Check for
Updates

A New Algorithm For The Reduction Of Incompletely Specified Finite State Machines

Jorge M. Pena
IST-INESC
Rua Alves Redol, 9
1000 Lisboa, Portugal
jmgp@algos.inesc.pt

Abstract

We propose a new algorithm to the problem of state reduction in
incompletely specified finite state machines. This algorithm is not
based on the enumeration of compatible sets, and, therefore, its per-
formance is not dependent on the number of prime compatibles. We
prove that the algorithm is exact and present results that show that,
in a set of hard problems, it is much more efficient than both the
explicit and implicit approaches based on the enumeration of com-
patible sets.

1 Introduction

The reduction of finite state machines is a well known problem of
great importance in sequential circuit synthesis.

For completely specified finite state machines (FSM), the state
reduction problem can be solved in polynomial time [13]. For in-
completely specified finite state machines (ISFSM), the problem is
known to be NP-complete [15]. Nonetheless, exact and heuristic al-
gorithms are commonly used in practice, and it is possible, in many
cases of practical importance, to obtain exact solutions.

The standard approach for this problem is based on the identifi-
cation of sets of compatible states, (or compatibles) and the solution
of a binate covering problem. A number of practical systems based
on this approach have been proposed, based on both explicit [16] and
implicit enumeration [10] of the compatibles. However, some prob-
lems cannot be solved using this approach for one of two reasons: a)
the set of prime compatibles is too large to be listed, either explicitly
or implicitly or b) the binate covering problem can be formulated but
takes too long to solve. We review these algorithms and concepts in
section 3.

The approach we propose is based on a different paradigm, thus
avoiding altogether the identification of prime compatibles and the
solution of a covering problem. Our method uses techniques well
known in the computer science community for the identification of
DFAs consistent with a given set of input/output mappings. Although
all the results and algorithms have used the DFA formalism, they can
be easily translated to similar results formulated in terms of finite
state machines.

The complexity of the problem of DFA identification (and, there-
fore, of minimum FSM identification) varies with the ability of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy othenwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

ICCADSS, San Jose, CA, USA

© 1998 ACM  1-58113-008-2/98/0011..85.00

Arlindo L. Oliveira

Cadence European Labs/IST-INESC

482

Rua Alves Redol, 9
1000 Lisboa, Portugal
aml@inesc.pt

algorithm to control the set of input sequences for which labels are
known. If this set is fixed, the problem is NP-complete [5]. Under
these conditions, the most efficient search algorithms for this prob-
lem are based on the approach proposed by Bierman [3].

The problem becomes easier if the algorithm is allowed to make
queries or experiment with the unknown machine. Angluin proposed
an algorithm [1] that solves the problem in polynomial time by allow-
ing the algorithm to ask membership queries.

Since we make extensive use of both Bierman’s approach and
Angluin’s algorithm, we describe these algorithms in some detail in
section 4.

Section 5 contains the central contribution of this work. We show
that it is possible to use a modified version of Angluin’s technique
to identify the minimum FSM equivalent to a given ISFSM without
enumerating the set of compatibles. We also show that the algorithm
runs in time polynomial on the number of states, for the special case
where the original machine is completely specified.

Section 6 describes the results we obtained in a set of finite state
machines that have been used by other authors to evaluate the per-
formance of state reduction algorithms [10]. These results show that
the algorithm can be much more effective than alternative methods
in problems that exhibit a very large number of prime compatibles.

2 Definitions

This section introduces some general definitions that will be used
throughout the paper. Other more specific definitions will be intro-
duced as they are needed.

Definition 1

A finite state machine is a tuple M = (E,A, Q, g0, 9, A) where
5 # 0 is a finite set of input symbols, A # 0 is a finite set of output
symbols, Q@ # B is a finite set of states, qo € Q is the initial “reset”
state, 8(g,a) : @ x & — Q U {@} is the transition function, and
A(g,e) : @ X B — AU {e} is the output function.

We will use ¢ € Q to denote a particular state, ¢ € X a partic-
ular input symbol and b € A a particular output symbol. A finite
state machine is incompletely specified if the destination or the out-
put of some transition is not specified. For incompletely specified
machines, ¢ denotes an unspecified next state while € denotes an
unspecified output. We say that an output b; is compatible with an
output b; (and write b; = b;) if b; = bj orb; = eorb; = €. We
will always use quoted symbols (M', @', etc) to refer to the origi-
nal, un-reduced machines, and unquoted symbols to refer to the final,
reduced, machines.

The domain of the second variable of functions A and § is
extended to strings of any length in the usual way. Let s =


http://crossmark.crossref.org/dialog/?doi=10.1145%2F288548.289075&domain=pdf&date_stamp=1998-11-01

(ai,...,ax) be a string of input symbols and the notation (g, s)
denote the final output of the finite state machine after sequence s
is applied in state g. The output of such a sequence is defined to
be A(‘1) S) = A(6(5( e 6(‘1) 0,1) 0 ')) a'k—l): ak)- Similarly, 6(‘1: S)
denotes the final state reached by a finite state machine after a se-
quence of inputs (a1, .. .,ax), is applied in state g. The final state
is defined to be 8(g, s) = 6(4(. . . 8(6(g, a1), a2) . . .), ax). To avoid
unnecessary notational complexities, A(¢, a) is defined to be equal
to € and 5(¢, a) = ¢.

Definition 2 A Loop-Free Finite State Machine (LFFSM) M is a fi-
nite state machine satisfying definition 1 and the following additional
requirements:

Yg € Q\ qo, 3's € T" s.t. 8(qo,5) =4q
Vq € Qy VaeZ J(q!a) ?é do

These requirements specify that there exists one and only one string
taking the machine from state go to any other state g and that state go
is not reachable from any other state. This is the same as saying that
the graph that describes the LFFSM is a tree rooted at state go. We
say that an LFFSM M contains a string s iff the application of string
s in state go leads to a state in M, i.e., iff 8(go, 5) € Q.

Definition 3 A completely specified FSM M = (,A,Q, 0,5, )
is equivalent to an incompletely specified finite state machine M =
(=,4,Q, 9,9, X') iff, for every input string s, the output of M is
compatible with the output of M', i.e., M(qo, s) = X (g0, 5)-

Definition 4 Tivo states are compatible iff the output sequences of
the finite state machine initialized in the two states are compatible
Jor any input sequence.

If two states g, and g; are not compatible, they are incompatible
and we write I(g,,q;) = 1. Otherwise, I(g:,g;) = 0. Finally, we
have the definition of a compatible set [9], that will be used in the
description of the state reduction algorithms described in section 3.

Definition 5 A set of states is a compatible iff for each input se-
quence there is a corresponding output sequence which can be pro-
duced by each state in the compatible.

1t is known that, for FSMs, it is sufficient to have pairwise com-
patibility between each state in the compatible ([9], theorem 4.3):

Theorem 1 A set of stales is a compatible iff all the states in the set
are pairwise compatible.

Proof: see [9]
O

3 Reduction of ISFSMs

The standard approach for the reduction of incompletely specified
finite state machines is based on the enumeration of the set of com-
patibles and on the solution of a covering problem. Only a very brief
description will be given here. Readers interested in a comprehen-
sive treatment of this topic are referred to [9] for details. It is known
that the minimum equivalent FSM can be found through the enumer-
ation of the set of compatibles and the identification of a minimum-
cardinality closed cover of compatibles.

Definition 6 Compatible cover: a set of compatibles Z
{C1,Cx...Cy} is said to be a cover for the states in M' iff every
state in Q' belongs to some compatible in Z.

483

To solve the ISFSM reduction problem, it is not enough to select
a set of compatibles that cover the states in the original ISFSM since
an additional closure condition also has to be imposed. This closure
condition is based on the definition of implied sets:

Definition 7 The implied set for a compatible C under input a is the
set of states Do (C) that are the next states reachable from the states
in C under input a.

The closure condition that needs to be imposed is the following:

Definition 8 Closed cover: a set of compatibles Z is called a closed
cover iff for each compatible C; in Z, each of its implied sets is
covered by some Cy, in Z.

Obtaining the minimum equivalent FSM is therefore equivalent to
the selection of a minimum cardinality cover that obeys the covering
and closure requirements stated above. This can be formulated as a
binate covering problem, and solved using one of the many proposed
approaches for the solution of this type of problems [4, 9].

There are several optimizations that can be applied to the problem
and used to reduce the size of the binate table. It is trivial to notice
that one can ignore all implied sets of cardinality one and all implied
sets that are covered by the compatible that implied them. Grasselli
and Luccio proved [6] that only a subset of the compatibles needs to
be considered, the compatibles that are not dominated by any other
compatible:

Definition 9 A compatible C' dominates a compatible C if C' O C
andVaDy(C') C Da(C).

Compatibles that are not dominated by any other compatible are
called prime compatibles and only these need to be considered in
the binate covering problem. Compatibles that are not properly con-
tained in any other compatible are called maximal compatibles, and
they are always prime compatibles.

Even with these optimizations, many state reduction problems
imply the consideration of a very large number of compatibles. In the
worst case, the number of compatibles grows exponentially with the
number of states in the ISFSM. For this reason, the possibility of us-
ing an implicit algorithm to enumerate the compatibles and formulate
the covering problem has received a great deal of attention. In par-
ticular, Kam and Villa have proposed a fully implicit approach [10]
that performs all the necessary computations without ever listing, in
an explicit form, the compatibles. This approach has the ability to
handle problems that exhibit a very large number of compatibles,
although this ability depends on the existence of a compact represen-
tation for the set of compatibles. The results of this approach, as well
as the best known implementation of the explicit approach [16] are
compared with our algorithm in section 6.

4 FSM identification from 10 sequences

This section describes the basic techniques that are used by the al-
gorithm described in section 5, namely FSM identification from 10
sequences and state reduction of LFFSMs.

4.1

Consider the situation where the behavior of a finite state machine is
specified by a given input/output mapping (IO mapping), where an
10 mapping is defined in the following way:

Identifying FSMs from specified 10 sequences

Definition 10 An IO mapping is a sequence of input/output pairs

k
((a1,b1), (a2,b2) ... (ax,br)) € (E x (AU {e})) that specify
the value observed in the outputs of a finite state machine under a
specific sequence of inputs.



Consider now the following question: given a set of IO mappings,
R, what is the FSM with minimum number of states that exhibits a
behavior compatible with that set of IO mappings ?

This problem is NP-complete, and is equivalent to the problem
addressed by Gold [5] of identifying the minimum state DFA that
accepts a given set of strings and rejects another set. It turns out that
there is a trivial equivalence between this problem and the problem
of reducing finite state machines of a special type, loop-free finite
state machines.

4.2 Loop-Free Finite State Machines

From a set of IO mappings, it is straightforward to generate a finite
state machine that exhibits a behavior compatible with it. Simply
generate the trie (or prefix tree) that corresponds to the input strings
in the set, and label the transitions in accordance with the given IO
mapping.

As an example, consider the set of (three) IO mappings shown
in table 1. Is is trivial to observe that the LFFSM shown in figure 1
generates the desired outputs.

Table 1: Example of a set of IO mappings.

170 11 1/0
0/0 1/0
0/0 0/0 0/0

Figure 1: LFFSM generated from the IO mapping in table 1.

Since the LFFSM generated in this way exhibits a behavior com-
patible with the given set of IO mappings, we can select the mini-
mum FSM consistent with this set by reducing the LFFSM, i.e., by
selecting the minimum FSM equivalent to this LFFSM. It turns out
that LFFSMs can be reduced using algorithms other than the ones
described in section 3. This happens because, unlike general FSMs,
LFFSMs can be reduced by selecting a mapping function from the
states in the LFFSM to the final, reduced, FSM.

Definition 11 Ler M' = (5, A, Q', 45,8, X') be an incompletely
specified FSM and M = (£, A, Q, qo, 8, \) be completely specified.
A function F : Q' — Q is a valid mapping function iff it satisfies:

Vq'Va )"(q" a) = A(F'(q')a a) (8]
Vg'Va F(3'(q,0)) = 6(F(d), ) @
The first equation states that F is a mapping function only if it maps

each state g’ in M” to a state ¢ in M that exhibits an output compati-
ble with ¢’ for every possible input. The second equation states that,

484

under each possible input, the next state is also correctly mapped.
The importance of a mapping function is given by the following the-
orem:

Lemma 1 If F is a mapping function between M’ and M, then ma-
chine M is equivalent to M,

Proof: We need to prove that, if there exists a mapping function F,
then A(go, 5) = X' (g0, 5), for all strings s = {a1,a2,...,az}.
Assuming that go = F(gp), we have

Mgo, s) = M0(8(..- (g0, a1) ...), 88-1),a8) =

A(6(3(... 6(F(gp), 1) - - ), ar—1), a1) =

Mo(o(. .. F(&'(g0,01)) - - ), an-1), a) =

ACF(S'(8(.. . (6"(g0), @1) - - .), @k-1)), a8) =

A'(6’(6’(' .. (61(‘16)) 0,1) .. '): ak—l)’ ar) = A'(‘16) S)

m}

It is well known [6] that the existence of a mapping function is
not a necessary condition for equivalence between two finite state
machines. For example, machine M in figure 2 is equivalent to
machine (M"), but no mapping function exists between M’ and
M. To see why this is the case, note that states g and ¢} in ma-
chine M’ cannot be equivalent. Therefore, the reduced machine M
needs to have at least two states, with the value of the correspond-
ing outputs being defined by the transitions in M’. Therefore, g}
maps to ¢z and ¢, maps to gs. Now, g5 cannot map to gz because
3= F(JI(QIZ) 1) # J(F(qé)’ 1) = 6(gs, 1) = g4 and cannot map
to g4 because g1 = F(&'(g3,1)) # 0(F(g2),1) = 8(gs,1) = gs.
This happens because state g in machine M becomes split, its func-
tionality being partially performed by state g; and partially by state
g4 in machine M.

Figure 2: Machine M is equivalent to ', but no mapping function
between M’ and M exists.

It turns out that, if certain restrictions are imposed on machine
M', a mapping function between M’ and an equivalent machine A
will always exist.

Let M’ = (5,A,Q',95,8',X) and M = (, A, Q, g0, 6, ) be
a completely specified FSM. Consider now a relation F between the
states of M’ and the states of M defined as follows:

Definition12 Let F : Q' — Q be defined by F(&'(gh,s)) =
3(qo, ) for each string s contained in M'.

If M' is a LFFSMs the following lemma applies:

Lemma 2 F is a many to one mapping, mapping each state in M’
to one and only one state in M.

Proof: since M’ is an LFFSM each state in M’ can be reached by
one and only one string. Therefore, the definition of F' will assign a



unique state in M to each state in M.
O

Note that if such a definition of F is applied to a machine M’ that
is not an LFFSM, as, for example, the one on the left of figure 2, this
lemma is not true. Because a state in M’ can be reached my more
than one string, there is no warranty that F' is a function. In partic-
ular, consider the strings 100 and 101 and try to apply definition 12:
string 100 leads to state g5 in M’ and to state g3 in M while string
101 leads to state g5 in M’ and to state g4 in M.

Theorem 2 Let M’ be a LFFSM. Then, for any machine M com-
patible with M, the function F as defined above is a valid mapping
function between the states of M' and the states of M.

Proof: Since M is equivalent to M, it gives an output com-
patible with A, for every string s applied at the reset state, i.e.,
Mao,s) = X'(gh, s). Consider two states ' € Q' and g € Q and
assume that F(q') = gq because &'(gp,s) = ¢’ and 8(go,s) = ¢
(definition 12). Now, X(d',a) = XN(g5,s¢) = Mqo,s0) =
M8(go, 5),@) = X(g,a), and therefore equation 1 is respected.
On the other hand, F(§'(¢",a)) = F(¢'(¢;, s6)) = 8(qo,5a) =
3(8(g0, 5),a) = 8(g,a) = 8(F(q"),e) and therefore equation 2 is
also respected. Therefore, F is a valid mapping function.

(m]

This result is critical, because is strongly limits the solution space
for machines that are LFFSMs. In fact, it enables us to use totally
different algorithms to solve LFFSMs than the ones used to solve
standard FSMs. Theorem 2 says that, to select a minimum sized
finite state machine equivalent to an LFFSM machine M’, one needs
not consider all possible relations F', but only those that are many to
one mappings.

4.3 Reduction of LFFSMs

As shown in the previous sections, the reduction of a LFFSM can
be performed by selecting a mapping function F that has a range
of minimum cardinality. To simplify the exposition, let S; denote
the index of the state in M that will be the mapping of ¢, i.e., gs; =
F(g}). The constraints 1 and 2 that need to be obeyed by the mapping
function can be restated as follows:

1. If two states g; and g in the original LFFSM are incompatible,
then S, # S;.

2. If two states ¢} and g} have successor states g, and g; for some
input u, respectively, then S, = S; = S = 5.

These two conditions can be rewritten as:

Ighg)=1 = Si#S5; ©)
g =8, a)Ag=8(ga) = Si#SiVSi=5 @

The basic search algorithm for this problem was proposed by
Bierman [2]. Later, the same author proposed an improved search
strategy that is much more efficient in the majority of the complex
problems [3]. Although a full description of the method is outside
the scope of this paper, we present here the basic idea. The search
algorithm assigns a value to S; following the depth first state order,
and backtracks when some assignment is found to be in error. The
number of states of the target machine, n, is estimated from the size
of one large clique in the incompatibility graph. If a search for a
machine of that size fails, n is increased and the search restarted.
Assume, for the moment, that a search is being performed by a ma-
chine with # states. The basic search with backtrack procedure iter-
ates through the following steps:

1. Select the next variable to be assigned, S;, from among the
unassigned variables.

485

2. Extend the current assignment by selecting a value from the
range 1...n and assigning it to S;. If no more values exist,
undo the assignment made to the last variable chosen.

3. If the current assignment leads to a contradiction, undo it and
goto step 2. Else goto step 1.

This search process can be viewed as a search tree. Consider
an hypothetical example where the original LFFSM has 10 states
({gp - - - g5}) and a search is being performed by a machine with 3
states. Under these conditions, each S; can assume only the values 0,
1 or 2. Suppose that variables will be assigned in the order So ... Sp
and that the following restrictions exist in this problem:

S1# 5V 8= 5 &)
Ss#SgVS2=38; 6)

The section of the search tree depicted in figure 3 is obtained by
the basic search algorithm described above. In every leaf of this tree
a conflict was detected and backtracking took place.

Figure 3: Search tree for the simple backtrack algorithm

Bierman noted [3] that a more effective search strategy can be ap-
plied if some bookkeeping information is kept and used to avoid as-
signing values to variables that will later prove to generate a conflict.
This bookkeeping information can also be used to identify variables
that have only one possible assignment left, and should therefore be
chosen next. This procedure can be viewed as a generalization to
the multi-valued domain of the unit clause resolution of the Davis-
Putnam procedure and can be very effective in the reduction of the
search space that needs to be explored.

This can be done by keeping, for each state g} in Q', a table with
the possible states that it can map to, i.e., the possible values that
S; can take. Every time a value is assigned to some Sj, the tables
for every state are updated. In some cases, this will lead to a unique
choice of assignment for a given node, and that node should be se-
lected next.

Recently, the use of dependency-directed backtracking has been
shown to improve considerably the efficiency of Bierman’s search
algorithm [14]. However, for the purposes of the present work, this
description of the basic search procedure should be sufficient.

4.4 The L* algorithm

The L* aigorithm [1] is an algorithm that identifies the canonical
(and therefore minimum-state) DFA that accepts a given language.
We present here a modified version that identifies the minimum state
Mealy machine that provides output consistent with a given set of
input/output strings. Let M’ be the completely specified machine to



be reduced®. The algorithm uses an observation table T and two sets
of strings, S and E. The algorithm updates this table in accordance
with the following rules:

e Keep a table T filled in using queries. Table 7" has one row for
each element of s € (SU Sa), a € T and one column for each
e € E where S is prefix closed and E is suffix closed.

i T(S, 6) = Al(qIOase)
e T isclosed iff Vi € Sa,3s € § s.t.row(t) = row(s)

e T is consistent iff Vs;,s2 € S,Va € I row(s;) =
row(sz) = row(s1a) = row(saa)

The table T is updated in the following way:

1. Initialize § with the empty string and E with all input combi-
nations.

. If table is not closed select a string s that violates closeness and
move it from from Se to S. Extend table using queries.

. If table is not consistent because for strings s; and sa,
row(s;) = row(sz) but row(sia) # row(sqza), add ae to
E, where e is the label of the column that causes the inequality.
Extend table using queries.

. If the table is closed and consistent, then it uniquely defines
a completely specified finite state machine. Generate this ma-
chine and make an equivalence query.

. Ifa counter-example s is received, add s and all its prefixes to S
and goto 2. Otherwise, the generated machine is the minimum
FSM equivalent to M’.

A complete analysis of the correctness of this algorithm is outside
the scope of this paper. For the details of this algorithm, the author is
referred to Angluin’s original work [1]. We will simply illustrate the
algorithm with a small example, and state the most important results.
Suppose that the target machine M’ is the one given in figure 4.

Figure 4: Example of target machine for the L* algorithm

The algorithm is initialized with the observation table shown in
table 2. The entries in this table are initialized by simulating the
strings in Af’. For example, the entry marked with t is obtained by
noticing that M’ outputs 0 on the string 01, i.e., \'(gh,01) = 0.
Table 2 is not closed, since there is no row in S that equals row(1).
Therefore, move row(1) to S and extend table using queries, obtain-
ing table 3. This table is closed and consistent. Notice that there are
no equal rows in S implying that the table is consistent and that all

1 Later, we wilt apply this algorithm to the reduction of ISFSMs, but here we should
view M’ as a completely specified FSM

486

Table 2: Initial table for the L* algorithm

0]1
AJO0]O
ofojor
11011

Table 3: Example of closed and consistent table for the L* algorithm

SO OO OO

_—0 O rt O] v

5:0*-‘)4

the rows in Sa are present in S. We can use this example to illustrate
how a closed and consistent table defines a unique FSM. Consider
the values in the rows as encodings for the states. In this case, we
have two different labelings: 0; 0 and 0; 1. Now, it is simply a matter
of filling the transitions between states in accordance with the row la-
bels: for instance, string 1 takes us to state 0; 1; string 11 takes us to
state 0; 0, and so on. The output values are filled in by looking at the
values in the table. This procedure is linear on the size of the table.
Applying this procedure, we obtain the minimum machine equiva-
lent to the input/output relations specified in this table, as shown in
figure 5. Since this machine is equivalent to the original machine,
the algorithm stops.

Figure 5: Result of the L* algorithm in the machine of figure 4

The fundamental result concerning this algorithm is the follow-
ing:
Theorem 3 The L* algorithm runs in time polynomial on the num-

ber of states in the target machine and the maximum length of the
counterexamples provided.

Proof: See [1].
[m]

5 Reducing Incompletely Specified Finite State Machines

Given the background presented in the previous section, the de-
scription of the basic algorithm for the reduction of ISFSMs is now
straightforward:

1. Genefate a set of JO mappings, R by simulating a set of strings
in M’.

2. Build the LFFSM M, from the IO mappings in R (as described
in section 4.2).



3. Select M, a minimum size finite state machine equivalent to
Mp, using the exact algorithm from section 4.3.

4. Check if M is equivalent® to M’. If they are equivalent, stop.
Otherwise, let s be a string such that A(qo, s) Z A'(go,$), 2
witness of unequivalence.

5. Let R=RU {(s, N (gb, s)} and goto 2.

Theorem 4 This algorithm always terminates and outputs a ma-
chine M equivalent to M’ with minimum number of states.

Proof:

Proof that if it terminates, it always returns a minimum sized FSM.
Assume, for contradiction, that it returns an FSM larger than
the minimum equivalent FSM X. The final result must have
been returned by step 3 of the algorithm. Therefore, either the
algorithm used in step 3 is not exact (a contradiction) or there
is at least one string in s € R for which X(s) Z M'(s), a
contradiction since X is equivalent to M’.

Proof that it always terminates: Every time an equivalence query is
performed, a string that is a witness of unequivalence between
the solution found and M’ is selected and added to R. There-
fore, the same machine is never generated twice. Since there
are a finite number of machines with less than n states, the al-
gorithm must terminate.

Although this algorithm works, it has a serious disadvantage.
Consider the case where the machine M’ is a completely specified
finite state machine. Since no restrictions are imposed on the struc-
ture of MY, the identification of a machine A equivalent to My, is
an NP-hard problem. Therefore, the reduction of M, a completely
specified finite state machine requires the solution of several NP-hard
problems, an undesirable situation.

By using a more judicious criterion to generate the 10 mappings
in R, it is possible to avoid this problem. The solution is to generate
the IO mappings in R according to a modified version of the L*
algorithm.

5.1 The improved reduction algorithm

We can now improve the algorithm described in the beginning of this
section, by adopting a string generation strategy inspired by the L*
algorithm. The critical difference with the L* algorithm is that, for
some strings, the output will be undefined. This means that we won’t
be able, in general, to fill completely the observation table T'. We also
need to generalize the concepts of closeness and consistency, when
applied to a table that has unfilled entries. The fact that we will be
unable to fill in some of the table entries means that the generation
of an FSM from the table is no longer a straightforward procedure,
since choices must be made. In fact, we have to generate a LFFSM
from the observation table and reduce it using the algorithm from
section 4.3. To generalize the concepts of closeness and consistency,
start by defining a compatibility relation between rows:

Definition 13 Tivo rows ry and r2 are compatible (r1 = r2) iff the
table entries are compatible for each and every column.

The definition of closeness and consistency can now be rephrased
using this relation:

Definition 14 Table T is closed iff
Vt € Sa,3s € S s.t.row(t) = row(s)

2The equivalence check between the two machines is performed by computing the
product machine. For an extended discussion of this issue, we refer the reader to an
extended version of this paper.

487

Definition 15 Table T is consistent iff
Vs1,52 € §,Va row(s1) = row(sz) = row(sia) = row(sza)

Note that these definitions are consistent with the previous def-
initions of closeness and consistency and represent, in fact, an ex-
tension of the original ones. According to these definitions, there is
a direct mapping between the observation table and a LFFSM. The
LFFSM can be derived from the table by constructing the trie that
corresponds to the set of words in S x E, and labeling the outputs
with the entries in the table. As an example, consider the (not totally
filled) observation table in figure 4. This observation table is closed
and consistent, according to definitions 14 and 15. This table defines

Table 4: Example of an incompletely filled observation table that is
closed and consistent.

2g-o>
— e O
1O | O

an ]O mapping, and therefore a LFFSM, that is derived following the
procedure illustrated in table 1 and figure 1.
The improved version of the algorithm is therefore the following:

1. Initialize an observation table T" as defined in section 4.4.

2. Generate an observation table T that is closed and consistent,
according to definitions 14 and 15 and the algorithm described
in section 4.4. This table defines a set of 10 mappings R.

. Build the LFFSM M7, that corresponds to this set of IO map-
pings.

. Select M, a minimum size finite state machine equivalent to
M, using the exact algorithm from section 4.3.

. Check if M is equivalent to M’. If they are equivalent, stop.
Otherwise, let s be a string such that A\(go, s) # X (go, 5). Add
the counterexample s to set S in table T" and goto 2.

Theorem 4 also applies to this case, since the only change is the
specific way strings are generated in steps 1 and 2. A closed and
consistent table can always be generated, since our definitions of
closeness and consistency are less restrictive than the original ones
by Angluin. Therefore, this algorithm always terminates and outputs
the minimum FSM equivalent to M’.

The key point here is that the algorithm will have a guaranteed
polynomial runtime if the original FSM is a completely specified
FSM, since in that case it reduces to Angluin’s original algorithm
(adapted for Mealy machines). The hope is that for ISFSMs it will
also be more efficient, although we know that, in this case, it cannot
always work fast.

5.2 Complexity analysis

Clearly, if the original FSM M’ is incompletely specified, the
LFFSM M}, can be arbitrarily hard to reduce and the algorithm can
take exponential time. Our objective is to prove that, if A" is a com-
pletely specified FSM, the algorithm will run in time polynomial on
the size of M’.

For the purposes of this analysis, let & be the cardinality of the
input alphabet, » the number of states in the final FSM and m the
number of states in the original ISFSM. Angluin has proved [1] that,
during the construction of the table:



. No more than 7+ n? rows are added to the top half of the table,
S. Therefore the table has no more than n(n + 1) (k + 1) rows,
n(n+ 1) in S and kn(n + 1) in Sa.

. There are at most n different row labelings, since each different
FOW represents one state.

. No more than n columns are added to the table, since every time
a column is added, a different row is created.

. No more than 7 equivalence queries are performed.

. By choosing the smallest possible counter-example, the maxi-
mum length of any string in S is 2n.

In our setting, the difference between DFA and Mealy FSMs im-
plies that there will be, potentially, £ +n columns, since we initialize
the table with columns corresponding to the % different values of the
input. Therefore, the total complexity will be given by

1. Atmost (k+n)xn(n+1)(k+1) % 2n operations are necessary
to fill up the final table (built incrementally by the algorithm).

. At most . X knm operations are needed to compute the result
of the equivalence queries, by computing the product machine
at most n times.

. At most n calls to the LFFSM reduction algorithm are per-
formed, and this LFFSM can have up to as many states as the
size of the table, 2(k + n) x n{n + 1)(k + 1).

The critical factors determining complexity are the last two
above. In the case where the observation table is totally filled in and
complete, an appropriate choice of variable ordering in Bierman’s
algorithm leads to a linear time algorithm, since no decisions need
to be made. However, in our implementation, the same algorithm is
used for completely and incompletely filled observation tables. Al-
though the LFFSM has (k + n) X 2n(n + 1)(k 4 1) states, assign-
ments only need to be computed to the n(n + 1)(k + 1) LFFSM
states reachable by the strings in S'U Sa. For these states, the incom-
patibility relation is known from the observation table, but the com-
putation of the restrictions in equation 4 is quadratic on the number
of states. Therefore, each call to the LFFSM reduction algorithm has
complexity O(k*n*) and this algorithm can be called up to n times.
This leads to a total complexity given by O(max(k*n®, kn?m)). If
one uses the linear time algorithm to solve special cases of LFFSMs
described by the completely filled observation tables, the complexity
decreases to kn’m, since n <m.

Although, in general, this worst case complexity will be much
higher than the km log m complexity of the partition-refinement ap-
proach for completely specified FSMs [8], it still gives a polynomial
time warranty in the particular case where M’ is a completely spec-
ified FSM. It must be noted that this a wofst case bound that may
not be tight, since the assumptions made in the analysis of the table
construction may be too pessimistic. In the very special case where
M is a large completely specified FSM with an equivalent 7 state
machine that is very small, n << m and this algorithm may actually
be asymptotically faster, as long as n* < logm.

For ISFSMs, one expects that its run-time will be exponential in
many of the problems, but that the cases where it behaves poorly
will not necessarily match the cases where the standard algorithms
of section 3 fail.

The algorithm presented in this section is only applicable to finite
state machines that do not exhibit partially specified inputs or out-
puts. In many cases, finite state machine descriptions usually accept
transitions labeled by input values where one or more Boolean in-
puts are unspecified (e.g. —1-0). It is possible to extend the theory
presented to this case, but we omit this discussion here, for space
reasons, and present it in an extended version of this work, in prepa-
ration.

488

6 Experimental results and conclusions

To compare our algorithm in a set of problems that are known to be
hard, we used the set of problems used by Kam and Villa to eval-
uate their implicit algorithm (ism) against an explicit implemen-
tation [10] and also used by other researchers to evaluate heuris-
tic approaches [7]. This choice is justified because the most com-
monly used benchmarks for sequential circuits (e.g., MCNC or IS-
CAS benchmarks) are inappropriate for the task at hand. As an
example, all but one of the MCNC sequential benchmarks require
less than one second to be solved by a modern computer® The set of
problems used by Kam and Villa ([10], table 1) come from a variety
of sources: standard benchmarks, asynchronous synthesis, learning
problems, synthesis of interacting FSMs and FSMs that have been
constructed to exhibit a large number of compatible pairs.

‘We compared the execution times of ism with those of bica,
a C++ implementation of the algorithm described in section 5 and
stamina, a popular implementation of the explicit version of the
standard state reduction algorithm [16]. The CPU times obtained
in a DECStation 5000/260 with 440MB of memory are reported in
table 5, rounded to the nearest second. For stamina and bica,
timeouts were set at 2 hours of CPU time. For ism and for the prime
generation times, we used the values reported in the literature [10]. In
this table, the number of compatibles (column 2) is the total number
of compatible sets exhibited by the problem.

Table 5: Results obtained with ism, bica and stamina.

FSM # FSM Reduction Prime Gen.
compat ism | stam | bica ism | stam
alex1 55928 NA 16 34 24 16
intel_edge 9432 N.A 0 3 37 3
isend 22207 N.A 1 18 13 | failed
rev-ifc 1.52e11 N.A 0 16 114 | failed
rev-ife.m 1.79¢6 N.A 0 8 3 147
send-ifc 5.07e17 N.A 1 58 571 | failed
send-ifc.m 8.98e6 N.A 0 20 3 312
vbeda 1.75¢e12 N.A 173 47 109 167
vmebus 5.05¢7 N.A 1] 1555 26 | failed
th.30 97849 *547 | failed 2 21 | 17256
th.40 1.45¢6 || *6862 | failed 3 75 | failed
th.55 3.62¢7 || failed | failed | 4794 1273 | failed
f0.20 42193 *33 | failed 1 2 1369
fo.50 3.64e7 || failed | failed 9 216 | failed
fo.70 9.62e10 || failed | failed | failed || 22940 | failed
ifsm0 1.0e6 || failed 0 5 43 | 4253
ifsml 43006 *413 | 1294 12 25 466
ifsm2 497399 403 694 474 267 356
rubinl8 2121 failed | failed 0 0 751
rubin600 24001 (I failed | failed 51 1978 | failed
rubin1200 28001 | failed | failed 382 || 2.7e4 | failed
rubin2250 | 215001 || failed | failed | 2518 || 2.7e5 | failed
e271 393215 22 0 4 21 | failed
€285 393215 13 0 1 13 | failed
e304 393215 556 0 1 93 | failed
e423 204799 *443 | failed 1 102 | failed
€680 327679 984 1] 1 151 | failed

Columns 3, 4 and 5 show the time required for the three pro-
grams under comparison to solve a given FSM reduction problem:
ism, stamina and bica. Values marked with * mean that only
the first solution was computed, and therefore the problem was not
totally solved. In the first set of problems, ism was not used to solve

3The remaining example, ex2, cannot be solved using standard methods and is easily
solvable by our algorithm. However, as a whole, the benchmark is uninteresting for state
reduction algorithms.



the covering problem, and therefore those times are not listed. The
last two columns show the time required to generate the list of prime
compatibles for this problem. These times have been reported by the
authors of ism, and it is interesting to notice that, in some cases,
stamina can find a minimum solution in less time than it takes to
generate all the primes. This happens because if the cover found us-
ing only maximal compatibles is closed, there is no need to generate
all the primes. We assume that the same approach can be applied to
ism? but in the table of results presented, the binate covering step of
ismuses the table generated from the full set of primes.

Table 5 shows that, for this set of hard problems, bica is more
robust and the unique algorithm that is able to solve some of the
problems exhibiting a very large number of compatibles. However,
in a considerable number of cases, stamina is able to solve the
problems faster, specially when enumeration of all the primes can be
avoided. Ism is able to complete in some cases where stamina
fails and is almost always able to compute the compatibles, being
faster than both stamina and bica in a number of examples. Al-
though a machine with 440MB of memory was used for the compar-
isons, bica does not usually require much memory, with all exam-
ples except one requiring much less than 64MB of memory.

7 Conclusions and future work

This work presented a new approach for the problem of reducing
incompletely specified finite state machines. Although inherently
slower when applied to completely specified finite state machines,
the algorithm has the advantage of using a radically new approach
that doesn’t suffer from the limitations of the standard approach
based on the computation of compatibles. Since the problem is NP-
complete, one does not expect a fast algorithm for all the instances
of the problem. However, the experiments have shown that the cases
where our approach does not work well are distinct from the cases
where the standard approach fails, thereby making this algorithm a
very interesting alternative in the instances where enumeration of the
compatibles is infeasible.

This work opened several interesting directions for future re-
search. As an immediate direction for future research, it would be
very interesting to generalize the concepts underlying the observa-
tion tables of the L* algorithm. The current version handles partially
undefined inputs by making the inputs disjoint, a procedure that, in
some examples, degrades the performance by a large factor.

It may also be possible to improve considerably the total exe-
cution time by developing better LFFSM reduction techniques than
the ones used in this work. In particular state merging techniques
[11] have shown great promise in a recent contest held to evaluate
the performance of DFA inference algorithms [12]. Although these
techniques, as presented by the authors, are heuristic, it is possible to
modify them in order to obtain exact algorithms, a line of research
that is very interesting in itself.

A less immediate and more open line for future research is the
application of techniques similar to these ones to the computation
of other problems in similar domains, like DFA property checking,
NDFA reduction and DFA equivalence.

Acknowledgements

The authors would like to thank Tiziano Villa, who helped greatly in
the preparation of this manuscript and contributed with many help-
ful suggestions. They also thank Timothy Kam and Stephan Ed-
wards for help in setting up the experimental comparisons, and Prof.
Sangiovanni-Vincentelli for his support of this line of research.

4Since ism follows the same sequence of steps, it can presumably be used to look
first for a cover consisting only of maximal compatibles, as stamina does, stopping if
this cover is closed.

489

The descriptions of the state machines used in the experimental
evaluation are available at the home page of the second author, and
the source code for bica, written in C++, is available upon request.

References

{11 D. Angluin. Learning regular sets from queries and counterex-
amples. Inform. Comput., 75(2):87-106, November 1987.

[2] A. W. Biermann and J. A. Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transac-
tions on Computers, 21:592-597, June 1972.

[3] A. W. Biermann and F. E. Petry. Speeding up the synthesis of
programs from traces. IEEE Trans. on Computers, C-24:122—
136, 1975.

[4] O. Coudert and J.C. Madre. New ideas for solving covering
problems. In Proc. Design Automation Conference, pages 641—
646, June 1995.

[5] E. M. Gold. Complexity of automaton identification from given
data. Inform. Control, 37:302-320, 1978.

[6] A. Grasselli and E Luccio. A method for minimizing the
number of internal states in incompletely specified sequential
networks. IRE Transactions on Electronic Computers, EC-
14(3):350-359, June 1965.

(71 H. Higuchi and Y. Matsunaga. A fast state reduction algorithm
for incompletely specified finite state machines. In Proc. De-
sign Automation Conference, pages 463-466, New York, June
1996. ACM Press.

[8] J.E. Hopcroft. n log n algorithm for minimizing states in finite
automata. Technical Report CS 71/190, Stanford Univiversity,
1971.

[9] T. Kam, T. Villa, R. Brayton, and A. S. Vincentelli. Synthesis of
FSMs: functional optimization. Kluwer Academic Publishers,
1997.

[10] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni Vincentelli.
A fully implicit algorithm for exact state minimization. In Proc.
Design Automation Conference, pages 684-690, 1994,

[11] K. J. Lang. Random DFA’s can be approximately learned
from sparse uniform examples. In Proc. 5th Annu. Workshop
on Comput. Learning Theory, pages 45-52. ACM Press, New
York, NY, 1992.

[12] K. J. Lang, B. A. Pearlmutter, and R. Price. Results of the
Abbadingo One DFA learning competition and a new evidence
driven state merging algorithm. In Fourth International Collo-
quium on Grammatical Inference (ICGI-98), Lecture Notes in
Computer Science, 1998.

[13] Giovanni De Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.

[14] A.L.Oliveiraand J. P. M. Silva. Efficient search techniques for
the inference of minimum size finite automata. In Proceedings
of the 1998 South American Symposium on String Processing
and Information Retrieval, Santa Cruz de La Sierra, Bolivia,
September 1998. IEEE Computer Society Press.

[15] C. F. Pfleeger. State reduction in incompletely specified fi-
nite state machines. IEEE Trans. Computers, C-22:1099-1102,
1973.

[16] J.-K. Rho, G. Hachtel, F. Somenzi, and R. Jacoby. Exact and
heuristic algorithms for the minimization of incompletely spec-
ified state machines. IEEE Transactions on Computer-Aided
Design, 13(2):167-177, February 1994.



