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Abstract

In tils pfiperwe propose a robust RTL power modehng methodology for
functional units. Our models are consistently accurate overa wide range of
input statistics, they are automaticfly constructed and can provide pattem-
by-puttempowerestimates, An additiond desirable featureof ourmodefing
methodology is the capability of accounting for the impact of technology
variations.library changes and synthesis tools.

Our methodologyis based on the concept of node sampling, as opposed
to more tmditiond approaches based on input sampling. lVe arrdyze the
theoretical properties of node sampling and we formally show that it is a
statistically sound approach. The superior robustness of our method is due
to its limited dependencyon pattern-basedcharacterization.

1 htroduction

@ge digiti circuits me nowadays often described and designed at the
register-transferlevel(RTL).RTLspecificationscanrepartitioned in insrance-
spec!ficcomp~)rtenfs,such as controller state machmes and sparse “glue log-
ic” and ~enerul-plfrpose~unciionalmacros,such as adde~, multipliers,~
filter sections, etc. JVbile instance-specific components are genedly de-
signed from scratch, general-purposecomponents can be re-used for marry
designs and are usually colIected in libraries.

As designs get larger and time-to-marketpressure increases, the fraction
of geneti-pu~ose components tends to increase. In many cases, instance-
specific blocks are replaced by programmable or re-configumblegenerrd-
purposc componerr~. This trend represents a good business opportunity
for developers of gened-purpose components that can be sold to a wide
market of system designers. Tbii new type of product is dso hewn as
in/e//ecrualproper~ (1P)component. One of the key issues for the success
of 1Pvendors, and more genetily for the diffusion of an effective re-use
paradigm, is the cfipabilityof providing information on critical cost metrics
such L: performance,are%testability and power.

JVbena designer instmrtiatesan 1Pcomponen~shehe wants to estimate
what is the cost of the instantiation in term of the relevant cost metrics.
In power-constrained systems, the power dissipation of each instance of
efich component should be estimated as accurately as possible. The most
straightfonvard appro~ch to power estimation for RTL components is to
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simulate their gate-level(or transistor-level)implementation. Unfortunately
WISsolution has hvo main drawbacks. FmL gate-level simulation is much
slower md comprrtationdly more expensivethan RTL simulation. Second,
the 1Pprovider needs to discIose to the user the full gate-level (transistor-
level) netist of the component. ~ls may not be possible if the user is only
evrduatitrgthe componentto mde a firrrddecision on its purchase.

RTLpower models are rquired to overcomethese drawback. The frm-
damenti requirements for practicrd RTL power models are the following.
FmL power estimation using RTL models should be much more efficient
than gate-level (transistor-level)power estimation. Obviously, some accu-
racy loss can be tolerated. Second, the models should not require disclosure
of the details of the intemd structure of the 1Pcomponent. Third, the models
should be gened and robust. In other words it should be possible for the F
provider to generate them with an automated procedure, and for the 1Puser
to employ them with a wide variety of input pattern distributions without
compromisingaccuracy.

AdditiomddesirabIe features are weak technologydependenceand fun-
able accuracy. lVe* technology dependence is the property of rapidly
obtaininganew set of models for an entire hbmry of RTLcomponentswhen
the technology hbmry used to map them is changed. Tunable accuracy is
the capability of improving the accuracy of the power estimation at the RT
level by incr~ing the amount of information provided and computational
effort spent in model extraction.

\Vepropose an approach to RTL power mode~ig that satisfies the fun-
dametrti requirements and provides in some degree the desirable features
outied above. Our approach is based on the key observation that power
dissipation is strongly dependent on the internal structire of a componen~
and thatpatiial~owledg eofthe intemd sticttrre is sufdcient to provideac-
curate power estimations. Partial knowledgeis obtained by node sampling.
Duringmodel constmction, the gate-levelimplemerrtationof the component
is examined,and a small subset of its intemd nodes is selected (i.e., a node
sample). A model is constructedthat estimates the total power consumption
based on the switching activity of the node sample.

After model construction,power estimation is much more efficientthan
full gate-level power simulation, because only a partial and abstract rep-
resentation of the intemd futrctiondity must be evahrated. 1P protection
is guaranteed because no information on the intemd stmctrrreof the com-
ponent is released (only a frmctiorrrdrepresentation of a smfll number of
intemrdnodes must be providedwithin the model). The model constmction
procedure is fuUyautomatic. Most importarrfly,our RTL models are robust
and accuracy is insensitive to the operating conditions. Additiortdly, our
models are weWy technology-dependentand their accuracy carsbe finely
tuned.

The paper is organizedas follows. In the next section we briefly review
previouspowermodetingapproachesbasedoncharacterization. In Section3
we give the theoretical foundations of node sampling. Seved extensions
to basic node sampfirrgare described in Section 4 Experiment results are
presented in Section 5. Flndly, conclusionsare drawn in Section 6.
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figure 1: Rclou\recmorofdifierentR~po\\ermodelsofbenchmwkcircuita85
~ia funcuonof 1~,dlem~einputactivity.

2 Related \vork

Severalapproachesto RTLpotvermodelinghave beenproposedin tfrerecent
past. \Ve\t/ill focus on those satisfying the fundamentrdrequirementslisted
in the introduction [1, ?, 3,4, 5, 6, 7]. In particular, the most chflenging
fundamental requirement is robustness. To increase robustness, previous
approaches rely on some form of p~ttem-based characterization. In gen-
eti terms, chmcterization is the b~sis for an inteqolation process. During
model constmction, a gate-level (transistor-level)descriptionof the compo-
nent is simulated ~vitha set of input patterns (i.e., apaf?em sample), and the
power estimates obtained are exploited to obtain a model that cart predict
the power consumption for input patterns that are not in the sample.

Regression-b&sedmethods [6, 3] are motivated by the observed corre-
lation bthr!een average input-output activity and average power. Power is
modeled as d function of input-output activities and fitting parameters. The
functionaldependencyon input-outputsfvitchirrgmaybelinearormorecorn-
plex [6, 3]. Characterization plays a fundamental role in regression-based
approaches because it is used to adjust the vahre of the fitting parameters
in the model. Regression-basedpo~vermodels are highly accurate if evahr-
ated in the same operating conditions used for chamcterimtion, \vhlle their
uccuracydecrc~sts when the input statistics change.

This problem is best clarified through a simple example. Figure 1
illustrates the limited robustness of regression-based power models. The
relativeerror on powerestimates is plotted as a functionof the a~,erageinput
activity. Tbc nvo dashed curves refer to RvoR~ power models (namely,
the corrsfaJzr modc,l [ 1] and the linear regressionmodel [6, 3]) characterized
for hlCNC91 [S] benchmark cm85. Both models were characterized on
a sample of po\ver consumption data obtained by simulating the gate-level
implementationfor a set of randominput patterns with 0.5 averagetransition
probfibility. In the constant model, the power vafues of the sample were
m,eragedand the averagevalue\vm Men as a (constan~pattemindependent)
poiverestimator. The linear regression model attempts to tie into account
the inputprdtemdependenceby modefirrgpowernsafinearfturction of input
activity’.

Gate-leveland RTLsimulation ~vererepeatedlyperformed(withdifferent
input sequences representing different operating conditions) to evaluatethe
accuracyof the powerestimates providedby the models. =ch point in Figure
1 represen~ the result of a simulation run performed by applying art input
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Hgure 2: Nlodetofa genericcombinationrduniL

sequence of 10000\rectors tvitfrthe average tisition probability reported
on the abscissa. The relative error is smafl (around 270)for input actii,ities
similar to thoseused for characterization(i.e., 0.5), but it rapidly increasesas
the statistics of the input patterns change, becomingmuch Iargertfrrm100%
for low input activities. The linear regression model is mom robust than the
constantmodel, but it still suffers from chamcterization-inducedlimitations.
The root mean square of the relative errors provided by a power model on
a wide range of operating conditions is a meaningful measure of the model
robustness. }Vecdl Wlsmeasure root mean square relative error, denoted
by RMSW. For the constant (hnear) model of Figure 1 the RMSRE is of
1600%(2S1%).

More robust advancedchamcterintion-based metfrodshavebeen forrmr-
lated in the recent past. The lookup-table method [5] increases robustness
by running multiple characterizationexperimentsfor a large set of different
input statistics, and by storing multiple power models in a lookup table ad-
dressed by a compact signature (namely,average input probability, average
input switching activity and average output switching activity). Although
WISmodel is robust and accurate, signature extraction imposes a 10SSof
information on the distribution of input patterns, which may cmrseaccuracy
loss for highly biased pattern sets. Moreover, it is not clear how accuracy
is traded off for lookup tabIe size. Another approach to improve robustness
is to exploit a multi-level simulation engine to perform in-situ tunins of
pre-chnmcterizedmodels [4, 7]. AIthoughthis approach appears to be very
effective, it requires a multi-levelsimulator which may not be availableand
imposes a non-negligiblerun-time overhead.

To improve model robustness (i.e., to obtain lower RMSRE), we move
from the observationthat power dissipation for a digitrdunit cartbe inferred
by monitoring the activity of a few intemaf nodes. Hence, we adopt a new
viewpoint. \Vedo not sample on input patterns, but \vesample on infernal
nodes. The improved robusmess obtained by node samplins is sho~vnin
fig. 1: curves “Node sarnpfing 1“ and “Node sampfing Y refer to energy
estimates obtained by monitoring the activity at 4 and S intemfl nodes,
respectively. In the next section we sho~vthat tils intuitively appeafing
viewpoint has sound theoretical foundations and we prove some desirable
statistical properties of our method.

3 Node sampling

3.1 ~eoretical basis

Consider a combinationalCMOS unit U with input vector x = (zl, ...on)
for \vhich an input-outputbehaviomfmodel is provided, as ~vellas its gate-
Ievel implementation, as shown in Figure 2. IVe assume that the unit is
stable at timet’andtf(tf> t:)and that an input transition from x’ to xf
occursbehveent: and tj. IVedenoteby e(x’, xj ) the supply energydrawn
by the gate-level implementation in the time interval [t’, tf]. The task of
modeting power consumption at the RT level consists of finding a simple
but accurate model for e(x:, xj) (the corresponding power consumption
being p(xa, xj, T) = C(X*,xf)/T, \vhereT = tj – t’). In the following
treatment, we assume T = 1 and ~T~d= 1, thus energy and power have
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tfresame numeric vahre,and tbeconstarrt l~d disappearsfromtbe computa-
tions. Different \,alues of Tandl~~d chmgefie fomulwonly byconstmt
multiplicativefactors.

If we consider the intemaI structure of the uni~ 6(x’, Xf ) can be ex-
pressed os

(1)

t,~herec,(x~, xf)isthe energy dm~,~nbygateg~ asafunction oftfreinput
transition, and IV is the number of gates in the unit. \Ve focus, at first,
on a given input transition (X’, kj), thus temporarily removing pattern
dependence from our nomtion (e and ej v~illbe used to denote e(k’, Xf )
~d LJ(St, X.f). respcctive[y).

In general. the &J’s are not available at the RTL and Equation (1) is
not an RTL model for e. \Ve observe, however, that a simple afgebraic
manipulation allo!~,sus to represent e as the mean oftfre finite set S =
{JV. EI, JV.62,..., lV. CA,},hereafter called energypoprdationassociated
ll:ltb input transition (X’, Sj ):

(2)

If statistical information is available about the distribution of&, statistical
inference can be used to estimate its mean vafue e, thus solving the energy
estimation problem. This is the bmic idea behind node sampling.

Definition 1 Iik cull node-sampfing experiment the uniform random se-
Ieclam Of a node (say gj ) of the given unit. Ilk call energy-sampfing
experiment (itzdaczdby node-sampling) /he selection of the element of &
ussociufed IYIdZrlIeoutcmne of a node-samplinguperiment.

The outcome of an energy-samplingexperiment is a vahreof a discrete
random variable R, defined on energy population S, The probability disrri-
burimrof R is a function F(r) = prob{R < r} that representsthe fraction
of nodes !vitb energy consumption ej ~ r/JV. The correspondingproba-
bili~funcrion P( r) = prob{R = r} represents the fraction of nodes \vitfr
energy consumption eJ = r/lV.

Theorem 1 Tile t(~talener<qye ISthe apected value of randomvariableZ,
i.e., the mean {Iflhe etler<~ypt)pulati[)n.
Proofi tlze~(~rt}7alpr~Jl~fdirectly cmrresfromthe definitionof upectedvalue
(E[R]) urrdfrtun Equation (2)

Definition 2 I}kcall random energy sample SS of sizes from tlte energy
popalatlon E rheset of random variables R1, R2, .... R. associated withs
independentener,~-.rantplingerperimerrrs.

Any function @of a random sample used to estimate an urrkrrovnrpa-
rameter Oof the pwent populationis said to be an estimator for 0. Our target
is that of finding mrunbiased, eficient estimator of e [9].

An estimator is said to be unbiased if and only if, on average, it is on
target. In symbols, @is an unbimed estimotor for e if and only if

E[@(R1, R2, .... R.)] = e

Efficicrrcyis d measure of the quafity of the estimator. Any observed
vahreof the estimator(~) is a point estimate of the target parametere. If the
estimator is efficient, the point estimates it provides have a high probabihty
of being close to the target.

In the rest of this section v~edemonstmte that the mean of a random
energy sample provides unbiased and efficient estimates for e. The prob-
lem of collecting random energy samples at the RTL \vilI be addressed in
Subsection3.2.

Theorem 2 The sample mean ~ of S is an unbiased estimatorfor e.
Proofi By Theorem1, we alreadyhow that e is thepoptdation mean E[R].
Here we need only to prove that ~ is an unbiased estinratorfor E~R], i.e.,
rharE[~] = E[R]:

= ~~E[R] = E[R]
s

:=1

Hence, E[~] = E[R] = &.

Efficiency can be expressed in terms of mean square error (kISE). By
definition, the hISE of au unbiasedestimator is eqrrafto its variance. Given
tv~oestimators @I and @2of the same parameter, 01 is said to be more
efficient than 02 if Var[@j] < Var[02].

The variance of the sample mean is equrd to the population variance
dividedby the sample size [9]. If \ve denoteb~uz the varianceof the energy
population, the variance (i.e., the NISE) of R is U2/s. In practice, node
sampfingprovides a family of unbiased estimators fore, \vhose efficiency
grolvsv~itbthe sample size. The minimum sample size reuired to achieve a
target accuracy(hlSE = C2)is

(3)

\Veremark that the target of the estimatomdescribedso far is the energy
consumptionof the unit correspondingto a giveninputtransition. \Veassume
that such estimatomhave been constructed for all possible input transitions
and \ve use @(x*, Xf ) to denote the estimator of e(x’, xf ).

@(x*,xf ) is a pattern-dependent model for e, \vhose point accuracy
dependson the individurdefficiencyof each estimator. The ovedl accuracy
providedby the estimator \vhenevaluatingthe average energy drmvnby the
circuit in a long period of time is usuaflyhigher.

If a test sequence T of m + 1 input patterns (m input transitions) is

applyedto tie uniLtie a~remgeenergyestimate is the avemgeof the pattem-
by-pattem point estimates providedby the estimators correspondingto each
transition. In symbols, an estimator @@tig(7)for ea,,g(~) can be defined
as follo\vs:

(4)

(x*,xf)~7

Theorem 3 ~a”g(~) is an unbiasedestimatorfor eat,g(~).
Proofi By lineariV, tlte apected value of 0=U9(7) can be upressed in
terms of the apected values of the pattern-by-pattern estimators:

On the other hand we how by Theorem2 that any G(x’, xj ) is an unbiased
estimatorfor the correspondingenergy. Hence,
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Notice that Ive didn’t m~e any assumption about the input sequenceT
to demonstrate Theorem 3. Hence \\recart state that the esrinra?esprovided
by Ga,,9(’T) are Ultt)uysunbiased. independentlyof the inputstatistics. ~Is

is the mtin distinguishing feature of the energyestimator \ve propose in this
paper.

3.2 NIodelconstiuction

Thcestlmztor described so farisnot yetmr RTLmodel. Intfdssection\ve
fiddressthe practical issues ofconswctingan RTLenergymodel that retains
the stfitistic~lproperties of ~~,,g (’T).

Tbcreare tfrreemain issues involvedin constructing arr RTL energy
modeIof practical inttresl from @~tig(’T):

1. hotlvtoperfonnthe ener.~-sunpling experiments,

2. ho\,: toconsWct andrepresent ene~yestimatom forall possible
input transitions,

3. ho\.~todetemine thesizeoftie mdomenergy samples requiredto
achievethe desired efficiency.

First of all, ive need a reference model for the energydrmvnby a generic
gate ~J. Tht model \ve propose is

(5)

\,:hcrej~ (X) li tie functionrealized at gateg~ and C3 is the loadcapacitance
of the gate (ste fig. 2). In the gerremfcase, \vhen 1~~ # 1, the load
capucitarrceis multiplied by lr~d. Operator @ is the Boolem exclusive-
or. ~uation 5 models the zero-delay contribution to the energy dissipated
by gate g]. mrd it does not account for gfitchpolver md otier P=itic
phenomena. Assumingzero-delaypo~vermodel implies that the RTLmodel
canonly predict the zero-delaydynamicpotverconsumptionof the gate-level
implementation of unit U. In marrycases this is sufficient for the accumcy
rtiquiredat the RT lc~,el.In Section 4 ~ve\vilIextend the model to deaf!vitfr
full-delay models and pam$iticphenomena.

Given the energy model for all nodes, energy sampling consists of ran-
domly choosurg d set of gates and evabrating the corresponding scaled
en~rc!yconrrdrur(o~]$N . ej (x’, x~ ). In principle, tfds procedurehas to be
rcpsated for tny input transition applied to the unit during RTL simulation.
In practice, ho~ve~er,performingrarrdomsamplingat the RTL is impracticrd
because it implies the knotvledgeof the Boolean functions reafized at afl
intemd nodes. To overcome this draivback, v:e propose to perform node
sampling only once for all, during model constmctiorr.

Definition 3 Ilk cull node sample ~,v ofsizes a set ofs gates of the unit
randomlyselected by means of irrdependentnode-samplins~eriments.

Observation 1 Ft)rany input transition [x’, x~), the set of scaled energy
valuev axs[rciated~rirlzni~desample SM is an obsen,ation ~& of a random
ctzer,qysample SC (~fsize s from the energy population &(x’, x~ ). The
sample mean of S: is an obsen,ation <)fG(s:, Xf ), i.e., an unbiosedpoint
~,slimuleof c(x!, x~ ).

(6)

~rration (6) holds for rdl input transitions. WIS is the key property
that m~es node sampling an RTL model of practical interesh once a node

sample has been seIected, the knokvledgeof the logic functions re~lzed at
nodes in the sample (that are a smafl fraction of the internal gates of the
unit) provides sufficient information to obtain unbiased point estimates for
the energy consumption of the unit corresponding to any input transition.
Hence, ~uation (6) is the RTL energy model ~ve\vere looKng for. Its
evahrationrequires the computation ofs Boolean functions, a much easier
task than computing the gate-level potver consumption for the entire unit.
Moreover,if the gate-level implementationis a Wlrdparty intellectual prop-
erty,1Pprotectionis ensured because informationon the gate-level structure
is completely lost. finally, the model is fully anrdyticand does not require
artyform of characterizationand fitting on simulation results.2

In practice, ~rration (6) says that the ene~y dra~vnby the entire unit
is (on average) proportiorrd to the sample energy es (Xi, x~ ), that is the
energy drmvnby gates in the sample:

Using a static node sampIe has several consequencesthat need to be dis-
cussed. F]rsL@rration (6) representspoint estimates rather than estimators:
\vheneverthe same input transition is applyedto the circuit the same ene~
estimate is returned by the modeI. Wls observation does not impair the
desirable statistical properties of the model: point estimates are unbiased
and their efficiencycan be chosen by tuning the sample size.

Second, the same sample size is used forafI input transitions. According
to @rration (3), the minimum sample size required to achieve the desired
efficiencydependson the populationvariance oz. Since the energy popula-
tion (and its variance) depends on the input transition, tbe sample size has
to be decided based on the m~ximumvariance over afl possible transitions

.:.. = max {02(x’, xf)}
(x*,xJ )

The exact computation of u~== is not an easy task. In principle it
requires either artexhaustivegate-levelsimulation, or the solution of satisfi-
abllityproblems. Inthe nextsubsection}veconstructartupperbound(~~az)
for a2(xi, xf) that cartbe statically computed to obtain a conservativees-
timate of a~a=. The sample size sufficient to obtain pattern-dependent
energyestimates \vitfrMSE of e2 \vill be:

-2
‘maz

s>~ (7)

3.3 Computing an upper bound for U2

Referring to @rration (5), the energy population associated \viththe generic
input transition is:

\vhere the exclusive ORS jj (X:) @ jj (X~ ) can tie value O or 1.

\Ve cdl Generalizedenergypopulation (g.e.p.) a pamrneterizedset of
scrdedenergy vafues

&g(sl,S2,....SN)={N- CI-SL, N. C2. S2,..., CNCSN}N}

\vherepamrnetersSj represent Boolean flags. \Vedenote by d the vector of
the N Boolean flags,and by d2(d) the varianceof the g.e.p. The ma~imum
of ~2(d) is an upper bound for oz.

2Gmctefizariorr\villbe irrtmducedinSection4 to modelgfitchpo!verandp=itic
phenomena.
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Theorem 4 The wimum variance of &g(d) (over all conjurations of
d) i.van upper bmrndfor the mimum variance of &(x’, xf) (over all
confi,qururifms~~f(x’, x~ )):

Proofi EJprove the theorem it is suflcient to show thatfor each conju-
ration [$(x’, xj ) there erisrs u con~guratimrof d such that &(xi, xf ) =
:~(d). Such a conjuration can always be obtained by setting 63 =

~j (x’) 5 fj [xj ) .fi]rall j ‘s. Y (~a)if ) fi thejnput transition fhat-~i-

mizes the variunceof S(x’, xj ), a configurationd ~istssuch that &g(d) has
the same var~ance. This actually demonstrate that the ~imum variance
Offq i.rgreater or equal than the mmimum varianceof&.

Finding the maximum variance of ~~(d) is a much easier task than
findingthe m~simum variance of &(x*, xf ), becauseit does not dependon
gotes’functiomdities. Moreo\,er,we can restrict our search to a smaflsubset
of g.e.p.’sthat we cafl unbalancedenergypopulatiorrs(u.e.p~s).

A g.e.p. is said to be unbafmced if and only if

sJ=i,&h=o~N.ch<N.c3

In other words, an u.e.p. is a g.e.p. where non-zero flagsare associatedwith
the highcrvdues of N. Cj.

Lemma 1 The g.e.p. of mrimum variance is an u.e.p.

For the s~e of conciseness we do not report the fonnaI proof of the
Lemma, but we observe that u.e.p:s are intuitively more spread than other
g,e.p~s.

For a given unit with N nodes, there are only N + 1 u.e.p:s. If node
capacitrnrcesare sorted in decreasing order ~ < h ~ C, ~ C~), we can

use m integer index h to uniquely identify u.e.p.’s: &u(k) is an unbnfnrrced
energy population with Sj = 1 iff j < k.

All rr.e.p;s crmbe visited in linear time whiIeiterativelycomputirrgtheir
variance. In \ve denote by a; and p~ the varirurceand mean of &ti(k),
respectively.the following relotions hold:

(8)

Lemma 1 md ~uation (8) rdlow us to determine in fineur time an
upper bound for the variauce of the energy population, breed orrlYon static

information (narneIy,the load capaci~ces of the gates in the unit):

In ouresperimentsthe upperboundwas, on average,hvicethe mazimum
value of u*, leading to conservativesample sizes.

4 Extemiom

In tils section we propose hvo significative extensions to the basic node
sampling approach. The extensions improve both accuracy and flexibility
of our method. On the other hand, however, they rely on pattern-based
characterintion. As a consequence, the rigorous results obtained in the
previous section lose validity, and accuracy is not theoreticafIybound any
more.

4.1 Delay-sensitive second-order contributions

In the previoussection we have describedau RTL power model of the zero-
delay gate-levelpower consumption. In other words, N/s. e~(x:, xf ) is a
good predictor of the power dissipation estimated by zero-delay simulation
of the goldenmodel. It is a well-knownfact that zero-delaypowerestimation
may be inaccurate because of glitch power consumption and short-circuit
currents. Such contributions need to be modeled as well to increase the
accuracy of the RTL model. \\re move from the observation that second-
order phenomena can be seen as an additive contribution (cafled C1) to
zero-delayenergy e:

~fd(xt, xf) = e(X’, Xf) + e’(xi7xf)

where ef d denotes thefill-delay energy. The stmight-fonvard extensionof
our estimates to fill-delay models is:

Gfd(x’, xf) = ‘(e~(X’, Xf) + e~(xa, xf))
s

Me RTL model we propose for e~ is a regression equation that needs to be
characterizedon theresults of gate-levelsimulations. Inpractice, we propose
a hybrid modeIing approach for the energy drawn by the sample, where
simulation-basedcharacterizationof e: improves the absolute accuracy of
the fully-arrafyticcharacterization-freemodelof 65 basedon node scrupling.

fipenmentrdly, we observedthat e~ correlateswellwith inputswitching
activity,hence we adopt the following model:

where dH (xi, xf ) is the Hamming distance behveen x’ and xf (i.e., the
number of switching inputs) and @is a fitdrrgcoefficient that is computed
with a simple characteri~tion experiment. The unit is simulated with a
sample of random patterns. Full-delay simulation is employed. For each
pattern pair (xi, xf ), anestimate of e~ is computedby subtractingthe zero
delay energy (providedby the zero-delay model es) from the total energy
computedby the simulator. An estimate for a is obtained by computingthe
mtio e}/dH for each pattern pair in the sample, then averaging the ratios.

More forrnnfly,a is computedby linear least-squares fitting on the residuaf
errozsof the zero-deIaymodel.

4.2 Technology tining

One of the assumptions made in the model construction process described
so far is the availabihtyof a golden model (i.e., a reference gate-levelimplem-
entation of ~. A golden model is afways availablebecause the 1Pprovider
that builds the model has complete access on the implemerrtativedetails of
the unit. However, this assumption implies that the RTL power model is
a good predictor of the power dissipation of the golden model used for its
construction. ~Is maybe an undesirable situation, because 1Pvendors do
not always provide components mapped and bound to a pardcrdar technol-
ogy ~d gate fibw. On the contrary,1Pcomponentsare often designedand
soIdas sofi macros, i.e., abstract R~ descriptions(usu~ly specifiedusing a
hardware description language such as VerilogDL or V~L) that can be
synthesizedby the user using a proprietary technology and gate tibrary.

In the case of soft macros, there is no guarantee that the golden model
employed for model cons~ction is the same that will be instantiated by
the user when he/she synthesizes the soft macro. There are three main
sources of mismatch: the technology may be different (for instance, more
aggressivelyscaled), the library containingthe gate-levelprimitivesused for
synthesismaydiffer in richnessand ~pe of primitivesand the synthesistools
employed to obtain the find implementation may be different or operated
with different constraints and settings. As a resul~ the power estimates
provided by the RTL model maybe inaccurate if no corrective measure is
Men.
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Fonunately, accuracy maybe reco~eredthanks to a technolo~ tuning
method that requires ordy limited effort on the 1Puser side. Our approach
is breed on the observation that the mismatches in finaf implementations
produced hy technology, library and synthesis tooIs tend to have fimited
vtianct, afthough their absolute value can be significant. Technologytrur-
ing is performed using a reference benchmark B, a macro that contains no
int~llectufilproptfiy and thot can be released by the 1P provider to the 1P
ustr at no charge. A set of input patterns and the corresponding average
power dissipation PP~~~wiIl be provided ~’:itiB. me Po\ver dissipation
is computed by the 1Pprovider performing gate-level simulation of an im-
plementation of H. The implementation of B is obtained using the same
technology,Iibrnryand synthesis tools that are employed for generatingthe
,q[JldelJmode~rof tie Ip uni~.

To perform technology toning, the 1P user synthesizes B with bitier
technology, library and synthesis tools, then simulates the implementa-
tion with the ptittems provided and measures the average power dissi-
pation P,.,.,. The r<clorolc~~yscaling parameter Ste.h is defined as
st,,.~ = Pu,.., jP~,o,r . Technology tuning is performed once for afl.
St,.ch can be used for an entire fibmry of 1Pmacros. NOintellectu~ ProP-
etiy is disclosed to the user and the user can perform technology tuning
before purch~singthe 1Pmacros. After st~ch has been computed, the user
can estimfitethe power consumption of bisfier own implementation of the
IP soft macros with the following formula

(lo)

~,:herec~~~ “1sthe power dissipation estimate of the model providedby the
1Pproviderwith the unit (Equation 6).

The modefingapprozchand algoritbmspresentedin tfdspaperhavebeen im-
plemented and tested on allN1CNC91 [S]benchmark circuits. ~ch bench-
mark was first mapped on a reference technology library to obtain a golden
model. Zero-dcloy power models were then automaticrdlyconstructed by
node sflmpling. The number of nodes to be included in the sample is de-
cided a-priori based on the capacitance distribution for the nodes in the
golden model, as e~plained in Section 3. In order to achieve comparable
relative UCCUHCYfor all benchmarks, we used a target hfSE parametrized
on a static estimate of the averageenergy consumptionof the unit. lVeused
the mearr(Z) of the ma~imum-vtiance g.e.p. of Section 3.3, as an estimate
of the averageenergy consumption. The accuracyspecificationwas

from which a sample size was obtained for each benchmark according to
@uation (3):

-2
‘mazs=4—

fi2
In practice, the parametrized hlSE specifies a target relative accuracy

of 50%,for the pattern-by-patternenergy estimates. JVedso imposeda hard
upper bound on the number of nodes in the sample: m,mimum 10% of the
nodes in the circuit were selected. ~Is is because the bound of Equation
(3) can be overIy conservative due to the fact that it is based on the error
on pattern-by-patternpowerestimation, while target of our experimentswas
accumte average power estimation. The averaging over multiple patterns
further reduces the variance and tightens the error bound.

hlodel construction consists of randomly selecting intemaf nodes. The
run time for this process is negligible. Constant and linear estimators were
also characterized for comparisons. Characterization was performed by
fitting power data provided by gate-level simulations of the golden modek
witi random input sequences with 0.5 averageactivity.

Circuit II RMS Rel. Err. (~a) I

Results are reponed in Table 1 for a few representative benchmarks
(complete tables of results are omitted for space reasons). The first two
columnscontainthe nameof the circuit andthe number of gates in its Solden
model. Columnsthree to fivereport the RMSRE of constant model (Const),
linear regression (Lin)and node sampfing@s). The RMSM was evrduated
by running gate-leveland R~ power simulations for input sequences with
average transition probablfi~ ranging from 0.01 to 0.99. The improved
robustness of node sampling is evident the typicrdRMSRE is well below
10%, while the RMSRE of characterization-basedmodels is afways much
greater than 100%. For benchmark circuits c7552 and c6288 sitiar
results (nameIy,a RhlSRE around 5~o)were afso obtained with a sampling
factor of 1To.

To test the effectivenessof technologyscaling, dl benchmarks were re-
mapped on a different technology Iibrary, containing only hvo-input cells
with large inputioutput capacitances. The effect of remapping on power
consumption was always in excess of 100%. Cwcuit crnb was chosen as
reference benchmmk B for technology tuning. Its Solden model and its
re-mappedversionwere simulatedusing the same input sequence(nmnely,a
sequenceof 10000input patterns with 0.5 transition probablfity)to estimate
Pprov md Puser, respecti~’ely. me technology sc~ing p~eter wss fien

computed and used to evafuate the power consumption of afl re-mapped
circuits (~uation 10). Results reported in the last column of Table 1 show
that technology-scafingdoes not impair accuracy and robustness.

A second set of experiments was performed to test the qurdity of node
sanrpfingin full-delay power estimation. For each benchmark, a full-delay
gate-level simulation was performed (after node sampfing) to characterize
coefficient a of ~uation 9. Full-delay gate-level simulations were dso
used to characterizeconstantand finear models and to evafuatethe accuracy
of power estimates. Results are repotied in Table 2. The RMSRE of node
sampfing with additional fitting coefficient is around 109o, that is more
than one order of magni~de below the RMSRE of characterization-based
approaches. The last column reports the accuracy of technology-scaled
full-delay models. Apparently, these power models are less accurate and
there is room for improvement. Unfortunately,the accuracy loss is mainly
causedby the fimitedrobustnessof the finear fitting of e!. Our ~~’o~tresult
was obtained for benchmarkc628 8 which is known to have high glitcfring
activity [11].

Finafly,weperforrued one lastset ofa~perimentsto assessthe complexity
of modelevtiuation during R~ simulation. Once the node sample has been
chosen, the RTL model is constructed by extracting the Boolean equations
of the nodes in the sample, optimizing them by technology-independent
logic optimi~tion (using S1S[10]) and compifingthe logic descriptioninto
optimizedC code. \Vedo not describetils process in detail becauseof space
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I Circuit RMS Rel. Err. (%) I
Name Size Const I Lirt I Ns ’11NSB

m

c6288 I 2379 II 671.2 I 456.6 I 31.6 II 34.6

Table 2: Full-delayexperimentalremits.

Circuit ~me (sec.) Memory
Name s Mod Comp Ev Mod Comp

crn85 5 2.8 7.3 483 IK SK
cm150 7 3.9 16.4 833 lk Sk
Cti 5 2.6 11.1 5s3 lk 5k
par it>, 5 5.4 14.4 667 lK 7K
m~~ s 7.4 1S.6 10s3 2K IIK
alu2 14 19.6 S2.2 4740 6K 37K
alu4 24 27.4 3s3.s S750 9K 69K
c432 16 17.s 4s.9 2900 5K 26K
cS80 23 12.7 SI.5 4750 4K 37K
C1355 29 34.9 4s7.3 7916 9K 7SK
c7552 30 62.6 3554 47166 15K 459K
c6288 42 65.5 2442 210S57 lSK 612K

Table 3: EvacuatingCPUand memory usage. Data refer to a Sun SPARGtation 20
!vih 32hlb of memory.

limitations. The secondcohsmnof Table3 shows the numberof nodesin the
sample. Observe that the sample size grows very slowly with circuit size.
This is an expected result because sample size depends on the distribution
of nodaI capacitancesand not on circuit size. The time rquired to perform
1,000,000model evahrations is reported in column 3 and compmed with
the time required to perform the same number of nro-deIay compiled-code
simulations (column 4) and reaf-delayevent-drivensimulations (column 5)
at the gate level. \Ve afso report the size of the executable model in bytes
(column 6) and the size of the executable code for the compiled simulation
of the entire circuit (column 7). h40delevahrationis 5-50 times faster than
compiled-code simulation and more than two orders of magnitude faster
than event-drivensimulation. Memory usage is 5-30 times smafler.

6 Conclwiom

whose accuracy deteriorate when tie unit is operated with input statistics
dissimilar to those assumed during characterization.

The robustness of our method is due to the use of node sampfiig. A
fimitednumber of intemaf nodes of a gate-levelimplementation of the units
is selected and their switching activity is used to estimate the switchrng
activity of the entire units. The correlation between the switching activity
of the node sample and that of the entire units is good and does not depend
much on the input patterns that are appfiedto the unit.

\Veproposed a significantextension to the model that m~es it capable
of adapting to changing technologies, gate fibraries and synthesis tools.
Moreover,we introduced a hybrid methodologythat merges node sampting
and input pattern samphng to provide an accurate model of gfitch power
caused by non-zero gate delays.
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In Wlswork we have presented a methodologyfor RTL power modefing of
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models is their robustness in the input statistics: the estimation accuracy is
afways high over a wide range of average input switching activity. ~Is is
in sharp contrast with modeting methodologies based on characterization,
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