
A New Agorithm For The Reduction Of Incompletely Specified Finite State Machines

Jorge M. Pens Arlindo L. Oliveira
IST-~SC Cadence European LabsflST-WC

Rua Mves Redol, 9 Rua Alves Redol, 9
1000 Lisboa, Portugal 1000 Lisbo& Pofigd
jmgp@dgos.inesc.pt arnl@inesc.pt

Abstract

We propose a new rdgorithm to the problem of state reduction in
incompletely specified finite state machines. ~is algorithm is not
based on the enumeration of compatible sets, and, therefore, its per-
formance is not dependent on the number of prime compatibles. We
prove that the algorithm is exact and present results that show that,
in a set of hard problems, it is much more efficient than both the
explicit and implicit approaches based on the enumeration of com-
patible sets.

1 Introduction

me reduction of finite state machines is a well known problem of
great importance in squentid circuit synthesis.

For completely specifid finite state machines &SM), the state
reduction problem can be solved in polynomird time [13]. For in-
completely specified finite state machines (ISFSM), the problem is
hewn to be NP-complete [15]. Nonetheless, exact and heuristic d-
algorithmsare commordy used in practice, and it is possible, in many
cases of practical importance, to obtain exact solutions.

me standard approach for this problem is based on the identifi-
cation of sets of compatible states, (or compatibles) and the solution
of a binate covering problem. A number of practical systems based
on this approach have been proposed, based on both explicit [16] and
implicit enumeration [10] of the compatibles. However, some prob-
lems cannot be solved using this approach for one of two reasons: aj
the set of prime compatibles is too large to be listed, either explicitly
or implicitly or b) the blrtate covering problem can be formulated but
takes too long to solve. We review these dgonthms and concepts in
section 3.

me approach we propose is based on a different paradigm, thus
avoiding altogether the identification of prime compatibles and the
solution of a covering problem. Our method uses techniques well
known in the computer science community for the identification of
DFAs consistent with a given set of inputioutput mappings. Although
dl the results and rdgorithms have used the DFA formalism, they can
be easily translated to similar results formulated in terms of finite
state machines.

me complexity of the problem of DFA identification (and, there-
fore, of minimum FSM identification) varies with the ability of the

Pernrfssion to tie d~~l or tid copies of aUor pti of M ~vorkfor pemonaSor
hsroom we k gmnted \titiout fee protided tit copim we not mde or &tri&
uted for profit or comrnerti advanhge and that copis bear & notim and WeM
station on tie fit page. To copy ofimtie, to repub~h, to post on aem- or to
re&stibute to hb, rq~ prior -c -Ion arrd/or a fee.
ICCD9S, Sm Jo% C& USA
Q 1%8AChl l-58113~S-Z9SlWl l.fi.W

algorithm to control the set of input sequences for which labels are
known. If this set is fixed, the problem is NP-complete [5]. Under
these conditions, tie most efficient search dgoritbms for this prob
Iem are based on the approach proposed by Bierman [3].

me problem bwomes easier if the rdgorithm is allowed to make
queries or experiment with the unknown machine. Angluin proposed
an algorithm [1] that solves the problem in polynomird time by allo-
wingthe rdgorithm to ask membership queries.

Since we make extensive use of both Bierman’s approach and
Artgluin’s algorithm, we describe these algorithms in some detail in
section 4.

Section 5 contains the central contribution of this work. We show
that it is possible to use a modified version of An@uin’s technique
to identi& the minimum FSM equivalent to a given ISFSM without
enumerating the set of compatibles. We dso show that the algorithm
runs in time polynomial on the number of states, for the special case
where the origimd machine is completely specified.

Section 6 describes the results we obtained in a set of finite state
machines that have been used by other authors to evaluate the per-
formance of state reduction dgonthms [10]. ~ese results show that
the algorithm can be much more effective than dtemative methods
in problems that e.tilbit a very large number of prime compatibles.

2 Definitions

~is section introduces some geneti definitions that will be used
throughout the paper. Other more specific definitions will be intro-
duced as they are needed.

Definition 1
A bite state machine is a tuple M = (Z, A, Q, qo, 8, A) ~vhere
E # 0 is afiite set of input symbols, A # Ois afiite set of output
symbols, Q # 0 is afiite set of states, qo G Q is the initial “reset”
state, d(q, a) : Q x Z + Q U {~} is the transition ~ction, and
A(q, a) : Q x X + A U {e} is the output~ction.

We will use q G Q to denote a partictiar state, a G Z a partic-
ular input symbol and b G A a particular output symbol. A finite
state machine is incompletely specified if the destination or the out-
put of some transition is not specified. For incompletely specified
machines, @denotes an unspecified next state while c denotes an
unspecified output. We say that an output bt is compatible with an
output bj (ad write bi s bj) if b~ = bj or bi = E or bj = E. We
will rdways use quoted symbols (M’, Q’, etc) to refer to the origi-
rrd, un-reducd machines, and unquoted symbols to refer to the find,
rducd, machines.

me domain of the second variable of functions A and S is
extended to strings of any length in the usurd way. ht s =

482

http://crossmark.crossref.org/dialog/?doi=10.1145%2F288548.289075&domain=pdf&date_stamp=1998-11-01

/

(al,..., UJ:)be a string of input symbols and the notation A(q, s)
denote the find output of the finite state machine after sequence s
is applied in state q. The output of such a sequence is defined to
be A(q, s) = A(d(d(... J(q, al) . . .), ak_l), a~). Similarly, J(q, s)

denotes the find state r~ched by a finite state machine after a se-
quence of inputs (al,... , a~), is applied in state q. The find state
is defined to be 6(g, s) = J(5(... 6(6(g, al), a2).. .), a~). To avoid
unnecessary notationrd complexities, A(@,a) is defined to be equrd
to ~ and J(4, a) = ~.

Definition 2 A hop-Free Finite State Machine (LFFSM) M is aj-
nite state machine satisfying defiition I and thefollowing &itional
requirements:

Vq E Q \qo, 31s E X* St. d(qo, s) = q

Vqe Q, VaEZJ(q, a)#qo

These requirements specify that there exists one and ozdy one string
tting the machine from state qo to any other state q and that state qo
is not reachable from any other state. ~ls is the same as saying that
the graph that describes the LFFSM is a tree rooted at state qo.We
say that an LFFSM fif contains a strings iff the application of string
sin state qo leads to a state in M, i.e., iff J(qo, s) G Q.

Definition 3 A completely specfied FSM M = (~, A, Q, qo, ~, ~)

is equivalent to an incompletely specified fiite state machine M’ =

(Z, A, Q’,q&,J’,A’) Wforevev input strings, theoutpzztofMis
compatible with the output of M’, i.e,, A(qo, s) - A’(q:, s).

Definition 4 Evo states are compatible iff the output sequences of
the finite state machine initialized in the two states are compatible
for any input sequence.

If two states q, and ~ are not compatible, they are incompatible
and we write I(q,, @) = 1. Otherwise, I(q~, qj) = O. Finally, we
have the definition of a compatible set [9], that will be used in the
description of the state reduction algorithms described in section 3.

Definition 5 A set of states is a compatible z~ for each input se-
quence there is a corresponding output sequence which can be pro-
duced by each state in the compatible.

It is hewn that, for FSMS, it is sufficient to have pairwise com-
patibility between each state in the compatible ([9], theorem 4.3):

Theorem 1 A set of states is a compatible iff all the states in the set
are painvise compatible.

Proofi see [9]
❑

3 Reduction of ISFSMS

The standard approach for the reduction of incompletely specified
finite state machines is based on the enumeration of the set of com-
patibles and on the solution of a covering problem. Ofly a very brief
description will be given here. Readers interestd in a comprehen-
sive treatment of this topic are referred to [9] for details. It is hewn
that the minimum equivalent FSM can be found through the enumer-
ation of the set of compatibles and the identification of a rninimum-
cardindity closed cover of compatibles.

Definition 6 Compatible cover: a set of compatibles Z =
{C,,C2...C*} is said to be a cover for the states in M’ z~evezy
state in Q’ belongs to some compatible in Z.

To solve the ISFSM reduction problem, it is not enough to select
a set of compatibles that cover the states in the ongind ISFSM since
an addhionrd closure condition dso has to be imposed. This closure
condition is based on the definition of implied sets

Definition 7 The implied setfor a compatible C under input a is the
set of states Da (C) that are the nut states reachablefiom the states
in C under input a.

The closure condition that needs to be imposed is the following

Defirdtion 8 Closed cover: a set of compatibles Z is called a closed
cover iff for each compatible Cj in Z, each of its implied sets is
covered by some Ck in Z.

Obtaining the minimum equivrdentFSM is therefore equivalent to
the selection of a minimum cardindity cover that obeys the covering
and closure requirements stated above. This can be formulated as a
binate covering problem, and solved using one of the many proposed
approaches for the solution of tils type of problems [4, 9].

There are several optirnizations that can be applied to the problem
and used to reduce the size of the binate table. It is trivird to notice
that one can ignore rdl implied sets of cardimdity one and dl implied
sets that are covered by the compatible that implied them. Grasselfi
and Luccio proved [6] that ofly a subset of the compatibles needs to
be considered, the compatibles that are not dominated by any other
compatible

Definition 9 A compatible C’ dominates a compatible C ifC’ 3 C
and VaDc(C’) ~ D.(C).

Compatibles that are not dominated by any other compatible are
cdld prime compatibles and only these need to be considered in
the binate covering problem. Compatibles that are not properly con-
tained in any other compatible are called maximal compatibles, and
they are always prime compatibles.

Even with these optirnizations, many state reduction problems
imply the consideration of a very large number of compatibl~. In the
worst case, the number of compatibles grows exponentirdly with the
number of states in the ISFSM. For this reason, the possiblhty of us-
ing an implicit algorithm to enumerate the compatibles and formulate
the covering problem has received a great defl of attention. In par-
ticdar, Kam and Villa have proposed a fully implicit approach [10]
that performs dl the necessary computations without ever listing, in
an explicit form, the compatibles. ~Is approach has the ability to
hande problems that exhibit a very large number of compatibles,
rdthough this ability depends on the existence of a compact represen-
tation for the set of compatibles. The results of this approach, as well
as the best hewn implementation of the explicit approach [16] are
compared with our rdgorithm in section 6.

4 FSM identification from 10 sequences

This section describes the basic techniques that are used by the rd-
gorithm described in section 5, namely FSM identification from IO
sequences and state reduction of LFFSMS.

4.1 Identifying FSMS from specified 10 sequences

Consider the situation where the behavior of a finite state machine is
specified by a given inputioutput mapping 00 mapping), where an
IO mapping is defined in the following way

Detition 10 An 10 mapping is a sequence of inpudoutput pairs

((al, bl), (a2, b2)... (a~, bk)) G (X x (A U {e}))k thatspecfi
the value obsemed in the outputs of a fiite state machine under a
speci$c sequence of inputs.

483

Consider now the following question: given a set of IO mappings,
R, what is the FSM with minimum number of states that etilbits a
behavior compatible with that set of IO mappings ?

This problem is NP-complete, and is equivrdent to the problem
addressed by Gold [5] of identi~lng the minimum state DFA that
accepts a given set of strings and rejects another set. It turns out that
there is a trivial equivalence between this problem and the problem
of reducing finite state machinw of a special me, loop-free finite
state machines.

4.2 Loop-Free Finite State Machines

From a set of IO mappings, it is straightforward to generate a finite
state machine that e.xhibhs a behavior compatible with it. Simply
generate the tie (or prefix tree) that corresponds to the input strings
in the set, and label the transitions in accordance with the given IO
mapping.

As an example, consider the set of (three) IO mappings shown
in table 1. Is is trivird to observe that the LFFSM shown in figure 1
generates the desired outputs.

Table 1: Example of a set of IO mappings.

1/0 1/1 1/0
0/0 1/0
0/0 0/0 0/0

under each possible input, the next state is dso correctiy mapped.
The importance of a mapping function is given by the following the-
orem:

Lemma 1 If F is a mapping finction be~een M’ and M, then ma-
chine M is equivalent to M’.

Proofi We need to prove that, if there exists a mapping function F,
then A(qo, s) = A’(q&,s), for rdl stringss = {al, a2,.. . },a~ .
Assuming that q. = F(q~), we have
A(qo,S)= A(d(d(...J(qo, al).. .), a~-~), a~) =
A(J(6(... J(F(q&), al) . . .), ak_l), ak) =
A(J(J(... F(6’(qA, al)).. .), a~-l),a~) =
A(F(J’(6’(... (d’(q&),al).. .), ak-l)), ak) s
A’(6’(6’(... (d’(q&),al). ..), ak-l), ak) = A’(q:, s)
❑

It is well known [6] that the existence of a mapping function is
not a necessary condhion for equivrdence behveen two finite state
machines. For example, machine M in figure 2 is equivrdent to
machine (M’), but no mapping function efists between M’ and
M. To see why this is the case, note that states q&and q; in ma-
chine M’ cannot be equivrdent. Therefore, the reduced machine M
needs to have at least two states, with the vrdue of the correspond-
ing outputs being defined by the transitions in M’. Therefore, q:
maps to q3 and q; maps to q4. Now, qj cannot map to q3 because
q3 = F(J’(q~, 1)) # fi(~(q~), 1) = J(q3, 1) = q4 and cannot map
to q4 because q4 = F(J (qj, 1)) # d(F(q~), 1) = J(q4, 1) = q3.
~ls happens because state qj in machine M’ becomes split, its func-
tionality being partially performed by state q3 and partirdly by state
q4 in machine M.

Figure 1: LFFShl generated from the IO mapping in table 1.

Since the LFFSM generated in this way exhibits a behavior com-
patible with the given set of 10 mappings, we can select the minim-
um FShl consistent with this set by reducing the LFFSM, i.e., by
selecting the minimum FSM equivrdent to Wls LFFSM. It turns out
that LFFSMS can be reduced using algorithms other than the ones
described in section 3. This happens because, unlike generrd FSMS,
LFFSMS can be reduced by selmting a mapping function from the
states in the LFFSM to the find, rduced, FSM.

Definition 11 ht M’ = (Z,A,Q’,q~, S’, ~’) be an incompletely
specified FSbl and M = (X, A, Q, q., S, A) be completely specl~ed.
Afinction F : Q’ + Q is a valid mapping finction iff it satisfies:

Vq’Va X’(q’, a) - ~(F(q’), a) (1)

Vq’Va F(S’(q’, a)) = S(F(~), a) (2)

The first equation states that F is a mapping function ordy if it maps
each state q’ in hf’ to a state q in hf that exhibits an output compati-
ble with q’ for every possible input. The second equation states that,

M’

Wo

f

q3

1 n o

q4

M

Figure 2 Machine M is equivrdent to hf’, but no mapping function
between M’ and M exists.

It turns out that, if certain restrictions are imposed on machine
M’, a mapping function between M’ and an equiv~ent machine M
will ~ways exist.

Let M’ = (Z, A, Q’, q&,S’, A’) and M = (Z, A, Q,qo, S,A) be
a completely specified FSM. Consider now a relation F between the
states of M’ and the states of M defined as follows:

Definition 12 ht F : Q’ + Q be defied by F(s’(q~, s)) =
S(qo, s) for each stings contained in M’.

If M’ is a LFFSMS the following lemma applies:

Lemma 2 F is a many to one mapping, mapping each state in M’
to one and only one state in M.

Proofi since M’ is an LFFSM each state in M’ can be reached by
one and ody one string. Therefore, the definition of F will assign a

484

unique state in 31 to each state in M’.
❑

Note that if such a definition of F is applied to a machine M’ that
is not an LFFSM, as, for example, the one on the left of figure 2, this
lemma is not true. Because a state in M’ can be reached my more
than one string, there is no warranty that F is a function. In partic-
ular, consider the strings 100 and 101 and try to apply definition 12
string 100 leads to state g; in Jlf’ and to state q3 in M while string
101 leads to state q; in M’ and to state q4 in M.

Theorem 2 Lst hf’ be a LFFShl. Then, for any machine M com-
patible]vith 111’,the~ction F as dejned above is a valid mapping
function benveen the states of M’ and the states of &f.

Proofi Since fif is equivrdent to M’, it gives an output com-
patible with Jf’, for every string s apphd at the reset state, i.e.,
A(qo, s) s A’(qj, 8). Consider hvo states q’ c Q’ and q E Q and
assume that F(q’) = q because fi’(q~,s) = q’ and d(qo, S) = q
(definition 12). Now, A’(q’, a) = A’(q&,sa) s ~(qo, SQ) =
~(~(90, s)>u) = ~(q, a), and therefore equation 1 is respected.
On the other hand, F(d’(q’, a)) = F(fi’(9~, s~)) = ~(qo, s~) =
J(6(qo, s), a) = J(q, a) = J(F(q’), u) and therefore equation 2 is
dso respected. Therefore, F is a vtild mapping function.
❑

This result is critical, because is strongly limits the solution space
for machines that are LFFSMS. In fact, it enables us to use totally
different algorithms to solve LFFSMS than the ones used to solve
standard FSMS. Theorem 2 says that, to select a minimum sized
finite state machine equivalent to an LFFSM machine M’, one needs
not consider dl possible relations F, but ody those that are many to
one mappings.

4.3 Reduction of LFFSMS

As shown in the previous sections, the reduction of a LFFSM can
be performed by selecting a mapping function F that has a range
of minimum cardindity. To simphfy the exposition, let Si denote
the index of the state in Af that will be the mapping of q;, i.e., qsi =
F(q~). The constraints 1and 2 that need to be obeyed by the mapping
function can be restated as follows:

1. If two states q; and q; in the original LFFSM are incompatible,
then S, # Sj.

2. If two states q: and q; have successor states q~ ad qj for some
input u, respectively, then S, = Sj + Sk = SI.

These two conditions can be rewritten as:

~(q~,qj)= 1 + Si #Sj (3)

q~ =J’(q;,a)Aq~=J’(q~,a) ~ Si#Sj vs~ ‘SJ (4)

The basic search algorithm for this problem was proposed by
Bierman [2]. Later, the same author proposed an improved search
strategy that is much more efficient in the majority of the complex
problems [3]. Akhough a full description of the method is outside
the scope of this paper, we prwent here the basic idea. The search
algorithm assigns a value to Si following the depth first state order,
and backtracks when some assignment is found to be in error. The
number of states of the target machine, n, is estimatd from the size
of one large ctique in the incompatibility graph. If a search for a
machine of that size fails, n is increased and the search restarted.
Assume, for the moment, that a search is being performed by a ma-
chine with n states. The basic search with backtrack procedure iter-
ates through the following steps:

1. Select the next variable to be =si~~, s;, from among the
unassigned variables.

2. Extend the current assignment by selecting a value from the
range l... n and assigning it to Si. If no more values exist,
undo the assignment made to the last variable chosen.

3. If the current assignment leads to a contradiction, undo it and
goto step 2. Else goto step 1.

This search process can be viewed as a search tree. Consider
an hypotheticrd example where the original LFFSM has 10 states
({q&. . . q:}) ~d a se~ch is being pefio~ed by a mac~ne ~~~ 3
states. Under these conditions, each Si can assume ody the values O,
1 or 2. Suppose that variables will be assigned in the order So... S9
and that the following restrictions exist in this problem

sl#s2vs8=s9 (5)

s8#s9vs2=s3 (6)

The section of the search tree depicted in figure 3 is obtained by
the basic search rdgorithm described above. In evev leaf of this tree
a conflict was detected and backtracking took place.

Figure 3: Search tree for the simple backtrack rdgorithm

Bierman noted [3] that a more effective search strategy can be ap-
plied if some bookkeeping information is kept and used to avoid as-
signing vflues to variables that will later prove to generate a conflict.
~ls bookkeeping information can dso be used to identify variables
that have only one possible assignment left, and should therefore be
chosen next. ~ls procedure can be viewed as a gener~ization to
the multi-vakred domain of the unit clause resolution of the Davis-
Putnam procedure and can be very effective in the reduction of the
search space that needs to be explored.

~ls can be done by keeping, for each state q; in Q’, a table with
the possible states that it can map to, i.e., the possible values that
Si can take. Every time a value is assigned to some Sj, the tabIes
for every state are updated. In some cases, this win lead to a unique
choice of assignment for a given node, and that node should be se-
lected next.

Recently, the use of dependency-directed backtracking has been
shown to improve considerably the efficiency of Bierman’s search
rdgorithm [14]. However, for the purposes of the present work, this
description of the basic search procedure should be sufficient.

4.4 The L* algorithm

The L* algorithm [1] is an algorithm that identifies the canonical
(and therefore minimum-state) DFA that accepts a given language.
We present here a modified version that identifies the minimum state
Merdy machine that provides output consistent with a given set of
inputioutput strings. Let M’ be the completely specified machine to

485

be rcducedl. The algorithm uses an observation table T and two sets
of strings, S and E. The algorithm updates this table in accordance
with the following rules:

● Keep atable Tfilled in using queries. Table Thasone row for
eachelementofs c (S USa), ae Xandone colunm foreach
e E E where S is prefix closed and E is suffix closed.

. T(s, e) =A’(q&, se)

. Disclosed iffVt CSa,3s CSs.t. row(t) =row(s)

● T is consistent iff VS1,S2 E S,Va c Z row(sl) =
row(s2)+row(sla) =row(sza)

The table T is updated in the following way

1.

2.

3.

4.

5.

Initialize S with the empty string and E with dl input combi-
nations.

If table is not closed select a strings that violates closeness and
move it from from Sa to S. Extend table using queries.

If table is not consistent because for strings S1 and S2,
row(sl) = rovr(s2) but row(sla) # row(s2a), add ae to
E, where e is the label of the column that causes the inequrdity.
Extend table using queries.

If the table is closd and consistent, then it uniquely defines
a completely specified finite state machine. Generate this ma-
chine and m~e an equivalence query.

If a counter-examples is received, adds and rdl its prefixes to S
and goto 2. Otherwise, the generated machine is the minimum
FSM equiv~ent to Al’.

A complete anrdysis of the correctness of this algorithm is outside
the scope of this paper. For the details of this rdgorithm, the author is
referred to Angluin’s original work [1]. We will simply illustrate the
rdgorithm with a small example, and state the most important results.
Suppose that the target machine &f’ is the one given in figure 4.

Figure 4 Example of target machine for the L* algorithm

The algorithm is initialized with the observation table shown in
table 2. The entries in this table are initifllzed by simulating the
strings in Jlf’. For example, the entry marked with ~ is obtained by
noticing that Jlf’ outputs O on the string 01, i.e., A’(q~, 01) = O.
Table 2 is not closed, since there is no row in S that equals row(l).
Therefore, move row(l) to S and extend table using queries, obtain-
ing table 3. ~ls table is closed and consistent. Notice that there are
no equal rows in S implying that the table is consistent and that dl

1bter, we \vili apply Ws algorithm to the rtiuction of ~~hls, but here }~eshould
tieiv flf’ x a completely specified Rhl

Table 2 Initial table for the L* algorithm

❑
01

Aoo
000
101

Table 3: Example of closed and consistent table for the L* dgonthm

❑
01

Aoo
1 01
0 00
1100
1001

the rows in Sa are present in S. We can use tils example to illustrate
how a closed and consistent table defines a unique FSM. Consider
the vahres in the rows as encodings for the states. In this case, we
have two different labeling~ O;Oand O;1. Now, it is simply a matter
of filling the transitions between states in accordance with the row la-
bels: for instance, string 1 t&es us to state O;1; string 11 t&es us to
state O;O,and so on. The output values are filled in by looNng at the
vrdues in the table. This procedure is linear on the size of the table.
Applying this procedure, we obtain the minimum machine equiva-
lent to the inputioutput relations specified in this table, as shown in
figure 5. Since this machine is equivrdent to the originrd machine,
the rdgorithm stops.

Figure 5 Result of the L* rdgonthm in the machine of figure 4

The fundamental result concerning this algorithm is the follow-
ing

Theorem 3 The L* algorhhm runs in time polynomial on the num-
ber of states in the target machine and the mm’mum length of the
countermples provided.

Proofi See [1].
u

5 Reducing Incompletely Specified Hnite State Machines

Given the background presented in the previous section, the de-
scription of the basic algorithm for the reduction of ISFSMS is now
straightfonvard

1. Generate a set of IO mappings, R by simulating a set of strings
in M’.

2. Build the LFFSM MA from the IO mappings in R (as described
in section 4.2).

486

3.

4.

5.

Select 11, a minimum size finite state machine equivalent to
fil~, using the exact rdgonthm from section 4.3.

Check if Jf is equivdent2 to M’. If they are equivalent, stop.
Otherwise, let s be a string such that A(qo,s)+ A’(q&,s), a
witness of unequivdence.

Let R= RU {(s, A’(q&,s)} andgoto 2.

~eorem 4 This algorithm always terminates and outputs a ma-
chine hf equivalent to hlt with minimum number of states.

Proofi

Proof that if it terminates, it rdways returns a minimum sizd FSM.
Assume, for contradiction, that it returns an FSM larger than
the minimum equivalent FSM X. The find result must have
been returned by step 3 of the rdgorithm. Therefore, either the
rdgorithm used in step 3 is not exact (a contradiction) or there
is at least one string in s G R for which X(s) + M’(s), a
contradiction since X is equivrdent to M’.

Proof that it always terminates: Every time an equivalence query is
performed, a string that is a witness of unequivrdence between
the solution found and M’ is selected and added to R. There-
fore, the same machine is never generated twice. Since there
are a finite number of machines with less than n states, the fl-
gorithm must terminate.

Although this algorithm works, it has a serious disadvmtage.
Consider the case where the machine M’ is a completely specified
finite state machine. Since no restrictions are imposed on the struc-
ture of hf~, the identification of a machine M equivalent to MA is
an NP-hard problem. Therefore, the reduction of M’, a completely
specified finite state machine requires the solution of several NP-hard
problems, an undesirable situation.

By using a more judicious criterion to generate the IO mappings
in R, it is possible to avoid this problem. The solution is to generate
the IO mappings in R according to a modified version of the L*
dgonthm.

5.1 The improved reduction algorithm

We can now improve the algorithm described in the beginning of this
section, by adopting a string generation strategy inspired by the L*
rdgorithm. The critical difference with the L* algorithm is that, for
some strings, the output will be undefined. ~ls means that we won’t
be able, in general, to fill completely the observation tableT. We rdso
need to genedlze the concepts of closeness and consistency, when
applied to a table thdt has unfilled entries. The fact that we will be
unable to fill in some of the table entries means that the generation
of an FSM from the table is no longer a straightforward procedure,
since choices must be made. In fact, we have to generate a LFFSM
from the observation table and reduce it using the algorithm from
section 4.3. To generalize the concepts of closeness and consistency,
start by defining a compatibility relation behveen rowx

Definition 13 T}vorows rl and T2 are compatible (T1 s 72) i~the
table entries are compatible for each and every column.

The definition of closeness and consistency can now be rephrased
using this relation

Definition 14 Table T is closed i~
Vt G Sa, 3s C S s.t. row(t) = row(s)

2~e qti~,dence check bewmn the hVOmchines is ~rformed by computing the
product mctine. Form extended discussion of rhis issue, \ve refer the ~der to m
extendedversion of Ws pa~r.

Definition 15 Table T is consistent Z~
VSI, S2 G S,Va row(sl) S row(s2) + row(sla) s row(s2a)

Note that these definitions are consistent with the previous def-
initions of closeness and consistency and represent, in fact, an ex-
tension of the originfl ones. According to these definitions, there is
a direct mapping between the observation table and a LFFSM. The
LFFSM can be derivd from the table by constructing the trie that
corresponds to the set of words in S x E, and labeling the outputs
with the entries in the table. As an example, consider the (not totally
filled) observation table in figure 4. This observation table is closed
and consistent, according to definitions 14 and 15. This table defines

Table 4 Example of an incompletely filled observation table that is
closed and consistent.

❑
01

A -o
0 11
1 11
00-0
ol1-

an IO mapping, and therefore a LFFSM, that is derived following the
procedure illustrated in table 1 and figure 1.

The improved version of the ~gorithm is therefore the following

1.

2.

3.

4.

5.

Inititilze an observation table T as defined in section 4.4.

Generate an observation table T that is closed and consistent,
according to definitions 14 and 15 and the algorithm describd
in section 4.4. ~ls table defines a set of 10 mappings R.

Build the LFFSM M~ that corresponds to this set of IO map-
pings.

Select M, a minimum size finite state machine equivalent to
Mk, using the exact dgonthm from section 4.3.

Check if M is eauivdent to Lf’. If thev are e~uivdent, stou.
Otherwise, lets tie a string such that A(qi, s) ~ ~(qo, s). A~d
the counterexamples to set Sin table T and goto 2.

Theorem 4 dso applies to this case, since the ordy change is the
specific way strings are generated in steps 1 and 2. A closed and
consistent table can rdways be generated, since our definitions of
closeness and consistency are less restrictive than the onginrd ones
by Angluin. Therefore, this algorithm rdways terminates and outputs
the minimum FSM equivalent to M’.

The key point here is that the algorithm will have a guaranteed
polynornird mntime if the original FSM is a completely specified
FSM, since in that case it reduces to Angluin’s original algorithm
(adapted for Mefly machines). The hope is that for ISFSMS it will
dso be more efficient, although we know that, in this case, it cannot
rdways work fast.

5.2 Complexity analysis

Clearly, if the original FSM M’ is incompletely specified, the
LFFSM M: can be arbitrarily hard to reduce and the rdgorithm can
take exponential time. Our objective is to prove that, if M’ is a com-
pletely specified FSM, the algorithm will run in time polynomird on
the size of M’.

For the purposes of this analysis, let k be the cardinrdity of the
input rdphabet, n the number of states in the find FSM and m the
number of states in the originrd ISFSM. Angluin has proved [1] that,
during the construction of the table

487

1.

2.

3.

4.

5.

No more than n+n2 rows are added to the top hrdf of the table,
S. Therefore the table has no more than n(n + l)(k + 1) rows,
n(n + 1) in S and kn(n + 1) in Sa.

There are at most n different row labefings, since each different
row represents one state.

No more than n columns are added to the table, since every time
a column is added, a different row is created.

No more than n equivalence queries are performed.

BYchoosing the smallest uossible counter-exarnule. the maxi-. .
m;m len@-of any string in S is 2n.

In our setting, the difference between DFA and Mealy FSMS im-
plies that there will be, potentirdly, k +n columns, since we initialize
the table with columns corresponding to the k different values of the
input. Therefore, the totrd complexity will be given by

1. At most (k+n) x n(n+l)(k+l) x 2noperations are necessary
to fill up the final table @tilt incrementally by the algorithm).

2. At most n x knm operations are needed to compute the result
of the equivrdence queries, by computing the product machine
at most n times.

3. At most n calls to the LFFSM reduction sdgorithm are per-
formed, and this LFFSM can have up to as many states as the
size of the table, 2(k + n) x n(n + l)(k + 1).

The critical factors determining complexity are the last two
above. In the case where the observation table is totally filled in and
complete, an appropriate choice of variable ordering in Bierman’s
rdgorithm leads to a linear time dgonthm, since no decisions need
to be made. However, in our implementation, the same algorithm is
used for completely and incompletely filled observation tables. Al-
though the LFFSM has (k+ n) x 2n(n + l)(k + 1) states, assign-
ments otiy need to be computed to the n(n + 1)(Ic+ 1) LFFSM
states reachab~eby the strings in S USa. For these states, the incom-
patibihty relation is known from the observation table, but the com-
putation of the restrictions in equation 4 is quadratic on the number
of states. Therefore, ach cdl to the LWSM reduction rdgorithm has
complexity 0(k2nA) and this dgonthm can be cafled up ton times.
This leads to a totrd complexity given by 0(mas(k2n5, knzm)). If
one uses the linear time rdgorithm to solve specird cases of LFFSMS
described by the completely filled observation tables, the complexity
decreases to knsm, since n ~ m.

Mthough, in general, this worst case complexity will be much
higher than the km log m complexity of the partition-refinement ap-
proach for completely specified FSMS [S], it still gives a polynomisd
time warranty in the particular case where &f’ is a completely spec-
ifid FShl. It must be noted that this a worst case bound that may
not be ti~ht, since the assumptions made in the anrdysis of the table
construction may be too pessimistic. In the very special case where
flf’ is a large completely specified FSM with an equiv~ent n state
machine that is very small, n << m and tils algorithm may acturdly
be asymptoticrdly faster, as long as n2 < log m.

For lSFSMS, one expects that its run-time will be exponential in
many of the problems, but that the cases where it behaves poorly
will not necessarily match the cases where the standard rdgorithms
of section 3 fail.

The rdgorithm presented in this smtion is ofly applicable to finite
state machines that do not efilbit partirdly specified inputs or out-
puts. In many cases, finite state machine descriptions usually accept
transitions labeled by input vahra where one or more Boolean in-
puts are unspecified (e.g. -1-O). It is possible to extend the theory
presented to this case, but we omit this discussion here, for space
reasons, and present it in an extended version of this work, in prepa-
ration.

6 Experimental results and conclusions

To compare our rdgorithm in a set of problems that are known to be
hard, we used the set of problems used by Kam and Villa to evrd-
uate their implicit algorithm (ism) against an explicit implemen-
tation [10] and dso used by other researchers to evaluate heuris-
tic approaches [7]. ~ls choice is justified because the most com-
mofly used benchmarks for sequentird circuits (e.g., MCNC or IS-
CAS benchmarks) are inappropriate for the task at hand. As an
example, rdl but one of the MCNC sequential benchmarks require
less than one second to be solved by a modem compute~ The set of
problems used by Kam and Vlfla ([10], table 1) come from a variety
of sources: standard benchmarks, asynchronous synthesis, Iearrdng
problems, synthesis of interacting FSMS and FSMS that have been
constructed to exhibit a large number of compatible pairs.

\Ve compared the execution times of ism with those of bica,
a C~ implementation of the rdgonthm described in section 5 and
s tarnina, a popular implementation of the explicit version of the
standard state reduction rdgorithm [16]. The CPU times obtained
in a DECStation 5000/260 with 440MB of memory are reported in
table 5, rounded to the nearest second. For stamina and bica,
timeouts were set at 2 hours of CPU time. For ism and for the prime
generation times, we used the vahres reported in the literature [10]. In
this table, the number of compatibles (column 2) is the total number
of compatible sets efilbited by the problem.

Table 5: Results obtained with is~ bica md stamina.

FSM

rdexl
intel-edge
isend
rcv-ifc
rcv-ifc.m
send-ifc
send-ifc.m
vbe4a
vmebus
rh.30
th.40
rh.55
fo.20
fo.50
fo.70
ifsmO
ifsml
ifsm2
rublnl8
rubln600
rubln1200
rubin2250
e271
e2S5
e3M
e423
e6S0

#
compat
5592s
9432

22207
1.52e11
1.79e6

5.07e17
S.9Se6

1.75e12
5.05e7
97s49
1.45e6
3.62e7
42193
3.64e7

9.62e10
1.0e6

43006
497399

21~-1
2400-1
2800-1

21500-1
393215
393215
393215
204799
327679

FS!
ism
N.A
N.A
N.A
N.A
N.A
N.A
N.A
N.A
N.A

*547
*6S62
failed

“33
failed
failed
failed
*413
403

=
faild
failed
failed

22
13

556
*443
9s4

Redu(

16
0
1
0
0
1
0

173
1

faifert
failed
faited
failed
failed
failed

o
1294
694

failed
failed
failed
failed

o
0
0

failed
o

n Prim~
Mca ism

34 24
3 37

1s 13
16 114

3
5: 571
20 3
47 109

1555 26
2 21
3 75

4794 1273
2

i 216
ftied 22940

5 43
12 25

474 267
0 0

51 197s
3S2 2.7e4

251S 2.7e5
4 21
1 13
1 93
1 102
1 151

Gen.
Starn

16
3

failed
failed

147
failed

312
167

ftiled
17256
failed
failed
1369

failed
failed
4253
466
356
751

faifed
failed
failed
ftiled
failed
failed
failed
failed

Columns 3, 4 and 5 show the time required for the three pro-
grams under comptison to solve a given FSM rduction problem
is~ stamina and bica. Values marked with * mean that ofly
the first solution was computed, and therefore the problem was not
totally solved. k the first set of problems, ism was not used to solve

3~e retioing a~anrple,W, -ot be solvedusing standardmetiods and is easily
solvableby our algorithm However,as a \vhole,tie benchmark is rndnterating for state
Auction dgorithnrs.

488

the covering problem, and therefore those tire= are not fisted. The
last two columns show the time required to generate the list of prime
compatibles for this problem. These tim~ have bwn reported by the
authors of is~ and it is interesting to notice that, in some cases,
stamina can find a minimum solution in less time than it takes to
generate rdl the primes. ~Is happens because if the cover found us-
ing ordy maximal compatibles is closed, there is no need to generate
rdl the primes. We assume that the same approach can be applid to
ism~ but in the table of results presented, the binate covering step of
ism uses the table generated from the full set of prim=.

Table 5 shows that, for this set of hard problems, bica is more
robust and the unique algorithm that is able to solve some of the
problems exhibiting a very large number of compatibles. However,
in a considerable number of cases, stamina is able to solve the
problems faster, specially when enumeration of dl the primes can be
avoided. Ism is able to complete in some cases where stamina
fails and is Amost always able to compute the compatibles, being
faster than both stamina and bica in a number of examples. Al-
though a machine with 440MB of memory was used for the compar-
isons, bica does not usually require much memory, with dl exam-
ples except one requiring much less than 64MB of memory.

7 Conclusions and future work

~ls work presented a new approach for the problem of reducing
incompletely specified finite state machines. Nthough inherently
slower when applied to completely specified finite state machines,
the algorithm has the advantage of using a radicdly new approach
that doesn’t suffer from the limitations of the standard approach
based on the computation of compatibles. Since the problem is NP-
complete, one does not expect a fast algorithm for rdl the instances
of the problem. However, the experiments have shown that the cases
where our approach does not work well are distinct from the cases
where the standard approach fails, thereby making this algorithm a
very interesting dtemative in the instances where enumeration of the
compatibles is infeasible.

This work opened several interesting directions for future re-
search. As an immediate direction for fiture research, it would be
very interesting to generalize the concepts underlying the observa-
tion tables of the L* algorithm. The current version handles partirdly
undefined inputs by making the inputs disjoint, a procedure that, in
some examples, degrades the performance by a large factor.

It may dso be possible to improve considerably the totrd exe-
cution time by developing better LFFSM reduction techniques than
the ones used in this work. In particrdar state merging techniques
[11] have shown great promise in a recent contest held to evrduate
the performance of DFA inference rdgorithms [12]. Mthough these
techniques, as presented by the authors, are heuristic, it is possible to
modify them in order to obtain exact rdgonthms, a tine of research
that is very interesting in itself.

A less immediate and more open fine for fiture research is the
application of techniques similar to these ones to the computation
of other problems in similar domains, Eke DFA prope~ checking,
NDFA reduction and DFA equivalence.

AcknowIedgemenK

The authors would like to thank ~ziano Villa, who helped greatly in
the preparation of this manuscript and contribute with many help-
ful suggestions. They dso thank ~mothy Kam and Stephan U-
wards for help in setting up the experimental comparisons, and Prof.
Sangiovarmi-VincenteM for his support of tils tine of research.

4Since isro follows tie sme squenm of steps, it a pr=umbly be used to look
tit for a cover consisting only of titi compatibles, = stamina d~, stopping if
tis cover is clost~

The descriptions of the state machines used in the experimental
evrduation are available at the home page of the second author, and
the source code for bicu, written in C+, is available upon request.

References

[1] D. Anghrin. Learning regular sets from queries and counterex-
amples. Inform. Comput., 75(2):S7–106, November 19S7.

[2]

[3]

[4]

[5]

[6]

[7]

[s]

[9]

[10]

A. W. Biermrum and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transac-
tions on Computers, 21:592-597, June 1972.

A. W. Biermann and F. E. Petry. Speeding up the synthesis of
programs from traces. IEEE Trans. on Computers, C-24122-
136,1975.

0. Coudert and J.C. Madre. New ideas for solving covering
problems. In Proc. Design Automation Conference, pag= 641-
646, June 1995.

E. M. Gold. Complexity of automaton identification from given
data. Infomr. Control, 37:302-320, 197S.

A. Grasselli and F. Luccio. A method for minimizing the
number of intemrd states in incompletely specified s~uentid
networks. IRE Transactions on Electronic Computers, EC-
14(3):35W359, June 1965.

H. Higuchi and Y. Matsunaga. A fast state reduction algorithm
for incompletely specified finite state machines. In Proc. De-
sign Automation Conference, pages 463466, New York, June
1996. ACM Press.

J.E. Hopcroft. n log n algorithm for minimizing states in finite
automata. Technical Report CS 71/190, Stanford Univiversity,
1971.

T. Kam, T. Villa, R. Brayton, and A. S. Vincentelh. Synthesis of
FSMS: ~ctional optimization. Wuwer Academic Publishers,
1997.

T. Kam, T. Villa, R. Brayton, and A. Sangiovanni Vincentelli.
A fully implicit algorithm for exact state Mtitization. In Proc.
Design Automation Conference, pages 6SM90, 1994.

[11] K. J. Lang. Random DFKs can be approximately learned

[12]

[13]

[14]

[15]

[16]

from sprtr~euniform examples. In Proc. 5th Annu. ‘~Vorhhop
on Comput. kamins Theory, pages 45-52. ACM Press, New
York, NY, 1992.

K. J. Lang, B. A. Pearlmutter, and R. Price. Results of the
Abbadingo One DFA learning competition and a new evidence
driven state merging algorithm. In Fourth International Collo-
quium on Grammatical Inference (ICGI-98), Lecture Notes in
Computer Science, 199S.

Giovanni De Micheli. Synthesis and optimization of DiSital
Circuits. McGraw-Hill, 1994.

A. L. Oliveira and J. P. M. Silva. Efficient search techniques for
the inference of minimum size finite automata. In Proceedings
of the 1998 South Amen.can Symposium on Stn.ng Processing
and Information Retrieval, Santa Cruz de La Siema, Bolivia,
September 199S. EEE Computer Society Press.

C. F. Pfleeger. State reduction in incompletely specifid fi-
nite state machin~. IEEE Trans. Computers, C-221099-1102,
1973.

J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby. Exact and
heuristic rdgorithms for the minimization of incompletely spec-
ified state machines. IEEE Transactions on Computer-Aided
Design, 13(2):167-177, February 1994.

489

