a subgraph
of any other subgraph in S and which have at least one
distinct equivalent subgraph in S. ❑

(a) (b) (c)

Figure 3: (a) The graph G’; (b) its tNo templates obtained
by permuting the incoming edgu of the nod=; (c) the graph
G Nith the number of templates given by O(2V).

Figure 4 Repr=enting the HDL assignment “for i = 4 to
6 {x [i] = a[i] b [i] +C[i] .d [i] ~ in G. Note that the
edge indices are dflerent horn those in Fig. 2b as a result of
Assumption 2.

The number of templates can be O(2V) even after consid-
ering Assumption 1. Consider the graph G’ of Fig. 3U com-
posed of tNo unconnected trees, Nhere the incoming edges of
every node have the same index. It has tNo templates sho~vn
in Fig. 3b. NON, consider the graph G of Fig. 3C Nhich is
composed of two unconnected binary trees such that dl the
internal nodes have the same function Zfvl = 1. Nhlle the
leaf level is composed of one of the tNoLs~bgraphs, GI or
Gz. The number of templates of G is O(2V), since every
pair of subgraphs G1 and Gz can be matched using either
of the templat= of Fig. 3b.

We make the folloting assumption that does not rdlow
permuting the incoming edges of a node even though the
t~voedges (u1, v) and (UZ,v) have the same index k[ul, v] =
k[u2, v]. For example, the tNo input edges of a node corre
spending to an OR gate Nould be assigned different indices,
even though they are equivalent.
Assumption 2. For every node v of G tith incoming edges
horn nodes u1, Uf, every edge is assigned a unique index
of k[u~,v] =i, for all 1< i < ~. ❑

The above assumption will rule out S2 (Fig. 3b) as a tem-
plate for the graph of Fig. 3a. As a result, the graph G’ of
Fig. 3C also has a single template. The justification for the
above assumption is that G is constructed from an HDL de
scription of C, Nhlch ensures that nodes tith the same func-
tion are defined identicdly. For example, the HDL assign-
ment statement “fori=4t06 { x[i] = a[i]. b[i]
+ c [i]. d [i] }“ till corrwpond to three nodes Nhich are

transformed identically in building G see Fig. 4. There
fore, the above assumption does not rule out the regularity

334

.—

“WS2W’WS”WS5W

bS6

v

I

s,

Figure 5: The tree templates for the graph of Fig. 3a gen-
erated by the algorithm of Fig. 6. S8 is compactly repr~
sented by root-f n[S] = 1, childrendemplates = {S6, S7)
and rootnodes = {o, p}.

inherent in the HDL description.

4 Generation oftree templates

A tree template, mthenameimD1ies. is a template, which., .,
has a single output and no internrd reconvergence. We
present andgorithm for generating all tree templates ofa
given graph G under Assumptions 1 and 2. It can be shown
that the number of tree templat~ is reduced to tithln V2
under these tNo assumptions, Nhich makes the enumeration
of such templates practical. We till anrdyze the complexity
for the case w’here the fanin of the nodes in G is bounded.
The templates are stored in a set ST = {S1,..., S~}. Nhere
every template Si is a class of functiondly-equident sub-
graphs. Instead of storing each template completely, ~ve
store a template as a set of Klerarchicdly organized tem-
plates. A template S, can be completely defined by the
logic function of its root node, denoted by root-fn[i], and
the list of templates children~emplates[i] = {S1,..., Sf }
to which the subgraphs rooted at the f fanin nodes of the
root node belong to. For example, Fig. 5 illustrates the
templates of the graph G’ shoNn earlier in Fig. 3a. The
template S8 can be precisely defined by root-fn[S] = 1
and chi[drenJemplates [S] = {S6, S7}. We also reduce the
space required for storing the subgraphs of each template
by simply storing the root node of the subgraphs in the
list rootmodes[i]. In case of the template S8 in Fig. 5b,
root -node.s[S] = {o, p}. It can be sho~vn that the subgraphs
of a template Si can be precisely reconstructed using root-fn[i],
and the lists children~emplates[i] and root-nodes[i].

For efficiency reasons, ~vesort the template fist ST by
a composite key of size f + 1, defined as key = {root_f n,
children~emplates}. The template generation algorithm is
presented in Fig. 6. We explain the algorithm using the ex-
ample of Fig. 5. First the nodes of G are topologically sorted.
Then, for every pair of nodes, the function Largest-Template
generates a template w’ith tNo subgraphs, once rooted at
each node. LaTgest-Template compww the logic function
of the tw’o nodes, and then constructs the list of children
templates. The template Sm, thus generated, is compared
w’ith previously-generated templates by a binary search on
ST using keg. If Sm is equivalent to an etisting template
Sk, then its subgraphs are added to Sk; other~vise S~ is
stored in ST as a new, template. For the graph of Fig. 5a,
fist the trivial templates S1,. . . . S4 are generated.Then,
from the remaining nodes {a, b, c, d, o,p} (Fig. 3a), S5 is
generated by comparing a and b, and S6 is generated by

/*A tree template Si is completely defined by
(i) root-fn[i]; (ii) childrenjernplates[i] — list of
children templates; (iii) root-nodes[n] — list of
root nodes of subgraphs of S, x/

01 Generate-Templates(G(V, E))
02 begin
03 topologically sort the nodes of G as {v1,..., VN};
04 ST := ~ /* ST storw the list of templates */
05 m := O; /*m is no. of templates generatedso far */
06 temptate[vl . . . WN,VI . . . VN] := 0;

/* template[vi,~j], if non-zero, is the index of template to
\vhichequivalentsubgraphs rooted at vi and ~j belong */

07 fori=lto N
OS forj=i+lto N
09 m:=m+l; /*ne\v template to be stored in Sin*/
10 Sm := Largest-Template(vi, ~j);

11 if Sm#O
12 k := FindEquivalent-Template(S~, ST);

/* find Sk in ST equivalentto Sm */
13 template[vi, vj] := k;
14 ifk=m /. Sm is a neiv template ./
15 ST := ST U {Sm}; /* ST remains sorted */
16 else
17 root-nodes [k] := root-nodes [k] U {vi, vj };

1s m:=m–l;
lg return ST;
20 end

/* generateslargest equivalent trees rooted at u and v */

21 Largest-Template(a, v)
22 if l[u] # l[v] /*u and o have different logic functions/
23 return 0;
24 else
25 root-fn[m] := l[u]; /* setting fields of template Sin*/
26 fori=lto~do

/* u(v) have ~ fanin nodes {UI,... ,uf} ({vi,... ,vj}) */
27 if u~ and v>have a single fanout each
2s add template[ui, vi] to childrendemplates [m];
29 root-nodes[m] := {u, v}; /* Sm has t~vosubgraphs */
30 return Sm;

/* performs a binary search on ST= {Si,..., SJ} */
31 FindEquivaIent-Template(S~, ST)
32 ifST=~
33 return m
34 if key[m] < key[~] /* check first half of ST */
35 return Find~quivalent-Template (Sin,

{S,,...,S+ +_,});
36 else if key[m] > key[~] /*check second half of STx/
37 return FindEquivalent-Template (Sin,

{s~+~,...,sj});

3S return ~; /* Sw and Sm are equivalent*/

Figure 6: Algorithm for generating the complete set of tree
templata of G under Assumptions 1 and 2.

335

Q

Figure 7 The graph of the 4 x 4 multiplier of Fig 1.

comparing u and c. The template obtained by comparing a
and d is found to be equivalent to S5, so d is stored in the
root-nodes of Ss. The remaining tlvo templat es, S7 qd S8,

are generated by compwing the node pairs, (b, d) and (o, p),
respect ively. Largest-Template returns a NULL template, in
the case of remaining node pairs. Note that every template
has only txvosubgraphs, except S5 with six subgraphs @ven
by rootnodes = {a, b, c, d, o, p}.

Largest- Template takesa constant time for bounded- fanin
graphs. Binary search on ST (linw 31-3S) as \vellas insertion
of Sm in ST (line 15) take O(logV) time, both of which are
called for every node-pair. Thus, the overall time comple.tity
is 0(172 .logl’). We store root-f n and childrendemplates
for every template, which requires a memory of O(V2). The
storage required for subgraphs is also O(V2), since a sub-
graph is stored just as its root node. Thus, the overall stor-
age complexity is O(V2).

5 Nlulti-output templates

The template generation algorithm of Fig. 6 gives excellent
covers for datapath circuits composed of sparsely intercon-
nected subcircuits, but it might not perform well for circuits
~vith a high number of multiple-fanout nodes. If we apply
this algorithm to the multiplier of Fig. 1, also shown as a
graph in Fig. 7, then three trivial tree templates — AND
gate, CARR\’ and SUL1 functions, are obtained. We now
extend the algorithm for tree templata to a special class
of multi-output templates. We restrict ourselves to only
those multi-output subgraphs, whose every output lies in
the transitive fanin of a particular output. We refer to this
particular output as the principal output of the subgraph,
and such a subgraph (template) as a single pn”ncipal-output
subgraph (template) or a single-PO subgraph (template).
For example, the t~vo subgraphs sho~vn in Fig. 8a of the
graph of Fig. 7 are single-PO graphs with P5 and P4 & the
respective principal outputs. Single-PO graphs have several
interesting properti~. They can have internal reconvergence
as ~vellas cycles, and can have any number of outputs, as
opposed to trees. The main advantage of using singl&PO
subgraphs is that despite their complex structure, the num-
ber of such subgraphs of G under the Assumptions 1 and 2
is also restricted to V2, provided the subgraphs satisfy the
convex property that if v, v E V(G,), then every node w on
a path from u to v also belongs to V(G,).

A tree template Nas earlier represented by a fist of chil-

(a) (b) (c)

Figure S: (a) Two functiondly-equivdent subgraphs GP5
and GP4 of the graph of Fig. 7; (b) the two templates with
overlapping nodes ~vhich are merged to form the template
S3 .

&en templatw \vhich are non-overlapping. However, the
children templatm can overlap in single-PO templates. Fig-
ure Sc sho~vs the template S3 with the two subgraphs of
Fig. Sa-b. S3 has two children templates, S1 and S2, which
have overlapping nodes, such as cl of subgraph GP5 and C2

of GP4. Therefore, S3 cannot be completely specified just
by the ~st of its children templates. Instead, every tem-
plate has to be specified individually. We store the nodes
of a subgraph G. by a list nodelist using the depth-fist
search order. The motivation for using a depth-fist or-
der is that it is unique for all isomorphic subgraphs. The
subgraph of template S1 rooted at node al has nodelist =
{al, bl, cl, dl, el, f 1, gl}. With every node in nodelist, we
store its fanin and fanout links as well. Thus, memory
required to store a subgraph is O(V) for bounded- fanin
graphs.

We replace the tNo functions in Fig. 6 by the correspond-
ing functions in Fig. 9 in order to generate the complete set
of singl-PO templates. We explain these functions using
the example of Fig. S. Prior to the cdl Largest~emplate
(P5, P4), the template SI is already generated tith two
subgraphs, G., and G=,. Similarly, S2 is also generated
tith subgraphs, Ghl and Gh,. The nodelists of G., and
Ghl (G~2 and Gh,) are combined to obtain the nodelist of
GP5 (GP4). After lines 07-09, nodelist[Gp5] = {P5, al, bl,
cl, dl, el, ~1, gl, hl, il, cl, dl, el, f 1} and nodelist[Gp4] =
{P4, a2,b2, c2, d2, e2, f2, g2, h2, i2, c% d2, e2, f2}.

There can be multiple paths from a node w to the root
node v through different incoming edges of v. As a result,
w occurs multiple times in nodelist[G~]. For example, c1 is
connected to P5 through the edges (al, P5) and (hi, P5) in
Fig. sa, and hence, it occurs ttice in nodelist[Gp5]. We de
fine a tist path[w, v] (lines 10-12) Nhich contains the indices
of the incoming edges of v through Nhich w is connected
to v, e.g. path[bl, P5] = {l}, \vhilepath[cl, P5] = {1, 2}.
We then pair~vise compare the nodes in nodelist of Gu and
G. (line 13). If the path lists of the corresponding nodes
are different, then these nodes have to be removed from
the respective subgraphs (lines 1415). Othemise, if the
t~vopath lists are same, but have multiple indices, then the
remaining copies of these nodes have to be removed. For
example, the second occurrence of the node cl (c2) in GP5
(GP4) is deleted. Finally, after line 21, nodelist[Gp5] =
{P5, al, bl, cl, dl, el,gl, hl,il} and nodelist[Gp4] = {P4,

336

I

/* generatesthe largest equivalentsingle-PO subgraphs
rooted at u and v */

01 Largest-Template(u, v)
02 if l[u] # l[v]
03 return o;
04 else
05 nodelzst[GU]:= {u}; /*root node is the first node*/
06 nodelist[G,,] := {V};
07 fori=ltofdo
08/* u (w) have j fanin nodes {UI,... ,u~} ({vi,... ,Vf }) */

add nodelist[GU,] at the end of nodelist[Gu];
09 add nodelist[Gv,] at the end of nodelist[Gw];
10 for WI c nodetist[Gui] and W26 nodelist[Gmi]
11 add i to path[wl, u];
12 add i to path[w2, v];

/* ther~is a path from WI (wz) to u (v) through*/
/* the incoming edge of u (v) ~vithindex i */

13 for wl 6 nodeli.st[Gti]and W2E nodelist[Gu]
14 if path[wl, u] # path[w~, v]
15 delete alI copies of W1(W2) from nodelist[GU(Gv)];
16 else if path[wl, u] has more than one element
17 delete remainingcopies of W1(wz)

from nodetist[Gti(Gv)];
18 Sm := {GU, GV};
19 return Sm;

20 FindEquivalent-Template(S~, ST)
21 forz=ltok
22 if nadetist[St] = nodelist[Sm]
23 return i;
24 return m;

Figure 9: Algorithm to generate the complete set of single
PO templates of G under Assumptions 1 and 2.

a2, b2, c2, &2,e2, g2, h2, i2}. The function FindEquivalent -
Template compares a template with every other template
in the set ST by mat&ing corresponding nodes in the two
nodeli,st’s, since the depth-tist order of the nodes of a graph
is unique.

The procedure LargestXemplate takesO(V) time, since
it constructs t~vonodelist’s and then traverses them ttice.
FindEquivalentTemplate takes0(V3) time, since it com-
pares t~’o nodelist’s at most V2 times. These two functions
are called for every node-pair (line 07-08, Fig. 6), result-
ing in the time complexity of 0(V5). The nodelist of every
subgraph requires a storage of O(V), resulting in a storage
complexity of 0(V3). We found that the execution time for
circuits with about 2,000 nodes was no more than a few
minutes, since the total number of templates is very small
compared to V2. If the number of singlePO templatw of G
is bounded by S, then the overall time and space complexity
are given by 0(S2 . V) and 0(S. V), respectively.

If designer provides a template GT, we can generate dl
its complete as well as partial mat&es in the input graph G
by calling the function LargestXemplate (line 10, Fig. 6)
for every nod-pair (v,, WJ), where vi and vj belong to G and
GT, respectively. This feature allows the designer to control
the extraction approach and improve the circuit cover as
desired.

6 Covering of graph by templates

So far, ~’e have presented algorithms to generate a set ST of
templatw of G. ST can be either a set of dl tree templates

or a set of dl singl~PO templates of G under the Assump-
tions 1 and 2. Let S denote the set of dl subgraphs in the
templates stored in ST. Now, we prwent a solution to the
graph covering problem, where given G and ST, the objec-
tive is to find a subset C(G, ST) of the set S of dl subgraphs
that forms a cover of G.

Since a large set S of subgraphs are generated to doose
the cover and the binate covering problem is inherently dif-
ficult, we focus on efficient heuristics to solve the covering
problem. Our approach, at every step, selects a template S,
with the matimum objective function out of rdl templates in
ST, deletw all nodes of G that belong to the non-overlapping
subgraphs of Si, and then generates the set ST of templates
for the remaining graph. This step is repeated until either
dl nodes of G are covered, or if ST is found {O be NULL.
If some nodes are left uncovered and ST becomes NULL,
then we store the remaining nodes in a template with a sin-
gle subgraph. (In case of datapath circuits, this template
correlates to its control logic.)

We use the following two covering heuristi~ b~ed on the
objective function used for selecting templates.

1. Largest-Fit-FiTst (LFF) heuristic: Select the template
Si with the the maximum area UTeU[si].

2. Most-frequent-Fit-First (MFF) heuristic: Select Si with
the maximum number lSi I of subgraphs.

Usually, these two heuristics give different covers, since a
template with a large area has few subgraphs, and vice-
versa. The cover of the 4 x 4 multiplier of Fig. 7 obtained
using the LFF heuristic contains six templat~, where the
largest template sho~vnin Fig. S covers more than hdf of the
circuit. (The cover of two templates shorn in Fig. 1 cannot
be obtained, since our algorithm is restricted to singl~PO
templates.) If the NIFF heuristic is used, then the cover
of three small templates — AND gate, CA~Y and SUN1
functions, is obtained.

7 Experimental results

The only input to our regularity extraction tednique is the
graph G of a circuit C. The input circuit can be described
in any format, such as an HDL or the Berkeley logic inter-
&ange format (blifi, from whid G can be constructed in
a straightforward manner. We extract the regularity for a
variety of circuits, including adders, 74A” series circuits [12]
and ISCAS ben&mark circuits. The ISCAS ben&marks
are already described in the blif format. We have mitten
input descriptions for adders and 74X circuits from their
finctiond descriptions. We obtained a set of four covers for
each circuit, depending on whether tree templatw or single-
PO templatw are generated, or whether the LFF or NIFF
covering heuristic is used.

We analyze interesting covers for several circuits, ad
then summarize the results for the complete set of circuits.
Ripple-carry function Figure 10 shows a 16-bit ripple
carry function. A cover of a single template S1 tith tw~o
instances is obtained by using the LFF heuristic on the set
of singl*PO templatw. If only the tree templates are con-
sidered, then the cover of a smaller template S4 tith 16
instances is obtained. In fact, we recursively extract the
regularity from template S1 to get a set of covers given by
{S1(2)}, {S2(4)}, {S3(s)}, md {S4(16)}, where {Si(n,)}

337

.. . .

c> rctz

s! St

Figure 10: A 16-bit ripple carry function illustrating a hier-
archy of templates.

c— ,... -.. —

Figure 11: A 16-bit carry-lookahead circuit; most of its
nodes are covered by the largest template S1.

impties a cover of ni instances of template Si. Thus, our
technique can generate a hierarchy of template covers.
Carry-IooWead function: Figure 11 shows a 16-bit carry-
lookahead logic block which is realized using sub-blocks of
four bits each. The largest single-PO template is S1 with
t~vo instances, one rooted at C8 and the other at C16. Se-
lecting S1 results in the cover {S1(2), S2(4), S3(4), S4(4)}
show in Fig. 11. Further, S1 can be shorn to be composed
of just one template \vith tw’o instancw.
741S1 4-bit ALU: This ALU of Fig. 12 [7] is found to have a
single-PO template S1 wtithfour instances which cover most
of the circuit, except the carry-lookahead logic.
7485 magnitude comparator: The gate-level retiization
of 74LS5 magnitude comparator [12, 7] is composed of two

.. , n
A=B

S3

F

S2

B

SI

Figure 12: The 74181 ALU has a single template tith four
instances.

113IC[741s}ntiOm-
gencmor

*

,—4
\\’G

4

U1 \VF

4 —

.W’ ‘Gk
genzmor

S1 4 JVA OM..—. — .-.-. —-—.-. . . .

Figure 13: The lagest template of the c499 ISCAS circuit
covers the entire syndrome generator logic and a part of the
remaining error correction logic.

carry-lookahead modules, which are identified as expected.
c499 (c1355): This ISCAS-S5 benchmark circuit of Fig. 13,
described in [7], is a singleerror-correcting circuit m’hich
reads in a 32-bit bus, generat= a set of eight syndrome
lines, and then corrects the appropriate bit in the output
bus. The largwt singl&PO template is sho~vn to cover dl
of the syndrome generation logic and some of the remaining
error correction logic. The remaining circuit is covered by
five templates. The c1355 benchmark implements the same
logic as c499, except that each XOR gate is represented by
four NAND gates. lVe get the same largest template as for
c499, which proves that our algorithm effectively handl-
internal reconvergence in the circuit.
c2670: This ISCAS benchmark is an ALU with hvo iden-
ticd comparator subcircuits [13] apparently used for fault-
tolerant reasons. As expected, ~veare able to identify tw’o
instances of the comparator of 12-bit inputs.

Finally, Ne summarize the results obtained for above set
of circuits. Table I gives the covers obtained by apply-
ing the covering heuristiw on the sets of tree and single-
PO templates. Every node is assigned a unit area. The
qua~ty of covers can be compared using the area of the
largest template and a measure called regulating indez, de
fied by the area of dl templates in the cover, given by
~~1 ~~ea[si], M a percentage of the total area of G, given
by ~~1 lSiI - area[S,]. Assuming that a template is syn-
thesized only once for all its subgraphs, a small regularity
indw implies that a 10Neffort is needed during synthais and
layout stages, Nhile a large template implies that a better
optimization can be achieved during synthesis and layout.
The r=ults indicate that the LFF heuristic generates covers
with large templat=, e.g., the tNo instances of the largest
singl&PO template of c1355 together account for tN&thirds
of the overall area. Such covers have a high regularity index
which can be reduced by hierarchically extracting regularity
in the largest template. On the other hand, covers obtained
using the MFF heuristic have a small regularity index as
Nell as smrdl templates. Figure 14 shoNs the Nide variation
in the regularity indices for the covers of some benchmark
circuits. In fact, covers Nith intermediate vdu= of regular-
ity index can be obtained by using a combination of LFF
and MFF heuristics, or other covering heuristiw.

338

0
c432 C4W c880 c1355 c2670

LWheurktic
(single-PO
templates)

LW heurktic
(tree templatm)

NIW heuristic
(single-PO or
tree templates)

Figure 14: Regularity indices of the covers for some ISCAS
bendmazks.

8 Conclusions

TVehave presented a comprehensive approach to extract reg-
ularity inherent in the behavioral or structural ~L descrip-
tions of datapath circuits. Identifying regularity would sig-
nificantly reduce the design effort in subsequent technology
mapping and layout stages. Ourapproach reduces theprob-
Iem complexity by first generating a set of templates and
thenselecting itssubset tocover the circuit. Themajor con-
tributions of this paper are the novel algorithms developed
to generate tw’o special classes of templates — tree tem-
plates and single-PO templates. Our algorithm generates
the complete set of these two classes of templates under a
few practical assumptions, which is key to achieving a range
of efficient covers. lVe have obtained a variety of covers for
several benchmark circuits by using two different covering
heuristim. \Vehave dso demonstrated that these covers help
in understanding the underlying structure of the circuits. A
hierarchical representation of circuit regularity can also be
obtained by recursive application of our approach.

A useful extension to our extraction approach is to gen-
erate templatw tith multiple outputs, which would lead to
more efficient covers, such as the cover of just t~votemplates
for the 4 x 4 multiplier (Fig. 1). However, the number of
such templates is not restricted by V* under the t~vo as-
sumptions presented in this paper. Our approach explicitly
enumerat~ the templat~, which raises the following ques-
tion: is it possible to consider all the templates in the cover-
ing step w’ithout explicitly enumerating the set of templates
generated by our algorithm?

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

ARIKATI, S. R., AND VARADARAJAN, R. A signature based
approach to regularity extraction. In Proc. Int’1 Conf. on
CAD (Nov. 1997), pp. 542-545.

CHO\VDHARY,A., ANDHAYES,J. P. Technology mapping for
field-programmable gate arrays using integer programming.
In Proc. Int’1 Conf. on CAD (Nov. 1995), pp. 346-352.

CORAZAO, M. R., KHALAF, M. A., GUERRA, L. N1., POTKON-
JAK, M., ANDRABAEY,J. M. Performanceoptimization us-
ing template mapping for datapath-intensivehigh-levelsyn-
thesis. IEEE Trans. on CAD 15, 8 (Aug. 1996), 877-887.

DEMICHELI,G. Synthesis and Optimization of Digital Cir-
cuits. McGra\v-Hill,Ne\vYork, 1994.

DOBBERPUHL, D. W. Circuits and technology for Digital’s
StrongARM and ALPHA microprocessors. In Proc. Conf.
on Advanced Research in VLSI (Sept. 1997), pp. 2-11.

GUPTA,R., ANDLIAO,S. Using a programminglanguagefor
digital hard~varedesign. IEEE Design and Test of Comput-
ers (April 1991), 72-80.

HANSEN,M. C., ANDHAYES,J. P. High-1eveltest generation
using physically-induced faults. In Proc. VLSI Test Symp.
(May 1995), pp. 20-28.

[8] KEUTZER, K. Dagon: Technolom binding and local orrti--- .
mization by DAG ‘matching. In Proc. 24th Design Automa-
tion Conf. (June. 1987).

[9]

[10]

[11]

[12]

[13]

LI, J., AND GUPTA, R. HDL code restructuringusing TDTs.
In Proc. Int’1 Workship on Codesign (March 1998).

NIJSSEN,R. X. T., AND VAN EIJK, C. A. J. Regular layout
generation of logically optimized datapaths. In Proc. Int’1
Symp. on Physical Design (1997), pp. 4247.

RAO, D. S., ANDKURDAHI,F. J. On clusteringfor maximal
regularity extraction. IEEE Bans. on CAD 12, 8 (Aug.
1993), 1198-1208.

TEXAS INSTRUhlENTSINC. The TTL Data Book, Dall~,
Texas, 1988.

YALCIN,H., HAYES,J. P., AND SAKALLAH, K. A. An ap
proximate timing analysis method for datapath circuits. In
Proc. Int’1 Conf. on CAD (Nov. 1996), pp. 114-118.

No. LFF heuristic (tree templates) MFF heuristic (tree or singl&PO templates) LFF heuristic (singl~PO templates)
templates Largest Reg. # templates L

Ckt. g:fw (subgraphs) index (subgraphs) te~~~~~e
Reg. # templates Largest

template
Reg.

index (subgraphs) template index
rippI+ 64 1(16) 6.3 6.3 2(64) 1.3 3.1 1(2)
carry

50 50

16-bit 48 6(40) 6 17 6(48) 2
CLA

13 4(14) 38 44

74181 41 4(17) 7.3 33 5(21) 7.3
7485 15

32
3(7) 33

2(5) 22
26.7

32
4(15) 6.7 26.7 3(7) 33

mtrit. 40 4(40) 2.5 10 4(40) 2.5
26.7

10
c432 160 9(89) 3.1

6(16) 25
11.9

45
7(159) 0.6 5

C499 202 7(66) 8.5
9(58)

17
7.5

6(202) 0.5
24.4

3
C880 383 18(178) 3.6

6(42)
15.1

29.7
9(383) 0.3

36.1
2.3

C1355 546 8(298) 3.1
19(127)

5.1
12.3

7(546) 0.2
35.2

1.3 7(74) 31.3
c1908 880

35.5
18(425) 0.8 5.2 12(879) 0.1 1.5 27(171)

c2670 1193
5 44

23(604) 2.7 11.6 12(1193) 0.1 1 26(262) 15.5
C3540 1669 44(652) 3.9 21.2

43.7
15(1669) 0.1 0.9 38(224) 28.8

C5315 2307
43.4

37(845) 0.6 7.8 15(2307) 0.1 0.6 30(264) 17.3 40.4

Table I Covers obtained using larg~t-fit-first and most-frequent-fit-firstheuristics. MFF heuristicson tree templates and singl&PO
templates result in identical covers. The largest template is specified in terms of its area m a percentageof overall circuit area.

339

——. - —.-. —

