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Abstract
This paper presents a novel concurrent fault simulator (called

CONCERT) for nonlinear analog circuits. Three prima~ tech-

niques in CONCERT including fault ordering, state prediction,
and rednced-order fault matrti computation, greatly simplifi fault

sittudation by making use of the residual similarities bem’een the
faul~ andfault$ree circuits. Be~een successive time steps, all cir-

cuits in the fanlt list are simulated concurrently before the simula-
tor proceeds to the nert titne step. CONCERT also generates

accurate fault co~’erage statistics that are tied to the circuit specifi-
cations. Up to nt,o orders of magnitudes speedup are obtained for

cotnplete fault simulation, )t’ithout any loss of accuracy. More
speedup is achieved by COiVCERT for evaluating the fault cover-

ase of a test, using fault ordering and fault dropping technique.

1 Introduction
The fault simulation problem for nonlinear analog circuits is
largely unsolved due to the complexity of analog simulation and
the difficulties of simulating many analog faults simultaneously. In
the digital world, concurrent fault simulation methods are well
entrenched as the effects of multiple digitat single-stuck-at faults
can be propagated simultaneously from one gate to the next using
only local information around the circuit nodes to which the fault
effects have propagated. In contrast, rmrdog faults typically affect
voltage and current values across all the circuit nodes and
branches, respectively, thereby mtilng concurrent analog fault
simulation very difficult. Currently, serial simulation of analog
faults is the prevalent artafog fault simulation methodology used in
industry. As a consequence, comprehensive fault simulation of
large mixed-signal circuits is atmost impossible with today’s tools.

In the digital domain, fauIt simulation algorithms are based on par-
allel fault simulation [12] and concurrent fault simulation [14]
methods. In the analog domain, no fast fault simulation techniques
have been reported for nonlinear circuits under general transient
stimulus. Frequency domain (AC small sigrrd) fault simulation of
analog circuits linearized around the DC bias points for parameter
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tolerances is discussed in [13]. This approach is based on the
assumption that the DC bias points of the faulty and fault-free cir-
cuits are the same, hence, disrdlowing large circuit parameter devi-
ations under fault. Householder’s formula [5] is used to assess the
impact of the component tolerances on the AC response of the cir-
cuit under test (CU~. In [17], the authors have discussed the idea
of concurrency which avoids re-evaluation of those components
that have the same internal node values as in the fault-free case. A
fault simulator called DRA~S [9] has been developed for serial
fault simulation of linear analog circuits. ~YER [15] reports sig-
nificant improvement upon DRA~S for fast fault simulation of
linear analog circuits. A fast fault simulation method using fault
ordering and circuit partitioning is reported in [16]. Householder’s
formula has also been applied to analyze multiparameter large-
change sensitivity in linear networks [7].

In this paper, we present a fast and accurate concurrent fault simu-
lator CONCERT for nonlinear analog circuits. me paper is orga-
nized as follows. An overview of our fault simulation approach is
discussed in Section 2. Section 3 provides the background for our
fault simulation methodology. Section 4 presents the proposed con-
current fault simulation atgorithm. Vm.ous techniques used for
concurrent fault simulation are detailed in Sections 5,6, and 7. The
overafl fault processing is discussed in Section S. Simulation
results are given in Section 9. This is followed by conclusions in
Section 10.

2 Fault Simulation Methodology
The fault simulation methodology on which CONCERT is based
on areas follows:

1. A set of training circuit instances, each instance corresponding
to a set of different circuit parameter values, is first generated.
This is performed using statistical methods so that the instances
lie across and near the circuit specification boundaries, i.e.
some of the circuit instances correspond to “good’ circuits and
some correspond to ‘.ba&’circuits. This set of training circuit
instance is inserted into a fault list. The fault list is then
expanded to include a fault universe which my include para-
metric faults and catastrophic short and open faults specified by
the user.

2. For the specified transient stimulus, concurrent fault simulation
is performed as follows: (a) between successive time steps dl
the circuits in the fault list are simulated before proceeding to
the next time step; (b) if the circuit time step corresponds to
one in which the CUT output(s) is sampled (the sampling fre-
quency is an input to the simulator), then the measurement
threshold for that time step is selected in such a way as to give
unity yield coverage (this means that no “good’ circuit instance
is clmsified as “ba& by choice of the threshold); and (c) all cir-
cuit instances in the fault list that are “detected’ due to the
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choice of the measurement thresholds are dropped and simrrla-
tion is continued.

3. Fault coverage statistics that aretied to the circuit specifica-
tions are generated.

Note that here we differ from digitrd fault simulation in that: (i) the
analog fault simulator need to select the measurement thresholds
based on the specifications which may not given in the time
domain; (ii) the “fault list” contains some “goo~ circuits as well as
“bad’ for the purpose of measurement threshold selection. In the
above, if desired, fault dropping (2(c)) is not performed if the tran-
sient response of the CUT over the entire simulation interval for
every fault is of interest, say, for diagnosis purposes.

The fault simulation methodology is illustrated in Figure 1. The

I Generate Fault fist
L
T
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Concurrent Fault Simulation Algorithms
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+
Coverage Statistics or Fault Dictiona~

FiWre 1 Fault Simulation Methodology of CONCERT

key contributions of CONCERT are in step 2 described above. The
simulator simulates all the entries in the fault list at every time step
before proceeding to the next. This concurrent process allows
CONCERT to maritnize the sharing of simulation eflort for all cir-

cuif instances in thefaulr list. The god is to use as much informa-
tion as possible from the simulation of every circuit instance in the
fault list to simplify the simulation of the next. Three primary tech-
niques is used to accomplish the concurrent fault simulation:

1.

2.

3.

Fault Ordering Based on the states of the circuit instances, all
the circuit instances in the fault list are ordered at every time
step. The dynamic ordering is done in such a way as to maxi-
mize the similarity between consecutive faults.

State Prediction: Given the order specified in the fault list, the
state of the i-th circuit instance in the fault list is predicted from
the state of the i-1-th simulated circuit instance in the fault list
at every time step. The predicted state greatly reduces the num-
ber of Newton Raphson (NR) iterations for solving the system
of nonlinear equations.

Reduced-order Fault Matrix (RFM) Computation: Based on the
residual similarity between the nodal admittance matrices of
the faulty and fault-free circuits, the system of faulty circuit
equations is transformed into a reduced-order system of equa-
tions and solved with much less computational effort. House-
holder’s formula [5] and sparse matrix technique [6] are used
for the transformations.

The concurrent fault simulation techniques in CONCERT apply to
DC, AC, and transient fault simulation of general linear and non-

linear analog circuits. For reasons of brevity, this paper will focus
on DC and transient fault simulation rdgorithms.

3 Analog Circuit Simulation Basics
Our concurrent fault simulation approach is based on conventional
modified nodal analysis (MNA) and numerical integration methods
[4]. In the following, we first discuss the MNA formulation for cir-
cuit simulation. We will then show that most of the entries in the
MNA matrix are invariant under fault and this greatly reduces the
computations involved in solving the linearized system of equa-
tions.

In this paper, we use the term ‘~aulf’ to denote a circuit instance in
the fault list. The subscript~is used to denote a fault, the subscript
n denotes the time step tn in transient analysis, and the superscript

k denotes the k-th iteration in the NR equation solving procedure
corresponding to time tn.

In general, the system of circuit equations is written as:

YU=I, YGxmxm, U,IESM (1)

where Yis the modified nodal admittance matrix of the circuit, U is

the vector of unbown node voltages and branch currents, and I is
the RHS contributed by the kown current and voltage sources.

Consider the example nonlinear circuit in Figure 2, the linearized
system of equations for DC analysis is:

‘~’ac
Figure 2 An example nordinear circuit

where gdk is the dynamic conductance and idkis the current of the

diode, both evaluated at the diode’s termimd voltage Vfk - v2k.

Starting with a DC input e(0) and an initial guess Vlo, v20, and ijo,

the system of equations is solved for vlk+l, v2k+1,and i3k+1 itera-

tively for k=O, 1, .... until the solution converges.

Trmsient analysis is based on sti~y stable integration methods
with companion models for memory components [4]. For the cir-
cuit in Figure 2, the linearized equations at time tn are:

(3)

where yn is the companion conductance and jn is the companion

current source of the capacitor corresponding to time tw Only after
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the NR iterations converge at time tn, can the simulation be

advanced to the next time step in transient simulation.

In general, this can be formally stated as solving a system of non-
linear circuit equations (at time In):

f(un) = o (4)

using Newton-Raphson (NR) iteration method:

J(u:). u:+’ = -f(u:) +J(u:) . u: (5)

here J( Unk) is the Jacobian matrix of flUn) evaluated at Unk, and

Unk+l is the k-th iterative solution. In each NR iteration, the nonlin-

ear components need to here-evaluated, i.e. the system ofequa-
tions is re-linearized. me iterative solution is assumed to converge

k dU,~l are significantlytothesohttion point when vectors Un an

close. me number of NR iterations and its convergence heavily

0 ~ecostoflinearizing artdsolvingdepend on the initial guess Un .

the system of circuit equations dominate the computational cost of
circuit simulation.

4 Concurrent Fault Simulation Algorithm
For transient fault simulation, all the faulty circuits along with the
fault-free circuit are simulated concurrently at time rnbefore simu-

lation proceeds to the next time step. me same time step is used for
all fault simulations and is determined by fault-free simulation.

Algorithm concurrentFaultSimulation (t.)
01 normelCircuitSimulation(t., faultJree_circuit);
02 orderFaults((n, ~ault_/ist));
03 precompute= (tn, fau!tJree_circuit);
M foreucllf~ ~ault_list)do

05 U~):=predictStatO (n;

M k{=o;
07 do /~ewton-Raphson(NR)itemtions
0s Uf‘+’:=solve-(tn, O;

09 L:=k+l;
10 untilisConver9e (tn,p
11 endfor

Figure 3 Concurrent fault simulation algorithm

Figure 3 shows the algorithm of concurrent fault simulation at time
r~ me fauIt-free circuit is first simulated in function normal-

CircuitSimulationo which uses the conventional circuit
simulation method [11]. Allthefaults isordered inthefault list in
function orderFaults ( ), which will be described in Section 7.
Every fault is simulated using NR method as shown in the do-until
loop. Functions precompute~ ( ) prepares the common data
for solve- (), which implements the RFM procedure for
reducing the computational cost in solving the system of linearized
equations. Function predictState ( ) implement the state pre-
diction method which reduce the number of NR iterations. me
RFM procedure is explained in Section 5 and the state prediction
method is explained in section 6. Function isconverge ( )
checks if the NR iteration converges.

~is general algorithm also applies to DC fault simulation, which
is considered as a special case with rn being O. For transient fault

simulation, the same procedure will be called at every time step for
the entire test stimulus interval.

5 Reduced-order Fault Matrix Computation
When the circuit is faulty, the circuit equations are changed. But
certain similarity between the faulty and fault-free circuit equations
still exists. me difference in the circuit matrix can be captured by
extracting the differences of the component conductance under
that fault. Since the state of a nonlinear circuit is affected under
fault, some nonlinear components in the circuit may also have dif-
ferent behavior than in the fault-free case.

It is important to point out that not all the nonlinear components’
dynamic behaviors are affected by the fault at all times, especially
in large mixed signal circuits. In the nonlinear circuit in Figure 2,
only during a small period of time, the diode exhibits significantly
different conductance in faulty and fault-free case. During major-
ity part of its rectifier operation, the diode is “on” or “off’, as ilhrs-
trated in Figure 4. During that period of transient simulation, the

— e(t)
—-— fault-free

response
----- response

with r faulty

* ‘$~:~:~
Figure 4 Similar responses and states of faulty and
fault-free circuits in Figure 1

diode gives the same dynamic conductance as in the fault free case.

\Vedejne a component to be visible 1~the difference bem’een its
dynamic conductance in faulty and fault-free circuits is larger

than certain numerical threshold. Othewise, it is invisible.

A fauIty component in a circuit is thus always visible according to
this definition. me total number of visible components is equal to
the number of faulty components plus the number of visible nonlin-
ear components in the circuit. me visibility of a nonlinear compo-
nent may change between NR iterations.

5.1 MM Computation
Consider a faulty circuit with 1visible components at k-th iteration,
and the conductance differences between the fault-free and faulty

case are a: , i=l, ... f, respectively. me difference matrix between

the faulty and fault-free circuits can be expressed as:

AY; = Y$- Y = P,D~Q~ (6)
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PpQJ~X
mxl

, and Y is the nodrd admittance matrix of the
fault-free circuit at its solution point. me i-th visible component is
connected from node ~ito ~i.and controlled by the terrnind voltage

between node pi and qp For the speci~ case of a resistor, nodes

(ri,si) are the same* nodes @i.qi).

me linearized faulty circuit equations can now be written as:

(y+ PfD;-Q;) . Uj+‘ = ];

By applying Householder’s formula, we gec

(7)

u ~+’ = (1 - y-’p,[D~-’ + QfTY-’Pf]-’Q~)Ij’Ij (8)

Since the LU factors of Yare hewn from fault-free simulation, it
just t~es one forward and backward substitution (FBS) to get an

intermediate results of ~. = Y-l1$. And vector #,= Q~~, can be

easily filled up based on the simple matrix structure of Qf

We define the Reduced-order Faulty Matrix (RFM) as

R;= [D~-[ + Q:y-’Pf]. If we know that the inverse of Yis Z, we

can precompute part of the RFM:

[

‘rlr, -Zp,s, ‘Zq, r, +Zq,s,
. . . Zp,r,‘Zpls, -zglr, 1+‘q1s/(g)

QjY-’Pj = . ... ...

‘P,rl - Zp,s, ‘Zq,rl +Z9P, ... ZP,T, - Zp,s,
-z +Zqir, 9p/

Now, the faulty system of equations in (7) is fonvard tramfomed

into a system of equations with reduced-order k

Once we solve for H; in (10), we need to backward tramfom the

result to the original faulty system of equations (7), for which we
need to find the matrix product:

mere are two ways to compute this matrix product. One is based
on the inverse matrix Z of ~ and the product comes from the matrix

multiplication. Another way to find Gfkis based on the observation

that the column vector pfH} ~ ~m can be easily obtained from the

simple matrix stmcture of Pf ~erefore, the system of equations in

(11) can be solved using another FBS based on the LU factors of Y

Finally, the solution of the k-th NR iteration is

5.2 WNI Procedure and Iti Complexity
~is R~l computation is implemented in the procedure of solv-
e-( ) in Figure 3. me procedure is illustrated in Figure 5. me
decision of whether the RFM computation should be performed
depends on 1, the number of visjble components. An important
issue in circuit simulation is that the circuit matrix be sparse using
sparse matrix techniques [10], and the complexity of solving equa-

tions (7) is practically 0(ml.5), where m is the order of the equa-

nSolving the qstem
of Equations (8)

using
S ame filatrix SOIver

~

Solving the sjstem
of Equations (12)

fin RF*I)

Backward tmnsfom
using

Equatio& (13)

Figure 5 Procedure solve= ( )

tions [10]. Since the RFM matrix is filled from the inverse of z it is

not sparse. Hence the complexity of solving (10) is 0(13). Hence,
we choose the decision function in Figure 5 as T(m)=fi. If 1
exceeds ~m, the RFM approach is bypassed.

Similar decision needs to mde in backward transformation, since

the computational complexity of FBS is around O(ml-l) using
sparse matrix techniques.

When there is only one visible component, which is the single
faulty component, the faulty circuit behaves as a “linear circuit”
during this iteration with respect to the fault-free circuit, since all
the nonlinear components are jwisible. men, solving (10) needs
just one division, and the backward transformation can also be sim-

plified to just filling the vector Gfkfrom Z.

me RFM procedure thus speeds up fault simulation in the follow-
ing ways:

1. Only visible nonlinear components are evaluated at each itera-
tion based on the differences in their terminal voltages.

2. Instead of the MNA matrix, a much smaller RFM is filled and
factorized.

3. me cost of forward transformation may be shared between
consecutive faults in the fault list, if they have very close circuit
states, which result in the same RHS in equations (7).

It is important to note that all the entries in part of the RFM matrix
in equations (9) are fault-independent and only depend on the Z
matrix and the topological structure of the visible components. We
can precompute this matrix from Z according to all the nonlinear
and faulty components in the circuit. So the RFM matrix can be
directly filled up based on the visible components at the k-th itera-
tion. ~is pre-computation is performed in function precomput-
e~ ( ) in Figure 3. Since the LU factors of Y are readily
available from the fault-free circuit simulation, inverting Y needs
about two times more computations compared to one LU factoriza-
tion. ~is computational overhead is well paid off when fault simu-
lation for hundreds of faults are performed concurrently.

Experiments show that the RFM procedure is stable numerically. It
can be shown that the RFM is not singular as long as the originfl
MNA matrix is not singular.
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6 Stite Prediction
\Vhile the R~ approach reduces the computatiorrd complexity
within an NR iteration during fault simulation, srare prediction

method computes an initial guess close to the find state and
reduces the number of NR iterations significantly. In this method,
the similarities in response between two consecutive faults in the
fault list under the same stimulus is exploited to compute the best
inilial guess for the NR iterations. Since the states of two consecu-
tive faults are the closest according to fault ordering criteria, the
state of the preceding faults in the fault list should be a good ini~ial

guess for the NR iterations in the simulation of the next fault. Since
NR iterations converge quadratically near its solution point, a good
initial guess will greatly reduce the number of NR iterations.

An intuitive method in state prediction for DC fault simulation of
the next fault ~2 is to take the state of the preceding fault fI as the

initial guess. That is:

U;2 = Uf , (13)

This simple heuristic method works extremely well for DC fault
simulation and results in much less number of NR iterations than
other initial guesses based solely cn the circuit structure. Further,
since the initial guess is close to the final solution, the NR itera-
tions for faulty circuits are now more likely to converge.

In the case of transient analysis, circuit simulators have used the
state at the previous time step as an initial guess for NR iteration at
the present time !n. An i-th order polynomial using previous i+]

time step states is proposed for an initird guess [1]. In practice,
most circuit simulators use a first order polynomial, since high-
order polynomial interpolation offers about the same speedup.

Our state prediction approach for transient fault simulation is based
on the similarity between the local response wavefoms of two
consecutive faults. To illustrate our approach, consider Figure 6

“[Y (a) Localwavefom of the fault~,

/

u~ . + linear interpolation
F20(t)=@,(t)+~ u;

X faultystate predictionA
● final result

m) State prediction for the faultfz

Figure 6 State prediction tith reference to
the preceding fatit

which shows the state prediction at time In for a fault f2 using the

simulation data from the preceding faultfl. A second order polyno-

mial function Fl(f) is first built for the faultfl, using the states,un-
~, Iffl-,, ~d Un.nis polynomial function is then used to build the

prediction function for the next faultf2:

F:(r)= aF1(r) + ~ (14)

which is also a 2nd order polynomial. To determine the constant ~
and ~, two previous states U2n-, and U2n-* of fault f2 are used.

In the case that a fixed time step is used for this example,
with tn- rn-, = rn-, -r. -2, the value of the prediction function at

time rncan be derived ax

‘=-:u::2(u2n-,-u2n-~)1/2:=f:(tn)= u2n- 1 + ,/n - * (15)

which will be used as the initial guess for solving Uz” in NR itera-

tion for fault simulation. As we can see that the overhead of state
prediction in fault simulation is very small.

7 Fault Ordering
Fault ordering is a key issue in predicting the state of the next fault
accurately. The response of one fault may be more similar to the
response of another fault rather than to that of the fault-free circuit.
Therefore, more accurate state prediction can be achieved by using
one fault response to predict the state of the next fault.

For precise DC fault simulation, all the faults in the fault list are
ordered in terms of their parameter deviations, which are the only
information accessible before DC simulation. A precise DC sohr-
tion is necessary for transient fault simulation.

In transient fault simulation, all the faults in the fault list are
ordered in terms of their previous transient responses as shown in
Figure 7. men fault simulation proceeds to a new time step tn+l,

respottses

itiF
—

tn.] t“ ‘n+/ r

Figure 7 Fault ordering based on faulty responses

rdl the faults are ordered using the simulation data from the previ-
ous time steps. Then, fault simulation are performed at tn+l. In par-

ticular, a weighted sum of the previous time output responses are
used as a key Afor fault ordering, that is:

L = aou,n+alu~n_l+ ... (16)

Our experiments indicate that a. = 2, al = -1 provides a good
choice for this key function, which gives a fault ordering with bet-
ter state prediction. Fault ordering is implemented in the procedure
orderFaults () in ~gure 3.

Compared to the complexity of solving a set of linear equations,
the computational overhead of fault ordering and state prediction is
negligible. At every time step, faults in the fault list are ordered, but
few of the faults need to change their position with respect to the
previous time ordering.
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8 Fault Processing and Fault Coverage Analysis
In test generation applications, fault simulation is primarily used to
estimate the fault or yield coverages of a test. For speeding up fault
simulation, our approach employs early fault dropping to those
faults that are detected at early steps of test stimulus application.
Our approach dso estimates thresholds to separate “goo&’ and
“bad’ circuits.

8.1 Test Nleasurement Threshold
Thresholds on circuit specifications are often specified by circuit
designer. For test other than specification tests (alternate tests),
these thresholds have to be determined from simulation data.

In this paper, we propose concurrent Monte-Carlo simulation to
compute thresholds for transient tests. The simulator first generates
a large number L of training circuits with independent normal dis-
tributions of certain tolerance for the component parameters. Each
training circuit is simulated to obtain its specifications. If the cir-
cuit satisfies all the circuit specifications, it is marked as “good’,
otherwise it is marked as “bad’. After the specification simulation,
we have a set of “good’ circuits and a set of “bad’ circuits. All lie
across and near the circuit specification boundaries. Therefore, the
transient test fauit detection thresholds can be computed by simu-
lating all the L circuits under the test stimulus, as shown in Figure
S. Assume that the test requires 100% yield coverage. Then, the

l-P-

V
-’-1-8’, response of “goo& circuit

[
THD, ~ -‘. ‘ -. ----- response of “bad’ circuit

-J ● ----,.- ~ : sampling point
~: ---
:/ ,,-r-::-::: THD,: thresholdatL

Fi~re S Cdctdation of measurement hreshold

threshold at a sampling point is the difference between the highest
and the lowest responses of all the ‘~ood’ circuits.

Figure 9 shows the algorithm of fault processing. The function

AlgorithmFault processing and coverage analysis
00 Input: {rre//isf ), ~au/t_lisr), {stimulus), (samplitrg_titues);
01 {fraimug_circuirs) := L statistical experiment circuits;
02 specs Simulation ({fruinirrg_circui/s)) ;
04 Insert {fruining_circuifs) into ~ault_list);
03 foreach rime sfep rndo
09 concurrentFaultSinrulation (fn) ;
10 if rnc {samplitr~_rintes ) do //fault dropping
11 THD:= getTkeshold (1=,{fraining_circuits] ) ;
12 for eacIj f, G ~ault_/isr] do
13 if response (rn.fc) > THD

14 ~ault_Iist) := ~uult_list] - f,;
15 end if
16 end for
17 end if
1S end for
19 reture {fau/t_/ist) //the set of faults undetectable

Figure 9 Fault proc~sing and coverage analysis

specssimulation ( ) performs the specification simulation for
dl the training circuits and marks the “good’ and “ba&’ circuits, as

described before. These training circuits are then inserted in the
fault list. Thereafter, all the circuit instances in the fault list are
simulated in concurrentFaultSimulation ( ) described in
Figure 3. If the current simulation time t,l is a sampling time for

fault detection, the measurement threshold is computed in
getThreshold ( ) shown in Figure S. All the faulty responses
are checked against the threshold and those detected faults are
dropped from the fault list. The algorithm ends up with a set of
undetectable faults under this test stimulus. Therefore the fault cov-
erage can be evaluated.

8.2 Early Fault Dropping

A typical transient testis illustrated in Figure 10. The response to a
transient test for a CUT are sampled at certain time points. Once

im ~~~g’t
1 1,. I I I P

T1 T2 Tj r

Figure 10 Transient twt measurement thresholds

the response of a fault deviates from the expected fault-free
response by a certain threshold at a sampling time, this fault is
marked as detected. Therefore, this fault need not be simulated for
the following sampling time points. In our concurrent fault simula-
tion algorithm, we propose early fault dropping scheme to speed Up

the overall fault simulation. As the fault simulation proceeds to a
new sampling time point, those faults which are detected are
dropped from the fault list.

The fault simulation procedure obtains speedup through early fault
dropping due to two reasons:

1.

2.

9

Since many faults are dropped during early sampling points,
fewer faults need to be simulated per time step on an average.

Those faults which give larger response deviations at early
sampling point are more expensive to simulate during later
time steps, since large change in faulty states is harder to pre-
dict and takes more number of NR iterations during concurrent
fault simulation. By dropping those faults, the average number
of NR iterations for each faults is greatly reduced.

Ex~erimental Resulk
The conc~rrent fault simulation algorithm has been implemented in
a prototype simulation program crdled CONCERT. It uses SPICE
level- 1 models for devices like BJT, MOSFET, and diode etc. For
solving the linearized circuit equations, CONCERT use the sparse
matrix package developed in U.C. Berkeley [6].

For accuracy and speedup, we compare the performance of CON-
CERT with Spectre, an analog circuit simulator from Cadence
Design Systems. Table 1 gives the various characteristics of the
experimental circuits for evaluation. Among them, Biquad is a sec-
ond-order low pass filte~ Amp2 is a two-stage BJT amplifie~ Slew
is a slew rate filte~ Front is a circuit constructed by combining
Amp2 with Slew. U741 is the 741 opamp form CircuitSim90
benchmarks [18]. The opamps in Biquad, Slew, and Front are
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Circuit #of faulty #of #of com-
Test stimulus

I
DC fault simulation I TR fault simulation

Circuit withoutstate with state withoutstate with statename circuits node ponests signal stop time

Biquad 170 20 5s PulsemW=5ms) 1Oms
name prediction I prediction I prediction prediction

BiquadI 5 1 2 1
Amp2 ]50 11 19 50e-3sin(2e4m) 0.2ms

slew 200 10 37 16sin(20rrt) 140ms

Amu2 ! 21 3.5s 2.S7 1.91 I
SIew I 11 1 I 3.93 I 1.4s i

Front 24 1.s I 3.23 I 1.s9

U741 55 I 6.2 4.23 2.31

Table 3 Average number of NR iterations

Front 360 24 55 hlse(TM4. Ims) 0.2ms

U741 l~o 25 3s O.lsin(2e4m) 0.4ms

Table 1 Example circuit characteristic

I Circuitname l#ofnodesl DCWITRRPhlldescribed in macromodel which includes input and output voltage
limiting diodes linearized at vJ>0.7volt. I Biouad 1201 1 I 1 I

Amp2 11 3.73 4.11

Slew 10 1 2.35

Front 24 2.27 4.64

Each faulty circuit in the fault list is generated by injecting single
c~tastrophic or parametric fault associated with a linear component
in the circuit. Two catastrophic faults (short and open) and 8 para-
metric faults (with 570, 15Yo,5070,80Y0, 12070, 15070,20070, and
1000% of the nominal value, respectively) are generated corre-
sponding to each linear component.

U741 I 25 I 14.5 I 15.9 I
Table 4 Average order of W

shows the average order of the RFM for all the faulty circuit simu-
lations performed concurrently in DC and TR fault simulation. The
order of RFM is equal to the number of visible components at any
simulation time, since only visible components will contribute to
the RFM. The order of RFM for the Biquad filter is unity at every
time step. This is due to the fact that the circuit is operating in its
linear range under the test stimulus and CONCERT is very efficient
when it detects that the order of RFM is one. For the other circuits,
the order of RFM is higher. Among the nonlinear circuits, the fault
simulation for the slew rate filter gets the largest speedup because
most of its nonlinear components are voltage limiting diodes and
the average number of visible components is very small. Therefore,
the speedup obtained by CONCERT is mainly related to the aver-
age number of visible components in fault simulation. Circuits
described in marcomodels or behavioral models gets more speedup
in fault simulation because of the less number of visible compo-
nents.

name faulk~

Circuit #of Spectre Concert Speed Spectre Concert Speed

Biquad 170 1,7 0.01 170 57.s 0.46 125

Amp2 150 3 0,03 100 15.0 2.63 5.7

Sletv 200 ~ 0.01 200 3s.0 3.04 12.5

Front 360 10 0.12 90 115 12.s 9.0

U741 ]~o 6 o,~6 ~ 25.4 10.2 2.5

Table 2 Speedup of Concert over Spectre in simulation for
the fault-free and all the faulty circuits

Table 2 Compares the DC and transient @R) fault simulation CPU
time for the example circuits using Spectre and CONCERT on a
Sun Ultral. The data for Spectre is the intrinsic simulation time
reported by Spectre accumulated for all faults. The actual CPU
time for Spectre is even longer due to the overhead involved in set-
ting up hlNA. In transient fault simulation of the Biquad filter, two
order of magnitudes speedup was obtained using CONCERT. Even
for U741 with precise device modeling for its 23 BJTs, we still get
2.5 times speedup. For all other circuits, CONCERT was 6-12

The output waveforms generated from CONCERT were found to
match with that from Spectre simulation, with less than 570 m&xi-
mum error which is mainly due to the slight difference in time
steps and device modeling. Figure 1I shows the simulation outputs
from CONCERT and Spectre for the slew rate filter, with a test
stimulus of 16sin(2tir). About 100 time steps are simulated both

times faster than Spectre. In DC fault simulation, higher speedups in CONCERT and Spectre.

X fault-freeresponse
are obtained than in transient fault simulation. This is due to the
fact that DC fault effects are much more localized, and that the
state prediction method are far more better than random initial
guess which is the case in DC circuit simulation.
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\Ve also collected some statistical data during fault simulation to
show how speedup is achieved in CONCERT and why different
speed up are obtained for various types of circuits. Table 3 gives
the average number of NR iterations per time step per fault, with
and without using the fault state prediction technique. It can be
seen that the number of iterations is reduced by 50-165% in CON-
CERT using state prediction for transient fault simulation, and
much more for DC case.

(a) CONCERT outputs (b) Spectre outputs
Further speedup is obtained by using the R~ technique, which
gives quite different speedup for different type of circuits. Table 4 Figure 11 Simulation output of one fault-free and ten faulty

circuits due to the capacitor C2 in the slew rate filter
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To demonstrate the fault processing capabilities of CONCERT, we
use the stimuli given in Table 1. We consider five measurements
made on the transient response of the circuit excited by these stim-
uli. The sampling are distributed evenly on the time axis. The
results of training set simulation is given in Table 5. The training
set consists of 100 circuits with multiple parametric faults. This
shows that CONCERT can perform fault simulation of multiple
faults efficiently. The supporting simulation statistics are also
shown in the table. The simulation time in Table 5 are the CPU
time for Spectre and Concert, both include the overhead of setting
up the hlNA in simulation.

The fault coverage of the transient measurements was estimated
using the fault list given in Table 1. The results are summarized in
Table 6. The simulation time for Spectre are copied form Table 2.
We can see that CONCERT achieves considerable speedup for the
purpose of fault coverage evaluation.

Circuit Spectre Concert Speed ave. #of ave. order fault
name (see) (see) up iteration of ml coverage

Biquod 57.s 0.27 214 1 I Sl%

Arnp2 15.0 1.1s 12.7 1.29 3.51 S7~0

slew 3s.0 1.49 25.5 1.25 1.70 75%

Front 115 S.27 13.9 1.45 3.79 64%

U741 25.4 2.S7 8.9 1.43 12.6 S4%

Table 6 Speedup of Concert over Spectre in fault
simulation for fault coverage evaluation of tie tmt

Grcuit #of training Spectre Concert Speedave.#of
name circuit (see) (see) up iteration

Biquad 100 65.0 13.4 4.85 1

Amp2 100 27.0 4.42 6.11 1.39

slew 100 37.0 5.57 6.64 1.21

Front 100 50.0 13.7 3.65 1.4s

U741 100 40.0 7.55 530 1.57

Table 5 Speedup of Concert over Spectre in fault
simulation for training circuits

10 Conclusions
We present novel concurrent fault simulation algorithms for non-
linear analog circuits. We believe that CONCERT is the first of its
kind of concurrent fault simulator for nonlinear analog circuits.
Significant fault simulation speedup is obtained for highly nonlin-
ear circuits with pure analog signals, without any loss of accuracy.
Higher re]ative speedup are obtained for circuits described in mac-
romodels, which are more attractive for dealing with complex
mixed-signal circuits.

Future investigation includes how to achieve further speedup at the
expense of accuracy. For example, how to reduce the number of
vis;ble components by reducing the visibility threshold. Other tech-
niques for speeding up circuit simulation, such as multi-rate simu-
lation, event driven circuit simulation and use of piecewise linear
models, can be used in conjunction with our concurrent simulation
approach to further speedup fault simulation for various types of
electronic circuits.
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